
Response to Nina Kristiansen on her review:

We colored our response to Nina Kristiansen in blue.

General comments

The paper presents a methodology to estimate volcanic ash emissions as a function of 
time and altitude based on observations and modelled ensemble simulations. The main 
strength of the paper is that the methodology also gives an estimate of the 
uncertainty/errors in the estimated emissions, however this aspect could be more 
clearly demonstrated throughout the paper with a clearer description of how this 
uncertainty estimate is obtained. There is potential to make a few sections clearer and 
easier for the reader to follow, in particular the methodology section. The results shown 
are interesting and the figures clear. The paper is suitable for publication once the 
below comments have been addressed.
We thank Dr. Kristiansen for her detailed and helpful review. We are confident that our 
modifications are in compliance  with her expectations, which would certainly improve 
our manuscript.

Specific comments

Abstract:

· “The system validation addresses the special challenge of ash cloud height 
analyses in case of observations restricted to bulk column mass loading 
information, mimicking the typical case of geostationary satellite data.” – unclear 
what is meant here, please rewrite.
We have rewritten this phrase: “Thus, the proposed system addresses the 
special challenge of analyzing the vertical profile of volcanic ash clouds given 
only column mass loading data as retrieved by geostationary satellite imagery.”

· The abstract should more clearly say that you are using an “idealized situation 
with artificial observations from a model run” and that you use many observations
of both ash and ash-free areas. It should also say that meteorological uncertainty
is not included.
We added this information to the abstract. The phrase concerning identical twin 
experiments now reads: “As initial validation of ESIAS-chem, the system is 
applied to simulated artificial observations of both ash-contaminated and ash-free
atmospheric columns using identical twin experiments. Thus, in this initial 
performance test the underlying meteorological uncertainty is neglected.”

L20: “This situation, however, can be remedied by extending the assimilation window”. I 
am not sure this is true, as in the results section you show Figure 10 for the weak wind 
shear situation that the emission profile is not well estimated and you don’t show a 
better estimation when including more observations (i.e. increasing the assimilation 
window >24 hrs) for this case.
Thank you for this comment. Indeed, extending the assimilation window does not 
guarantee a better performance. Anyhow, even in the case of weak wind shear, the 
confidence of the analysis ensemble on the time and height of the volcanic ash 
emissions increases with increasing assimilation window length. This has been 
addressed in the new Fig. 11 where you see a histogram of the relative emission factor 
of the analysis for the weak wind shear test case. We have changed the sentence: „In 
case of increasing wind shear, the performance of the analysis may benefit from 



extending the assimilation window, in which new observations potentially contribute 
valuable information to the analysis system. “

Section 1 Introduction:

· Line 32: “Typically, volcanic eruptions occur as sequences of emissions with 
highly varying ejection mass and height”. This might be correct for explosive 
eruptions but not necessarily for effusive or passive degassing.
We agree. We have added “explosive” before volcanic eruptions in this phrase.

· Line 33: You might want to include that radar observations also are uncertain and
have limitations.
Thank you for this comment. We added this information to the sentence. It now 
reads: “Only limited observations of volcanic ash emission parameters are 
available (e.g. eruption plume heights retrieved from radar measurements, 
Arason et al., 2011), which are affected by their specific uncertainties and 
limitations, e. g. by orographic shielding.”

· Line 36: “Statistical models are based on observational data from only a few, 
highly heterogeneous volcanic eruptions”. I don’t think the word heterogenous is 
right here. The issue with the statistical methods by Mastin/Sparks is mainly that 
it is biased to larger eruptions (very small number of smaller eruptions were 
included in the empirical estimates), but I wouldn’t say that the eruptions 
considered were ‘heterogeneous’.
Thank you for this helpful comment. We have added this information. The point 
we wanted to highlight is the large variance of the eruption rate given a specific 
plume height (Fig. 1 in Mastin et al. 2009). We agree, that “heterogeneous” is 
insufficient to explain this relation. Thus, we have changed the sentence to: 
“Statistical models base on observational data from historic volcanic eruptions, 
which are sparse and show a large variance in eruption rate for given plume 
heights. For example, Mastin et al. (2009) calculated an uncertainty by a factor of
four in estimating the emission rate for a plume height of 25 km using their 
statistical model.” 

· Line 38: “physical plume-scale models require vent and magma details, which 
are poorly known, and thus making these models highly uncertain.” It might be 
more informative to include something on how sensitive the plume models are to 
the vent/magma details and the expected magnitude of errors associated with 
this. See the plume model intercomparison study by Costa et al. 2016 
(https://www.sciencedirect.com/science/article/abs/pii/S0377027316000366)
As for the statistical models, we have added some information about the 
uncertainty of the plume-scale models. The sentence has been expanded: 
“Physical plume-scale models require orographic details of the volcano (e. g. 
crater size) but also meteorological fields and parameters (e. g. wind entrainment
coefficients), which are often poorly known and render these models highly 
uncertain. Costa et al. (2016) identified the wind entrainment coefficient as main 
source of uncertainty leading to up to two orders of magnitude differences for the 
estimation of mass eruption rates for weak volcanic eruptions. In their analyses of
the eruptions of the Eyjafjallajökull, Iceland, in 2010 and Grímsvötn, Iceland, in 
2011, Woodhouse et al. (2015) found a comparable range of uncertainty 
depending on the choice of the wind entrainment coefficients.”

