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Abstract. In climate models, subgrid parameterizations of convection and cloudclouds are one of the main reasons forcauses 

of the biases in precipitation and atmospheric circulation simulations. In recent years, due to the rapid development of data 

science, Machinemachine learning (ML) parameterizations for convection and clouds have been provendemonstrated to have 10 

the potential to perform better than conventional parameterizations. At present, most of the existingMost previous studies 

arewere conducted on aqua-planet and idealized models, and the problems of simulatedsimulation instability and climate drift 

still exist. In realistic configurated models, developing a machine learningDeveloping an ML parameterization scheme remains 

a challenging task. in realistically configured models. In this studypaper, a set of deep residual deep neural networks (ResDNNs) 

with a strong nonlinear fitting ability is designed to emulate a superparameterization (SP) with different types of outputs. 15 

Sensitivity tests show that high outputs in a hybrid ML-physical general circulation model (GCM). It can sustain stable 

simulations for over 10 years under real-world geographical boundary conditions. We explore the relationship between the 

accuracy is necessary to develop a stable ML parameterization. Trialand stability by validating multiple deep neural network 

(DNN) and ResDNN sets in prognostic runs. In addition, there are significant differences in the prognostic results of the stable 

ResDNN sets. Therefore, trial-and-error is used to acquire the optimal ResDNN set for both high performance-skill and long-20 

term stability, named which we name the NN-Parameterization. In offline validation, the NN-Parameterization emulatescan 

emulate the SP results far better than the conventional subgrid parameterizations. Then, in in mid- to high-latitude regions with 

a high accuracy. However, its prediction skill over tropical ocean areas still needs improvement. In the multi-year prognostic 

test, NN-Parameterization reproduces reasonable climate mean states but still with some biases. Most importantly, NN 

parameterization successfully reproduces the climate variability in a superparameterizated GCM, with an over 30-time faster 25 

running speed. Under real geographical boundary conditions, the hybrid ML-physical GCM well simulates the spatial 

distribution of boreal summerthe hybrid ML-physical GCM simulates the tropical precipitation well over land and significantly 

improves the frequency of the precipitation extremes, which is largelyare vastly underestimated in the Community 

Atmospheric Model version 5 (CAM5) with thea horizontal resolution of 1.9°×2.5°. Furthermore, the hybrid ML-physical 

GCM simulates a strongerthe robust signal of the Madden-–Julian oscillation with a more reasonable propagation speed than 30 

CAM5. However, there are still substantial biases with the hybrid ML-physical GCM in the mean states, including the 

temperature field in the tropopause and at high latitudes and the precipitation over tropical oceanic regions, which are larger 
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than those in CAM5. This study is a pioneer to achievein achieving multi-year stable climate simulations using a hybrid ML-

physical GCM inunder actual land-–ocean boundary conditions. that become sustained over 30 times faster than the target SP. 

It demonstrates the emerging potential forof using machine learningML parameterizations in climate simulations. 35 

1 Introduction 

The generalGeneral circulation models (GCMs) have been widely used for studyingto study climate variability, prediction, 

and projections. Despite decades of GCM development, most GCMs stillcontinue to suffer from many systematic biases, 

especially atin low latitudes. A -latitude regions. The prominent tropical bias inof most current GCMs is referred to as the 

double intertropical convergence zone (ITCZ) syndrome, which is characterized by two parallel zonal bands of annual 40 

precipitation straddling the equator over the central and eastern Pacific (Lin, 2007; Zhang et al., 2019). Convectively coupled 

equatorial waves and the Madden-Julian Oscillationoscillation (MJO), featuredwhich are characterized by eastward 

propagating convective cloud clusters, are also not well simulated inby GCMs (Ling et al., 2017; Cao and Zhang, 2017). 

