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Abstract. In climate models, subgrid parameterizations of convection and cloud are one of the main reasons for the biases in 

precipitation and atmospheric circulation simulations. In recent years, due to the rapid development of data science, Machine 10 

learning (ML) parameterizations for convection and clouds have been proven the potential to perform better than conventional 

parameterizations. At present, most of the existing studies are on aqua-planet and idealized models, and the problems of 

simulated instability and climate drift still exist. In realistic configurated models, developing a machine learning 

parameterization scheme remains a challenging task. In this study, a group of deep residual multilayer perceptrons with strong 

nonlinear fitting ability is designed to learn a parameterization scheme from cloud-resolving model outputs. Multi-target 15 

training is achieved to best balance the fits across diverse neural network outputs. The optimal machine learning 

parameterization, named NN-Parameterization, is further chosen among feasible candidates for both high performance and 

long-term simulation. The results show that NN-Parameterization performs well in multi-year climate simulations and 

reproduces reasonable climatology and climate variability in a general circulation model (GCM), with a running speed of about 

30 times faster than the cloud-resolving model embedded Superparameterizated GCM. Under real geographical boundary 20 

conditions, the hybrid ML-physical GCM well simulates the spatial distribution of precipitation and significantly improves the 

frequency of precipitation extremes, which is largely underestimated in the Community Atmospheric Model version 5 (CAM5) 

with the horizontal resolution of 1.9°×2.5°. Furthermore, the hybrid ML-physical GCM simulates a stronger signal of the 

Madden-Julian oscillation with a more reasonable propagation speed, which is too weak and propagates too fast in CAM5. 

This study is a pioneer to achieve multi-year stable climate simulations using a hybrid ML-physical GCM in actual land-ocean 25 

boundary conditions. It demonstrates the emerging potential for using machine learning parameterizations in climate 

simulations. 
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1 Introduction 

The general circulation models (GCMs) have been widely used for studying climate variability, prediction and projections. 

Despite decades of GCM development, most GCMs still suffer from many systematic biases, especially at low latitudes. A 30 

prominent tropical bias in most current GCMs is the double intertropical convergence zone (ITCZ) syndrome, which is 

characterized by two parallel zonal bands of annual precipitation straddling the equator over the central and eastern Pacific 

(Mechoso et al., 1995; Lin, 2007; Zuidema et al., 2016; Zhang et al., 2019; Lu et al., 2021). Convectively coupled equatorial 

waves and the Madden-Julian Oscillation (MJO), featured by eastward propagating convective cloud clusters, are also not well 

simulated in GCMs (Ling et al., 2017). The simulated MJOs in GCMs are often too weak and propagate too fast (Lin et al., 35 

2006).  

Many studies have attributed most of these biases to the imperfection of the parameterization schemes for atmospheric 

moist convection and cloud processes in current GCMs (Song and Zhang, 2009; Zhang and Song, 2010; Oueslati and Bellon, 

2013; Crueger and Stevens, 2015; Deng et al., 2016; Cao and Zhang, 2017; Peters et al., 2017; Song and Zhang, 2018). Cloud-

related processes span a large range of spatial scales, from micron-scale cloud nucleation, meter-scale turbulence, to individual 40 

convective cells and organized convective systems, which are a few kilometers to hundreds of kilometers in size, and to tropical 

disturbances, which have a spatial scale of thousands of kilometers. They directly influence the radiation balance and 

hydrological cycle of the earth system. Their interaction with the atmospheric circulation affects the transport and distribution 

of energy and is the largest source of precipitation biases. Therefore, it is very important to simulate the cloud and convection 

process in GCMs correctly. However, the current GCMs used for climate simulation have a horizontal resolution of ~100km 45 

and a vertical hydrostatic coordinate. Therefore, in most GCMs, besides parameterized cloud microphysics, convection and its 

influence on the atmospheric circulation are represented by convective parameterization schemes, which are usually based on 

simplified theories, limited observations, and empirical relationships (Tiedtke, 1989; Zhang and McFarlane, 1995; Zhang, 

2002; Wu, 2012; Storer et al., 2015; Zhao et al., 2018; Seo et al., 2019; Xie et al., 2019; Lopez-Gomez et al., 2020; Hourdin 

et al., 2020). Those schemes regard convective heat and moisture transport as the collective effects of idealized individual 50 

kilometer-scale convective cells. They cannot represent the effects of many complicated convective structures, including 

organized convective systems, leading to large uncertainties and biases in climate simulations. (Bony et al., 2015). 

Cloud Resolving Models (CRMs), on the other hand, have long been used to simulate convection. Because CRMs have 

higher horizontal and vertical resolutions and can explicitly resolve the thermodynamic processes in convection, they simulate 

convection more accurately, including convective organization (Feng et al., 2018). In recent years, CRMs have been applied 55 

to low-resolution GCMs to replace conventional cumulus convection and cloud microphysical parameterization schemes, such 

as the superparameterized version of the Community Atmosphere Model (SPCAM) developed by the National Center for 

Atmospheric Research (Grabowski and Smolarkiewicz, 1999; Grabowski, 2001, 2004; Khairoutdinov and Randall, 2001; 

Randall et al., 2003; Khairoutdinov et al., 2005). Compared with conventional cumulus convection and cloud microphysical 

parameterization schemes, SPCAM performs better in simulating mesoscale convective systems, diurnal cycles of 60 
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precipitation, monsoons, and MJOs (Bretherton et al., 2014; Jin et al., 2016; Jones et al., 2019; Hannah et al., 2020). However, 

the computing resource required for SPCAM is an order of magnitude larger compared with that for CAM. The use of SPCAM 

in long-term climate simulations and ensemble prediction is restricted by the current computing resource. Developing novel 

and computationally efficient schemes for high performance convection and cloud processes is still an open problem in GCM 

development. 65 

The conventional theory-driven parameterization schemes are based on the limited mathematical theory and observations, 

guided by physical laws of atmospheric motion, while the data-driven parameterization scheme can identify and extract 

complex nonlinear relationships from high resolution and high-fidelity data sets. More recently, the rapid development of 

machine learning (ML) technologies, especially deep learning technologies such as neural networks (NNs), has provided novel 

approaches to constructing parameterization schemes. Machine learning can identify and discover complex nonlinear 70 

relationships that exist in large data sets and model them. Several studies have used machine learning methods to develop 

convection and cloud parameterization schemes (e.g., Schneider et al., 2017; Dueben and Bauer, 2018; Gentine et al., 2018; 

Rasp et al., 2018). These studies followed a similar approach. The first step is to derive a target dataset from a reference 

simulation, which is later used for machine learning algorithm training. Then, the trained ones are often evaluated offline 

against other independent reference simulations and finally implemented in a GCM to replace the conventional 75 

parameterization schemes (Rasp, 2020). 