· Line 50: “is the horizontally more complete picture of the volcanic ash extent” 
unclear what is meant by more complete picture here – and more complete 
compared to what?
We have rewritten the sentence: “Column mass loading observations as 



available from, for example, the Spinning Enhanced Visual and InfraRed Imager 
(SEVIRI) on board Meteosat Second Generation (Schmetz et al., 2002) are 
beneficial for source inversions as they provide measurements of the horizontal 
extent of the volcanic ash cloud with a frequency as high as 15 minutes, which is 
used for analyzing the temporal evolution of the volcanic eruption column. “

· Line 73: Would be good to include some further details of the advantages and 
limitations of each method which you mention. Also include more recent papers 
on data assimilation/insertion:

· Prata, A. T., Mingari, L., Folch, A., Macedonio, G., and Costa, A.: FALL3D-
8.0: a computational model for atmospheric transport and deposition of 
particles, aerosols and radionuclides – Part 2: Model validation, Geosci. 
Model Dev., 14, 409–436,https://doi.org/10.5194/gmd-14-409-2021, 2021.

· Pardini, F., Corradini, S., Costa, A., Esposti Ongaro, T., Merucci, L., Neri, 
A., Stelitano, D., and de’ Michieli Vitturi, M.: Ensemble-Based Data 
Assimilation of Volcanic Ash Clouds from Satellite Observations: 
Application to the 24 December 2018 Mt. Etna Explosive Eruption, 
Atmosphere, 11, 359, https://doi.org/10.3390/atmos11040359, 2020.

· Osores, S., Ruiz, J., Folch, A., and Collini, E.: Volcanic ash forecast using 
ensemble-based data assimilation: an ensemble transform Kalman filter 
coupled with the FALL3D-7.2 model (ETKF–FALL3D version 1.0), Geosci. 
Model Dev., 13, 1–22, https://doi.org/10.5194/gmd-13-1-2020, 2020.

· Fu, G.; Lin, H.X.; Heemink, A.; Lu, S.; Segers, A.; Velzen, N.V.; Lu, T.; Xu,
S. Accelerating volcanic ash data assimilation using a mask-state 
algorithm based on an ensemble Kalman filter: A case study with the 
LOTOS-EUROS model (version 1.10), Geosci. Model Dev., 10, 1751–
1766, 2017.

· Fu, G., Prata, F., Lin, H. X., Heemink, A., Segers, A., and Lu, S.: Data 
assimilation for volcanic ash plumes using a satellite observational 
operator: a case study on the 2010 Eyjafjallajökull volcanic eruption, 
Atmos. Chem. Phys., 17, 1187–1205, https://doi.org/10.5194/acp-17-
1187-2017, 2017.