Many studies have attributed most of these biases to the imperfection ofdeficiencies in the parameterization schemes for 

atmospheric moist convection and cloud processes in the current GCMs (Zhang and Song, 2010; Cao and Zhang, 2017; Song 45 

and Zhang, 2018; Zhang and Song, 2019). Cloud-related processes span a large range of spatial scales, from micron-scale 

cloud nucleation, to meter-scale turbulence, to individual convective cells and organized convective systems, which are a few 

kilometers to hundreds of kilometers in size, and to tropical disturbances, which have a spatial scale of thousands of kilometers. 

They directly influence the radiation balance and hydrological cycle of the earth system and interact with the atmospheric 

circulation, affecting the transport and distribution of energy (Emanual et al., 1994). Therefore, it is very important to simulate 50 

the cloud and convection processprocesses in GCMs correctly. However, the current GCMs that are currently used for climate 

simulationsimulations have a horizontal resolution of ~100km100 km and a vertical hydrostatic coordinate. Thus, in most 

GCMs, besidesin addition to parameterized cloud microphysics, convection and its influence on the atmospheric circulation 

are represented by convective parameterization schemes, which are usually based on simplified theories, limited observations, 

and empirical relationships (Tiedtke, 1989; Zhang and McFarlane, 1995; Lopez-Gomez et al., 2020). ThoseThese schemes 55 

regard convective heat and moisture transport as the collective effects of idealized individual kilometer-scale convective cells. 

They cannot represent the effects of many complicated convective structures, including organized convective systems, 

leadingwhich leads to large uncertainties and biases in climate simulations (Bony et al., 2015). 

Cloud Resolving Models (CRMs), on the other hand,In contrast, cloud resolving models (CRMs) have long been used to 

simulate convection. Because CRMs have higher horizontal and vertical resolutions and can explicitly resolve the 60 

thermodynamic processes involved in convection, they simulate convection more accurately, including convective 

organization (Feng et al., 2018). In recent years, CRMs have been used as superparameterizationfor SuperParameterization 

(SP) in low-resolution GCMs to replaceand have replaced conventional cumulus convection and cloud parameterization 

schemes. The most commonly used SP model is the superparameterized version of the Community Atmosphere Model 



 

3 
 

(SPCAM) developed by the National Center for Atmospheric Research (NCAR) (Grabowski and Smolarkiewicz, 1999; 65 

Grabowski, 2001, 2004; Khairoutdinov and Randall, 2001; Randall et al., 2003; Khairoutdinov et al., 2005). Compared with 

conventional cumulus convection and cloud parameterization schemes, SPCAM performs better in simulating mesoscale 

convective systems, diurnal cycles of precipitation cycles, monsoons, the precipitation frequency distribution, and MJOsthe 

MJO (Khairoutdinov et al., 2005; Bretherton et al., 2014; Jiang et al., 2015; Jin et al., 2016; Kooperman et al., 2016). However, 

when using 2Da 2-D CRM asfor SP, the improvement onof the climate mean states is not obvious (Khairoutdinov et al., 2005). 70 

AlsoIn addition, SPCAM requires far more computing resources (i.e., an order of magnitude or more) than a Community 

Atmosphere Model (CAM) with the same resolution CAM in 1 to 2 orders of magnitude according to the resolution of the 

CRM subdomain.. Thus, the use of SPCAM in long-term climate simulations and ensemble predictionpredictions is restricted 

by the current computing resourceresources. Developing novel and computationally efficient schemes for high performance 

convection and cloud processes is still an open problemhighly desired in GCM development. 75 

In the last 5 years, the rapid development of machine learning (ML) technologiestechniques, especially deep learning 

technologiestechniques such as neural networksNeural Networks (NNs), has provided novel approaches to constructing 

parameterization schemes. Machine learning can identify and, discover, and model complex nonlinear relationships that exist 

in large data sets and model them.datasets. Several studies have used machine learningML methods to develop convection and 

cloud parameterization schemes (e.g., Gentine et al., 2018; Rasp et al., 2018). These studies followed a similar approach. The 80 

first step is to derive a target dataset from a reference simulation, which is later used for machine learningto train the ML 

models training. Then, the trained machine learningML models are often evaluated offline against other independent reference 

simulations, and finally, they are implemented in a GCM to replace the conventional parameterization schemes. 

