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Abstract. In climate models, subgrid parameterizations of convection and clouds are one of the main causes of the biases in 

precipitation and atmospheric circulation simulations. In recent years, due to the rapid development of data science, machine 

learning (ML) parameterizations for convection and clouds have been demonstrated to have the potential to perform better 10 

than conventional parameterizations. Most previous studies were conducted on aqua-planet and idealized models, and the 

problems of simulation instability and climate drift still exist. Developing an ML parameterization scheme remains a 

challenging task in realistically configured models. In this paper, a set of residual deep neural networks (ResDNNs) with a 

strong nonlinear fitting ability is designed to emulate a superparameterization (SP) with different outputs in a hybrid ML-

physical general circulation model (GCM). It can sustain stable simulations for over 10 years under real-world geographical 15 

boundary conditions. We explore the relationship between the accuracy and stability by validating multiple deep neural 

network (DNN) and ResDNN sets in prognostic runs. In addition, there are significant differences in the prognostic results of 

the stable ResDNN sets. Therefore, trial-and-error is used to acquire the optimal ResDNN set for both high-skill and long-term 

stability, which we name the NN-Parameterization. In offline validation, the NN-Parameterization can emulate the SP in mid- 

to high-latitude regions with a high accuracy. However, its prediction skill over tropical ocean areas still needs improvement. 20 

In the multi-year prognostic test, the hybrid ML-physical GCM simulates the tropical precipitation well over land and 

significantly improves the frequency of the precipitation extremes, which are vastly underestimated in the Community 

Atmospheric Model version 5 (CAM5) with a horizontal resolution of 1.9°×2.5°. Furthermore, the hybrid ML-physical GCM 

simulates the robust signal of the Madden–Julian oscillation with a more reasonable propagation speed than CAM5. However, 

there are still substantial biases with the hybrid ML-physical GCM in the mean states, including the temperature field in the 25 

tropopause and at high latitudes and the precipitation over tropical oceanic regions, which are larger than those in CAM5. This 

study is a pioneer in achieving multi-year stable climate simulations using a hybrid ML-physical GCM under actual land–

ocean boundary conditions that become sustained over 30 times faster than the target SP. It demonstrates the emerging potential 

of using ML parameterizations in climate simulations. 
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1 Introduction 30 

General circulation models (GCMs) have been widely used to study climate variability, prediction, and projections. Despite 

decades of GCM development, most GCMs continue to suffer from many systematic biases, especially in low-latitude regions. 

The prominent tropical bias of most current GCMs is referred to as the double intertropical convergence zone (ITCZ) syndrome, 

which is characterized by two parallel zonal bands of annual precipitation straddling the equator over the central and eastern 

Pacific (Lin, 2007; Zhang et al., 2019). Convectively coupled equatorial waves and the Madden-Julian oscillation (MJO), 35 

which are characterized by eastward propagating convective cloud clusters, are also not well simulated by GCMs (Ling et al., 

2017; Cao and Zhang, 2017). 

Many studies have attributed most of these biases to deficiencies in the parameterization schemes for atmospheric moist 

convection and cloud processes in the current GCMs (Zhang and Song, 2010; Cao and Zhang, 2017; Song and Zhang, 2018; 

Zhang and Song, 2019). Cloud-related processes span a large range of spatial scales, from micron-scale cloud nucleation to 40 

meter-scale turbulence, to individual convective cells and organized convective systems, which are a few kilometers to 

hundreds of kilometers in size, to tropical disturbances, which have a spatial scale of thousands of kilometers. They directly 

influence the radiation balance and hydrological cycle of the earth system and interact with the atmospheric circulation, 

affecting the transport and distribution of energy (Emanual et al., 1994). Therefore, it is very important to simulate the cloud 

and convection processes in GCMs correctly. However, the GCMs that are currently used for climate simulations have a 45 

horizontal resolution of ~100 km and a vertical hydrostatic coordinate. Thus, in most GCMs, in addition to parameterized 

cloud microphysics, convection and its influence on atmospheric circulation are represented by convective parameterization 

schemes, which are usually based on simplified theories, limited observations, and empirical relationships (Tiedtke, 1989; 

Zhang and McFarlane, 1995; Lopez-Gomez et al., 2020). These schemes regard convective heat and moisture transport as the 

collective effects of idealized individual kilometer-scale convective cells. They cannot represent the effects of many 50 

complicated convective structures, including organized convective systems, which leads to large uncertainties and biases in 

climate simulations (Bony et al., 2015). 

In contrast, cloud resolving models (CRMs) have long been used to simulate convection. Because CRMs have higher 

horizontal and vertical resolutions and can explicitly resolve the thermodynamic processes involved in convection, they 

simulate convection more accurately, including convective organization (Feng et al., 2018). In recent years, CRMs have been 55 

used for SuperParameterization (SP) in low-resolution GCMs and have replaced conventional cumulus convection and cloud 

parameterization schemes. The most commonly used SP model is the superparameterized Community Atmosphere Model 

(SPCAM) developed by the National Center for Atmospheric Research (NCAR) (Grabowski and Smolarkiewicz, 1999; 

Grabowski, 2001, 2004; Khairoutdinov and Randall, 2001; Randall et al., 2003; Khairoutdinov et al., 2005). Compared with 

conventional cumulus convection and cloud parameterization schemes, SPCAM performs better in simulating mesoscale 60 

convective systems, diurnal precipitation cycles, monsoons, the precipitation frequency distribution, and the MJO 

(Khairoutdinov et al., 2005; Bretherton et al., 2014; Jiang et al., 2015; Jin et al., 2016; Kooperman et al., 2016). However, 
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when using a 2-D CRM for SP, the improvement of the climate mean states is not obvious (Khairoutdinov et al., 2005). In 

addition, SPCAM requires far more computing resources (i.e., an order of magnitude or more) than a Community Atmosphere 

Model (CAM) with the same resolution. Thus, the use of SPCAM in long-term climate simulations and ensemble predictions 65 

is restricted by the current computing resources. Developing novel and computationally efficient schemes for convection and 

cloud processes is highly desired in GCM development. 

In the last 5 years, the rapid development of machine learning (ML) techniques, especially deep learning techniques such 

as Neural Networks (NNs), has provided novel approaches to constructing parameterization schemes. Machine learning can 

identify, discover, and model complex nonlinear relationships that exist in large datasets. Several studies have used ML 70 

methods to develop convection and cloud parameterization schemes (e.g., Gentine et al., 2018; Rasp et al., 2018). These studies 

followed a similar approach. The first step is to derive a target dataset from a reference simulation, which is later used to train 

the ML models. Then, the trained ML models are often evaluated offline against other independent reference simulations, and 

finally, they are implemented in a GCM to replace the conventional parameterization schemes. 

Krasnopolsky et al. (2013) first proposed a proof-of-concept for developing convection parameterization based on the 75 

NN technique. Specifically, an ensemble of shallow NNs was applied to learn the convective temperature and moisture 

tendencies, and the training data for the CRM simulations was forced using observations in the tropical western Pacific. The 

resulting convective parameterization scheme was able to simulate the main features of the clouds and precipitation in the 

NCAR CAM4 diagnostically. However, the key issue of prognostic validation in 3-D GCMs has not been addressed. Recent 

studies have investigated ML parameterizations in prognostic mode in simplified aqua-planet GCMs. For example, Rasp et al. 80 

(2018) developed a fully connected deep NN (DNN) to predict convection and clouds, which was trained using data from an 

aqua-planet SPCAM. The DNN-based parameterization was then implemented in the corresponding aqua-planet CAM and 

produced multi-year prognostic results that were close to the SPCAM data. For this DNN-based parameterization, Rasp (2020) 

found that minor changes, either to the training dataset or to the input/output vectors, can lead to model integration instabilities. 