Thank you for providing the additional references. We address these now in the 
introduction. Further, we added some more information to the paragraphs describing 
the approaches in the literature for analyzing volcanic eruptions. The full section now 
reads: “First estimations of volcanic ash emissions from the 2010 Eyjafjallajökull 
eruption in a high temporal and vertical resolution were made by Stohl et al. (2011) and 
later by Kristiansen et al. (2012) and Kristiansen et al. (2015). Their algorithm bases on 
the inversion technique of Eckhardt et al. (2008), in which an optimal combination of 
distinct emission packages is estimated using a least squares method. The method 
showed to provide reliable a posteriori estimates of the time-varying emission profiles. 
Stohl et al. (2011) include errors from a priori estimates, retrieval errors and model 
errors and discussed results in terms of relative error reduction subject to assumptions 
made. Schmehl et al. (2012) initiate the volcanic ash analysis using an ensemble of 
simulations with random emission strengths and wind fields. Their best estimate of the 
volcanic ash concentration is found iteratively using a “genetic algorithm variational 
approach”. Herein, rather strong assumptions on the emission profile are made: the 
emissions are kept fixed for the simulation duration; emissions are placed into a single 
model layer; wind fields are only adjusted in the model layer containing volcanic ash 
emissions. However, the method provides a quick and easy to implement first estimate 
of the volcanic ash concentrations in the atmosphere. Yet, the strong assumptions may 
render the approach unfeasible for longer lasting volcanic eruptions in which the 
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emissions vary more strongly. Another data assimilation method for estimating the 
volcanic ash emissions was proposed by Lu et al. (2016). They developed an adjoint-
free, ensemble-based four-dimensional variational data assimilation (4D-var) method. 
The method showed reliable estimates of the true emission profile in their experiments 
using synthetic, vertically integrated satellite observations. However, they do not 
address the uncertainty estimate of their analysis. 
Zidikheri et al. (2016) and later Zidikheri et al. (2017b) developed an assimilation 
system that aims to analyze the horizontal distribution of volcanic ash column mass 
loading rather than the emission strength. This study was extended by Zidikheri et al. 
(2017a) to additionally estimate the height and the particle size distribution of volcanic 
ash emissions using a parameter refinement method. Here, an ensemble of source 
parameter values has been applied. Using a proper metric (in their case the pattern 
correlation coefficient) the ensemble is evaluated against observations. The best fitted 
ensemble member is taken as analysis. The method is easy to implement for a fast 
analysis of a volcanic eruption as only the upper and lower bounds of the considered 
source parameters need to be defined. However, the number of model runs used to find
the analysis increases exponentially with the number of parameters. Rough estimates of
the parameters’ uncertainty are provided by the spread of the top 2 % ensemble 
members with respect to the metric (Zidikheri et al., 2017b), which does not take 
uncertainties in the observed quantities into account. Wilkins et al. (2014) used the 
“data insertion” method, in which observed volcanic ash column mass loadings act as 
virtual sources for volcanic ash with a predefined vertical distribution. The algorithm was
successfully applied to the eruptions of Eyjafjallajökull, Iceland, 2010 (Wilkins et al., 
2016b) and Grímsvötn, Iceland, 2011 (Wilkins et al., 2016c). Given the lack of vertical 
information in column mass loading retrievals of volcanic ash, the data insertion method
needs assumptions about the vertical distribution of the volcanic ash content in the 
atmosphere. Thus, this larger source of uncertainty for the volcanic ash analysis is 
ignored. The data insertion scheme has also been implemented as a first step towards 
an ensemble-based data assimilation scheme in the FALL3D-8.0 atmospheric transport 
model (Prata et al., 2021). 
Fu et al. (2017) developed a mask-state algorithm for ensemble Kalman Filters to 
reduce the size of the state vector to be optimized. More recent applications of the 
ensemble Kalman Filter and its variants are provided by Pardini et al. (2020) and 
Osores et al. (2020). By estimating the source parameters of the volcanic eruption, the 
approaches using the ensemble Kalman Filter assume constant emission parameters 
between two assimilation steps. This is a rather strong assumption on the emissions 
especially if observational data is sparse or far away from the volcano. However, 
keeping this assumption in mind the ensemble Kalman Filter methodology provides an 
estimate on the analysis uncertainty.”

Section 2:

· I generally find the methodology section difficult to follow. There are many 
technical terms and abbreviations to keep track of, and the descriptions are 
sometimes not clear. Perhaps an extension of Figure 1 (the flow diagram) to 
include further steps and references to methods/terminology/naming conventions
would help. I also suggest expanding the figure caption of Figure 1 to explain 
what the figure shows which makes it easier for the reader to return to this figure 
later while reading subsequent sections.
Thank you for this suggestion to improve the general description of the method. 
We have updated the caption of Figure 1 as you suggested. It now reads: 
“Schematic of the ESIAS-chem analysis workflow. The analysis is initiated with 



an ensemble of emission packages at time t=t0 and restarted, when new 
observations become available (left side, cf. Sect. 2.1). Here, t i+1 corresponds to 
the observation time. Previously calculated simulations with emission packages 
within the time interval t0−ti may be restored (upper panel). Simulated volcanic 
ash is compared with perturbed observations for the whole simulation (i. e. from 
t0 to ti+1 (upper center panel). The resulting volcanic ash concentrations are 
passed to the DENM minimization algorithm that produces an ensemble of 
emission profile analyses (right panel, cf. Sect. 2.2) by finding an optimal 
combination of the pairwise distinct emission packages. This ensemble of 
emission profile analyses is evaluated by the particle filter and resampling 
method to assign a weight to each emission profile according to the fit of the 
resulting volcanic ash with the observations. Emission profiles are replaced if 
their corresponding volcanic ash content does not fit well to the observations 
(lower panel, cf. Sect. 2.3).” Further, we agree that the naming convention of 
some variable is misleading. We have added a table describing all variables. 
Also, we have changed the subscripts for referring to ensemble members to 
superscripts. Thus, ensemble member i is now referred by (·)(i). We are confident 
that these modifications meet your expectations.

· L 98: “Stohl et al. (2011) and Kristiansen et al. (2015) aiming to estimate the 
optimal emission profile but not its uncertainty”. I think it is fair to say that this 
work did provide some uncertainty estimates (and included uncertainty in both 
the a priori, the observations and the model input – though this could of course 
be improved). In figure 3 of Stohl et al the uncertainty reduction from the a priori 
via the inversion to the a posteriori is shown. This shows how much influence the 
observations had, and which parts of the emissions were well constrained by the 
observations and which were less constrained, and therefore is a form of 
uncertainty estimate. I do appreciate that what you are aiming to provide is 
different (but I still don’t quite understand how the uncertainty is estimated!) but it 
would be good to include some more details here how your uncertainty estimate 
differ from this to make it clear.
Thank you for your comment on the uncertainty. We are aiming to make our point
clearer. Our approach accounts for the analysis uncertainty in different ways. 
First of all, the minimization is performed for an ensemble of emission profiles, 
where each ensemble member uses perturbed observations and different a priori
emission profiles. Further, the ensemble of emission profile analysis is valued by 
the particle filter algorithm, which assigns weights to each ensemble member and
replaces statistically valueless emission profiles, i. e. emission profiles with too 
little weights. In this way, the ensemble members are comparable in explaining 
the observed volcanic ash content. The probability is the relative number of 
ensemble members that simulate volcanic ash concentrations (or column mass 
loadings) above a threshold. We have added this information to the particle filter 
section 2.3: “Qualitatively, the strategy of particle filtering applied here can be 
expressed as follows: By replacing the valueless ensemble members (i. e. those 
with too little weight) each ensemble member has comparable skill to match the 
observations. Hence, the probability of an event (e. g. volcanic ash 
concentrations above a certain threshold) can directly be extracted from the 
relative number of ensemble members that simulate this event.”
Further, Stohl et al. (2011) in their Fig. 3 give the relative reduction of the 
assumed a priori uncertainty of the ash emissions by the inversion algorithm, with
assumptions made and the results further detailed in their section 3.2. We are 
sorry that we did not appreciate these findings in a pertinent way, what is now 
made up for. We wrote: “Stohl et al. (2011) include errors from a priori estimates, 