Krasnopolsky et al. (2013) first proposed a proof-of-concept for developing convection parameterization based on the 

NN technique. Specifically, an ensemble of shallow NNs was applied to learn the convective temperature and moisture 85 

tendencies, withand the training data fromfor the CRM simulations was forced byusing observations in the tropical western 

Pacific. The resulting convective parameterization scheme was able to simulate the main features of cloudthe clouds and 

precipitation in the NCAR CAM4 diagnostically. However, the key issue of prognostic validation in 3-D GCMs washas not 

been addressed. Recent studies have investigated ML parameterizations in prognostic mode in simplified aqua-planet GCMs. 

For example, Rasp et al. (2018) developed a deep fully connected deep NN (DNN) to predict convection and clouds, which 90 

was trained with theusing data from an aqua-planet SPCAM. The NNDNN-based parameterization was then implemented in 

the corresponding aqua-planet CAM and produced multi-year prognostic results that were close to the SPCAM data. For this 

NNDNN-based parameterization, Rasp (2020) found that minor changes, either to the training dataset or into the input/output 

vectors, can lead to model integration instabilities. Brenowitz and Bretherton (2019) fitted a DNN for convection and clouds 

to the coarse-grained data from a near-global aqua-planet cloud-resolving simulation using the System for Atmospheric 95 

Modeling (SAM). The NN scheme was then tested prognostically in a coarse-grid SAM. Their results showed that there were 

unphysicalnon-physical correlations were learned by the network, and the information in the upper levels obtained from the 

input vectordata had to be removed to produce stable long-term simulations. Rather than using NNs, Yuval and O’Gorman 
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(2020) used the random forest algorithm to develop an ML parameterization based on the training data from a high-resolution 

idealized 3-D model with a setup ofon the equatorial beta plane. They used two independent random forests to separately 100 

emulate the different processes separately and ensured the physical constraints by predicting subgrid fluxes instead of 

tendencies. Later, Yuval et al. (2021) completed the same task withusing NNs. Both worksmethods achieved stable simulations 

infor coarse resolution aqua-planet GCMs. To determine why some methods can achieve stable prognostic simulations and 

others cannot, Brenowitz et al. (2020) proposed methods to interpretfor interpreting and stabilizestabilizing ML 

parameterization offor convection. In their workstudy, a wave spectra analysis tool was introduced to explain why the ML 105 

coupled GCMs blew up. 

In real-world climate models with variedvarying underlying surfaces, convection and clouds are more diverse under 

different climate backgrounds, which makes the task of developing ML-based parameterizations more complicated. A few 

early works have shownearlier studies demonstrated the feasibility of using neural networks fittingto emulate cloud processes 

in real-world models. Han et al. (2020) used a 1-D deep residual convolutional neural network (ResNet) to emulate moist 110 

physics in SPCAM. This ResNet -based parameterization fittedfit the targets with a high accuracy and iswas successfully 

implemented in a single column model. Mooers et al. (2021) gotdeveloped a high-skill DNN viausing an automated machine 

learningML technique and forced an offline land model withusing DNN emulated atmospheric fields. However, neither of 

these studies have tested their NNs prognostically for long-term simulations. Similar to the idea of using several NNs for 

different processes inproposed by Yuval and O’Gorman (2020), in this study uses, a set of NNs was used to emulate convection 115 

and cloud processes in SPCAM with anthe actual global land-ocean distribution. We useused the residual connections inof 