Krasnopolsky et al. (2013) first proposed a proof-of-concept for developing convection parameterization based on the 

NN technique. Specifically, an ensemble of shallow NNs was applied to learn convective temperature and moisture tendencies, 

with training data from CRM simulations forced by observations in the tropical western Pacific. The resulting convective 

parameterization scheme was able to simulate the main features of cloud and precipitation in the NCAR CAM4 diagnostically. 80 

However, the key issue of prognostic validation in 3-D GCMs was not addressed. Recent studies have investigated ML 

parameterizations in prognostic mode in simplified aqua-planet GCMs. For example, Rasp et al. (2018) developed a deep NN 

algorithm to predict convection and clouds, which was trained with the data from an aqua-planet SPCAM. The NN 

parameterization was then implemented in the corresponding aqua-planet CAM and produced multi-year prognostic results 

close to SPCAM. They found that minor changes, either to the training dataset or in the input/output vectors, can lead to model 85 

integration instabilities. Brenowitz and Bretherton (2019) fitted a DNN for convection and clouds to the coarse-grained data 

from a near-global aqua-planet cloud-resolving simulation using the System for Atmospheric Modeling (SAM). The NN 

scheme was then tested prognostically in a coarse-grid SAM. Their results showed that there were unphysical correlations 

learned by the network, and information in the upper levels from the input vector had to be removed to produce stable long-

term simulations. Rather than using NNs, Yuval and O’Gorman (2020) used random forest to develop an ML parameterization 90 

based on the training data from a high-resolution idealized 3-D model with a setup of equatorial beta plane. Stable simulations 

that replicated the climatology of the high-resolution model were achieved after they implemented this parameterization in a 

coarse resolution GCM. 
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Although machine learning is a promising approach for developing new parameterizations, issues of instability and 

climate drift still prevent it from the application of machine learning parameterization in models. Rasp (2020) proposed coupled 95 

online learning to tackle instabilities and biases in NN parameterizations, which is a concept illustration using the idealized 

Lorenz 96 model. In real-world climate models with varied underlying surfaces, convection and clouds are more diverse under 

different climate backgrounds, which makes the task of developing ML-based parameterizations more complicated. A few 

early works have shown the feasibility of using neural networks fitting cloud processes in real-world models. Han et al. (2020) 

used a 1-D deep residual convolutional neural network (ResNet) to emulate moist physics in SPCAM. This ResNet based 100 

parameterization fitted the targets with high accuracy and is successfully implemented in a single column model. Mooers et 

al. (2021) got a high-skill DNN via auto-learning technique and forced an offline land model with DNN emulated atmospheric 

fields. However, neither of these studies have tested their NNs prognostically for long-term simulations with ML parameterized 

GCMs. This study uses a group of NNs to emulate convection and cloud processes in SPCAM with an actual global land-

ocean distribution. We apply two innovative methods in neural network models: multi-target training to achieve balanced 105 

results across diverse neural network outputs and multilayer perceptron with residual blocks (ResMLP) to enhance nonlinear 

fitting ability. Furthermore, an optimal DNN emulator is chosen among a set of well trained neural networks by using multi-

target training and ResMLP, to achieve both high-performance and long-term simulations. The NN parameterization scheme 

is then implemented in the realistically configurated CAM to obtain long-term stable simulations. Technically, NNs are 

commonly implemented via high-level programming languages such as Python and deep learning libraries. However, GCMs 110 

are mainly written in Fortran, making it difficult to integrate with deep learning algorithms. Therefore, we introduce a DNN-

GCM coupling platform in which the DNN model and the GCM interact through data transmission. This coupling strategy can 

facilitate the development of ML-physical hybrid models with high flexibility. Under real-geography boundary conditions, our 

work achieves 10-year stable climate simulations in Atmospheric Model Intercomparison Project (AMIP)-style experiments 

by using a hybrid ML-physical GCM. To our knowledge, this is the first time a decade-long stable real-world climate 115 

simulation is achieved with a NN-based parameterization.  

The remainder of this paper is organized as follows. Section 2 briefly describes the model, the experiments, the DNN 

algorithm, and the DNN-GCM coupling platform. Section 3 presents the offline validation of the DNN scheme, focusing on 

the output temperature and moisture tendencies. Results of multi-year simulations, employing the DNN parameterization 

scheme, are shown in section 4. A summary and conclusions are presented in section 5. 120 

2 Methods and data 

In this study, we choose SPCAM as the reference model to generate target simulations. A group of DNNs is trained with the 

target simulation data using optimized hyperparameters. Then, they are organized as a subgrid physics emulator and 

implemented into the superparameterized version of Community Atmospheric Model (SPCAM), replacing both the CRM and 

CRM radiation. This DNN-enabled GCM is referred to as NNCAM hereafter. 125 
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2.1 SPCAM setup and data generation 

The GCMs used in this study are the CAM5.2 developed by the National Center for Atmospheric Research and its 

superparameterized version SPCAM (Khairoutdinov and Randall, 2001; Khairoutdinov et al., 2005). A complete description 

of CAM5 is given by Neale et al. (2012). The dynamic core of CAM5 has a horizontal resolution of 1.9°×2.5° and 30 vertical 

levels with a model top at about 2 hPa. To represent moist processes, CAM5 adopts a plume-based treatment of shallow 130 

convection (Park and Bretherton, 2009), a mass-flux parameterization scheme for deep convection (Zhang and McFarlane, 

1995), and an advanced two-moment representation of cloud microphysical processes (Morrison and Gettelman, 2008; 

Gettelman et al., 2010). In the AMIP experiments we conducted, CAM5 is coupled to a land surface model Community Land 

Model version 4.0 (Oleson et al., 2010) and uses prescribed sea surface temperatures and sea ice concentrations.  

