
1 

 

Stable climate simulations using a realistic GCM with neural network 
parameterizations for atmospheric moist physics and radiation 
processes 
Xin Wang1, Yilun Han2, Wei Xue1, Guangwen Yang1, Guang J. Zhang3 
1
Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China 5 

2
Department of Earth System Science, Tsinghua University, Beijing, 100084, China 

3
Scripps Institution of Oceanography, La Jolla, CA USA 

Correspondence to: Wei Xue (xuewei@tsinghua.edu.cn), Yilun Han (hanyl16@mails.tsinghua.edu.cn) 

Abstract. In climate models, subgrid parameterizations of convection and cloud are one of the main reasons for the biases in 

precipitation and atmospheric circulation simulations. In recent years, due to the rapid development of data science, Machine 10 

learning (ML) parameterizations for convection and clouds have been proven the potential to perform better than conventional 

parameterizations. At present, most of the existing studies are on aqua-planet and idealized models, and the problems of 

simulated instability and climate drift still exist. In realistic configurated models, developing a machine learning 

parameterization scheme remains a challenging task. In this study, a set of deep residual neural networks (ResDNNs) with 

strong nonlinear fitting ability is designed to emulate a superparameterization (SP) with different types of outputs. Sensitivity 15 

tests show that high accuracy is necessary to develop a stable ML parameterization. Trial-and-error is used to acquire the 

optimal ResDNN set for both high performance and long-term stability, named NN-Parameterization. In offline validation, 

NN-Parameterization emulates the SP results far better than the conventional subgrid parameterizations. Then, in the multi-

year prognostic test, NN-Parameterization reproduces reasonable climate mean states but still with some biases. Most 

importantly, NN parameterization successfully reproduces the climate variability in a superparameterizated GCM, with an 20 

over 30-time faster running speed. Under real geographical boundary conditions, the hybrid ML-physical GCM well simulates 

the spatial distribution of boreal summer precipitation and significantly improves the frequency of precipitation extremes, 

which is largely underestimated in the Community Atmospheric Model version 5 (CAM5) with the horizontal resolution of 

1.9°×2.5°. Furthermore, the hybrid ML-physical GCM simulates a stronger signal of the Madden-Julian oscillation with a 

more reasonable propagation speed than CAM5. This study is a pioneer to achieve multi-year stable climate simulations using 25 

a hybrid ML-physical GCM in actual land-ocean boundary conditions. It demonstrates the emerging potential for using 

machine learning parameterizations in climate simulations. 
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1 Introduction 

The general circulation models (GCMs) have been widely used for studying climate variability, prediction and projections. 

Despite decades of GCM development, most GCMs still suffer from many systematic biases, especially at low latitudes. A 30 

prominent tropical bias in most current GCMs is the double intertropical convergence zone (ITCZ) syndrome, which is 

characterized by two parallel zonal bands of annual precipitation straddling the equator over the central and eastern Pacific 

(Lin, 2007; Zhang et al., 2019). Convectively coupled equatorial waves and the Madden-Julian Oscillation (MJO), featured by 

eastward propagating convective cloud clusters, are also not well simulated in GCMs (Ling et al., 2017; Cao and Zhang, 2017). 

Many studies have attributed most of these biases to the imperfection of the parameterization schemes for atmospheric 35 

moist convection and cloud processes in current GCMs (Zhang and Song, 2010; Cao and Zhang, 2017; Song and Zhang, 2018; 

Zhang and Song, 2019). Cloud-related processes span a large range of spatial scales, from micron-scale cloud nucleation, 

meter-scale turbulence, to individual convective cells and organized convective systems, which are a few kilometers to 

hundreds of kilometers in size, and to tropical disturbances, which have a spatial scale of thousands of kilometers. They directly 

influence the radiation balance and hydrological cycle of the earth system and interact with the atmospheric circulation, 40 

affecting the transport and distribution of energy (Emanual et al., 1994). Therefore, it is very important to simulate the cloud 

and convection process in GCMs correctly. However, the current GCMs used for climate simulation have a horizontal 

resolution of ~100km and a vertical hydrostatic coordinate. Thus, in most GCMs, besides parameterized cloud microphysics, 

convection and its influence on the atmospheric circulation are represented by convective parameterization schemes, which 

are usually based on simplified theories, limited observations, and empirical relationships (Tiedtke, 1989; Zhang and 45 

McFarlane, 1995; Lopez-Gomez et al., 2020). Those schemes regard convective heat and moisture transport as the collective 

effects of idealized individual kilometer-scale convective cells. They cannot represent the effects of many complicated 

convective structures, including organized convective systems, leading to large uncertainties and biases in climate simulations 

(Bony et al., 2015). 

Cloud Resolving Models (CRMs), on the other hand, have long been used to simulate convection. Because CRMs have 50 

higher horizontal and vertical resolutions and can explicitly resolve the thermodynamic processes in convection, they simulate 

convection more accurately, including convective organization (Feng et al., 2018). In recent years, CRMs have been used as 

superparameterization (SP) in low-resolution GCMs to replace conventional cumulus convection and cloud parameterization 

schemes. The commonly used SP model is the superparameterized version of the Community Atmosphere Model (SPCAM) 

developed by the National Center for Atmospheric Research (Grabowski and Smolarkiewicz, 1999; Grabowski, 2001, 2004; 55 

Khairoutdinov and Randall, 2001; Randall et al., 2003; Khairoutdinov et al., 2005). Compared with conventional cumulus 

convection and cloud parameterization schemes, SPCAM performs better in simulating mesoscale convective systems, diurnal 

cycles of precipitation, monsoons, precipitation frequency distribution, and MJOs (Khairoutdinov et al., 2005; Bretherton et 

al., 2014; Jiang et al., 2015; Jin et al., 2016; Kooperman et al., 2016). However, when using 2D CRM as SP, the improvement 

on climate mean states is not obvious (Khairoutdinov et al., 2005). Also, SPCAM requires far more computing resources than 60 
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the same resolution CAM in 1 to 2 orders of magnitude according to the resolution of the CRM subdomain. Thus, the use of 

SPCAM in long-term climate simulations and ensemble prediction is restricted by the current computing resource. Developing 

novel and computationally efficient schemes for high performance convection and cloud processes is still an open problem in 

GCM development. 

In the last 5 years, the rapid development of machine learning (ML) technologies, especially deep learning technologies 65 

such as neural networks (NNs), has provided novel approaches to constructing parameterization schemes. Machine learning 

can identify and discover complex nonlinear relationships that exist in large data sets and model them. Several studies have 

used machine learning methods to develop convection and cloud parameterization schemes (e.g., Gentine et al., 2018; Rasp et 

al., 2018). These studies followed a similar approach. The first step is to derive a target dataset from a reference simulation, 

which is later used for machine learning models training. Then, the trained machine learning models are often evaluated offline 70 

against other independent reference simulations and finally implemented in a GCM to replace the conventional 

parameterization schemes. 