Brenowitz and Bretherton (2019) fitted a DNN for convection and clouds to the coarse-grained data from a near-global aqua-85 

planet cloud-resolving simulation using the System for Atmospheric Modeling (SAM). The NN scheme was then tested 

prognostically in a coarse-grid SAM. Their results showed that non-physical correlations were learned by the network, and the 

information in the upper levels obtained from the input data had to be removed to produce stable long-term simulations. Rather 

than using NNs, Yuval and O’Gorman (2020) used the random forest algorithm to develop an ML parameterization based on 

training data from a high-resolution idealized 3-D model with a setup on the equatorial beta plane. They used two independent 90 

random forests to separately emulate different processes. Later, Yuval et al. (2021) ensured the physical constrains by using 

an NN parameterization with a special structure to predict the subgrid fluxes instead of tendencies. Both methods achieved 

stable simulations for coarse resolution aqua-planet GCMs. To determine why some methods can achieve stable prognostic 

simulations and others cannot, Brenowitz et al. (2020) proposed methods for interpreting and stabilizing ML parameterization 

for convection. In their study, a wave spectra analysis tool was introduced to explain why the ML coupled GCMs blew up. 95 
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In real-world climate models with varying underlying surfaces, convection and clouds are more diverse under different 

climate backgrounds, which makes the task of developing ML-based parameterizations more complicated. A few earlier 

studies demonstrated the feasibility of using neural networks to emulate cloud processes in real-world models. Han et al. (2020) 

used a 1-D deep residual convolutional neural network (ResNet) to emulate moist physics in SPCAM. This ResNet-based 

parameterization fit the targets with a high accuracy and was successfully implemented in a single column model. Mooers et 100 

al. (2021) developed a high-skill DNN using an automated ML technique and forced an offline land model using DNN 

emulated atmospheric fields. However, neither of these studies tested their NNs prognostically for long-term simulations. 

Similar to the idea of using several NNs for different processes proposed by Yuval and O’Gorman (2020), in this study, a set 

of NNs was used to emulate convection and cloud processes in SPCAM with the actual global land-ocean distribution. We 

used the residual connections of Han et al. (2020) to acquire super deep neural networks with a great nonlinear fitting ability. 105 

Furthermore, we conducted systematic trial-and-error analysis to filter out unstable NN-Parameterizations and to obtain the 

best residual deep neural network (ResDNN) set in terms of both accuracy and long-term stability. The NN-Parameterization 

scheme was then implemented in a realistically configured CAM to obtain long-term stable simulations. NNs are commonly 

implemented using high-level programming languages such as Python and deep learning libraries. However, GCMs are mainly 

written in Fortran, making integrating them with deep learning algorithms inconvenient. Therefore, we introduced an NN-110 

GCM coupling platform in which NN models and GCMs can interact through data transmission. This coupling strategy 

facilitates the development of ML-physical hybrid models with a high flexibility. Under real geographic boundary conditions, 

we achieved more than 10-year-long stable climate simulations in Atmospheric Model Intercomparison Project (AMIP)-style 

experiments using a hybrid ML-physical GCM. The simulation results exhibited some biases in the mean climate fields, but 

they successfully reproduced the variability in SPCAM. To our knowledge, this is the first time a decade-long stable real-115 

world climate simulation has been achieved using an NN-based parameterization. 

The remainder of this paper is organized as follows. Section 2 briefly describes the model, the experiments, the NN 

algorithm, and the NN-GCM coupling platform. Section 3 analyzes the simulation stability of NNCAM. Section 4 presents 

the offline validation of the NN scheme, focusing on the output temperature and moisture tendencies. The results of the multi-

year simulations conducted using the NN-Parameterization scheme are presented in Section 5. A summary and the conclusions 120 

are presented in Section 6. 

2 Methods and Data 

In this study, we chose SPCAM as the reference model to generate the target simulations. A set of NNs was trained using the 

target simulation data and optimized hyperparameters. Then, they were organized as a subgrid physics emulator and were 

implemented in SPCAM, replacing both the CRM-based SP and the radiation effects of the CRM. This NN-enabled GCM is 125 

hereinafter referred to as NNCAM. 
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2.1 SPCAM setup and data generation 

The GCMs used in this study were the CAM5.2 developed by the National Center for Atmospheric Research and its 

superparameterized version SPCAM (Khairoutdinov and Randall, 2001; Khairoutdinov et al., 2005). A complete description 

of CAM5 has been given by Neale et al. (2012). The dynamic core of CAM5 has a horizontal resolution of 1.9°×2.5° and 30 130 

vertical levels with a model top at about 2 hPa. To represent moist processes, CAM5 adopts a plume-based treatment for 

shallow convection (Park and Bretherton, 2009), a mass-flux parameterization scheme for deep convection (Zhang and 

McFarlane, 1995), and an advanced two-moment representation for microphysical cloud processes (Morrison and Gettelman, 

2008; Gettelman et al., 2010). In the AMIP experiments we conducted, CAM5 was coupled to the Community Land Model 

version 4.0 land surface model (Oleson et al., 2010) and the prescribed sea surface temperatures and sea ice concentrations 135 

were used. 

In this study, SPCAM was used to generate the training data. In SPCAM, a 2-D CRM was embedded in each grid column 

of the host CAM as the SP. The 2-D CRM contained 32 grid points in the zonal direction and 30 vertical levels that were 

shared with the host CAM. The CRM handled the convection and cloud microphysics and replaced the conventional 

parameterization schemes. The radiation was calculated on the CRM subgrids in order to include the cloud-radiation 140 

interactions at the cloud scale (Khairoutdinov et al., 2005). Under a realistic configuration, the planetary boundary layer 

processes, orographic gravity wave drags, and the dynamic core were computed on the CAM grid. One conceptual advantage 

of using SPCAM as the reference simulation is that the subgrid and grid-scale processes are clearly separated, which makes it 

easy to define the parameterization task for an ML algorithm (Rasp, 2020). 

2.2 NN-Parameterization 145 

2.2.1 Datasets 

The NN-Parameterization is a deep learning emulator of the SP and its cloud-scale radiation effects in SPCAM. Therefore, the 

inputs of this emulator are borrowed from the SP input variables, such as the grid-scale state variables and forcings, including 

the specific humidity 𝑞!, temperature T, largescale water vapor forcing ""#!
"$
#
%&

, and temperature forcing ""'
"$
#
%&

. Additionally, 

we selected the surface pressure 𝑃& and solar insolation (SOLIN) at the top of the model from the radiation module. The outputs 150 

of the NN-Parameterization are subgrid-scale tendencies of the moisture ""#!
"$
# and dry static energy ""&

"$
# at each model level. 

It should be noted that ""&
"$
# is the sum of the heating from the moist processes in the SP and the heating from the SP radiation 

(shortwave heating plus longwave heating). To complete the emulation of the cloud radiation process, apart from the commonly 

used net shortwave and longwave radiative fluxes at both the surface and the Top of the Atmosphere (TOA) (Rasp et al., 2018; 

Mooers et al., 2021), it is essential to include direct and diffuse downwelling solar radiation fluxes as output variables in order 155 

to force the coupled land surface model. Specifically, they are the solar downward visible direct to surface (SOLS), solar 
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downward near infrared direct to surface (SOLL), solar downward visible diffuse to surface (SOLSD), and solar downward 

near infrared diffuse to surface (SOLLD) fluxes. In the end, the precipitation is derived from column integration of the 

predicted moisture tendency to ensure basic water conservation. 