In this study, SPCAM is used to generate the training data. In SPCAM, a two-dimensional (2-D) CRM is embedded in 135 

each grid column of the host CAM. The 2-D CRM has 32 grid points in the zonal direction and 30 vertical levels that are 

shared with the host CAM. The CRM handles convection and cloud microphysics to replace the conventional parameterization 

schemes, and the radiation is calculated on the CRM subgrids to include the cloud-radiation interaction at cloud scale 

(Khairoutdinov et al., 2005), referring to CRM radiation hereafter. The other physical processes and the dynamic core are 

computed on the CAM grid as usual. One conceptual advantage of using SPCAM as the reference simulation is that the subgrid 140 

and grid-scale processes are clearly separated, making it easy to define the parameterization task for an ML algorithm (Rasp, 

2020). 

2.2 NN-Parameterization 

In the NNCAM, a DNN emulator is trained with the target data from the 2-D CRM and CRM radiation to achieve better results 

than the CAM5 with conventional parameterizations. In the following section, we refer to this DNN emulator as the NN-145 

Parameterization. As shown in Figure 1, the NN-Parameterization replaces the CRM moist physics and radiation calculations 

in SPCAM. It is coupled with the dynamic core and other parameterization schemes in each time integration loop in NNCAM. 

NN-Parameterization is a challenging deep learning application. It integrates the NNs into a scientific computing program 

for continuous time integration. In the numerical model system, the prediction errors of the NNs are at the risk of being 

amplified by the continuous iterations with the dynamic core and other physical processes, causing model state drift and even 150 

model crashes in NNCAM. This is expected to be more difficult in the GCMs with real land-ocean distributions. Because of 

the energy exchange between the land and the atmosphere, the nonlinearity of the simulation system is more complicated than 

the idealized aqua-planet models, bringing more uncertainties and more numerical sensitivities. In this section, we propose a 

DNN based Parameterization that can fit the grid average of the 2-D CRM data in SPCAM, and on this basis, achieve high 

computational performance and stable time integration. 155 
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2.2.1 Data sets 

The NN-Parameterization, as a deep learning emulator of the CRM and the CRM radiation in SPCAM, is designed to replace 

physics processes in the host CAM5, including deep and shallow convection, cloud microphysics and macrophysics, and 

radiation. Therefore, the inputs of this emulator are borrowed from CRM inputs such as the grid-scale state variables and 

forcings composed of the dynamic core and the planetary boundary diffusion. They are the specific humidity 𝑞𝑣, temperature 160 

T, largescale water vapor forcing (
𝜕𝑞𝑣

𝜕𝑡
)

𝑙𝑠
and temperature forcing (

𝜕𝑇

𝜕𝑡
)

𝑙𝑠
. Additionally, we select surface pressure 𝑃𝑠 and solar 

insolation (SOLIN) at the top of the model from the radiation module. The outputs of NN-Parameterization are subgrid-scale 

tendencies of moisture (
𝜕𝑞𝑣

𝜕𝑡
) and of temperature (

𝜕𝑇

𝜕𝑡
) at each model level as well as net shortwave and longwave radiative 

fluxes at both the surface and the TOA. This heating is composed of moist heating in the CRM and the GCM-grid-averaged 

radiative heating from the CRM radiation module. Since we use the real geography, we also include direct and diffuse 165 

downwelling solar radiation fluxes as output the NN-Parameterization to force the coupled land surface model, which is critical 

to improve the performance of the NNCAM. Specifically, they are solar downward visible direct to surface (SOLS), solar 

downward near infrared direct to surface (SOLL), solar downward visible diffuse to surface (SOLSD), and solar downward 

near infrared diffuse to surface (SOLLD). Those downwelling solar radiation fluxes with separation of direct versus diffusion 

are introduced for different land cover types and processes in the land surface model (Mooers et al., 2021). The precipitation 170 

is derived from column integration of predicted moisture tendency to keep basic water conservation. 

Table 1 lists the input and output variables and their normalization factors. There are 30 model levels for each profile 

variables. Therefore, the input vector consists of 122 elements for 4 profile variables and 2 scalars, while the 68-element output 

vector is made of 2 profiles and 8 scalars. All input and output variables are normalized to ensure that they are in the same 

magnitude before they are put into the NN-parameterization for training, testing, model prognostic validation. The 175 

normalization factor for each variable shown in the supplemented codebase is determined by the maximum of its absolute 

values.  

In this study, the target model SPCAM is run for 3 years from January 1, 1997 to December 31, 1999 with a time step of 

30 min. The first year of SPCAM simulations is for spinup, the second and third years are for training, with a total of 484 

million samples. In the training process, 64% of the data are randomly selected for training and 16% is for validation in every 180 

training epoch to monitor the performance and to prevent overfitting, and the remaining 20% of the data are used for testing. 

2.2.2 Multi-Target ResMLP 

In this study, the NN-Parameterization is an isolated column subgrid parameterization. This means that the inputs and outputs 

of NN-Parameterization are both 1-D vectors. Compared with machine learning tasks such as computer vision and natural 

language processing, the data input and output of NN-Parameterization are relatively simpler. Therefore, we choose the 185 

commonly used multilayer perceptron (MLP) to achieve a better generalization.  
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In the development of the NN parameterization scheme, it is found that the NN has a different fitting capability for 

different types of output variables. It usually has higher accuracy in predicting radiative fluxes and temperature tendency, 

while the accuracy is lower in predicting moisture tendency. This is also found in Gentine et al. (2018), in which the coefficient 

of determination (R2) of radiative heating tendency is higher than that of moisture tendency at most model levels. The physical 190 

processes behind the data representing convection and radiation are different, introduce high nonlinearity in the NN-

Parameterization. 

The distribution of different physical variables also varies greatly. Using a single NN with one target to train the relatively 

independent physical variables, i.e., moisture tendency, temperature tendency, and radiation fluxes, inevitably causes mutual 

interference. Since gradient descending is applied to optimize the network in training, mutual interference between different 195 

targets is expected to cause the cancel out of gradient directions used for descending (Crawshaw et al., 2020; Zhang et al., 

2021) and ultimately affect the convergence of the network. 