Krasnopolsky et al. (2013) first proposed a proof-of-concept for developing convection parameterization based on the 

NN technique. Specifically, an ensemble of shallow NNs was applied to learn convective temperature and moisture tendencies, 

with training data from CRM simulations forced by observations in the tropical western Pacific. The resulting convective 75 

parameterization scheme was able to simulate the main features of cloud and precipitation in the NCAR CAM4 diagnostically. 

However, the key issue of prognostic validation in 3-D GCMs was not addressed. Recent studies have investigated ML 

parameterizations in prognostic mode in simplified aqua-planet GCMs. For example, Rasp et al. (2018) developed a deep fully 

connected NN (DNN) to predict convection and clouds, which was trained with the data from an aqua-planet SPCAM. The 

NN parameterization was then implemented in the corresponding aqua-planet CAM and produced multi-year prognostic results 80 

close to SPCAM. For this NN parameterization, Rasp (2020) found that minor changes, either to the training dataset or in the 

input/output vectors, can lead to model integration instabilities. Brenowitz and Bretherton (2019) fitted a DNN for convection 

and clouds to the coarse-grained data from a near-global aqua-planet cloud-resolving simulation using the System for 

Atmospheric Modeling (SAM). The NN scheme was then tested prognostically in a coarse-grid SAM. Their results showed 

that there were unphysical correlations learned by the network, and information in the upper levels from the input vector had 85 

to be removed to produce stable long-term simulations. Rather than using NNs, Yuval and O’Gorman (2020) used random 

forest to develop an ML parameterization based on the training data from a high-resolution idealized 3-D model with a setup 

of equatorial beta plane. They used two independent random forests to emulate different processes separately and ensured 

physical constraints by predicting subgrid fluxes instead of tendencies. Later, Yuval et al. (2021) completed the same task with 

NNs. Both works achieved stable simulations in coarse resolution aqua-planet GCMs. Brenowitz et al. (2020) proposed 90 

methods to interpret and stabilize ML parameterization of convection. In their work, a wave spectra analysis tool was 

introduced to explain why ML coupled GCMs blew up. 

In real-world climate models with varied underlying surfaces, convection and clouds are more diverse under different 

climate backgrounds, which makes the task of developing ML-based parameterizations more complicated. A few early works 
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have shown the feasibility of using neural networks fitting cloud processes in real-world models. Han et al. (2020) used a 1-D 95 

deep residual convolutional neural network (ResNet) to emulate moist physics in SPCAM. This ResNet based parameterization 

fitted the targets with high accuracy and is successfully implemented in a single column model. Mooers et al. (2021) got a 

high-skill DNN via automated machine learning technique and forced an offline land model with DNN emulated atmospheric 

fields. However, neither of these studies have tested their NNs prognostically for long-term simulations. Similar to the idea of 

several NNs for different processes in Yuval and O’Gorman (2020), this study uses a set of NNs to emulate convection and 100 

cloud processes in SPCAM with an actual global land-ocean distribution. We use the residual connections in Han et al. (2020) 

to acquire super deep neural networks with great nonlinear fitting ability. Furthermore, we conduct systematic trial-and-error 

to filter out unstable NN parameterizations and get the best ResDNN set with both accuracy and long-term stability. The NN 

parameterization scheme is then implemented in the realistically configurated CAM to obtain long-term stable simulations. 

Technically, NNs are commonly implemented via high-level programming languages such as Python and deep learning 105 

libraries. However, GCMs are mainly written in Fortran, making integrating with deep learning algorithms inconvenient. 

Therefore, we introduce an NN-GCM coupling platform in which NN models and GCMs can interact through data transmission. 

This coupling strategy can facilitate the development of ML-physical hybrid models with high flexibility. Under real-

geography boundary conditions, our work achieves more than 10-year stable climate simulations in Atmospheric Model 

Intercomparison Project (AMIP)-style experiments by using a hybrid ML-physical GCM. The simulation results may show 110 

some biases in climate mean fields but successfully reproduce variability in SPCAM. To our knowledge, this is the first time 

a decade-long stable real-world climate simulation is achieved with a NN-based parameterization.  

The remainder of this paper is organized as follows. Section 2 briefly describes the model, the experiments, the DNN 

algorithm, and the DNN-GCM coupling platform. Section 3 analyses the simulation stability of NNCAM. Section 4 presents 

the offline validation of the DNN scheme, focusing on the output temperature and moisture tendencies. Results of multi-year 115 

simulations, employing the DNN parameterization scheme, are shown in Section 5. A summary and conclusions are presented 

in Section 6. 

2 Methods and data 

In this study, we choose SPCAM as the reference model to generate target simulations. A set of NNs is trained with the target 

simulation data using optimized hyperparameters. Then, they are organized as a subgrid physics emulator and implemented 120 

into the superparameterized version of Community Atmospheric Model (SPCAM), replacing both the CRM based SP and the 

radiation effects of the CRM. This NN-enabled GCM is referred to as NNCAM hereafter. 

2.1 SPCAM setup and data generation 

The GCMs used in this study are the CAM5.2 developed by the National Center for Atmospheric Research and its 

superparameterized version SPCAM (Khairoutdinov and Randall, 2001; Khairoutdinov et al., 2005). A complete description 125 
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of CAM5 is given by Neale et al. (2012). The dynamic core of CAM5 has a horizontal resolution of 1.9°×2.5° and 30 vertical 

levels with a model top at about 2 hPa. To represent moist processes, CAM5 adopts a plume-based treatment of shallow 

convection (Park and Bretherton, 2009), a mass-flux parameterization scheme for deep convection (Zhang and McFarlane, 

1995), and an advanced two-moment representation of cloud microphysical processes (Morrison and Gettelman, 2008; 

Gettelman et al., 2010). In the AMIP experiments we conducted, CAM5 is coupled to a land surface model Community Land 130 

Model version 4.0 (Oleson et al., 2010) and uses prescribed sea surface temperatures and sea ice concentrations.  

In this study, SPCAM is used to generate the training data. In SPCAM, a two-dimensional (2-D) CRM is embedded in 

each grid column of the host CAM as SP. The 2-D CRM has 32 grid points in the zonal direction and 30 vertical levels that 

are shared with the host CAM. The CRM handles convection and cloud microphysics to replace the conventional 

parameterization schemes, and the radiation is calculated on the CRM subgrids to include the cloud-radiation interaction at 135 

cloud scale (Khairoutdinov et al., 2005). Under realistic configuration, the planetary boundary layer process, orographic gravity 

wave drags, and the dynamic core are computed on the CAM grid. One conceptual advantage of using SPCAM as the reference 

simulation is that the subgrid and grid-scale processes are clearly separated, making it easy to define the parameterization task 

for an ML algorithm (Rasp, 2020). 