The large-scale forcings were often not included in previous studies that used an aqua-planet configuration. However, 160 

under a realistic configuration, such forcings are composed of the dynamics and the planetary boundary layer diffusion, and 

thus, they carry critical information about the complex background circulations and surface conditions. Similarly, the 

downwelling solar radiation fluxes with direct separation versus diffusion record the solar energy received by the coupled 

surface model for different land cover types and processes (Mooers et al., 2021). If they are not included, the land surface is 

not heated by the sun, which seriously weakens the sea and land breeze and monsoon circulations. In this study, we used the 165 

vertical integration of the NN predicted moisture tendency as an approximation of the surface precipitation, which has also 

been used in previous studies (e.g., O’Gorman et al., 2018; and Han et al., 2020). In the offline validation test, we observed 

negative precipitation events (27% occurrence in 1 year of results). Nonetheless, 93% of the negative precipitation events had 

a magnitude of less than 1 mm/day. In the online prognostic runs, reasonable rainfall results (more details will be provided in 

Section 5) were achieved using this approximation scheme. 170 

Table 1 lists the input and output variables and their normalization factors. There are 30 model levels for each profile 

variable. Therefore, the input vector consists of 122 elements for 4 profile variables and 2 scalars, while the 68-element output 

vector is composed of 2 profiles and 8 scalars. All of the input and output variables are normalized to ensure that they are of 

the same magnitude before they are input into the NN-Parameterization for the training, testing, and prognostic model 

validation. It should be noted that each variable is normalized as a whole at all levels. The normalization factor for each variable 175 

shown in the supplemental codebase was determined by the maximum of its absolute value. 

The training dataset used by all of the considered NNs consisted of 40% of the temporally randomly sampled data from 

the 2-year SPCAM simulation from January 1, 1997, to December 31, 1998. It should be noted that random sampling was only 

done in the time dimension, but not in the latitude and longitude dimensions, including all 13,824 samples from the global grid 

points for each selected time step. To avoid any mixing or temporal connection between the training set and the offline 180 

validation set, we randomly sampled 40% of the time steps from the SPCAM simulation in 2000 to produce the offline 

validation set used for the sensitivity test. 

2.2.2 A ResDNN set 

During the development of the NN-Parameterization scheme, it was found that when different variables are used as the output 

of the neural network, the difficulty of the training is quite different. In particular, the neural network's ability to fit the radiation 185 

heating and scalar fluxes is significantly stronger than the tendencies variables. Gentine et al. (2018) also reported this, and 

they found that the coefficient of determination (R2) of the radiative heating tendency was higher than that of the moisture 

tendency at most model levels. We think that using a single NN with one output to train all of the variables (i.e., the moisture 

tendency, dry static energy tendency, and radiation fluxes) is possible to cause mutual interference. Since gradient descending 
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is applied to optimize the network during the training, mutual interference between different outputs will cause the gradient 190 

directions used for the descending to cancel out (Yu et al., 2020), which will ultimately affect the convergence of the network. 

Thus, we used three different neural networks with the same hyperparameters to train 

(1) the tendency of the moisture; 

(2) the tendency of the dry static energy; and 

(3) the radiation fluxes at the surface and TOA. 195 

It should be noted that the radiation fluxes include the net shortwave and longwave radiative fluxes at the surface (FSNS and 

FLNS, respectively) and at the TOA (FSNT and FLNT, respectively) and four solar radiation fluxes (SOLS, SOLL, SOLSD, 

and SOLLD). By doing so, we avoided the gradient cancellation and improved the convergence speed and fitting accuracy 

when training the network. As will be described in Section 3.1, when using the same network configuration, the radiation 

fluxes are trained more easily and have a higher accuracy than the tendencies of the moisture and temperature. We admit that 200 

putting the heating and moistening rates in two different NNs arbitrarily cuts the physical connections between them. However, 

this separation makes the training easier in the development stage. 

In this study, to mimic the column-independent SP and its radiation effects, the input and output of the NN-

Parameterization both had to be 1-D vectors. This means that the input and output of the NN-Parameterization are much 

simpler than those in existing mainstream ML problems, such as image recognition and text-speech recognition. Thus, it is 205 

impossible to directly apply most of the existing complex neural networks. Hornik et al. (1989) demonstrated that a single-

layer neural network can approximate any function. According to the universal approximation theorem, it is feasible for a 

DNN to map from a 122-element 1-D vector to a 1-D vector with a length of 68, which is what the NN-Parameterization does. 

Therefore, when constructing the NN-Parametrization, we first tried to use a DNN for the fitting and introduced residual 

connections to extend the DNN in to a ResDNN. 210 

After numerous experiments, we obtained the best hyperparameters for the DNN and ResDNN. When training a fully 

connected DNN, the hidden layer width of the network should be set to 512, and the network’s depth should not exceed 7; 

otherwise, the convergence of the DNN will be affected. In order to make the neural network capture more non-linear 

information, the fitting ability was enhanced. We introduces skip connections to extend the 7-layer DNN to a 14-layer ResDNN. 

The network structure of the ResDNN is shown in Figure 1. In the training process, both the DNN and ResDNN use an initial 215 

learning rate of 0.001 and a learning rate decaying strategy for the cosine annealing (Loshchilov et al., 2016) without dropout 

and L2 regularization. Adam (Kingma and Ba, 2014) was chosen as the optimizer to minimize the mean square errors (MSEs). 

The specific hyperparameter searching space of the DNN and ResDNN is documented in Table S1. 

Figure 2 shows that the ResDNN fits the data significantly better than the DNN. We chose ResDNN sets as stable 

candidates to build the NN-Parameterization. After obtaining well-fit ResDNN sets, the next step is to couple the candidates 220 

into NNCAM one by one for the prognostic tests and to find the sets that can support a stable simulation. All of the experiments 

and analyses related to the stability will be introduced in Section 3. 
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2.2.3 Implementation of NN-Parameterization 

The NN-Parameterization is implemented into SPCAM to replace both the CRM-based superparameterization and its radiation 

effects based on the average of the coarse grid. At the beginning of each time step, NNCAM calls the NN-Parameterization 225 

and predicts the moisture tendency ""#!
"$
#, the dry static energy tendency ""&

"$
# from the moist physics and radiative heating, 

and all of the radiation fluxes at the surface and the TOA. Then, the DNN predictions are returned to NNCAM, and the model 

states and radiation fluxes are updated. Additionally, the total surface precipitation is derived from the column integration of 

the predicted moisture tendency. The near-surface conditions of the atmosphere and the downwelling radiation fluxes are 

transferred to the land surface model. After the land surface model and the prescribed Sea Surface Temperature (SST) are 230 

coupled, the host CAM5 performs the planetary boundary layer diffusion and lets its dynamic core complete a time step 

integration. In the next time step, the dynamic core returns the new model states to the NN-Parameterization as inputs again. 

During the entire process, the NN-Parameterization and GCM constantly update each other’s status. Determining a way to 

couple the NN-Parameterization with the GCM and to run them efficiently and effectively is the key to the implementation of 

NNCAM. To solve these problems, we developed the NN-GCM coupler, which integrates the NNs into NNCAM. This process 235 

will be introduced in the next section. 