As shown in Figure 2, we divide the single network prediction target, a single stacked 1-D output, into multiple targets, 

and use multiple NNs to train these targets separately. By doing so, we avoid the gradient cancellation between multiple targets 

and improve the convergence speed and fitting accuracy when training the network.  200 

After dividing multiple targets, the learning target of NN-Parameterization still contains a lot of nonlinear information. 

This research attempts to construct a deeper neural network so that NNs can have stronger nonlinear fitting abilities. As the 

depth of a fully connected neural network increases, its performance becomes saturated and begins to decline when the depth 

increases further (He et al., 2016). For this reason, we use residual blocks to solve the problem of network degradation. By 

testing different depths and widths, we finally determined the network architecture for the optimal performance. As shown in 205 

Figure 3, a total of 7 residual blocks are used to form a deep neural network, and each residual block includes two 512 node-

wide dense layers connected with a layer jump. Therefore, the deep neural network that has 14 layers with 3.5 million 

parameters is named ResMLP hereafter. As shown in Figure 4, under multi-target training with the same hyperparameters, 

ResMLP’s fitting accuracy (R2) for different output variables is better than MLP, achieving a balanced prediction result, that 

is, the R2 of each variable is as close to 1 as possible, especially tendencies of moisture and temperature.  210 

Ott et al. (2020) found that on aqua-planet, the fitting accuracy of an NN-Parameterization is positively correlated with 

the stability of prognostic validation. In the real-world prognostic validation, we also find that the fitting accuracy of NN-

Parameterization has an important impact on stability. When NN-Parameterization is under-fitting, NNCAM can only run for 

a few days before it crashes. To obtain a feasible NN-Parameterization, a well-fit is necessary. As shown in Table 2, after 

multiple trials, we determine the hyperparameter configuration of ResMLP for high fitting accuracy. It can support NNCAM 215 

to run stably for at least several months. 

However, we find that a high R2 may not guarantee the stability of real-world prognostic validation. We have trained 

several groups of ResMLPs with doubled samples and epochs, having their R2 increased by 1% to 2%. Surprisingly, NNCAM 

using these ResMLPs crashed even earlier than before. As a result, high fitting accuracy is necessary but not sufficient for both 

high performance and long-term simulations. In this work, we proposed a trial-and-error method to effectively find the optimal 220 
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neural network that can guarantee both multi-year and high performance simulations. Firstly, we used the hyperparameter 

configuration of Table 2 as a baseline and prepared 50 groups of ResMLPs with similar R2 as candidate models using different 

train samples and epochs. Secondly, we conducted comprehensive prognostic tests on these candidate neural networks and 

obtained the feasible NN-Parameterization schemes that can support NNCAM’s stable simulation for multiple years. To our 

knowledge, running the relatively shorter NNCAM simulation is enough to screen out the feasible networks for stable 225 

simulations since we found that the ResMLP groups that cannot support long-term integration made NNCAM to collapse 

within half a year of simulation; and the feasible groups, on the other hand, coupled stably in NNCAM for the first half a year 

and showed no sign of crashes in the 10-year prognostic simulation. Finally, the optimal NN-Parameterization was selected 

for the best performance ResMLP group among the feasible candidats. 

2.2.3 Implementation of NN-Parameterization 230 

After being fully trained with CRM data, the NN-Parameterization is implemented into SPCAM to replace both the CRM and 

CRM radiation on the basis of coarse grid average. In the beginning of each timestep, NNCAM calls the NN-Parameterization 

and predict the moisture tendency (
𝜕𝑞𝑣

𝜕𝑡
) , the temperature tendency (

𝜕𝑇

𝜕𝑡
) and radiation fluxes. Then the DNN predictions are 

returned to NNCAM, updating the model states and fluxes. Additionally, the surface total precipitation is derived from column 

integration of the predicted moisture tendency. The near surface conditions of the atmosphere and downwelling radiation 235 

fluxes are transferred to the land surface model. After the coupling of the land surface model, the host CAM5 performs the 

planetary boundary layer diffusion and let its dynamic core complete a timestep integration (Figure 1). In the next timestep, 

the dynamic core returns the new model states to the NN-Parameterization as inputs again. During the whole process, NN-

Parameterization and GCM will constantly update each other’s status. How to couple the NN Parameterization (DNN) with 

GCM and run efficiently and effectively is the key of the implementation of NNCAM. To solve these problems, we develop 240 

the DNN-GCM coupler that integrates DNN into NNCAM, which will be introduced in the following section. 

2.3 The DNN-GCM Coupler 

Deep learning research mainly uses machine learning frameworks based on Python interfaces to train neural network models 

and deploy them through C++ or Python programs. While GCM is mainly developed in Fortran, it is a very challenging work 

to call a neural network model based on Python/C++ interface in GCM codes written in Fortran. Solving the problem of code 245 

compatibility between DNN and GCM can significantly help develop DNN based Parameterizations for climate models. 

To implement a DNN based Parameterization in current climate model which is mostly developed in Fortran, many 

researchers try to get the network parameters (e.g., weight, bias) from the machine learning models and implement the DNN 

models with hard coding in Fortran. At runtime, NNCAM will call DNN as a function (Rasp et al., 2018; Brenowitz and 

Bretherton, 2019). Recently, some researchers have developed a Fortran-neural network interface that can be used to deploy 250 

DNNs into GCMs (Ott et al., 2020). This interface can import neural network parameters from outside, and the Fortran-based 
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implementation ensures that it can be flexibly deployed in GCMs. However, embedding DNN in NNCAM is still a troublesome 

task with no existing coupling framework to support many of the latest network structures. This problem will restrict developers 

from building more powerful DNNs and deploying them in NNCAM. 