2.2 NN-Parameterization 140 

2.2.1 Data sets 

The NN-Parameterization is a deep learning emulator of the SP and its cloud-scale radiation effects in SPCAM. Therefore, the 

inputs of this emulator are borrowed from the SP input variables such as the grid-scale state variables and forcings, including 

specific humidity !!, temperature T, largescale water vapor forcing ""#!"$ #%&and temperature forcing ""'"$#%&. Additionally, we 

select surface pressure $& and solar insolation (SOLIN) at the top of the model from the radiation module. The outputs of NN-145 

Parameterization are subgrid-scale tendencies of moisture ""#!"$ # and of temperature ""'"$# at each model level as well as net 

shortwave and longwave radiative fluxes at both the surface and the TOA. This heating is composed of moist heating in the 

SP and the GCM-grid-averaged SP radiative heating. Also, it is important to include direct and diffuse downwelling solar 

radiation fluxes as output variables to force the coupled land surface model. Specifically, they are solar downward visible 

direct to surface (SOLS), solar downward near infrared direct to surface (SOLL), solar downward visible diffuse to surface 150 

(SOLSD), and solar downward near infrared diffuse to surface (SOLLD). In the end, the precipitation is derived from column 

integration of predicted moisture tendency to keep basic water conservation.  

       The large-scale forcings are commonly not included in previous studies with aqua-planet configuration. However, under 

realistic configuration, such forcings are composed of the dynamics and the planetary boundary layer diffusion, thereby 

carrying critical information about the complex background circulations and surface condition. Similarly, those downwelling 155 

solar radiation fluxes with separation of direct versus diffusion records the received solar energy by the coupled surface model 
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with different land cover types and processes (Mooers et al., 2021). If not included, the land surface is not heated up by the 

sun, therefore, seriously weaking the sea and land breeze and monsoon circulations. 

Table 1 lists the input and output variables and their normalization factors. There are 30 model levels for each profile 

variables. Therefore, the input vector consists of 122 elements for 4 profile variables and 2 scalars, while the 68-element output 160 

vector is made of 2 profiles and 8 scalars. All input and output variables are normalized to ensure that they are in the same 

magnitude before they are put into the NN-parameterization for training, testing, model prognostic validation. The 

normalization factor for each variable shown in the supplemented codebase is determined by the maximum of its absolute 

values.  

The training dataset used by all considered NNs is 40% temporally random sampled from the 2-year SPCAM simulation 165 

from January 1, 1997 to December 31, 1998. Notably, random sampling is only done in the time dimension but not in latitude 

and longitude, including all 13,824 samples from global grid points for each selected time step. To avoid any mix or temporal 

connection between the training set and offline validation set, we random sample 40% timesteps from the SPCAM simulation 

in the year 2000 as offline validation set in the sensitivity test. 

2.2.2 A ResDNN Set 170 

In the development of the NN-Parameterization scheme, it is found that when different variables are used as the output of the 

neural network, the training difficulty is quite different. Especially, the neural network's ability to fit the radiation heating and 

scalar fluxes is significantly stronger than the tendencies variables. This is also found in Gentine et al. (2018), in which the 

coefficient of determination (R2) of radiative heating tendency is higher than that of moisture tendency at most model levels. 

We believe that using a single NN with one target to train all variables, i.e., moisture tendency, temperature tendency, and 175 

radiation fluxes, inevitably causes mutual interference. Since gradient descending is applied to optimize the network in training, 

mutual interference between different targets is expected to cause the cancel out of gradient directions used for descending 

(Crawshaw et al., 2020; Zhang and Yang., 2021) and ultimately affect the convergence of the network. We use different neural 

networks to train the tendency of moisture and temperature, and radiation fluxes, respectively. By doing so, we avoid the 

gradient cancellation between multiple targets and improve the convergence speed and fitting accuracy when training the 180 

network. As described in Section 3.1, when using the same network configuration, radiation fluxes are trained much easier 

with higher accuracy than tendencies of moisture and temperature. We admit that putting heating and moistening rate in two 

different NNs arbitrarily cut physical connections between them. But this separation is surely doing training more easily in the 

developing stage. 

In this study, to mimic the column-independent SP and its radiation effects, the input and output of NN-Parameterization 185 

have to be both 1-D vectors. This means that the data input and output of NN-Parameterization are much simpler than those 

in the existing mainstream machine learning problems, such as image recognition and text-speech recognition, so it is 

impossible to apply most of the existing complex neural networks directly. Taking the convolutional neural network CNN as 

an example, the study of Albawi et al. (2017) shows that CNN has more advantages than DNN in the learning of large-scale 
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images. The problem we face is that the input is a 122-dimensional vector stitched by multiple different physical quantities 190 

with only 4 30-element 1D profiles plus 2 scalars, which cannot meet the requirements of “large-scale” (generally at least 

32×32 two-dimensional images). So, there is no need to use CNN. Hornik et al. (1989) proved that a single-layer neural 

network can approximate any function. Although the problem that NN-Parametrization needs to deal with is highly nonlinear, 

from the point of view of machine learning, it is essentially a mapping problem from a 122-element 1D-vector to a 1D-vector 

with a length of 68. According to the universal approximation theorem, DNN is feasible. Therefore, when constructing NN-195 

Parametrization, we first tried to use DNN for fitting, and introduced residual connections to extend DNN to ResDNN. 

After numerous experiments, we got the best hyperparameters of DNN and ResDNN. When training a Fully connected 

DNN, the hidden layer width of the network should be set to 512, and the network depth should not exceed 7, otherwise it will 

affect the convergence of the DNN. In order to make the neural network capture more non-linear information, enhance the 

fitting ability. We introduce skip connections to extend the 7-layer DNN to 14-layer ResDNN. The network structure of 200 

ResDNN is shown in Figure 1. In the training process, both DNN and ResDNN use an initial learning rate of 0.001 and a 

learning rate decaying strategy as cosine annealing (Loshchilov et al., 2016) without dropout and L2 regularization. Adam 

(Kingma and Ba, 2014) is chosen as the optimizer to minimize the mean squared errors (MSEs). The results in Figure 2 show 

that ResDNN can fit data is significantly better than DNN, with details described in Section 3.1. At the same time, the 

sensitivity tests in section 3 also prove that no DNN model can ensure the stable simulation of NNCAM. So, we chose 205 

ResDNNs sets as stable candidates to build NN-Parameterization. After obtaining all well-fit ResDNN sets, the next step is to 

couple the candidates into NNCAM one by one for prognostic tests and find sets that can support stable simulation. To 

complete this extremely challenging task, we have more than 50 prognostic tests. All experiments and analyses on stability 

will be introduced in section 3 as well. 