2.3 NN-GCM coupler 

Deep learning research mainly uses ML frameworks based on Python interfaces to train neural network models, and they are 

deployed through C++ or Python programs. In contrast, GCMs are mainly developed in Fortran, which makes it very 

challenging to call a neural network model based on a Python/C++ interface in GCM codes written in Fortran. Solving the 240 

problem of code compatibility between the NN and GCM can significantly help develop NN-based parameterizations for 

climate models. 

To implement an NN-based parameterization in the current climate models, which are mostly developed in Fortran, many 

researchers have attempted to obtain the network parameters (e.g., the weight and bias) from the ML models and implement 

the NN models (e.g., DNNs) using hard coding in Fortran. At the runtime, NNCAM will call an NN-parametrization as a 245 

function (Rasp et al., 2018; Brenowitz and Bretherton, 2019). Recently, some researchers have developed a Fortran-neural 

network interface that can be used to deploy DNNs in GCMs (Ott et al., 2020). This interface can import neural network 

parameters from outside of the Fortran program, and the Fortran-based implementation ensures that it can be flexibly deployed 

in GCMs. However, embedding an NN-Parameterization in NNCAM is still a troublesome task, and there is no existing 

coupling framework to support many of the latest network structures. This problem prevents researchers from building more 250 

powerful NNs and deploying them in NNCAM. 

We developed a coupler to bridge the NN-Parameterization with the host CAM5. Through this coupler, the neural network 

can communicate with the dynamic core and other physical schemes in NNCAM in each time step. When NNCAM is 

running(① in Figure 3), the coupler receives the state and forcing output from the dynamic core in the Fortran-based CAM5. 



 

9 
 

For each input variable, we used the native Message Passing Interface (MPI) interface in CAM5 to gather the data for all of 255 

the processes into the master process into a tensor. Then, the coupler transmits the gathered tensor through the data buffer to 

the NN-Parameterization running on the same node as the master process (② in Figure 3). The NN-Parameterization obtains 

the input, infers the outputs, and transmits them back to the coupler. As shown in ③ in Figure 3, the coupler writes these 

tendencies and radiation fluxes back to the master process, and then, it broadcasts the data to the CAM5 processes running on 

the computing nodes through the MPI transmission interface. Therefore, other parameterizations obtain the predictions from 260 

the NN-Parameterization to complete the follow-up procedures (④ in Figure 3). 

In practice, the NN-GCM coupler introduces a data buffer that supports a system-level interface, which is accessible by 

both the Fortran-based GCM and the Python-based NN without supplementary foreign codes. This can avoid code 

compatibility issues when building ML coupled numerical models. It supports all mainstream ML frameworks, including 

native PyTorch and TensorFlow. Using the coupler, one can efficiently and flexibly deploy the deep learning model in 265 

NNCAM and can even take advantage of the latest developed neural networks. 

All neural network models deployed using the NN-GCM coupler can support a Graphics Processing Unit (GPU) 

accelerated inference to achieve excellent computing performance. In this study, we ran SPCAM and NNCAM on 192 CPU 

cores. NNCAM also used two GPUs for acceleration. During the NNCAM runtime, each time step of NNCAM requires the 

NN-Parameterization to complete an inference and conduct data communication with NNCAM. This is a typical high-270 

frequency communication scenario. We evaluated the amount of data (about 20 MB for CAM5 with a horizontal resolution of 

1.9°×2.5°) that needs to be transmitted for each communication and decided to establish a data buffer on a high-speed solid-

state drive to ensure a balance between performance and compatibility. It takes about 1x10-2 seconds to access the data buffer 

in each time step, which is enough to support the efficient simulation of NNCAM. The simulation years per day (SYPD) of 

NNCAM based on the NN-GCM coupler represents an impressive performance improvement. When using 192 Intel CPU 275 

cores, the SYPD of SPCAM is 0.3, the SYPD of CAM5 is 20, and the SYPD of NNCAM is 10. It should be noted that NNCAM 

based on the NN-GCM coupler uses an additional GPU to accelerate the NN-Parameterization. When the NN-GCM coupler 

is not used, the NN-Parameterization is implemented using Fortran and is accelerated by the Fortran-based Math Kernel 

Library, and the SYPD is 1.5. 

3 A Road to Stability 280 

3.1 Trial-and-error 

To develop a stable NN-Parameterization, we propose the use of a set of three ResDNNs, in which each neural network is 

responsible for predicting a class of variables (see Section 2.2.2). Ott et al. (2020) demonstrated that there is a negative 

correlation between the offline MSE and online stability when using tendencies as outputs in aqua-planet simulations. Since 

we also used tendencies as outputs in the real-world simulations, we conclude that an NN-based parameterization that can 285 
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support long-term integration should have a high accuracy regarding training and validation. As was described in Section 2.2.2, 

we tried DNNs first, and then, we extended the DNNs to ResDNNs to achieve a high offline accuracy (Figure 2). Even through 

more accurate ResDNNs have a higher probability of becoming stable parameterizations (Figure 4), we still do not have a way 

to determine the stability a priori. Therefore, we still used the trial-and-error method to filter out unstable ones and then selected 

the best ResDNN set that could reduplicate the total energy time evolution of SPCAM with the least deviation, i.e., the NN-290 

Parameterization. 

3.2 Sensitivity tests 

We conducted prognostic runs of all three neural networks in each NN set using the NN-GCM coupler. To demonstrate the 

reality behind the relationships between the offline accuracy and online stability under a real-world configuration, we 

conducted sensitivity tests using 10 DNN sets and 27 of ResDNN sets and conducted the training and evaluation using the 295 

settings described in Section 2.2.2. In the sensitivity tests, we conducted prognostic runs (see details in Section 3.2) using all 

three neural networks in each NN set using the NN-GCM coupler. 

First, we selected the best ResDNN for the radiation fluxes at the surface and the TOA that was shared in every NN set 

since their offline validation was exceptionally accurate with 𝑅( > 0.98 over 50 training epochs (Figure 2b). In contrast to the 

accurately trained radiation fluxes, the tendencies of the dry static energy and moisture are less accurate and can affect the 300 

prognostic performance. To evaluate those two tendencies using one metric, we introduced the MSE of the rate of change of 

the moist static energy (𝑑ℎ = 𝑑𝑠 + 𝐿!𝑑𝑞!): 

𝑀𝑆𝐸) =	4
*
+
(𝑑ℎ,, − 𝑑ℎ-./01)∆𝑝4

(
,                                                           (1) 

where 𝑔 is the acceleration due to gravity, 𝐿! is the latent heat of water vapor, and ∆𝑝 is the layer thickness. Multiple ResDNN 

pairs and DNN pairs for dqv and ds were trained from five epochs to 50 epochs, resulting in different offline validation 305 

accuracies. We used the maximum number of steps until the model crashed to measure the prognostic performance. 

Figure 4 shows the offline validation 𝑀𝑆𝐸) versus the maximum prognostic steps. The DNN-parameterizations (blue 

triangles) are systematically less accurate than the ResDNN-parameterizations (blue dots and black inverted triangles), which 

is consistent with Figure 2a. They could not sustain half a year of simulation in the prognostic tests with the best DNN-

parameterization. For the ResDNNs, the less well-trained ones with high MSEs also crashed after short simulation periods. 310 

However, when the offline MSE decreased to a certain level (e.g., 290 𝑊(/𝑚2), 10 of the ResDNN-parameterizations were 

stable in long-term simulations of over 10 years (black inverted triangles). We speculate that the more accurate ResDNN sets 

have a higher probability of becoming stable NN-Parameterizations since all of the stable NN-Parameterizations are ResDNNs. 