In this research, we regard NN-Parameterization as a component model coupled to NNCAM. We develop the coupler to 255 

bridge NN-Parameterization with the host CAM5. Through this coupler, the neural network can communicate with the dynamic 

core and other physical schemes in NNCAM in each time step. When NNCAM is running, as shown in ① in Figure 5, the 

coupler receives the state and forcing output from dynamic core in Fortran based CAM5. For each input variable, we use the 

native MPI interface in CAM5 to gather the data of all processes to the master process into a tensor. Then, as shown in ② of 

Figure 5, the coupler will transmit the gathered tensor through the data buffer to the NN-Parameterization running on the same 260 

node as the master process. The NN-Parameterization gets the input, infers the outputs, and transmits them back to the coupler. 

As shown in ③ of Figure 5, the coupler will first write these tendencies and radiation fluxes back to the master process and 

then broadcast the data to CAM5 processes running on the computing nodes through the MPI transmission interface. Therefore, 

other parameterizations get the predictions from NN-Parameterization to complete the follow-up procedures (④ in Figure 5).  

In practice, the DNN-GCM Coupler introduces a data buffer that supports system-level interface, which is accessible by 265 

both Fortran based GCM and Python based DNN without supplementary foreign codes. This can avoid code compatibility 

issues when building Machine Learning coupled numerical models. It supports all mainstream machine learning frameworks, 

including native PyTorch and Tensorflow. Based on the coupler, one can efficiently and flexibly deploy the Deep Learning 

Model in NNCAM, and can even take advantage of the latest developed neural networks. 

All neural network models deployed through DNN-GCM Coupler can support GPU accelerated inference to achieve 270 

excellent computing performance. In this study, we ran SPCAM and NNCAM on 196 CPU cores. NNCAM also used 2 GPUs 

for acceleration. During the NNCAM runtime, each time step of NNCAM requires NN-Parameterization to complete an 

inference and conduct data communication with NNCAM. This is a typical high-frequency communication scenario. We 

evaluated the amount of data (about 20MB for CAM5 with the horizontal resolution of 1.9°×2.5°) that needs to be transmitted 

for each communication, and determined to establish a data buffer on a high-speed solid-state drive to ensure a balance of 275 

performance and compatibility. It takes about 1x10-2 seconds to access the data buffer in each time step, which is enough to 

support the efficient simulation of NNCAM. The Simulation Years per Day (SYPD) of NNCAM based on DNN-GCM Coupler 

has a performance improvement of nearly 30x compared to SPCAM, and reaches half the speed of CAM5. 

3 Offline Validation of NN-Parameterization 

To assess how well the NN-Parameterization learns the subgrid tendencies from the CRM and its effects on radiation in 280 

SPCAM, we performed offline testing with a realistically configurated SPCAM from January 1997 to December 1998, where 

NN-Parameterization is diagnostically run paralleled to the CRM in SPCAM. The results over the entire second year of 1998 

are chosen for evaluation. As suggested in Han et al. (2020) and Mooers et al. (2021), faced with the diverse realistic boundary 
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condition, it is necessary to conduct such evaluation before prognostic experiments. We choose mean fields and coefficient of 

determination (𝑅2) as the two metrics in the offline testing. 285 

The mean diabatic heating and drying rates produced by convection and large-scale condensation in SPCAM and NN-

Parameterization are in close agreement. Figure 6 shows the latitude-height cross-sections of the annual mean heating and 

moistening rates in SPCAM and the corresponding NN-Parameterization. At 5 °N, SPCAM shows maximum latent heating in 

the deep troposphere, corresponding to deep convection at the ITCZ. In the subtropics, there is heating and moistening in the 

lower troposphere, corresponding to stratocumulus and shallow convection in the subtropics. In the midlatitudes, there is a 290 

secondary heating maximum below 400 hPa due to midlatitude storm tracks. All these features are well reproduced by NN-

Parameterization. Note that in the midtroposphre, the ITCZ peak in the drying rates is slightly weaker in NN-Parameterization 

compared with that of SPCAM (Figure 6c and 6d).  

In addition to the mean fields, the high prediction skill of NN-Parameterization is also shown in the spatial distribution 

of 𝑅2. We choose pressure-latitude cross-sections to better demonstrate 𝑅2 for the 3D variables such as diabatic heating and 295 

moistening. Therefore, zonal averages are calculated in advance. For diabatic heating, 𝑅2 is above 0.7 over the entire mid to 

low troposphere, and the high skill regions with 𝑅2  greater than 0.9 concentrates in low levels but are extended to mid-

troposphere in storm tracks (Figure 7a). As for the moistening rate, the high skill zones concentrate in the mid to upper 

troposphere (Figure 7b), leaving low skill areas below. Those regions with low accuracy generally locate in the mid to low 

troposphere in tropics and subtropics, corresponding to deep convection at ITCZ and shallow convection in subtropics. 300 

The global distribution of 𝑅2 for the derived precipitation is shown in Figure 8. Our NN-Parameterization shows a great 

prediction skill globally, especially in the midlatitude storm tracks. The prediction skill is relatively low in many areas between 

30°S to 30°N and some midlatitude continents. In particular, the prediction skill of precipitation is not ideal in the ITCZ deep 

convection regions. Moreover, for shallow convection in Subtropical Eastern Pacific and Subtropical Eastern Atlantic, the 

precipitation prediction skill hits bottom, corresponding to the subtropical low skill zones for moistening rate (Figure 7b).  305 

Generally, NN-Parameterization shows high performance in the offline testing regarding mean fields and fitting 𝑅2. As 

suggested in previous studies, manually tunned fully-connected neural networks often fail the mission of fitting variables in 

realistically configurated simulations (Mooers et al., 2021). NN-Parameterization succeeds in fitting diabatic heating and 

moistening rate, which suggests that, with a multi-target framework and the implementation of residual blocks, a well-designed 

DNN has a great potential of serving as a replacement of convection and cloud parameterization. Low accuracy of DNN 310 

prediction in subtropical shallow convection areas is a great challenge for machine learning emulation of moistening rate and 

precipitation. Similar results are noted in previous studies (Gentine et al., 2018 & Mooers et al., 2021). However, even with 

this shortcoming, NN-Parameterization still manages to carry in multi-year prognostic simulations with reasonable results 

shown in the coming Section 4.  
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4 Long-term Prognostic Validation 315 