2.2.3 Implementation of NN-Parameterization 210 

The NN-Parameterization is implemented into SPCAM to replace both the CRM based superparameterization and its radiation 

effects on the basis of coarse grid average. In the beginning of each timestep, NNCAM calls the NN-Parameterization and 

predict the moisture tendency ""#!"$ # , the temperature tendency ""'"$# and radiation fluxes. Then the DNN predictions are 

returned to NNCAM, updating the model states and fluxes. Additionally, the surface total precipitation is derived from column 

integration of the predicted moisture tendency. The near-surface conditions of the atmosphere and downwelling radiation 215 

fluxes are transferred to the land surface model. After the coupling of the land surface model and the prescribed SST, the host 

CAM5 performs the planetary boundary layer diffusion and let its dynamic core complete a timestep integration (Figure 1). In 

the next timestep, the dynamic core returns the new model states to the NN-Parameterization as inputs again. During the whole 

process, NN-Parameterization and GCM will constantly update each other’s status. How to couple the NN Parameterization 

with GCM and run efficiently and effectively is the key to the implementation of NNCAM. To solve these problems, we 220 

develop the NN-GCM coupler that integrates NNs into NNCAM, which will be introduced in the following section. 



8 

 

2.3 The NN-GCM Coupler 

Deep learning research mainly uses machine learning frameworks based on Python interfaces to train neural network models 

and deploy them through C++ or Python programs. While GCM is mainly developed in Fortran, it is a very challenging work 

to call a neural network model based on Python/C++ interface in GCM codes written in Fortran. Solving the problem of code 225 

compatibility between NN and GCM can significantly help develop NN based Parameterizations for climate models. 

To implement a NN based Parameterization in current climate model which is mostly developed in Fortran, many 

researchers try to get the network parameters (e.g., weight, bias) from the machine learning models and implement the NN 

models (e.g., DNNs) with hard coding in Fortran. At runtime, NNCAM will call a NN parametrization as a function (Rasp et 

al., 2018; Brenowitz and Bretherton, 2019). Recently, some researchers have developed a Fortran-neural network interface 230 

that can be used to deploy DNNs into GCMs (Ott et al., 2020). This interface can import neural network parameters from 

outside of Fortran program, and the Fortran-based implementation ensures that it can be flexibly deployed in GCMs. However, 

embedding a NN parameterization in NNCAM is still a troublesome task with no existing coupling framework to support 

many of the latest network structures. This problem will restrict developers from building more powerful NNs and deploying 

them in NNCAM. 235 

We develop the coupler to bridge NN-Parameterization with the host CAM5. Through this coupler, the neural network 

can communicate with the dynamic core and other physical schemes in NNCAM in each time step. When NNCAM is running, 

as shown in ①	in Figure 5, the coupler receives the state and forcing output from dynamic core in Fortran based CAM5. For 

each input variable, we use the native MPI interface in CAM5 to gather the data of all processes to the master process into a 

tensor. Then, as shown in ②	of	Figure 5, the coupler will transmit the gathered tensor through the data buffer to the NN-240 

Parameterization running on the same node as the master process. The NN-Parameterization gets the input, infers the outputs, 

and transmits them back to the coupler. As shown in ③	of	Figure 5, the coupler will first write these tendencies and radiation 

fluxes back to the master process and then broadcast the data to CAM5 processes running on the computing nodes through the 

MPI transmission interface. Therefore, other parameterizations get the predictions from NN-Parameterization to complete the 

follow-up procedures (④ in Figure 5).  245 

In practice, the NN-GCM Coupler introduces a data buffer that supports system-level interface, which is accessible by 

both Fortran based GCM and Python based NN without supplementary foreign codes. This can avoid code compatibility issues 

when building Machine Learning coupled numerical models. It supports all mainstream machine learning frameworks, 

including native PyTorch and TensorFlow. Based on the coupler, one can efficiently and flexibly deploy the Deep Learning 

Model in NNCAM, and can even take advantage of the latest developed neural networks. 250 

All neural network models deployed through NN-GCM Coupler can support GPU accelerated inference to achieve 

excellent computing performance. In this study, we ran SPCAM and NNCAM on 192 CPU cores. NNCAM also used 2 GPUs 

for acceleration. During the NNCAM runtime, each time step of NNCAM requires NN-Parameterization to complete an 

inference and conduct data communication with NNCAM. This is a typical high-frequency communication scenario. We 
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evaluated the amount of data (about 20MB for CAM5 with the horizontal resolution of 1.9°×2.5°) that needs to be transmitted 255 

for each communication, and determined to establish a data buffer on a high-speed solid-state drive to ensure a balance of 

performance and compatibility. It takes about 1x10
-2

 seconds to access the data buffer in each time step, which is enough to 

support the efficient simulation of NNCAM. The Simulation Years per Day (SYPD) of NNCAM based on NN-GCM Coupler 

has an impressive performance improvement, when using 192 Intel CPU cores, the SYPD of SPCAM is 0.3, the SYPD of 

CAM5 is 20, and the SYPD of NNCAM is 10. It is worth noting that, NNCAM based on NN-GCM coupler uses an additional 260 

GPU to accelerate NN-Parameterization. When NN-GCM Coupler is not used, NN-Parameterization is implemented by 

Fortran and accelerated by Fortran-based Math Kernel Library, the SYPD is 1.5. 

3 A Road to Stability 

3.1 Sensitivity Tests and Trial-and-error 

To develop a stable NN parameterization, we propose a ResDNN set, where each neural network is responsible for predicting 265 

a class of variables (see section 2.2.2). One may wonder whether the ResDNN architecture is necessary and whether offline 

accuracy of NNs matters in online stability. This section tries to deal with the questions via a series of sensitivity tests.  

To prove the necessity of the ResDNN architecture, we use the 7-layer DNN as the control group. We do not include 

other types of ML architecture, since random forest is less likely to perform as accurately as neural networks and cannot be 

implemented in GPUs (Yuval et al., 2021), and 1D CNN is not widely used in other studies except Han et al. (2020) with 270 

unknown prognostic performance.  

The prognostic tests of NN parameterization begin at 1998-01-01 as a startup. As initialization, calling the SP in SPCAM 

at the first step is required to generate the correct largescale forcings as the input for NN parameterizations. In the sensitivity 

test, we freeze the ResDNN for the 8 radiation fluxes to simplify the neural network choices, since their offline validation is 

extremely accurate with  ,( above 0.98 over 50 training epochs (Figure 2b). Different from the accurately trained radiation 275 

fluxes, the tendencies of temperature and moisture are less accurate and can hypothetically affect the prognostic performance. 