A few unstable ResDNN sets are equally or more accurate than the stable ones. Previous studies have shown that high-

capacity (more hidden layers and more weights and biases) models are harder to train and are more likely to produce overfitting 315 

(Goodfellow et al., 2016). Some overly trained ResDNNs with lowest validation loss are speculated to produce overfitting, 
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and therefore, they are less likely to generalize to unknown backgrounds caused by accumulated errors in the ML-GCM system, 

causing the model to crash. 

In the time evolution of the globally averaged total energy (Figure 5), the system energy grows exponentially and then 

blows up for unstable ResDNN-parameterizations (the red and orange lines). In contrast, the stable ones can keep the total 320 

energy at a certain level and reproduce the annual cycle of fluctuations in SPCAM. Among the stable ResDNN sets, some can 

almost perfectly reproduce the total energy evolution of SPCAM (the blue line). However, some inaccurately simulate the 

climate state with a significant deviation (green line). Apart from global averages, the prognostic results of the 10 stable 

ResDNN sets vary from each other in terms of the global distribution. Figure S1 shows the precipitation spread across all of 

the stable NN sets for the prognostic simulation from 1999 to 2003. The obvious standard deviation centers coincide with the 325 

heavy tropical precipitation areas. 

3.3 Gravity wave diagnosis 

It is still unclear why unstable NN-Parameterizations blow up models. The fast-growing energy of the unstable runs indicates 

a possible underlying unrealistic energy amplifying mechanism in the coupled NN-GCM system. Brenowitz et al. (2020) 

offered several interpretations. When an unstable NN-Parameterization is coupled with dynamics, it tends to amplify any 330 

unrealistic perturbations caused by emulation errors and to pass it to the entire system through gravity waves. In contrast, the 

stable NN-Parameterizations tend to dump all of the perturbations quickly. This was found to be true in our study for the 

realistic configuration. Such unstable gravity waves were observed in the prognostic simulation of an unstable ResDNN (red 

line in Figure 5). The animation in Movie S1 records the first unrealistic wave, and Movie S2 documents the more intense 

waves with a perfectly round shape after this point in time. Additionally, we found that our instable waves mostly occurred in 335 

the tropics, which is different from the mid-latitude instability that occurs when using ML parameterizations in aqua-planet 

simulations (Brenowitz et al., 2020). 

Brenowitz et al. (2020) also introduced an analysis tool that calculates the wave energy spectra of a hierarchy model that 

couples the Linear Response Functions (LRF) of an NN-based parameterization to a simplified two-dimensional linear 

dynamic system, in which perturbations can propagate in 2-D gravity waves. We applied the tool in this study and detected 340 

similar results in the unstable mode for the unstable ResDNN with a positive energy growth rate across all wave numbers at 

phase speeds of 5-20 m/s (Figure S2b). In contrast, the stable ResDNN exhibited a stable mode for the growth rate of nearly 

all wave numbers and phases below zero (Figure S2a). 

4 Offline Validation of NN-Parameterization 

Before evaluating the prognostic results, the offline performance with geographic information needs to be demonstrated for 345 

the following purposes: 1) to show how well our NN-Parameterization emulates the SP for a realistic configuration compared 

with the baseline CAM5 physics and previous studies; and 2) to reveal the strengths and weaknesses of the NN emulations 
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with the correct input and to provide clues to the analysis of the prognostic results in the following section. We performed 

offline testing using a realistically configured SPCAM from January 1, 1999, to December 31, 2000, in which the NN-

Parameterization was diagnostically run parallel to the SP and so was the CAM5 physics. The results for the entire second year 350 

of the simulation period were chosen for evaluation, which was completely independent from the training dataset. Following 

the conventions of Han et al. (2020) and Mooers et al. (2021), we used the mean fields and the coefficient of determination 

(𝑅() as the evaluation metrics. It should be noted that the NN-Parameterization was tuned to emulate the SP, and the CAM’s 

parameterization was tuned to obtain close results to the observations. The latter is merely introduced as a baseline.  

The mean diabatic heating and drying rates produced by convection, large-scale condensation, and cloud radiation effects 355 

in SPCAM and the NN-Parameterization are in close agreement. Figure 6 shows the latitude-height cross-sections of the annual 

mean heating and moistening rates in SPCAM and the corresponding NN-Parameterization. At 5 °N, SPCAM exhibits the 

maximum latent heating in the deep troposphere, corresponding to the deep convection in the ITCZ. In the subtropics, heating 

and moistening occur in the lower troposphere, corresponding to the stratocumulus and shallow convection in the subtropics. 

In the mid-latitudes, there is a secondary heating maximum below 400 hPa due to the mid-latitude storm tracks. All of these 360 

features are well reproduced by the NN-Parameterization. It should be noted that in the mid-troposphere, the peak in the drying 

rate in the ITCZ is slightly weaker in the NN-Parameterization than in SPCAM (Figures 6c and 6d). 

In addition to the mean fields, the high prediction skill of the NN-Parameterization is also demonstrated by the spatial 

distribution of the 𝑅( values. To illustrate the 𝑅( values of the 3-D variables such as the diabatic heating and moistening, 

following Mooers et al. (2021), the zonal averages were calculated in advance before the 𝑅( calculation for each location in 365 

the pressure-latitude cross-section. For the diabatic heating, the 𝑅( value is >0.7 throughout the middle and lower troposphere, 

and the high skill regions with 𝑅( values of greater than 0.9 are concentrated in the low levels but extend into the mid-

troposphere in the storm tracks (Figure 7a). For the moistening rate, the high skill zones are concentrated in the middle and 

upper troposphere (Figure 7b), with low skill areas below. The regions with lower accuracies are generally located in the 

middle and lower troposphere in the tropics and subtropics, which correspond to the deep convection in the ITCZ and the 370 

shallow convection in the subtropics. Nonetheless, the tendencies of the diagnostic CAM5 parameterization are not similar to 

those simulated by the SP, except for a few locations in the middle and upper troposphere in the tropics and polar regions 

(Figures 7c and 7d). 

The global distribution of the 𝑅( values of the precipitation predictions is shown in Figure 8. Our NN-Parameterization 

produced excellent predictions in most of the in mid- and high-latitude regions, especially in the storm tracks. However, the 375 

prediction skill is relatively low in many of the ocean areas between 30°S and 30°N and in some mid-latitude areas over 

continents (Figure 8a). In particular, the results are not ideal along the equatorial regions, in the subtropical Eastern Pacific, 

and in the subtropical Eastern Atlantic. These areas correspond to the low skill zones of the moistening rate in the middle and 

lower troposphere from the equator to the subtropics (Figure 7b). As a baseline, the total precipitation simulated using the 

CAM5 parameterizations is much less analogous to the SP than the NN-Parameterization and has a systematically lower 380 
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accuracy globally. The CAM5 precipitation can achieve a relatively high accuracy along the mid-latitude storm tracks, but it 

fails in most regions in the tropics (Figure 8b). 