retrieval errors and model errors and discussed results in terms of relative error 
reduction subject to assumptions made.” We also add some remarks on our error
estimates with particle filter approach. We like to point out that our approach uses
the uncertainty estimation to provide reasonable error simulations of the volcanic 
ash cloud, which has the potential to identify areas with high volcanic ash content
without direct observations. 

Section 2.2:

· Some further comments on the advantages and disadvantages of the Nelder-
Mead method would be good to include. For example, mentioning that the reason
the method is suitable for “discontinuous”/”spiky”/”noisy” problems is because it 
does not use derivatives, but also that it doesn’t use a convergence theory and 
doesn’t necessarily find the minimum function value (but rather an ‘improvement’)
– that is the key difference to the method used by Stohl etc. 
We have added some further information on the advantages and disadvantages 
of the Nelder-Mead algorithm to Sect. 2.2. The section now reads: ”The 
minimization problem posed by (1) is solved using the Nelder-Mead algorithm 
(Nelder and Mead, 1965). The Nelder-Mead minimization algorithm is a 
combinatorial optimization method without constraints and without the need to 
compute the function derivatives. It has proven to be robust, especially in cases 
where the function to be minimized has discontinuities or the function values are 
noisy (see McKinnon, 1998). This is expected to be likely in highly variable 
volcanic eruptions especially given highly uncertainty, and thus noisy, 
observations. Additionally, the Nelder-Mead algorithm can easily account for 
bounded regions, in our case positive semi-definite ash loads, and needs 
relatively few function evaluations (mostly 1-2 function evaluations per iteration, 
Lagarias et al., 1998). 
The idea of the algorithm is to move a simplex on the surface of the cost function 
to find an improved model state in a N-dimensional space. The version of the 
Nelder-Mead method used in this study follows Gao and Han (2012) and utilizes 
adaptive parameters controlling the step size for each iteration of the 
minimization. The version has been implemented for parallel operation (Klein and
Neira, 2014; Lee and Wiswall, 2007). In our application the Nelder-Mead 
algorithm is used to find the optimal combination of the pairwise distinct emission 
packages. Hence, a factor ai, which needs to be scaled by the algorithm, is 
assigned to each emission package.
Due to its simplicity the Nelder-Mead algorithm is easy to implement but it is likely
to find a local rather than the global minimum of the cost function (which is also a 
problem for least-square minimization techniques with poor initial guesses, as for 
volcanic eruptions). Thus, we have added some adjustments to the algorithm. 
First, we perform the minimization only for integers (including 0). Thus, only 
integer values are accepted for the scaling factors ai of the emission packages. 
By applying this constraint it is assumed that the introduced errors are of lower 
order than the error introduced by the temporal resolution of the emission 
packages. Further, the minimization is restarted with larger perturbations of the 
vertices once the optimization fails for many iterations. Finally, the minimization is
started for an ensemble of Nelder-Mead analysis. As perturbed observations are 
used as input to the minimization procedure, the solutions (here emission 
profiles) produced by the analysis ensemble are assumed to map the uncertainty 
given by the observations onto the emission rates. Thus, the minimization 



algorithm is called hereafter discrete-grid ensemble Nelder-Mead method 
(DENM).”

· “The minimization was performed in N0
N, which has been found to be more 

effective than the minimization in RN” –to help the reader please directly spell out 
what this means. I think you mean in model space rather than in observation 
space. And if this is the case is this more efficient because the number of 
ensemble members is smaller than the number of observations?
Thank you for stating this point to be not clear. We allow only integers as 
solutions for the minimization. Tests showed that the minimization is less trapped
in local minima and the convergence to the solution is faster. We have made this 
point clearer as can be seen in the response to the previous point.