To evaluate the tendency of moistening and heating in one metric, we introduce the MSE of moist static energy changing rate 

(-ℎ = 0)-1 + 3!-!!) as:  

456* =	7+, (-ℎ-- − -ℎ./012)∆<7(,                                                            (1) 

where	=	is the gravity constant, 0) refers to the heat capacity of air, 3! is the latent heat of water vapor, and ∆< is the layer 280 

thickness. Multiple ResDNN pairs for dqv and dT and DNN pairs are trained from 5 epochs to 50 epochs, carrying different 

offline validation accuracy.  

Figure 4 shows the offline validation 456* versus the prognostic steps. First, DNN parameterizations (blue triangles) 

are systematic less accurate than ResDNN ones (blue dots and black inverted triangles), which is consistent with Figure 2a. 
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They cannot run stably in prognostic tests with the best DNN parameterization to sustain half a year of simulation. For the 285 

ResDNNs, the less well-trained ones with high MSE crash for a shorter simulation period than DNNs. However, when the 

offline MSE decreases to a certain level (e.g., 290 >(/@3
), some of the ResDNN parameterizations are stable for extreme 

long-term simulations, while others remain unstable. 

Generally, a NN parameterization that can support long-term integration should have both good generalization abilities 

and high accuracy for training and validation. Above all, sufficient accuracy is necessary for all neural networks. From Figure 290 

4, it can be interpreted that a vague threshold exists in the validation MSE. ResDNNs can be trained for higher accuracy since 

they are much deeper than DNNs with much higher model capacity. So, they are more competent than DNNs in this job. On 

the other hand, studies showed that high-capacity models are harder to train and more likely to overfit (Goodfellow et al., 

2016). Thus, the prognostic stability differences between less well-trained ResDNNs and the well-trained ones are drastic 

compared with DNNs. Also, some overly trained ResDNNs with lowest validation loss are speculated to overfit. Those 295 

overfitting models are less likely to generalize to unknown backgrounds caused by accumulated errors in the ML-GCM system, 

ending up model crashes. However, those are just intuitive experiences but not guarantee ways for stability. 

In the time evolution of the global averaged total energy (Figure 5). The system energy grows exponentially and then 

blows up for unstable ResDNN parameterizations (the red and orange lines). In contrast, the stable ones can keep the total 

energy at a certain level and reproduce the annual cycle fluctuations in SPCAM. Among the stable ResDNN schemes, some 300 

can get nearly a perfect reproduction of the total energy evolution of SPCAM (the blue line), while some inaccurately simulate 

the climate state with a large deviation (green line). Therefore, among the accurate ResDNN parameterizations (e.g., offline 

validation 456* < 	290	>(/@3
), we still have to use the trial-and-error to filter out unstable ones and then select the best 

ResDNN pair for moistening and heating rate that can reduplicate the total energy time evolution of SPCAM with the least 

deviation. We name this best ResDNN pair together with the ResDNN in charge of radiation fluxes the NN-Parameterization. 305 

This NN-GCM coupled model is called NNCAM and is later evaluated for climate mean states and variability. 

3.2 Gravity Wave Diagnosis 

It is still a question of why unstable NN parameterizations blow up models. The fast-growing energy of the unstable runs 

indicates a possible underlying unrealistic energy amplifying mechanism in the NN-GCM coupled system. Brenowitz et al. 

(2020) offered interpretations. When an unstable NN parameterization is coupled with dynamics, it tends to amplify any 310 

unrealistic perturbation caused by emulation errors and pass it to the entire system through gravity waves. In contrast, the 

stable NN parameterizations tend to dump all the perturbs quickly. This is true in our study with realistic configuration. Such 

unstable gravity waves are observed in the prognostic simulation of an unstable ResDNN (the red line in Figure 5). The 

animation in Movie S1 records the first unrealistic wave and Movie S2 documents more intense waves afterward with a 

perfectly round shape. Brenowitz et al. (2020) also introduced an analysis tool that calculates wave energy spectra of a 315 

hierarchy model that couples the linear response functions (LRF) of a NN parameterization to a simplified two-dimensional 

linear dynamic system, where perturbations can propagate in 2D gravity waves. We apply the tool in our study and detect 
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similar results of unstable mode for the unstable ResDNN with positive energy growth rate across all wave numbers at phase 

speed between 5 m/s to 20 m/s (Figure S1b). While the stable ResDNN shows a stable mode with the growth rate of nearly all 

wave numbers and phases below zero (Figure S1a). 320 

4 Offline Validation of NN-Parameterization 

Before evaluating the prognostic results, demonstration of offline performance with geographic information is needed for the 

following purposes: 1) To show how well our NN-Parameterization emulates the SP in realistic configuration compared with 

baseline CAM5 physics and with previous studies. 2) To reveal the strength and weakness of NN emulations with correct input, 

give clues to the analysis of prognostic results in the following section. We performed offline testing with a realistically 325 

configurated SPCAM from January 1
st
 1999 to December 31

st
 2000, where NN-Parameterization is diagnostically run 

paralleled to the SP, and so does the CAM5 physics. The results over the entire second year of the period are chosen for 

evaluation, completely independent from the training dataset. Following the conventions in Han et al. (2020) and Mooers et 

al. (2021), we choose mean fields and coefficient of determination (,() as the two metrics for evaluations. 

The mean diabatic heating and drying rates produced by convection and large-scale condensation in SPCAM and NN-330 

Parameterization are in close agreement. Figure 6 shows the latitude-height cross-sections of the annual mean heating and 

moistening rates in SPCAM and the corresponding NN-Parameterization. At 5 °N, SPCAM shows maximum latent heating in 

the deep troposphere, corresponding to deep convection at the ITCZ. In the subtropics, there is heating and moistening in the 

lower troposphere, corresponding to stratocumulus and shallow convection in the subtropics. In the midlatitudes, there is a 

secondary heating maximum below 400 hPa due to midlatitude storm tracks. All these features are well reproduced by NN-335 

Parameterization. Note that in the midtroposphere, the ITCZ peak in the drying rates is slightly weaker in NN-Parameterization 

compared with that of SPCAM (Figure 6c and 6d).  

In addition to the mean fields, the high prediction skill of NN-Parameterization is also shown in the spatial distribution 

of ,(. To demonstrate ,( for the 3D variables such as diabatic heating and moistening, same as Mooers et al. (2020), zonal 

averages are calculated in advance before ,( calculation for each location in the pressure-latitude cross-section. For diabatic 340 

heating, ,( is above 0.7 over the entire mid to low troposphere and the high skill regions with ,( greater than 0.9 concentrates 

in low levels but are extended to mid-troposphere in storm tracks (Figure 7a). As for the moistening rate, the high skill zones 

concentrate in the mid to upper troposphere (Figure 7b), leaving low skill areas below. Those regions with low accuracy are 

generally located in the mid to low troposphere in tropics and subtropics, corresponding to deep convection at ITCZ and 

shallow convection in subtropics. Nonetheless, the tendencies from diagnostic CAM5 parameterization hardly draw any 345 

similarity to those simulated by the SP except for a few locations in the mid to upper troposphere in tropics and polar regions 

(Figure 7c & 7d).  