Generally, the NN-Parameterization performed far better than the CAM5 parameterization in the 1-year period in the 

offline testing, and it had an accuracy similar to that of the DNN used by Mooers et al. (2021). The use of real geographic data 

can significantly decrease the emulation skill of a deep learning model (Mooers et al., 2021). This is because the convection 385 

backgrounds of real geographic data are much more complex with meridional and zonal asymmetric and seasonally varying 

circulations. In addition, the orography and various types of underlying land surfaces also add complexity. In this case, the 

ResDNN is a valuable NN architecture that performs well as an automated hyperparameter tuning algorithm that does not need 

to search for hundreds of NN candidates. Still, our NN-Parameterization produced low accuracy predictions along the equator 

over the oceans where the convection is complex and vigorous and in subtropical ocean areas where the convection is weak 390 

and concentrated at low levels. This indicates that the NN-Parameterization is still inadequate in rems of its emulation skill 

when simulating various types of deep and shallow convection in the tropics. 

5 Long-Term Prognostic Validation 

The NN-Parameterization produced the best prognostic performance in Section 3.1. It was coupled in the realistically 

configured SPCAM to replace the SP and its cloud-scale radiation effects. This coupled model is called referred to as NNCAM 395 

hereinafter and is compared with SPCAM and CAM5. The start time of all three model was January 1, 1998. They were all 

run for 6 years with the first year for spin up and the next 5 years (January 1, 1999, to December 31, 2003) for evaluation and 

comparison. Later, the simulation of NNCAM was extended for another 5 years to December 31, 2008, to demonstrate its 

stability. Due to the excessive computing resources required, the SPCAM simulation was not extended. In the analysis of the 

prognostic results, the following were selected to demonstrate the multi-year climatology and variability: 400 

(1) The mean temperature and humidity fields; 

(2) The mean precipitation field; 

(3) The precipitation frequency distribution; and 

(4) The Madden–Julian Oscillation. 

As was mentioned in the introduction section, SPCAM, which uses the 2-D SAM as the SP, does not simulate better mean 405 

climate states than its host coarse-grid model CAM5, but it excels in climate variability. What is remarkable about NNCAM 

is not its performance in simulating the mean climate, but its ability to achieve a stable multi-year prognostic simulation under 

a real-world global land–ocean distribution. The advantages and problems of this study will provide important references for 

future research on NN-based stable long-term model integrations. 
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5.1 Climatology 410 

5.1.1 Vertical profiles of temperature and humidity 

In this section, we evaluate the vertical structures of the mean temperature and humidity fields. Figure 9 shows the zonally 

averaged vertical profiles of the air temperature and specific humidity simulated using NNCAM and CAM5 compared to the 

SPCAM simulations. Overall, NNCAM simulated reasonable thermal and moisture structures. However, the multi-year mean 

temperature and moisture fields produced by NNCAM are more biased than those produced by CAM5, which is reflected by 415 

the larger root mean square errors (RMSEs) (Figure 9) and larger differences compared to those of CAM5 (Figure 10). The 

larger deviations are temperature biases in the tropopause. In this region, the cold-point region is thinner and warmer in 

NNCAM than in SPCAM and CAM5. In addition, there are cold biases above 200 hPa and warm biases blow over the polar 

regions in NNCAM. For the humidity field, there are slight dry biases over the equator and wet biases elsewhere in NNCAM. 

Even with these biases, the mean climate states are consistent with those in the last 5 years of the simulation for NNCAM 420 

(Figure S3), which indicates that the climate states simulated by NNCAM are constant in the long-term simulation. 

5.1.2 Precipitation 

Figure 11 shows the spatial distributions of the winter (December-January-February) and summer (June-July-August) mean 

precipitation simulated using SPCAM, NNCAM, and CAM5. The SPCAM simulation results are regarded as the reference 

precipitation. In SPCAM (Figures 11a and 11b), massive precipitation can be observed in the Asian monsoon region and the 425 

mid-latitude storm tracks over the northwest Pacific and Atlantic oceans. In the tropics, the primary peaks in the rainfall occur 

in the eastern Indian Ocean and Maritime Continent regions. In addition, two zonal precipitation bands are located at 0-10°N 

in the equatorial Pacific and Atlantic oceans, constituting the northern ITCZ. The southern South Pacific Convergence Zone 

(SPCZ) is mainly located at around 5-10°S near the western Pacific warm pool region and tilts southeastward as it extends 

eastward into the central Pacific. The main spatial patterns of the SPCAM precipitation are properly reproduced by both 430 

NNCAM and CAM5. For NNCAM, the strong rainfall centers are well simulated over the tropical land regions of the Maritime 

Continent, the Asian monsoon region, South America, and Africa (Figures 11c and 11d). In addition, the heavy summertime 

precipitation over the Northwestern Pacific simulated by SPCAM is well represented by NNCAM (Figures 11a and 11c). For 

CAM5, there is too little precipitation over this area (Figure 11e). Moreover, NNCAM maintained the spatial pattern and global 

average of the precipitation in the next 5 years of the simulation, demonstrating its long-term stability (Figure S4). 435 

Generally, the NNCAM results are more similar to SPCAM than the CAM5 results in terms of the spatial distribution of 

the summertime multi-year precipitation, with smaller RMSEs and globally averaged biases. However, on a difference plot 

(Figure S5), NNCAM moderately underestimates the precipitation along the equator, in the Indian monsoon region, and over 

the Maritime Continent in the summer (Figure S5a). In the boreal winter, NNCAM simulates a weak SPCZ that is excessively 

separated from the ITCZ, with both precipitation centers shifted away from each other. As a result, underestimation occurs in 440 

the equatorial regions of the Maritime Continent and in the SPCZ, while overestimation occurs to the north of the equator in 
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the Western Pacific (Figure S5b), and thus, NNCAM resembles SPCAM less than CAM5 in this season. This underestimation 

of the precipitation along the equator can also be observed in the zonal mean multi-year precipitation plots (Figure 12). There 

is a more significant minimum zone in the equatorial precipitation near the equator compared with in SPCAM and CAM5 for 

the annual average (Figure 12a) and the boreal winter average (Figure 12c). 445 

 In contrast to the oceanic rainfall, NNCAM predicts the precipitation over the land surfaces with good skill in the tropics 

(land fraction equal to 1), which resembles the tropical land rainfall intensity of SPCAM and Tropical Rainfall Measuring 

Mission (TRMM) observations of the annual and boreal summer averages (Figures 12d and 12e). According to Kooperman et 

al. (2016), SPCAM predicts the Asian and African Monsoon activity better, which leads to the more accurate land rainfall in 

such areas. This is related to the stronger convective variability in the SP than the conventional parameterizations. As an 450 

emulator of SPCAM, NNCAM inherits this strength. 

5.2 Variability 

5.2.1 Frequency distribution of precipitation 

Moreover, NNCAM exhibited a better performance in simulating the precipitation extremes. Figure 13 shows the probability 

density function of the simulated daily precipitation in the tropics (30°S−30°N) with a precipitation intensity interval of 1 mm 455 

day-1. For CAM5, the heavy precipitation events exceeding 20 mm day-1 are greatly underestimated. In addition, for CAM5, 

the light to moderate precipitation events (2−20 mm day-1) are overestimated, with an unreal probability peak around 10 mm 

day-1, which is a typical simulation bias found in simulations with parameterized convection and no explicitly resolved 

convection (Holloway et al., 2012). Compared with CAM5, the spectral distribution of the precipitation for NNCAM is much 

closer to that of SPCAM. The heavy rainfall events are substantially enhanced, and the overestimated moderate precipitation 460 

(2−20 mm day-1) is reduced, with no spurious peak at around 10 mm day-1. 

5.2.2 The MJO 

The MJO is a crucial tropical intraseasonal variability that occurs on a time scale of 20–100 days (Wheeler and Kiladis, 1999). 