· How is the initial simplex determined for each ensemble member? You say later 
it is arbitrary but some more details here would be useful.
Indeed, we start the minimization from an arbitrarily chosen initial simplex 
(emission profiles in our case). We have tested the algorithm starting from an 
emission profile with an umbrella shaped vertical mass distribution that varies 
temporally in strength and plume height. For the given “true” emission profile in 
our study, we found better performance using the arbitrary initial simplex. It is 
likely that this is only due to the chosen true emission profile in the nature run. In 
an application to real volcanic eruptions, we will again test the arbitrary initial 
emission profile against the time-varying umbrella shaped emission profile. In our
algorithm, the initial simplex can be freely chosen, which allows to adapt the 
method to the characteristics of the current volcanic eruption and its assumed 
degree of uncertainty. We added this information to section 2.4 where we 
introduce the arbitrary initial emission profile (we have omitted to use the term 
simplex to avoid further confusion about the terminology): ”The algorithm was 
tested using a time-varying initial emission profile with umbrella-shaped vertical 
mass distribution. Due to the chosen true emission profile in this idealized study 
(cf. Sect. 3) the minimization using the initial emission profile with umbrella-
shaped vertical mass distribution shows larger errors. In the application of the 
algorithm to a real volcanic eruption the performance of the analysis using 
umbrella-shaped initial emission profile may exceed the performance using 
arbitrary emission profile. Hence, ESIAS-chem is designed to adjust the initial 
emission profile to the characteristics of the current volcanic eruption.”

· It would also be nice to see some comment on computational effort (i.e. run time)
for this system.
As the core focus in this study is the reconstructability of the 3D ash field based 
on wind shear driven sequences of 2D column field imagery, numerical efficiency
was not our primary concern. The run time of the ensemble system is an 
informative value about the applicability as early warning system. However, as for
other methods in the literature, we have decided to not concentrate on the 
computational performance. Thus, we have adapted the simulations to the 
available compute resources (especially granted wall clock time). We run the 
ensemble of emission packages subdivided into chunks of 60 members. Further, 
we increased the number of iterations in the Nelder-Mead minimization to 15,000 
(including restarts), which is not feasible in a realistic early warning scenario. 
However, we chose 15,000 iterations in order to track the performance of the 
minimization. It was found that the costs reached the minimum value after ~1,000
iterations. With this setup, the run time of the system is not competitive with other
algorithms nor representative for a realistic application.

Section 2.3:



· L 140: “It is noted that in the particle filter method no assumptions of the error 
statistics of the model state and the observations were made.” I don’t understand 
how this relates to the uncertainty estimate you apply in the results section where
you assume a 40% uncertainty on the observations….
We apologize to not have been clear on this point. We mean that the particle filter
formulations do not need Gaussian error statistics or unbiased model states as it 
is necessary in other data assimilation approaches (although generally the 
ensemble needs to have a large enough spread such that the solution is within 
the spread). We have added this information to the manuscript: “It is noted that in
the particle filter method no assumptions of the statistical forecast error 
characteristics and the observation error were made (the errors do not need to 
be normally distributed and the model state does need to be unbiased as other 
data assimilation methods require).”

L 145 “the ensemble members with high weights are duplicated and perturbed, 
replacing ensemble members with vanishing weights.” I don’t quite understand how this 
works in practice with the unit ensemble members... please expand on this part.
We apologize for the unclear description of the methodology. We have carefully 
revisited section 2 and changed the wording such that the distinction between the 
ensemble of emission packages and the analysis ensemble is clearer. We have added 
some more description to the text: „The ensemble statistics can now be computed using
the ensemble member weights. For example, the ensemble mean is

x=∑
i=1

N ns

w(i ) x (i )”

Further, we have added: “In ESIAS-chem, the particle filtering and resampling steps are
applied after the ensemble of optimal emission profiles has been found by the DENM 
algorithm. A weight w(i) is assigned to each optimal emission profile. Residual 
resampling (Liu and Chen 1998) is used to replace emission profiles leading to too 
small weights by emission profiles with high weights (this step includes perturbing 
duplicated emission profiles). After resampling, the weights are normalized again 
(w(i)=1/Nens). Thus, the statistical informative value of the analysis ensemble is 
preserved. 
Qualitatively, the strategy of particle filtering applied here can be expressed as follows: 
By replacing the valueless ensemble members of the analysis (i. e. those with too little 
weight) each ensemble member has comparable skill to match the observations. 
Hence, the probability of an event (e. g. volcanic ash concentrations above a certain 
threshold) can directly be extracted from the relative number of ensemble members that
simulate this event.”

Section 2.4

· L 150: “In order to account for meteorological uncertainties, ESIAS-chem is 
capable to be coupled with ensembles of meteorological field”. But you have not 
used met ensembles here? Please clarify in text if this is only a possible 
extension.
Yes, it is a possible extension, which is tested in an upcoming real volcanic 
eruption investigation. We have changed the sequence as follows: “ESIAS-chem 
is constructed such that it is applicable to other accidentally released matter and 
constituents, given constraining observations are available. Further, it is capable 
to be coupled with ensembles of meteorological fields to account for additional 
uncertainties resulting from meteorological forecasts. However, this idealized 
investigation focuses on the ability of the system to reconstruct the emission 



profile and its uncertainty under perfect meteorological conditions. Thus, no 
meteorological ensemble is used.”