Han et al. (2020) to acquire super deep neural networks with a great nonlinear fitting ability. Furthermore, we 

conductconducted systematic trial-and-error analysis to filter out unstable NN parameterizations-Parameterizations and getto 

obtain the best residual deep neural network (ResDNN) set within terms of both accuracy and long-term stability. The NN 

parameterization-Parameterization scheme iswas then implemented in thea realistically configuratedconfigured CAM to obtain 120 

long-term stable simulations. Technically, NNs are commonly implemented viausing high-level programming languages such 

as Python and deep learning libraries. However, GCMs are mainly written in Fortran, making integrating them with deep 

learning algorithms inconvenient. Therefore, we introduceintroduced an NN-GCM coupling platform in which NN models 

and GCMs can interact through data transmission. This coupling strategy can facilitatefacilitates the development of ML-

physical hybrid models with a high flexibility. Under real-geography geographic boundary conditions, our work achieveswe 125 

achieved more than 10-year-long stable climate simulations in Atmospheric Model Intercomparison Project (AMIP)-style 

experiments by using a hybrid ML-physical GCM. The simulation results may showexhibited some biases in the mean climate 

mean fields, but they successfully reproducereproduced the variability in SPCAM. To our knowledge, this is the first time a 

decade-long stable real-world climate simulation ishas been achieved with ausing an NN-based parameterization.  

The remainder of this paper is organized as follows. Section 2 briefly describes the model, the experiments, the DNNNN 130 

algorithm, and the DNNNN-GCM coupling platform. Section 3 analysesanalyzes the simulation stability of NNCAM. Section 

4 presents the offline validation of the DNNNN scheme, focusing on the output temperature and moisture tendencies. 
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ResultsThe results of the multi-year simulations, employing the DNN parameterization conducted using the NN-

Parameterization scheme, are shownpresented in Section 5. A summary and the conclusions are presented in Section 6. 

2 Methods and dataData 135 

In this study, we choosechose SPCAM as the reference model to generate the target simulations. A set of NNs iswas trained 

withusing the target simulation data usingand optimized hyperparameters. Then, they arewere organized as a subgrid physics 

emulator and were implemented into the superparameterized version of Community Atmospheric Model (in SPCAM),, 

replacing both the CRM -based SP and the radiation effects of the CRM. This NN-enabled GCM is hereinafter referred to as 

NNCAM hereafter. 140 

2.1 SPCAM setup and data generation 

The GCMs used in this study arewere the CAM5.2 developed by the National Center for Atmospheric Research and its 

superparameterized version SPCAM (Khairoutdinov and Randall, 2001; Khairoutdinov et al., 2005). A complete description 

of CAM5 ishas been given by Neale et al. (2012). The dynamic core of CAM5 has a horizontal resolution of 1.9°×2.5° and 30 

vertical levels with a model top at about 2 hPa. To represent moist processes, CAM5 adopts a plume-based treatment offor 145 

shallow convection (Park and Bretherton, 2009), a mass-flux parameterization scheme for deep convection (Zhang and 

McFarlane, 1995), and an advanced two-moment representation of cloudfor microphysical cloud processes (Morrison and 

Gettelman, 2008; Gettelman et al., 2010). In the AMIP experiments we conducted, CAM5 iswas coupled to a land surface 

model the Community Land Model version 4.0 land surface model (Oleson et al., 2010) and usesthe prescribed sea surface 

temperatures and sea ice concentrations.  were used. 150 

In this study, SPCAM iswas used to generate the training data. In SPCAM, a two-dimensional (2-D) CRM iswas 

embedded in each grid column of the host CAM as the SP. The 2-D CRM hascontained 32 grid points in the zonal direction 

and 30 vertical levels that arewere shared with the host CAM. The CRM handleshandled the convection and cloud 

microphysics to replaceand replaced the conventional parameterization schemes, and the. The radiation iswas calculated on 

the CRM subgrids in order to include the cloud-radiation interactioninteractions at the cloud scale (Khairoutdinov et al., 2005). 155 

Under a realistic configuration, the planetary boundary layer processprocesses, orographic gravity wave drags, and the dynamic 

core arewere computed on the CAM grid. One conceptual advantage of using SPCAM as the reference simulation is that the 

subgrid and grid-scale processes are clearly separated, makingwhich makes it easy to define the parameterization task for an 

ML algorithm (Rasp, 2020). 
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2.2 NN-Parameterization 160 