Figure 14 presents the wavenumber and frequency spectra for the daily equatorial precipitation anomalies for SPCAM, 

NNCAM, and CAM5 in four consecutive boreal winters from 1999 to 2003. SPCAM shows widespread power signals over 465 

zones 1–4 and periods of 20–100 days, as well as a peak around zone numbers 1−3 and periods of 70−100 days for the eastward 

propagation (Figure 14a). Similarly, for NNCAM, there is a spectral peak at wavenumbers of 1−2 and periods of 50–80 days 

for the eastward propagation (Figure 14b), exhibiting intense intraseasonal signals. For CAM5 (Figure 14c), the spectral power 

is concentrated around 30 days and exhibits more extended periods (greater than 80 days) at a wavenumber of 1 for the eastward 

propagation. In addition, CAM5 also shows signals of westward propagation with a 30-day period. Compared with CAM5, 470 

NNCAM exhibits stronger intraseasonal power and resembles SPCAM better. To quantify this similarity, we calculated the 
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coefficients of determination 𝑅( for the precipitation spectra of NNCAM and CAM5 using the spectrum of SPCAM as the 

target value. The 𝑅( value of the precipitation spectrum NNCAM (0.51) is much higher than that for CAM5 (0.40). 

The MJO is characterized by the eastward propagation of deep convective structures along the equator. Generally, it forms 

over the Indian Ocean, strengthens over the Pacific, and weakens over the eastern Pacific due to interactions with cooler SSTs 475 

(Madden and Julian, 1972). Figure 15 presents the longitude-time lag evolution for the 10°S−10°N meridional averaged daily 

anomalies of the intraseasonal (filtered using a 20–100-day bandpass) precipitation and 200 hPa zonal wind (U200) in the 

boreal winter. The results show that both SPCAM and NNCAM reasonably reproduce the eastward propagation of the 

convection from the Indian Ocean across the Maritime Continent and into the Pacific (Figures 15a and 15b). This is confirmed 

by both the precipitation field and U200 field. Therefore, we conclude that NNCAM captures the key MJO propagation 480 

simulated by SPCAM. In contrast, the time lag plot for CAM5 depicts an inaccurate westward propagation. Similar to the 

precipitation spectrum, the 𝑅( value of the time lag coefficient is shown to quantify the similarities between the simulations. 

The time lag coefficient of the U200 field for NNCAM is much closer to that for SPCAM than CAM5, with a much higher 𝑅( 

value, indicating that the NN-Parameterization successfully emulates the convection variability of the SP, which is reflected 

in the dynamic fields. 485 

6 Summary and Conclusions 

In this study, the potential of deep neural network-based parameterizations in SPCAM to reproduce long-term climatology and 

climate variability was investigated. We developed an NN-Parameterization via a ResDNN set to emulate the SP with a 2-D 

CRM and its cloud scale radiation for a realistically configured SPCAM with a true land-ocean distribution and orography. 

The input variables of the NN-Parameterization include the specific humidity, temperature, largescale water vapor and 490 

temperature forcings, surface pressure, and solar insolation. The output variables of the NN-Parameterization include the 

subgrid tendencies of the moisture and dry static energy and the radiation fluxes. We propose a set of 14-layer deep residual 

neural networks, in which each NN is in charge of one group of output variables. With such a design, we gained a best 

emulation accuracy for each predictor. Through systematic trial-and-error searching, we were able to select sets of ResDNNs 

that support stable prognostic climate simulations, and then, we chose the best set with the lowest climate errors as the formal 495 

NN-Parameterization. Moreover, the mechanism of the unreal perturbation amplification was identified in the GCM 

simulations with unstable NN-Parameterizations using the spectrum diagnostic tool invented by Brenowitz et al. (2020). 

The offline tests demonstrated the good skills of the NN-Parameterization in emulating the SP outputs and the cloud scale 

radiation effects of SPCAM. The overall diabatic heating and drying rates in the NN-Parameterization and SPCAM are in 

close agreement. When implemented in the host SPCAM to replace its time-consuming SP and its radiation effects, the NN-500 

Parameterization successfully produced an extensive stable long-term prognostic simulation and predicted reasonable mean 

vertical temperature and humidity structures and precipitation distributions. Compared with the SPCAM target simulation, 

NNCAM still produces some biases in the mean fields, such as a warmer troposphere over the polar regions and in the 
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tropopause and underestimation of strong precipitation in the equatorial regions. In addition, the better climate variability of 

SPCAM compared to CAM5 was learned well by our NN-Parameterization and was reproduced by NNCAM, with better 505 

frequency for extreme rainfall and a similar MJO spectrum, propagation direction, and speed. Despite the current biases in the 

climate states, NNCAM can still be regarded as a first attempt to couple a NN-based parameterization and a realistically 

configured 3-D GCM. 

Many previous studies have investigated ML parameterizations implemented in aqua-planet configured 3-D GCMs. Some 

faced instability problems in coupled simulations (Brenowitz and Bretherton, 2019), while others succeeded in producing 510 

stable long-term prognostic simulations with deep fully connected neural networks (Rasp et al., 2018; Yuval et al., 2021), as 

well as random forest algorithms (Yuval and O’Gorman, 2020). In contrast to aqua-planet simulations, the spatial heterogeneity 

is prominent over the land in GCMs, which are configured using real geographic boundary conditions. The convection, clouds, 

and interactions with the radiation in the CRM and the real geographic boundary conditions are without a doubt far more 

complicated than in idealized models. To meet the new demand for realistic configurations, we designed a ResDNN with 515 

sufficient depth to further improve the nonlinear fitting ability of the NN-Parameterization. With the skip connections, the 7-

layer DNN models can be extended to 14 layers, thereby significantly improving the offline accuracy. In the prognostic tests, 

a dozen ResDNN-parameterizations supported a stable long-term run, while all of the DNN-parameterizations tested were 

found to be unstable. 

Trial-and-error is still our only way to find stable NN-based parameterizations. Thus far, we have not developed an a 520 

priori method that guarantees stability. However, we did find some clues in the sensitivity tests. We believe sufficient offline 

accuracy is essential for online stability and can be achieved by confirming all of the inaccurate NN-Parameterizations as 

unstable. In addition, some of the highly accurate ones still crash the prognostic simulation. In this case, the total energy was 

found to increase rapidly. This mechanism is that unstable NNs cannot damp the neural network emulation errors, and they 

amplify and propagate them to the entire system through gravity waves. 525 

The prognostic biases of the mean fields are speculated to be a result of the combined effect of the emulation errors of all 

of the NN-Parameterization prediction fields. Further study is required. Still, it may be related to the spatially non-uniform 

accuracy of the NN-Parameterization, such as the relatively low fitting accuracy in the tropical deep convective regions and 

the shallow subtropical convection and stratiform cloud regions. Such problems have also been reported in previous studies 

(Gentine et al., 2018; Mooers et al., 2021). We believe that an NN-Parameterization with heterogeneous characteristics across 530 

different regions, rather than a globally uniform scheme, can further improve the fitting accuracy in these tropical and 

subtropical regions. 