As described in Section 2.2, NN-Parameterization is coupled in NNCAM to replace the conventional deep and shallow 

convection, microphysics and macrophysics, and radiation parameterizations. At the same time, the planetary boundary layer 

diffusion, as well as the dynamic core are still kept in the host GCM. Starting with the SPCAM checkpoint on July 1, 1998, 

NNCAM is run for 9 years and a half to December 31, 2007. After a spinup for half a year, we choose the next four years from 

January 1, 1999 to December 31, 2002 for evaluation. Although long-term stable run of NNCAM is achieved, a very slow 320 

climate drift is still inevitable. Thus, we do not put the last 5 years into analysis. In addition, as the referencing target model, 

SPCAM is only run from January 1, 1997 to December 31, 1999 due to excessive computing resources consumption. We 

gather the results of the last two years to compare with NNCAM simulations. CAM5, as the coarse-grided conventional 

parameterized control model, is run from January 1, 1998 to December 31, 2002. Similarly, the first year is for spinup and the 

last four years for analysis. In analysis of prognostic results, the following are selected for demonstration of climatology and 325 

variability: multi-year mean fields of temperature and humidity, precipitation, and the Madden Julian Oscillation. 

4.1 Vertical profiles of temperature and humidity 

In this section, we first evaluate the vertical structure of the mean temperature and humidity. Figure 9 presents the zonally 

averaged vertical profiles of air temperature and specific humidity as simulated by the NNCAM and the CAM5, in contrast to 

the SPCAM simulations. Overall, the NNCAM does an excellent job in reproducing the thermal structure. The resulting mean 330 

state in temperature and specific humidity of NNCAM closely resembles SPCAM throughout the troposphere. The larger 

deviations are temperature biases in the tropopause, where the cold-point region is thinner and warmer in NNCAM than in 

SPCAM and CAM5. In addition, there are cold biases above 200 hPa over polar regions and slight dry biases over the equator 

in NNCAM. 

4.2 Precipitation 335 

Figure 10 shows the spatial distributions of winter (December-January-February) and summer (June-July-August) mean 

precipitation simulated by SPCAM, NNCAM, and CAM5, with SPCAM simulation results as reference precipitation. In 

SPCAM (Figure 10a and 10b), massive precipitation can be found in regions of Asian monsoon and midlatitude storm tracks 

over the northwest Pacific and Atlantic oceans. In the tropics, the primary peaks of rainfall are in the eastern Indian Ocean and 

Maritime Continent regions. Furthermore, two zonal precipitation bands are located at 0°–10°N in the equatorial Pacific and 340 

Atlantic oceans, constituting the northern ITCZ. The southern South Pacific Convergence Zone (SPCZ) is mainly located 

around 5°S–10°S near the western Pacific warm pool region and experiences a southeast tilt as it extends eastward into the 

central Pacific. The main spatial patterns of SPCAM precipitation climatology are properly reproduced by both NNCAM and 

CAM5. In NNCAM, strong rainfall centers are well simulated over the tropical land regions over Maritime Continent, the 

Asian monsoon region, and South America and Africa (Figure 10c and 10d). In addition, the heavy summertime precipitation 345 
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over the northwestern Pacific is well represented in both SPCAM and NNCAM (Figure 10b and 10d). In CAM5, there is too 

little precipitation over that area (Figure 10f), which is a common bias in many GCMs. However, the equatorial region is too 

dry in NNCAM, especially over sea surface area in boreal winter (Figure 10c).  

Figure 11 shows the annually averaged zonal mean precipitation from SPCAM, NNCAM, and CAM5. NNCAM generally 

reproduces very similar latitudinal variations to that of SPCAM, but with weaker precipitation intensity near the equator. 350 

Precipitation of both NNCAM and CAM5 agrees with SPCAM in global annual averages (Figure 11a). NNCAM results even 

come closer with SPCAM than CAM5 in boreal summer (Figure 11f). In ANN and DJF average, precipitation of NNCAM is 

underestimated over tropical continents but overestimated in subtropical land regions compared with SPCAM targets (Figure 

11d, e). When the ocean areas are included, the SPCZ in NNCAM is excessively separated from the ITCZ in boreal winter. Its 

precipitation center south shifted, resulting in a minimum zone of equatorial precipitation (Figure 11b). NNCAM shows 355 

moderate precipitation prediction biases in some latitudes in the tropics which are corresponding to the low skill regions of 

tropical and subtropical moistening rate and rainfall in Section 3. In our speculation, the weaker drying tendencies of the ITCZ 

midtroposphre from the NN parameterization causes separated convergence zones, leading to underestimation of equatorial 

rainfall rate. 

Moreover, NNCAM shows better performance in simulating precipitation extremes. Figure 12 shows the probability 360 

densities function of simulated daily precipitation in the tropics (30°S−30°N) with a precipitation intensity interval of 1 mm 

day-1. In CAM5, the frequency of light rainfall events with values smaller than 1 mm day-1 is lower than that in SPCAM, and 

heavy precipitation events exceeding 20 mm day-1 are insufficient. Compared with CAM5, the spectral distribution of 

precipitation in NNCAM is much closer to SPCAM. Both light and heavy rainfall events are substantially enhanced, and the 

overestimated precipitation occurrence between 2−20 mm day-1 is reduced. In addition, NNCAM avoids the unreal probability 365 

peak around 10 mm day-1 appeared in CAM5, which is a common simulation bias found in simulations with parameterized 

convection but not in explicitly resolved convections (Holloway et al., 2012).  