· L 179: “Finally, a particle filter step is applied. The weights, which result from the 
filtering step, are applied to the optimized emission profiles.” Please provide 
some more details of how the “ensemble mean” is constructed (a term which you 
use in Section 3) and then also the uncertainty estimates based on the 
ensembles. I understand that each ensemble member simulates the emission 
released by a single emission package for an individual time step and height 
interval and then weighted by the likelihood in the particle filter step. How do you 
construct the ensemble mean from this? Are the ensemble members still 
associated with emissions from a single emission package but after the filtering 
with an amount of ash (rather than a unit release)?
Thank you for pointing out that we were not clear in this point. The ensemble of 
emission packages is input for the Nelder-Mead minimization, which constructs 
an ensemble of emission profile analyses. These analyses are weighted by the 
particle filter algorithm. We have added the information on how to calculate the 
ensemble mean and the probability from the ensemble in Section 2.3 (see also 
our answer above). Further, we have clarified the input and output of the Nelder-
Mead algorithm. To distinguish between the ensemble of emission packages and
the ensemble of emission profile analyses (meaning analysis ensemble) we 
explicitly use these terms instead of only “ensemble” in section 2. In section 3, 
only the analysis ensemble is referred to. We have carefully revised the 
manuscript for other occurrences of the word “ensemble”, which may cause 
confusion and changed the terminology accordingly.

Section 3:

· L187: “Given the identical twin assumption the experiment is then to be made 
realistic in all other respects, as the two different weather conditions on our 
case”. This sentence is not entirely clear. I think you refer to the “twins” as the 
two different weather conditions. It might be better for the reader if you say this in
the first sentence of this paragraph.
We have added another sentence illustrating the identical twin principle more 
clearly: “The term identical twin refers to the fact, that observations and a priori 
knowledge are constructed from the same model and input data, in which only 
the parameters to be optimized (emission profile in our case) differ.”

· L190: Is EURAD-IM an online or offline model? Please clarify and which 
meteorological data are used as driver/lateral boundary conditions.
Thank you for this note. Indeed, we have forgotten to give the information about 
the meteorological model. We have added the following information: “As we 
consider the differences of feedbacks of the ash clouds on the meteorological 
evolution as not critical on the forecast time scale in our idealized tests the 
EURAD-IM is offline coupled with the Weather Research and Forecasting (WRF) 
model version 3.7 (Skamarock et al., 2008). Meteorological boundary conditions 
are taken from the ECMWF (European Centre for Medium-Range Weather 
Forecasts) analysis.”

· L203: “The uncertainty of volcanic ash column mass loading observations is 
about 40 % (Kristiansen et al., 2015, and references therein)”: Some better 
references here might be:

· L. Clarisse, F. Prata: Chapter 11 - Infrared Sounding of Volcanic Ash 
Editor(s): Shona Mackie, Katharine Cashman, Hugo Ricketts, Alison Rust, 



Matt Watson, Volcanic Ash, Elsevier, 2016, Pages 189-215, ISBN 
9780081004050, https://doi.org/10.1016/B978-008-100405-0.00017-3. 
(https://www.sciencedirect.com/science/article/pii/B978008100405000017
3)

· Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T. Volcanic ash infrared
signature: porous non-spherical ash particle shapes compared to 
homogeneous spherical ash particles. Atmos. Meas. Tech. 2014, 7, 919–
929. 144. 

· Western, L.; Watson, I.; Francis, P. Uncertainty in two-channel infrared 
remote sensing retrievals of a well-characterised volcanic ash cloud. Bull. 
Volc. 2015, 77, 67.
Thank you for providing further literature. We have surveyed the literature 
and changed our statement: “The uncertainty of volcanic ash column mass
loading observations is about 40% (Western et al., 2015; Clarisse and 
Prata, 2016) or even higher (Wen and Rose, 1994; Kylling et al., 2014).”

· Equation 7: Here you use an observation error 40% of the observation value. It 
might be worth commenting here that when using real observations (instead of 
synthetic as in your case) then a better approach would be to use the retrieval 
uncertainty estimate for each single satellite pixel, and not a fixed uncertainty 
value..
We have added this comment to Eq. 7: “For applications to real volcanic 
eruptions, the observation error provided by the satellite retrieval per pixel should
be considered.”

· L219+223: “The length of the assimilation window influences the performance of 
the data assimilation algorithm due to the influence of vertical and horizontal 
mixing and vertical wind shear.” And “Certainly, by increasing the assimilation 
window length the observations include more information, as the residence time 
of volcanic ash in the atmosphere is increased”. The wording here is a bit 
strange. The residence time of volcanic ash in the atmosphere doesn’t increase 
with increased assimilation window. As the assimilation window increases the 
number of observations which are assimilated increases… Please rewrite.
We agree. The wording is insufficient to illustrate our point. The second sentence
now reads: „With increased residence time in the atmosphere the volcanic ash at 
different heights becomes more horizontally split by wind shear. This effect can 
be exploited by increasing the assimilation window.”

· Page 11-12: There is a lot of jumping between the pcc and RMAE. Might be 
worth explaining first one and the results then the other one and the results.
As was suggested by reviewer 3, we have shifted the definition of the analysis 
metrics to Section 2. Thus, there is no more jumping between pcc and RMAE 
and we hope this clarifies the matter. 