2.2.1 Data setsDatasets 

The NN-Parameterization is a deep learning emulator of the SP and its cloud-scale radiation effects in SPCAM. Therefore, the 

inputs of this emulator are borrowed from the SP input variables, such as the grid-scale state variables and forcings, including 

the specific humidity 𝑞!, temperature T, largescale water vapor forcing ""#!
"$
#
%&

, and temperature forcing ""'
"$
#
%&

. Additionally, 

we selectselected the surface pressure 𝑃& and solar insolation (SOLIN) at the top of the model from the radiation module. The 165 

outputs of the NN-Parameterization are subgrid-scale tendencies of the moisture ""#!
"$
# and of temperature ""'

"$
#dry static 

energy ""&
"$
# at each model level as well as. It should be noted that ""&

"$
# is the sum of the heating from the moist processes in 

the SP and the heating from the SP radiation (shortwave heating qrs plus longwave heating qrl). To complete the emulation of 

the cloud radiation process, apart from the commonly used net shortwave and longwave radiative fluxes at both the surface 

and the Top of the Atmosphere (TOA. This heating is composed of moist heating in the SP and the GCM-grid-averaged SP 170 

radiative heating. Also,) (Rasp et al., 2018; Mooers et al., 2021), it is importantessential to include direct and diffuse 

downwelling solar radiation fluxes as output variables in order to force the coupled land surface model. Specifically, they are 

the solar downward visible direct to surface (SOLS), solar downward near infrared direct to surface (SOLL), solar downward 

visible diffuse to surface (SOLSD), and solar downward near infrared diffuse to surface (SOLLD).) fluxes. In the end, the 

precipitation is derived from column integration of the predicted moisture tendency to keepensure basic water conservation.  175 

       The large-scale forcings are commonlywere often not included in previous studies withthat used an aqua-planet 

configuration. However, under a realistic configuration, such forcings are composed of the dynamics and the planetary 

boundary layer diffusion, thereby carryingand thus, they carry critical information about the complex background circulations 

and surface conditionconditions. Similarly, thosethe downwelling solar radiation fluxes with direct separation of direct versus 

diffusion recordsrecord the received solar energy received by the coupled surface model withfor different land cover types and 180 

processes (Mooers et al., 2021). If they are not included, the land surface is not heated up by the sun, therefore,which seriously 

weakingweakens the sea and land breeze and monsoon circulations. In this study, we used the vertical integration of the NN 

predicted moisture tendency as an approximation of the surface precipitation, which has also been used in previous studies 

(e.g., O’Gorman et al., 2018; and Han et al., 2020). In the offline validation test, we observed negative precipitation events 

(27% occurrence in 1 year of results). Nonetheless, 93% of the negative precipitation events had a magnitude of less than 1 185 

mm/day. In the online prognostic runs, reasonable rainfall results (more details will be provided in Section 5) were achieved 

using this approximation scheme. 

Table 1 lists the input and output variables and their normalization factors. There are 30 model levels for each profile 

variablesvariable. Therefore, the input vector consists of 122 elements for 4 profile variables and 2 scalars, while the 68-

element output vector is madecomposed of 2 profiles and 8 scalars. All of the input and output variables are normalized to 190 

ensure that they are inof the same magnitude before they are putinput into the NN-parameterizationParameterization for the 
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training, testing, modeland prognostic model validation. It should be noted that each variable is normalized as a whole at all 

levels. The normalization factor for each variable shown in the supplementedsupplemental codebase iswas determined by the 

maximum of its absolute values. value. 

The training dataset used by all of the considered NNs isconsisted of 40% of the temporally randomrandomly sampled 195 

data from the 2-year SPCAM simulation from January 1, 1997, to December 31, 1998. Notably, It should be noted that random 

sampling iswas only done in the time dimension, but not in the latitude and longitude dimensions, including all 13,824 samples 

from the global grid points for each selected time step. To avoid any mixmixing or temporal connection between the training 

set and the offline validation set, we random samplerandomly sampled 40% timestepsof the time steps from the SPCAM 

simulation in the year 2000 as to produce the offline validation set inused for the sensitivity test. 200 