The global distribution of ,( for the precipitation predictions is shown in Figure 8. Our NN-Parameterization shows a 

great prediction skill globally, especially in the midlatitude storm tracks. The prediction skill is relatively low in many areas 
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between 30°S to 30°N and some midlatitude continents (Figure 8a), in particular, not ideal in the ITCZ deep convection 350 

regions. Moreover, for shallow convection in Subtropical Eastern Pacific and Subtropical Eastern Atlantic, the precipitation 

prediction skill hits bottom, corresponding to the subtropical low skill zones for moistening rate (Figure 6b). On the other hand, 

the total precipitation simulated by CAM5 parameterizations is much less analogous to the SP than NN-Parameterization with 

a systematically lower accuracy globally. CAM5 precipitation can reach a relatively high accuracy along the mid-latitude 

storm tracks but fail most regions in the tropics.  355 

Generally, NN-Parameterization performs far better than CAM5 parameterization in the 1-year offline testing and shows 

similar accuracy as the DNN in Mooers et al. (2020). The real-geography data can significantly decrease the emulation skill 

of a deep learning model (Mooers et al., 2021), where the convection backgrounds are much more complex with meridional 

and zonal asymmetric and seasonal variated circulations, not to mention the orograph and various types of underlying land 

surface. In that case, the ResDNN is a valuable NN architecture that can bring good performance as the automated 360 

hyperparameter tuning algorithm without searching for hundreds of NN candidates. Still, our NN-Parameterization is exposed 

to low accuracy predictions in subtropical shallow convection areas, a great challenge for machine learning emulation of 

moistening rate and precipitation. In those regions, the local variance/std is close to zero. But the NNs in our study are trained 

in the loss function of mean squared error, which is not sensitive to small values. 

5 Long-term Prognostic Validation 365 

NN-Parameterization is selected for best prognostic performance in Section 3.1. It is coupled in the realistic configurated 

SPCAM to replace the SP and its cloud-scale radiation effects. This coupled model is called NNCAM afterwards and is 

compared with SPCAM and CAM5. All three model starts at January 1
st
 1998 as start up. They are all run for 6 years with the 

first year for spin up and the next 5 years from January 1
st
 1999 to December 31

st
 2003 for evaluation and comparison. Later, 

the simulation of NNCAM is extended for another 5 years to December 31
st
 2008 to show its stability. Due to excessive 370 

computing resources consumption, the simulation of SPCAM is not get extended. In analysis of prognostic results, the 

following are selected for demonstration of climatology and variability: multi-year mean fields of temperature and humidity, 

precipitation, precipitation frequency distribution, and the Madden Julian Oscillation. 

5.1 Climatology 

5.1.1 Vertical profiles of temperature and humidity 375 

In this section, we first evaluate the vertical structure of the mean temperature and humidity. Figure 9 shows the zonally 

averaged vertical profiles of air temperature and specific humidity as simulated by the NNCAM and the CAM5, in contrast to 

the SPCAM simulations. Overall, the NNCAM simulate reasonable thermal and moisture structure. However, it is shown that 

NNCAM has some biases in mean fields of temperature and humidity, which is shown as larger root mean squared errors 

(RMSEs) or larger differences than CAM5 (Figure S2).  The larger deviations are temperature biases in the tropopause, where 380 



13 

 

the cold-point region is thinner and warmer in NNCAM than in SPCAM and CAM5. In addition, there are cold biases above 

200 hPa and warm biases blow over polar regions in NNCAM. For the humidity field, there are slight dry biases over the 

equator and wet biases elsewhere in NNCAM. Even with the biases, the climate mean states are consistent with those in the 

last 5-year simulation for NNCAM (Figure S3), which indicates almost no climate drift in the long-term simulation. 

5.1.2 Precipitation 385 

Figure 10 shows the spatial distributions of winter (December-January-February) and summer (June-July-August) mean 

precipitation simulated by SPCAM, NNCAM, and CAM5. The SPCAM simulation results are regarded as reference 

precipitation. In SPCAM (Figure 10a and 10b), massive precipitation can be found in regions of Asian monsoon and 

midlatitude storm tracks over the northwest Pacific and Atlantic oceans. In the tropics, the primary peaks of rainfall are in the 

eastern Indian Ocean and Maritime Continent regions. Furthermore, two zonal precipitation bands are located at 0°–10°N in 390 

the equatorial Pacific and Atlantic oceans, constituting the northern ITCZ. The southern South Pacific Convergence Zone 

(SPCZ) is mainly located around 5°S–10°S near the western Pacific warm pool region and experiences a southeast tilt as it 

extends eastward into the central Pacific. The main spatial patterns of SPCAM precipitation climatology are properly 

reproduced by both NNCAM and CAM5. In NNCAM, strong rainfall centers are well simulated over the tropical land regions 

over Maritime Continent, the Asian monsoon region, and South America and Africa (Figure 10c and 10d). In addition, the 395 

heavy summertime precipitation over the Northwestern Pacific simulated by SPCAM is well represented in NNCAM (Figure 

10a and 10c). In CAM5, there is too little precipitation over that area (Figure 10e). Moreover, NNCAM can maintain the spatial 

pattern and global average of precipitation in the next 5-year simulation, reassuring its long-term stability (Figure S4). 

Generally, NNCAM draws more similarity to SPCAM than CAM5 in spatial distribution of summertime multiyear 

precipitation with smaller RMSE and global averaged biases. However, in the difference plot (Figure 11), NNCAM moderately 400 

underestimates precipitation along the equator, Indian monsoon region, and maritime continent in summer (Figure 11a). In 

boreal winter, NNCAM simulates a weak and excessively separated SPCZ from ITCZ, with both precipitation centers shifting 

away from each other. As a result, we detect underestimation in the equatorial regions of the maritime continent as well as the 

SPCZ but overestimation on the north of the equator in the West Pacific (Figure 11b), which makes NNCAM less resemble 

SPCAM than CAM5 in this season. This simulation biases in NNCAM are speculated linked to the weaker drying tendencies 405 

of the ITCZ midtroposphere from the NN parameterization and low accuracy of NNCAM predictions in tropics. 

5.2 Variability 

5.2.1 Frequency Distribution of Precipitation 

Moreover, NNCAM shows better performance in simulating precipitation extremes. Figure 12 shows the probability densities 

function of simulated daily precipitation in the tropics (30°S−30°N) with a precipitation intensity interval of 1 mm day
-1

. In 410 

CAM5, heavy precipitation events exceeding 20 mm day
-1

 are greatly underestimated. In addition, light to moderate 



14 

 

precipitation events between 2−20 mm day
-1

 are overestimated with an unreal probability peak around 10 mm day
-1

 in CAM5, 

which is a typical simulation bias found in simulations with parameterized convection but not in explicitly resolved convections 

(Holloway et al., 2012). Compared with CAM5, the spectral distribution of precipitation in NNCAM is much closer to SPCAM. 

heavy rainfall events are substantially enhanced, and the overestimated precipitation occurrence between 2−20 mm day
-1 

is 415 

reduced with no spurious peak around 10 mm day
-1

.  