· L265: 10 µgm−3 seems like a very low concentration threshold (considering the 
aviation thresholds starting at 200 ug/m3). What was the reasoning behind this 
threshold, and do the results change if the threshold is higher?
We chose a low threshold to investigate the error of the full volcanic ash cloud, 
not only the highest ash concentrations. However, the results are the same when
choosing, for example, 200 μg/m3 as threshold, although the number of grid cell 
exceeding this threshold is low, especially in the later hours of the investigation. 
We have added this information to the text: “The relatively low threshold to 
calculate the RMAE was chosen in order to increase the number of grid cells to 
be analyzed and to investigate the full volcanic ash cloud rather than only the 
area of high concentrations.”



· L282: “The analysis suggests that for the respective test cases an assimilation 
window of 18 hours, that is 10 hours after the artificial eruption terminated, is 
sufficient for ESIAS-chem to analyze the exact location of the volcanic ash 
cloud…” This is a nice result (and backed up by the RMAE later) which I think 
you should put in the abstract. 
Thank you for the suggestion. We have added this result to the abstract: „For our 
test cases using an artificial volcanic eruption, we found an assimilation window 
length of 18 hours, i. e. 10 hours after the eruption terminated, to be sufficient for 
analyzing the extent and location of the artificial ash cloud.“

· You could also here refer to work by Fu et al who also analysed this "effective 
duration" (i.e. the required temporal cycle to obtain improved forecasts). Fu et al. 
2015, 2016, 2017 report between 6 and 24 hours.

· Fu, G.; Lin, H.; Heemink, A.; Segers, A.; Lu, S.; Palsson, T. Assimilating 
aircraft-based measurements to improve forecast accuracy of volcanic ash
transport, Atmos. Environ., 115, 170–184, 2015.

· Fu, G.; Heemink, A.; Lu, S.; Segers, A.; Weber, K.; Lin, H.X. Model-based 
aviation advice on distal volcanic ash clouds by assimilating aircraft in situ 
measurements, Atmos. Chem. Phys., 16, 9189–9200, 2016.

· Fu, G., Prata, F., Lin, H. X., Heemink, A., Segers, A., and Lu, S.: Data 
assimilation for volcanic ash plumes using a satellite observational 
operator: a case study on the 2010 Eyjafjallajökull volcanic eruption, 
Atmos. Chem. Phys., 17, 1187–1205, https://doi.org/10.5194/acp-17-
1187-2017, 2017.

· Fu, G.; Lin, H.X.; Heemink, A.; Lu, S.; Segers, A.; Velzen, N.V.; Lu, T.; Xu,
S. Accelerating volcanic ash data assimilation using a mask-state 
algorithm based on an ensemble Kalman filter: A case study with the 
LOTOS-EUROS model (version 1.10), Geosci. Model Dev., 10, 1751–
1766, 2017b.

Thank you for pointing us to the literature. In our study, we state that we need 
observations at least 10 hours (or later) after the eruption has terminated in order
to sufficiently estimate the volcanic ash cloud. The literature provided by you
moreover states, that once an improved model state of the volcanic ash is found, 
the improvement rests for 6 to 24 hours. With our experiment, even though it is 
an idealized study, we show that the improved model state prevails until the end 
of the forecast time. However, we have not focused on the duration of the 
improvement in the model state due to the assimilation. All this makes it difficult 
to compare our results with the findings by Fu et al. Thus, we suggest to rather 
not compare with these publications.   

· L305: “good performance of the ESIAS-chem analysis not only in terms of 
column mass loading but also in terms of the vertical distribution of the volcanic 
ash in the atmosphere”. It might be worth re-iterating here that getting a good 
performance for the concentrations are possibly strongly affected by the use of 
“perfect meteorology” and that such good results are not expected using real 
observations.
You are right, the perfect model and perfect meteorology assumption contributed 
to the good performance of ESIAS-chem for the comparison of the vertical 
distribution of the volcanic ash. This is what we will investigate more clearly when
applying ESIAS-chem to real volcanic eruptions, where meteorological forecast 
uncertainties impose a limiting factor to further improvements. However, the good
estimate of the emission profile for the case study with strong wind shear hints 
that at least for strong wind conditions the vertical distribution of volcanic ash can



be sufficiently analyzed under realistic conditions. We have added the following 
comment to our statement: “However, this good performance in analyzing the 
vertical structure of the volcanic ash cloud is partly due to the perfect model / 
perfect meteorology assumption made in this study. The reliable estimate of the 
emission profile for the test case with strong wind shear suggest that the vertical 
structure of the volcanic ash is also sufficiently estimated under real conditions, 
where meteorological forecast uncertainties impose a limiting factor to further 
improvements. This needs to be proved in the application to real volcanic 
eruptions.”

· L306: I was surprised why the 18 hours assimilation windows wasn’t chosen here
over the 24 hours as the 18 h seems to show equally good results up until now.
We have chosen 24 hours instead of 18 hours because it is a realistic choice for 
operational applications. Indeed, we could have shown the 18 hours assimilation 
window case with equal results.