2.2.2 A ResDNN Setset 

InDuring the development of the NN-Parameterization scheme, it iswas found that when different variables are used as the 

output of the neural network, the training difficulty of the training is quite different. EspeciallyIn particular, the neural 

network's ability to fit the radiation heating and scalar fluxes is significantly stronger than the tendencies variables. This is also 

found in Gentine et al. (2018), in which ) also reported this, and they found that the coefficient of determination (R2) of the 205 

radiative heating tendency iswas higher than that of the moisture tendency at most model levels. We believethink that using a 

single NN with one targetoutput to train all of the variables,  (i.e., the moisture tendency, temperaturedry static energy tendency, 

and radiation fluxes, inevitably causes ) is possible to cause mutual interference. Since gradient descending is applied to 

optimize the network induring the training, mutual interference between different targets is expected tooutputs will cause the 

cancel out of gradient directions used for the descending (Crawshawto cancel out (Yu et al., 2020; Zhang and Yang., 2021) 210 

and), which will ultimately affect the convergence of the network. We useThus, we used three different neural networks with 

the same hyperparameters to train  

(1) the tendency of the moisture and temperature, and ; 

(2) the tendency of the dry static energy; and 

(3) the radiation fluxes at the surface and TOA. 215 

It should be noted that the radiation fluxes include the net shortwave and longwave radiative fluxes at the surface (FSNS and 

FLNS, respectively.) and at the TOA (FSNT and FLNT, respectively) and four solar radiation fluxes (SOLS, SOLL, SOLSD, 

and SOLLD). By doing so, we avoidavoided the gradient cancellation between multiple targets and improveand improved the 

convergence speed and fitting accuracy when training the network. As will be described in Section 3.1, when using the same 

network configuration, the radiation fluxes are trained much easier with more easily and have a higher accuracy than the 220 

tendencies of the moisture and temperature. We admit that putting the heating and moistening raterates in two different NNs 

arbitrarily cutcuts the physical connections between them. ButHowever, this separation is surely doingmakes the training 

more easilyeasier in the developingdevelopment stage. 
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In this study, to mimic the column-independent SP and its radiation effects, the input and output of the NN-

Parameterization have to be both had to be 1-D vectors. This means that the data input and output of the NN-Parameterization 225 

are much simpler than those in the existing mainstream machine learningML problems, such as image recognition and text-

speech recognition, so. Thus, it is impossible to directly apply most of the existing complex neural networks directly. Taking 

the convolutional neural network CNN as an example, the study of Albawi et al. (2017) shows that CNN has more advantages 

than DNN in the learning of large-scale images. The problem we face is that the input is a 122-dimensional vector stitched by 

multiple different physical quantities with only 4 30-element 1D profiles plus 2 scalars, which cannot meet the requirements 230 

of “large-scale” (generally at least 32×32 two-dimensional images). So, there is no need to use CNN.. Hornik et al. (1989) 

proveddemonstrated that a single-layer neural network can approximate any function. Although the problem that NN-

Parametrization needs to deal with is highly nonlinear, from the point of view of machine learning, it is essentially a mapping 

problem from a 122-element 1D-vector to a 1D-vector with a length of 68. According to the universal approximation theorem, 

DNNit is feasible. for a DNN to map from a 122-element 1-D vector to a 1-D vector with a length of 68, which is what the 235 

NN-Parameterization does. Therefore, when constructing the NN-Parametrization, we first tried to use a DNN for the fitting, 

and introduced residual connections to extend the DNN in to a ResDNN. 

After numerous experiments, we gotobtained the best hyperparameters offor the DNN and ResDNN. When training a 

Fullyfully connected DNN, the hidden layer width of the network should be set to 512, and the network’s depth should not 

exceed 7,; otherwise it will affect, the convergence of the DNN. will be affected. In order to make the neural network capture 240 

more non-linear information, enhance the fitting ability. was enhanced. We introduceintroduces skip connections to extend the 

7-layer DNN to a 14-layer ResDNN. The network structure of the ResDNN is shown in Figure 1. In the training process, both 

the DNN and ResDNN use an initial learning rate of 0.001 and a learning rate decaying strategy asfor the cosine annealing 

(Loshchilov et al., 2016) without dropout and L2 regularization. Adam (Kingma and Ba, 2014) iswas chosen as the optimizer 

to minimize the mean squaredsquare errors (MSEs). The results in The specific hyperparameter searching space of the DNN 245 

and ResDNN is documented in Table S1. 