5.2.2 The MJO 

The MJO is a crucial tropical intraseasonal variability at the time scale of 20–100 days (Wheeler and Kiladis, 1999). Figure 

13 presents the wavenumber and frequency spectra for equatorial precipitation daily anomalies from SPCAM, NNCAM, and 

CAM5 in 4 consecutive boreal winter from 1999 to 2003. SPCAM shows widespread power signals over zonal number of 1-420 

4 and periods between 20-100 plus a peak around at zonal numbers of 1−3 and periods of 70-100-day for eastward propagation 

(Figure 13a). Similarly, in NNCAM, there is a spectral peak at the wavenumbers of 1−2 and periods of 50-80 day for east 

propagation (Figure 13b), exhibiting intense intraseasonal signals.  For CAM5 (Figure 13c), the spectral power is concentrated 

around 30-day and more extended periods (greater than 80 days) at wavenumber 1 for eastward propagation. In addition, 

CAM5 also shows signals of westward propagation around 30-day period. Compared with CAM5, NNCAM shows stronger 425 

intraseasonal power and resembles SPCAM better. To quantify this similarity, we calculate the coefficient of determination 

,( of the precipitation spectrum in NNCAM and CAM5, using the spectrum in SPCAM as the target value. The precipitation 

spectrum ,( in NNCAM (0.51) is much higher than that in CAM5 (0.40). 

The MJO is characterized by the eastward propagation of deep convective structures along the equator. Generally, it 

generally forms over the Indian Ocean, strengthens over the Pacific, and weakens in the eastern Pacific due to interaction with 430 

cooler SSTs (Madden and Julian, 1972). Figure 14 presents the longitude-time lag evolution of 10°S−10°N meridional 

averaged daily anomalies of intraseasonal (filtered with 20-100 day bandpass) precipitation and 200 hPa zonal wind (U200) 

in boreal winter. The results show that both SPCAM and NNCAM reasonably reproduce the eastward propagating convection 

from the Indian Ocean across the Maritime Continent to the Pacific (Figure 14a and 14b), confirmed by both precipitation field 

and U200 field. Therefore, we conclude that NNCAM captures the key MJO propagation simulated in SPCAM. In contrast, 435 

the time lag plot of CAM5 depicts an unpleasant west propagation. Same as the precipitation spectrum, ,( of the time lag 

coefficient is shown to quantify the resemblance. The time lag coefficient of U200 in NNCAM is much closer to SPCAM than 

CAM5, with a way higher  ,(, indicating that the NN-Parameterization successfully emulates the convection variability of the 

SP and reflects it in the dynamic fields.  

6 Summary and Conclusions 440 

This study investigates the potential of deep neural network based parameterizations in SPCAM to reproduce long-term 

climatology and climate variability. We present NN-Parameterization, a ResDNN set, to emulate the SP with a 2D CRM and 
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its cloud scale radiation in effects in a realistic configurated SPCAM with true land-ocean distribution and orography. The 

input variables to the NN-Parameterization include specific humidity, temperature, largescale water vapor and temperature 

forcings, surface pressure and solar insolation. The output variables of the NN-Parameterization consist of the subgrid 445 

tendencies of moisture and temperature, net radiation fluxes at the top of the model and surface, and solar radiation fluxes 

down to the surface. We proposed a set of 14-layer deep residual neural networks in which each NN is in charge of one type 

of output variable. With such a design, we gain the best emulation accuracy for each predictor. Via a systematic trial-and-error 

searching procedure, we are able to firstly select sets of ResDNNs that support stable prognostic climate simulations and then 

choose the best set with lowest climate errors as the formal NN-Parameterization. Moreover, a mechanism of unreal 450 

perturbation amplification is found in GCM simulations with unstable NN parameterizations with the spectrum diagnostic tool 

invented in Brenowitz et al. (2020). 

The offline test shows the great skills of the NN-Parameterization in emulating the SP outputs and its cloud scale radiation 

effects in SPCAM. The overall diabatic heating and drying rates in the NN-Parameterization and SPCAM are in close 

agreement. When implemented in the host SPCAM to replace its time-consuming SP and its radiation effects, the NN-455 

Parameterization successes in an extensive long-term stable prognostic simulation and predicts reasonable mean vertical 

structures in temperature and humidity, and the precipitation distributions. Compared with the SPCAM target simulation, 

NNCAM still produces some biases in mean fields, such as a warmer troposphere over polar regions and tropopause and strong 

precipitation underestimation in equatorial regions. On the other hand, the better climate variability in SPCAM over CAM5 is 

well learned by our NN-Parameterization and reproduced in NNCAM with better frequency in extreme rainfall, similar MJO 460 

spectrum and propagation direction and speed. Although with the biases in climate states so far, NNCAM can still be regarded 

as the first attempt to prognostically couple a NN-based parameterization in realistic configurated 3D GCM. 

Many previous studies have well-studied machine learning parameterizations implemented in aqua-planet configurated 

3D GCM. Some faced instability in coupled simulations (Brenowitz and Bretherton, 2019), while some succeeded in long-

term stable prognostic simulations with deep fully-connected neural networks (Rasp et al., 2018; Yuval et al., 2021) as well as 465 

random forest (Yuval and O’Gorman, 2020). In contrast to aqua-planet simulations, the spatial heterogeneity is prominent over 

land in GCMs which are configurated with real-geography boundary conditions. In this case, a plain fully connected neural 

networks the SP output (Mooers et al., 2021). The convection, clouds, and the interacted radiation of the CRM together with 

real-geography boundary conditions are without doubt far more complicated than in idealized models. To meet the new demand 

under realistic configuration, we design ResDNN with sufficient depth to further improve the nonlinear fitting ability of NN-470 

Parameterization. With the skip connections, the 7-layer DNN models can be extended to 14 layers, therefore, significant 

improving offline accuracy. In the prognostic tests, a few ResDNN parameterizations can support long term stable run, while 

all DNN parameterizations are so far found unstable. 

Trial-and-error is still the only way to find stable NN parameterizations. So far, we have not come up with an a priori 

mothed that guaranteed stability. However, we do find some clues in the sensitivity tests. We believe sufficient offline accuracy 475 

is essential for online stability by confirming all inaccurate NN parameterizations unstable. On the other hand, some highly 
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accurate ones still crash the prognostic simulation, where we find rapid increasing total energy. This mechanism is that unstable 

NNs cannot damp neural network emulation errors but amplify and propagate them to the entire system through gravity waves. 