4.3 The MJO 

The MJO is a crucial tropical intraseasonal variability at the time scale of 20–100 days (Wheeler and Kiladis, 1999). Figure 

13 presents the wavenumber and frequency spectra for equatorial precipitation anomalies from SPCAM, NNCAM, and CAM5 370 

in boreal winter. SPCAM shows a concentration of power at zonal numbers of 1−3 and periods of 30−40-day for eastward 

propagation (Figure 13a). In NNCAM, there is a spectral peak at the wavenumbers of 1−2 and longer periods of greater than 

80 days (Figure 13b). There is also a second spectral peak with comparable wavenumbers at 50−80-day periods for eastward 

propagation, exhibiting intense intraseasonal signals. For CAM5 (Figure 13c), the spectral power is concentrated around 30-

day and more extended periods (greater than 80 days) at wavenumber 1 for eastward propagation. In addition, CAM5 also 375 

shows signals of westward propagation around 30-day period. Compared with CAM5, NNCAM shows stronger intraseasonal 

power and resembles SPCAM better. 
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The MJO is characterized by the eastward propagation of deep convective structures with an average phase speed of 

around 5 m s-1 along the equator. Generally, it generally forms over the Indian Ocean, strengthens over the Pacific, and weakens 

in the eastern Pacific due to interaction with cooler SSTs (Madden and Julian, 1971). Figure 14 presents the longitude-time 380 

lag evolution of 10°S−10°N averaged intraseasonal precipitation anomalies. The results show that both NNCAM and CAM5 

reasonably reproduce the eastward propagating convection from the Indian Ocean across the Maritime Continent to the Pacific 

(Figure 14b and 14c). NNCAM captures the key MJO propagation simulated in SPCAM. The average phase speed of eastward 

propagation of deep convection in NNCAM is much closer to 5 m s-1 than the overly fast propagation speed in CAM5, denoted 

by the dashed line in Figure 14b and 14c. 385 

5 Conclusions and Discussion 

This study investigates the potential of DNN based parameterizations embedded into SPCAM in reproducing long-term 

climatology and climate variability. We present NN-Parameterization, a group of organized ResMLPs, to emulate convection, 

cloud processes and radiation in a SPCAM with a realistic global land-ocean distribution. The input variables to the NN-

Parameterization include specific humidity, temperature, largescale water vapor and temperature forcings, surface pressure 390 

and solar insolation. The output variables of the NN-Parameterization consist of the subgrid tendencies of moisture and 

temperature as well as radiation fluxes. The output variables are divided into multiple groups, and each group is trained as one 

target through independent neural network following the same architecture. Both long-term stable and high performance 

climate simulations are finally obtained in this work. To effectively bridge the host CAM and NN-Parameterization, we have 

expanded the coupler idea in a earth system model to ensure the flexibility of embedding DNN into GCM. As a result, we can 395 

efficiently use DNNs to construct NN-Parameterization that can support NNCAM stable simulation for multi-years. This study 

is the first attempt to achieve stable climate simulations using a hybrid ML-physical GCM, which is configurated with real 

land-ocean distributions. 

The offline test shows the great skills of the NN-Parameterization in emulating the CRM and CRM radiation in SPCAM. 

The overall diabatic heating and drying rates in the NN-Parameterization and SPCAM are in close agreement. When 400 

implemented in the host coarse-grided CAM5 to replace the conventional schemes of moist physics and radiation, the NN-

Parameterization successes in an extensive long-term stable prognostic simulation and performs well in reproducing the mean 

vertical structures in temperature and humidity, and the precipitation distributions. The prominent MJO signal and its phase 

speed are also well captured using our NN parameterization. 

Machine learning parameterizations implemented in aqua-planet configurated 3D GCM have been well studied in many 405 

previous research. Some faced instability in coupled simulations (Brenowitz & Bretherton, 2019), and some tried to solve such 

instability through online learning (Rasp, 2020). Some others achieved in long-term stable prognostic simulations with deep 

fully-connected neural networks (Rasp et al., 2018; Yuval et al., 2021) as well as random forest (Yuval & O’Gorman, 2020). 

In contrast to aqua-planet simulations, the spatial heterogeneity is prominent over land in GCMs which are configurated with 
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real-geography boundary conditions. In this case, the conventional MLPs have been unable to fit CRM outputs (Mooers et al., 410 

2021). The convection, clouds, and the interacted radiation of the CRM together with real-geography boundary conditions are 

no doubtfully far more complicated and nonlinear than in idealized models. We first propose a multi-target DNN method to 

control nonlinearity, reduce gradient directions cancellation during training, and make each output variable reach the best fit 

state. Moreover, we design ResMLP with sufficient depth to further improve the nonlinear fitting ability of NN-

Parameterization. A trial-and-error method is further presented to effectively find the optimal neural network for NN-415 

Parameterization. By doing so, the NN-Parameterization we constructed achieved good fitting accuracy in offline testing and 

successfully carried out stable online simulations for multiple years. 

Embedding deep neural networks into Fortran based atmospheric models is still a handicap. Before this study, researchers 

mainly used hard coding to build neural networks (Rasp et al., 2018; Brenowitz and Bretherton, 2019). An easier way is to use 

Fortran based neural network libraries that can flexibly import network parameters (Ott et al., 2020). These methods have 420 

successfully implemented DNN in GCM, but they can only support dense layer based DNN. As a result, developers cannot 

take advantage of the most advanced neural network structures such as convolution, shortcut, self-attention, variational 

autoencoder, etc., to build powerful DNN based Parameterizations. In this research, through DNN-GCM Coupler, NN-

Parameterization can support the mainstream GPU-enabled machine learning frameworks. Thanks to the simple and effective 

implementation of the DNN-GCM Coupler, our NNCAM achieves 30 times SYPD compared to SPCAM by using four 14-425 

layer deep ResMLPs in NN-Parameterization, although these DNNs are much deeper than the previous state-of-the-art fully-

connected NNs in this field. 

Different from the existing works, we find that high fitting accuracy of NN-Parameterization is necessary but not 

sufficient for both high performance and long-term simulations since neural networks with high fitting accuracy may crash 

before achieving years of stable simulation. The mechanism of the observed early-crashed simulations needs to be further 430 

investigated. We obtained the optimal NN-Parameterization that can perform both multi-year and high performance 

simulations by trial-and-error as an initial attempt. In addition, we observe that NN-Parameterization has spatially non-uniform 

accuracy, such as relatively low fitting accuracy in tropical deep convective regions and subtropical shallow convection and 

stratiform cloud regions. Such problems have also been reported in previous studies (Gentine et al., 2018; Mooers et al., 2021). 