Figure 2 showshows that the ResDNN can fitfits the data is significantly better than the DNN, with details described in 

Section 3.1. At the same time, the sensitivity tests in section 3 also prove that no DNN model can ensure the stable simulation 

of NNCAM. So, we . We chose ResDNNsResDNN sets as stable candidates to build the NN-Parameterization. After obtaining 

all well-fit ResDNN sets, the next step is to couple the candidates into NNCAM one by one for the prognostic tests and to find 250 

the sets that can support a stable simulation. To complete this extremely challenging task, we have more than 50 prognostic 

tests. All of the experiments and analyses onrelated to the stability will be introduced in sectionSection 3 as well. 

2.2.3 Implementation of NN-Parameterization 

The NN-Parameterization is implemented into SPCAM to replace both the CRM -based superparameterization and its radiation 

effects based on the basisaverage of the coarse grid average. In. At the beginning of each timesteptime step, NNCAM calls the 255 
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NN-Parameterization and predictpredicts the moisture tendency ""#!
"$
# ,, the temperaturedry static energy tendency ""'

"$
# ""&

"$
# 

from the moist physics and radiative heating, and all of the radiation fluxes. at the surface and the TOA. Then, the DNN 

predictions are returned to NNCAM, updatingand the model states and radiation fluxes are updated. Additionally, the surface 

total surface precipitation is derived from the column integration of the predicted moisture tendency. The near-surface 

conditions of the atmosphere and the downwelling radiation fluxes are transferred to the land surface model. After the coupling 260 

of the land surface model and the prescribed Sea Surface Temperature (SST) are coupled, the host CAM5 performs the 

planetary boundary layer diffusion and letlets its dynamic core complete a timesteptime step integration (Figure 1).. In the next 

timesteptime step, the dynamic core returns the new model states to the NN-Parameterization as inputs again. During the 

wholeentire process, the NN-Parameterization and GCM will constantly update each other’s status. HowDetermining a way 

to couple the NN -Parameterization with the GCM and to run them efficiently and effectively is the key to the implementation 265 

of NNCAM. To solve these problems, we developdeveloped the NN-GCM coupler that, which integrates the NNs into 

NNCAM, which . This process will be introduced in the followingnext section. 

2.3 The NN-GCM Couplercoupler 

Deep learning research mainly uses machine learningML frameworks based on Python interfaces to train neural network 

models, and deploy themthey are deployed through C++ or Python programs. While GCM isIn contrast, GCMs are mainly 270 

developed in Fortran, which makes it is a very challenging work to call a neural network model based on a Python/C++ 

interface in GCM codes written in Fortran. Solving the problem of code compatibility between the NN and GCM can 

significantly help develop NN -based Parameterizationsparameterizations for climate models. 

To implement aan NN -based Parameterizationparameterization in the current climate modelmodels, which isare mostly 

developed in Fortran, many researchers tryhave attempted to getobtain the network parameters (e.g., the weight, and bias) from 275 

the machine learningML models and implement the NN models (e.g., DNNs) withusing hard coding in Fortran. At the runtime, 

NNCAM will call aan NN -parametrization as a function (Rasp et al., 2018; Brenowitz and Bretherton, 2019). Recently, some 

researchers have developed a Fortran-neural network interface that can be used to deploy DNNs intoin GCMs (Ott et al., 2020). 

This interface can import neural network parameters from outside of the Fortran program, and the Fortran-based 

implementation ensures that it can be flexibly deployed in GCMs. However, embedding aan NN parameterization-280 

Parameterization in NNCAM is still a troublesome task with, and there is no existing coupling framework to support many of 

the latest network structures. This problem will restrict developersprevents researchers from building more powerful NNs and 

deploying them in NNCAM. 