The prognostic biases in mean fields in speculated as a result of by the combined effect of the emulation errors of all the 

NN-Parameterization prediction fields. Further study is required. Still, it can be related to the spatially non-uniform accuracy 480 

of NN-Parameterization, such as relatively low fitting accuracy in tropical deep convective regions and shallow subtropical 

convection and stratiform cloud regions. Such problems have also been reported in previous studies (Gentine et al., 2018; 

Mooers et al., 2021). We believe that a NN parameterization with heterogeneous characteristics across different regions, rather 

than a globally uniform scheme, can further improve the fitting accuracy in this tropical and subtropical region. 

Embedding deep neural networks into Fortran based atmospheric models is still a handicap. Before this study, researchers 485 

mainly used hard coding to build neural networks (Rasp et al., 2018; Brenowitz and Bretherton, 2019). An easier way is to use 

Fortran based neural network libraries that can flexibly import network parameters (Ott et al., 2020). These methods have 

successfully implemented NN in GCM, but they can only support dense layer based NN. As a result, developers cannot take 

advantage of the most advanced neural network structures such as convolution, shortcut, self-attention, variational autoencoder, 

etc., to build powerful DNN based Parameterizations. In this research, through NN-GCM Coupler, NN-Parameterization can 490 

support the mainstream GPU-enabled machine learning frameworks. Thanks to the simple and effective implementation of the 

DNN-GCM Coupler, our NNCAM achieves 30 times SYPD compared to SPCAM by using a ResDNN set in NN-

Parameterization, although these DNNs are much deeper than the previous state-of-the-art fully-connected NNs in this field. 
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Table 1. Input and output variables. For inputs, !!(#) denotes the vertical profile of water vapor. %(#)is the profile of temperature, and 630 

&!!	#.%.(#)and &%#.%. are the large scale forcing of water vapor and temperature, respectively. '% is the surface pressure and Solin is the TOA 
solar insolation. For outputs, &!!(#) and &%(#) are the tendencies of water vapor and temperature due to moist physics and radiative 
processes calculated by the NN-Parameterization. The net longwave and shortwave fluxes at the surface and the TOA are surface net 
longwave flux (FLNS), surface net shortwave flux (FLNT), TOA net longwave flux (FLNT), and TOA net shortwave fluxes (FSNT). The 4 
downwelling solar radiation including solar downward visible direct to surface (SOLS), solar downward near infrared direct to surface 635 

(SOLL), solar downward visible diffuse to surface (SOLSD), and solar downward near infrared diffuse to surface (SOLLD) are shortwave 
radiation fluxes reaching the surface.  

Inputs Outputs 

qv(z), T(z), dqvls(z), dTls(z), Ps, Solin dqv(z), dT(z), FLNS, FSNS, FLNT, FSNT, SOLS, SOLL, 

SOLSD, SOLLD 
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 640 

 

Figure 1. Schematic showing the structure of ResDNN. It consists of 7 residual blocks, each of which (shown in dashed box) 

contains two 512 node-wide dense (fully-connected) layers with a ReLU as activation, and a layer jump. The input and output 

are discussed in section 2.2.1. 
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Figure 2. Fitting accuracies (R2) of both the proposed ResDNN (orange solid lines) and DNN (blue dashed lines) for different 

targets. (a) shows the R2 of moist static energy changing rate (dh) versus training epochs and (b) shows the fitting accuracy of 

the average R2 over the 8 radiation fluxes. Note: Spatial averaging of MSE is performed before calculating R2. 650 
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 660 

 

Figure 4. The offline moist static energy mean square error vs. prognostic steps. The black reversed triangles are stable NN 

coupled prognostic simulations lasting more than 10 years, blue ones are unstable simulations, and the blue triangles are for 

DNNs. The marked dots with colored outline are later exhibited in Figure 5 for time evolution of global averaged energy. 
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Figure 5. Time evolution of global averaged column integral total energy of NNCAM with different ResDNN 

parameterizations (marked with the same colors in Figure 4) and SPCAM target (the black line): Blue for stable and 

accurate ResDNN, green for a stable but deviated ResDNN, orange and red lines for unstable ResDNN. 670 
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Figure 6. Latitude-pressure cross sections of annual and zonal mean heating (top) and moistening (bottom) from moist physics 

during the year 2000 for (a, c) SPCAM simulations, and (b, d) offline test by the NN-Parameterization. 675 
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Figure 7. Latitude-pressure cross sections of coefficient of determination (,() for zonal averaged heating (left panels) and 

moistening (right panels). They are predicted by (a & b) NN-Parameterization in the offline one-year SPCAM run, and (c & 680 

d) by offline CAM5 parameterizations. Both are evaluated at 30-min timestep interval. Note: areas where ,( is greater than 

0.7 are contoured in pink and those greater than 0.9 are contoured in orange. 
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 685 

Figure 8. Latitude-pressure cross sections of coefficient of determination (,() for the derived precipitation predicted by NN-

parameterization (a) and total precipitation from CAM5 parameterization (b) in the offline one-year SPCAM run. The 

predictions and SPCAM targets are in 30min timestep interval. Note: areas where ,( is greater than 0.7 are contoured in pink 

and those greater than 0.9 are contoured in orange. 
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Figure 9. Latitude-pressure cross sections of annual and zonal mean temperature (left panels) and specific humidity (right 

panels) from (a, b) SPCAM (1999−2003), (c, d) NNCAM (1999−2003), and (e, f) CAM5 (1999−2003).  
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Figure 10. The mean precipitation rate (mm day

-1
) of June-July-August (left panels) and December-January-February (right 

panels) for (a, b) SPCAM (1999−2003), (c, d) NNCAM (1999−2003), and (e, f) CAM5 (1999−2003). 
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Figure 11. Global distribution of precipitation difference averaged over boreal summer (left panels) and winter (right panels) 

between NNCAM and SPCAM (a & b) and between CAM5 and SPCAM (c & d). 
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Figure 12. Probability densities of daily mean precipitation in the tropics (30°S−30°N) from the three model simulations. 

Black, blue and red solid lines denote SPCAM, NNCAM and CAM5, respectively. 
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Figure 13. The wavenumber-frequency spectra of 10°S−10°N daily precipitation anomalies for (a, b) SPCAM, (c, d) NNCAM, 

and (e, f) CAM5 simulations for boreal winter. 
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Figure 14. Longitude-time evolution of lagged correlation coefficient for the 20-100 day band-pass-filtered precipitation 

anomaly (averaged over 10°S−10°N) against regionally averaged precipitation (shaded) and zonal wind at 200hPa (contoured) 

over the equatorial eastern Indian Ocean (80E−100°E, 10°S−10°N).  720 

 