We believe that a NN parameterization with heterogenous characteristics across different regions, rather than a globally 435 

uniform scheme, can further improve the fitting accuracy in this tropical and subtropical region.  
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Table 1. Input and output variables. For inputs, 𝒒𝒗(𝒛) denotes the vertical profile of water vapor. 𝑻(𝒛)is the profile of temperature, and 590 
𝒅𝒒𝒗 𝒍.𝒔.(𝒛)and 𝒅𝑻𝒍.𝒔. are the large scale forcing of water vapor and temperature, respectively. 𝑷𝒔 is the surface pressure and Solin is the TOA 

solar insolation. For outputs, 𝒅𝒒𝒗(𝒛) and 𝒅𝑻(𝒛) are the tendencies of water vapor and temperature due to moist physics and radiative 

processes calculated by the NN-Parameterization. The net longwave and shortwave fluxes at the surface and the TOA are surface net 

longwave flux (FLNS), surface net shortwave flux (FLNT), TOA net longwave flux (FLNT), and TOA net shortwave fluxes (FSNT). The 4 

downwelling solar radiation including solar downward visible direct to surface (SOLS), solar downward near infrared direct to surface 595 
(SOLL), solar downward visible diffuse to surface (SOLSD), and solar downward near infrared diffuse to surface (SOLLD) are shortwave 

radiation fluxes reaching the surface.  

Inputs Outputs 

qv(z), T(z), dqvls(z), dTls(z), Ps, Solin dqv(z), dT(z), FLNS, FSNS, FLNT, FSNT, SOLS, SOLL, 

SOLSD, SOLLD 
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Table 2. Training configuration for the baseline ResMLP 600 

Description Value 

Number of samples trained per iteration 1024 

Strategies for Declining Learning Rate coslr 

Initial learning rate 0.001 

Number of rounds to traverse the data set 50 

Probability of randomly setting neurons to 0 0 

L2 regularization 0 
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Figure 1. Workflow diagram of the NNCAM. In the NNCAM, both the CRM and CRM radiation in SPCAM are replaced 

with the NN-Parameterization. All other model components, including the dynamic core, coupled land surface model and 605 

prescribed ocean, and planetary boundary layer, remain the same as in SPCAM. 

  

SPCAM NNCAM
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Figure 2. Schematic diagram of multi-target NN-Parameterization. It is composed of three neural networks, sharing unified 610 

inputs, to predict dqv(z), dT(z), the downwelling solar radiation fluxes at the surface, and net radiation fluxes at the surface and 

the TOA respectively. 
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Figure 3. Schematic showing the structure of ResMLP. It consists of 7 residual blocks, each of which (shown in dashed box) 615 

contains two 512 node-wide dense (fully-connected) layers with a ReLU as activation, and a layer jump. The input and output 

are discussed in section 2.2.2. 
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Figure 4. Fitting accuracies (R2) of both the proposed ResMLP and MLP for different targets. (a) represents the fitting accuracy 620 

of moistening, (b) is the fitting accuracy of heating, and (c) shows the fitting accuracy of the average R2 over the 8 radiation 

fluxes. Note: Spatial averaging of MSE is performed before calculating R2. 
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Figure 5. A flow chart of NNCAM including DNN-GCM Coupler. NNCAM runs in the direction of the arrow, and each box 625 

represents a module. Among them, DNN-GCM Coupler is indicated by light red. NN-Parameterization is shown in the sub-

figure on the right. Note: ① represents the dynamic core transmits data to DNN-GCM Coupler; ② and ③ represent the data 

communication between DNN-GCM Coupler and NN-Parameterization; ④ represents the host GCM accepts the result from 

NN-Parameterization. 

  630 
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Figure 6. Latitude-pressure cross sections of annual and zonal mean heating (top) and moistening (bottom) from moist physics 

during 1997−1998 for (a, c) SPCAM simulations, and (b, d) offline test by the DNN. 
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 635 
Figure 7. Latitude-pressure cross sections of coefficient of determination (𝑅2) for zonal averaged heating (a) and moistening 

(b). They are predicted by NN-parameterization in the offline one-year SPCAM run, and are evaluated at 30-min timestep 

interval. Note: areas where 𝑅2 is greater than 0.7 are contoured in pink and those greater than 0.9 are contoured in orange. 

 

 640 

 

 

 

 

 645 
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Figure 8. Latitude-pressure cross sections of coefficient of determination (𝑅2) for the derived precipitation predicted by NN-

parameterization in the offline one-year SPCAM run. The predictions and SPCAM targets are in 30min timestep interval. 650 

Note: areas where 𝑅2 is greater than 0.7 are contoured in pink and those greater than 0.9 are contoured in orange. 
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Figure 9. Latitude-pressure cross sections of annual and zonal mean temperature (left panels) and specific humidity (right 

panels) from (a, b) SPCAM (1998−2001), (c, d) NNCAM (1999−2003), and (e, f) CAM5 (1999−2003). 

  655 
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Figure 10. The mean precipitation rate (mm day-1) of December-January-February (left panels) and June-July-August (right 

panels) for (a, b) SPCAM (1998−2001), (c, d) NNCAM (1999−2003), and (e, f) CAM5 (1999−2003). 
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 660 

Figure 11. The zonal mean precipitation rate (mm day-1) averaged for (a, d) the annual mean, (b, e) December-January-

February, and (c, f) June-July-August. Black, blue and red solid lines denotes SPCAM, NNCAM and CAM5, respectively. 

  

https://doi.org/10.5194/gmd-2021-299
Preprint. Discussion started: 29 September 2021
c© Author(s) 2021. CC BY 4.0 License.



33 

 

 

Figure 12. Probability densities of daily mean precipitation in the tropics (30°S−30°N) from the three model simulations. 665 

Black, blue and red solid lines denotes SPCAM, NNCAM and CAM5, respectively. 
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Figure 13. The wavenumber-frequency spectra of 10°S−10°N daily precipitation anomalies for (a, b) SPCAM, (c, d) NNCAM, 

and (e, f) CAM5 simulations for boreal winter. 670 
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Figure 14. Longitude-time evolution of lagged correlation coefficient for the 20-100 d band-pass-filtered precipitation 

anomaly (averaged over 10°S−10°N) against regionally averaged precipitation over the equatorial eastern Indian Ocean 

(80E−100°E, 10°S−10°N). Dashed lines in each panel denote the 5 m s-1 eastward propagation speed. 675 
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