· You first show the validation using pcc and RMAE (Figs 6-8) for all assimilation 
time windows, and then the results for one of the assimilation windows (figure 9-
10). I would prefer it the other way around so that I can see what the estimated 
emission profile looks like (for one of the assimilation windows) before it is 
validated and tested against the other assimilation windows. Also, because the 
main strength of your method is giving an uncertainty estimate for the emission 
profile this should be the focus of the results.
We understand your preference. It is certainly an option to concentrate first on 
the estimated emission profile for one assimilation window and see how it 
performs compared to other assimilation windows. Our intention was to first 
compare the results for the different assimilation windows before concentrating 
on one realistic choice (as mentioned before, we could have concentrated on the 
18 hour assimilation window case, too). As a compromise, we have added the 
emission profile for the analysis ensemble mean for all assimilation window 
lengths in Appendix A. Also, we have added an investigation on the error 
distribution for estimating the emission rates (measured by a relative emission 
factor between the model and the nature run emissions) for all assimilation 
window lengths. Both is provided as supplement to this author response. 

· Figure 9 and 10: It would be interesting to see “b” figure for all assimilation 
windows, to see how the emission profile changes as you assimilate more and 
more observations, and how the estimated uncertainty (c, d figures) also changes
when including more observations.
As mentioned above, we have added this information in Appendix A.

· L322: In the abstract you say that for the strong wind shear condition the 
estimated emissions have “up to an error of only 10 %” but here you say relative 
errors are around 10-20 %. Also, in the abstract you say that in a situation with 
little wind shear the errors are “higher”, while here you say up to 60% and more. I
would change the abstract to give the same numbers as here.
Thank you, we have updated the numbers in the abstract.

· L337: “The results indicate that on 29 April 2010 the mixing of volcanic ash in the 
atmosphere is too effective”. With much less wind shear on 29 April it seems that 
the problem isn’t too much mixing but that the emissions at different altitudes and
times are transported in a similar way and thus cannot be easily separated by the
assimilation.
Clearly, this is one explanation for the results. However, we believe that our 
conclusion is correct. As you can see in our Fig. 12, right hand side, the upper 
and lower part of the volcanic ash cloud is horizontally displaced, which suggests
that column mass loading observations should be useful to estimate the emission



profile. The problem here is the long residence time of the volcanic ash cloud 
above Iceland, which enables the mixing of volcanic ash emitted at different 
times at the lower part of the emission column. This prohibits a better 
performance of the system when increasing the assimilation window length as 
the volcanic ash cannot be attributed to the correct emission package once the 
volcanic ash has mixed. 

· L340: “However, the previous results show that even though the volcanic ash 
emission profile could not be properly estimated by the system on 29 April 2010, 
the vertical and horizontal distribution of volcanic ash in the atmosphere is fairly 
represented by the ensemble mean.”. This is a little worrying. The fact that the 
pcc and RMAE give such good scores even with such a “smooth” emission 
profile after the assimilation which deviates strongly from the nature run 
emissions (“truth”)... it does make me question whether the pcc and RMAE are 
appropriate statistical measures to be used here… But it might be more to do 
with the fact that with little wind shear many different emission profiles can 
equally well give a best fit with the observations and the fact that the Nelder-
Mead method doesn’t necessarily find the minimum only an “improvement” as 
previously mentioned. I think the point that the emissions are not well estimated, 
but that the simulated concentrations and column loadings still fit well with the 
nature run would be a little bit more explored and discussed.
The weak wind shear case, in which the increasing thickness of the nascent ash 
cannot help to analyze the height-time resolved emission profile, is a typical case
of an ill-conditioned inversion problem. Any built-up sequence (upper level first-
lower last, or vice versa) in a stagnant column can comply with later observations
off the volcano, after inception of wind. The vertical profile of the eruption 
sequence remains beyond analysability with any inversion method, given only 
column thickness data. Additional observations, e. g. the Keflavik radar or similar 
height resolving observation systems, are required to further constraint the 
volcanic ash emissions. Yet, this is not part of this study.

· L371: “Thus, ESIAS-chem demonstrates to estimate the vertical distribution of 
volcanic ash in the atmosphere on both simulation days with a high accuracy.” A 
probability of 90% from the ensemble does not mean that the simulation is of 
high accuracy.
You are right, the fact that the ensemble predicts an event by 90 % probability 
does not show its accuracy. As we need a large number of analyses to give 
reasonable estimates of the accuracy of the method and given the lack of 
computational time for such a large investigation, we decided to remove this 
sentence from the manuscript. 

Section 4 Conclusions

· This reads a bit more like a discussion and future outlook. I would rename this to 
“discussion” and include another section for the Conclusions which summarizes 
the key results you have shown with a few bullet points.
We have revised the conclusions. Now, Section 4 is “discussion and conclusion”. 
As you suggested, we have added some bullet points to summarize our main 
findings. 

Technical corrections



· Line 33: “form radar” – change to “from radar”
Done

· Line 285: “extend” – change to “extent”
Done