Embedding deep neural networks into Fortran-based atmospheric models is still a handicap. Before this study, researchers 

mainly used hard coding to build neural networks (Rasp et al., 2018; Brenowitz and Bretherton, 2019). An easier method is to 

use Fortran-based neural network libraries that can flexibly import network parameters (Ott et al., 2020). These methods have 535 

been used to successfully implement NNs in GCMs, but they can only support dense, layer-based NNs. As a result, developers 

cannot take advantage of the most advanced neural network structures, such as convolution, shortcut, self-attention, and 
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variational autoencoder structures, to build powerful ML-based parameterizations. In this study, using an NN-GCM coupler, 

the NN-Parameterization could support the mainstream GPU-enabled ML frameworks. Thanks to the simple and effective 

implementation of the NN-GCM coupler, our NNCAM achieved an SYPD 30 times that of SPCAM by using a ResDNN set 540 

and NN-Parameterization, even though these DNNs are much deeper than the previous state-of-the-art fully connected NNs in 

this field. 

 

Code and data availability. The original training and testing data can be accessed at https://doi.org/10.5281/zenodo.5625616.
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Table 1. Input and output variables. For the inputs, 𝒒𝒗(𝒛) is the vertical water vapor profile. 𝑻(𝒛) is the temperature profile. 
𝒅𝒒𝒗	𝒍.𝒔.(𝒛)and 𝒅𝑻𝒍.𝒔. are the large scale forcings of the water vapor and temperature, respectively. 𝑷𝒔 is the surface pressure; 
and Solin is the TOA solar insolation. For the outputs, 𝒅𝒒𝒗(𝒛) and 𝒅𝒔(𝒛) are the tendencies of the water vapor and dry static 
energy due to moist physics and radiative processes calculated using the NN-Parameterization. The net longwave and 675 
shortwave fluxes at the surface and the TOA are the surface net longwave flux (FLNS), surface net shortwave flux (FLNT), 
TOA net longwave flux (FLNT), and TOA net shortwave fluxes (FSNT). The four downwelling shortwave solar radiation 
fluxes are the solar downward visible direct to surface (SOLS), solar downward near infrared direct to surface (SOLL), solar 
downward visible diffuse to surface (SOLSD), and solar downward near infrared diffuse to surface (SOLLD) fluxes reaching 
the surface.  680 

Inputs Outputs 

qv(z), T(z), dqvls(z), dTls(z), Ps, Solin dqv(z), ds(z), FLNS, FSNS, FLNT, FSNT, SOLS, SOLL, 

SOLSD, SOLLD 
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Figures 1 – 15 

 

 685 
Figure 1. Schematic diagram of the structure of the ResDNN. It consists of seven residual blocks, each of which (dashed box) 

contains two 512 node-wide dense (fully connected) layers with an ReLU as the activation and a layer jump. The inputs and 

outputs are discussed in Section 2.2.2. 
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 690 

 
Figure 2. Fitting accuracies (R2) of both the proposed ResDNN (solid orange lines) and the DNN (dashed blue lines) for 

different outputs. (a) The R2 of the moist static energy changing rate (dh) versus the training epochs; and (b) the fitting accuracy 

of the average R2 for the eight radiation fluxes. Note: the R2 values are calculated for both space and time in the validation 

dataset. 695 
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Figure 3. A flow chart of NNCAM, including the NN-GCM coupler. NNCAM runs in the direction of the arrow, and each 

box represents a module. Among them, the NN-GCM coupler is indicated by the pink box. The NN-Parameterization is shown 700 

in the box on the right. ① The dynamic core transmits data to the NN-GCM coupler; ② and ③the data communication 

between the NN-GCM coupler and the NN-Parameterization; and ④the host GCM accepts the results from the NN-

Parameterization. 
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 705 

  
Figure 4. The mean square error of the offline moist static energy vs. the prognostic steps. The black inverted triangles (the 

three black inverted triangles above the infinity line to avoid overlapping) denote stable NN coupled prognostic simulations 

that last for more than 10 years. The blue dots denote unstable simulations, and the blue triangles denote unstable DNNs. The 

dots with colored outlines are shown in Figure 5 for the time evolution of the globally averaged energy. 710 
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Figure 5. Time evolution of the globally averaged column of the integral total energy of NNCAM with different ResDNN-

parameterizations (marked with the same colors as in Figure 4), SPCAM target (black line), and CAM5 control run (grey 715 

dashed line). The blue line indicates the stable and accurate ResDNN, the green line indicates the stable but deviating ResDNN, 

and the orange and red lines indicate unstable ResDNNs. 
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  720 
Figure 6. Latitude-pressure cross sections of the annual and zonal mean heating (top) and moistening (bottom) due to moist 

physics during the year 2000 for (a, c) SPCAM simulations, and (b, d) the offline test using the NN-Parameterizations. 
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 725 
Figure 7. Latitude-pressure cross sections of the coefficient of determination (𝑅() for the zonally averaged heating (left panels) 
and moistening (right panels) predicted using (a & b) the NN-Parameterization in the offline one-year SPCAM run, and (c & 
d) the offline CAM5 parameterizations. Both were evaluated at a 30-min time step interval. Note: the areas where 𝑅( is greater 
than 0.7 are contoured in pink, and the areas where 𝑅( is greater than 0.9 are contoured in orange. 
 730 
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Figure 8. Latitude-pressure cross sections of the coefficient of determination (𝑅() for the time sequence at each location for 
(a) the derived precipitation predicted using the NN-Parameterization and (b) the total precipitation from the CAM5 
parameterization compared to the offline one-year SPCAM run. The predictions and SPCAM targets are for a 30 min time 
step interval. Note: the areas where 𝑅( is greater than 0.7 are contoured in pink, and the areas where 𝑅( is greater than 0.9 are 735 
contoured in orange. 
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Figure 9. Latitude-pressure cross sections of the zonal mean temperature (left panels) and specific humidity (right panels) 

averaged from 1999 to 2003 predicted using (a, b) SPCAM, (c, d) NNCAM, and (e, f) CAM5. 740 
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Figure 10. Latitude-pressure cross-section of the zonal and annual mean differences in the temperature (left panels) and 

specific humidity (right panels) between (a & c) NNCAM and SPCAM and (b & d) CAM5 and SPCAM. The simulation 

period for all of the models was from 1999 to 2003. 745 
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Figure 11. The mean precipitation rate (mm day-1) averaged from 1999 to 2003 for June-July-August (left panels) and 

December-January-February (right panels) predicted using (a, b) SPCAM, (c, d) NNCAM, and (e, f) CAM5. 750 
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Figure 12. The zonal mean precipitation rate (mm/day) averaged from 1999 to 2003 for (a, d) the annual mean, (b, e) June-
July-August, and (c, f) December-January-February. The black, blue, and red solid lines denote SPCAM, NNCAM, and 755 
CAM5, respectively. The dark green dashed line denotes the averaged results of the TRMM 3B42 daily rainfall product. 
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Figure 13. Probability densities of the daily mean precipitation in the tropics (30°S−30°N) obtained from the three model 760 

simulations. The black, blue, and red solid lines denote SPCAM, NNCAM, and CAM5, respectively. 
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Figure 14. The wavenumber-frequency spectra for the daily precipitation anomalies at 10°S−10°N for (a, b) SPCAM, (c, d) 765 

NNCAM, and (e, f) CAM5 simulations in boreal winter. 
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 770 
Figure 15. Longitude-time evolution of the lagged correlation coefficient for the 20–100-day bandpass-filtered precipitation 

anomalies (averaged over 10°S−10°N) against the regionally averaged precipitation (shading) and zonal wind at 200 hPa 

(contours) over the equatorial eastern Indian Ocean (80−100°E, 10°S−10°N). The dashed lines in each panel denote the 5 m s-

1 eastward propagation speed. 