We develop thedeveloped a coupler to bridge the NN-Parameterization with the host CAM5. Through this coupler, the 

neural network can communicate with the dynamic core and other physical schemes in NNCAM in each time step. When 285 

NNCAM is running, as shown in (① in Figure 5,3), the coupler receives the state and forcing output from the dynamic core 

in the Fortran -based CAM5. For each input variable, we useused the native Message Passing Interface (MPI) interface in 
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CAM5 to gather the data offor all of the processes tointo the master process into a tensor. Then, as shown in ② of Figure 5, 

the coupler will transmittransmits the gathered tensor through the data buffer to the NN-Parameterization running on the same 

node as the master process. (② in Figure 3). The NN-Parameterization getsobtains the input, infers the outputs, and transmits 290 

them back to the coupler. As shown in ③ ofin Figure 53, the coupler will first writewrites these tendencies and radiation 

fluxes back to the master process, and then broadcast, it broadcasts the data to the CAM5 processes running on the computing 

nodes through the MPI transmission interface. Therefore, other parameterizations getobtain the predictions from the NN-

Parameterization to complete the follow-up procedures (④ in Figure 5). 3). 

In practice, the NN-GCM Couplercoupler introduces a data buffer that supports a system-level interface, which is 295 

accessible by both the Fortran -based GCM and the Python -based NN without supplementary foreign codes. This can avoid 

code compatibility issues when building Machine LearningML coupled numerical models. It supports all mainstream machine 

learning ML frameworks, including native PyTorch and TensorFlow. Based onUsing the coupler, one can efficiently and 

flexibly deploy the Deep Learning Modeldeep learning model in NNCAM, and can even take advantage of the latest developed 

neural networks. 300 

All neural network models deployed throughusing the NN-GCM Couplercoupler can support a Graphics Processing Unit 

(GPU) accelerated inference to achieve excellent computing performance. In this study, we ran SPCAM and NNCAM on 192 

CPU cores. NNCAM also used 2two GPUs for acceleration. During the NNCAM runtime, each time step of NNCAM requires 

the NN-Parameterization to complete an inference and conduct data communication with NNCAM. This is a typical high-

frequency communication scenario. We evaluated the amount of data (about 20MB20 MB for CAM5 with thea horizontal 305 

resolution of 1.9°×2.5°) that needs to be transmitted for each communication, and determineddecided to establish a data buffer 

on a high-speed solid-state drive to ensure a balance ofbetween performance and compatibility. It takes about 1x10-2 seconds 

to access the data buffer in each time step, which is enough to support the efficient simulation of NNCAM. The Simulation 

Yearssimulation years per Dayday (SYPD) of NNCAM based on the NN-GCM Coupler hascoupler represents an impressive 

performance improvement, when. When using 192 Intel CPU cores, the SYPD of SPCAM is 0.3, the SYPD of CAM5 is 20, 310 

and the SYPD of NNCAM is 10. It is worth notingshould be noted that, NNCAM based on the NN-GCM coupler uses an 

additional GPU to accelerate the NN-Parameterization. When the NN-GCM Couplercoupler is not used, the NN-

Parameterization is implemented byusing Fortran and is accelerated by the Fortran-based Math Kernel Library, and the SYPD 

is 1.5. 

3 A Road to Stability 315 

3.1 Sensitivity Tests and Trial-and-error 

To develop a stable NN parameterization-Parameterization, we propose a ResDNN set, wherethe use of a set of three ResDNNs, 

in which each neural network is responsible for predicting a class of variables (see sectionSection 2.2.2). One may wonder 
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whether the ResDNN architecture is necessary and whether offline accuracy of NNs matters in Ott et al. (2020) demonstrated 

that there is a negative correlation between the offline MSE and online stability. This section tries to deal with the questions 320 

via a series of sensitivity tests.  

To prove the necessity of the ResDNN architecture, we use the 7-layer DNN  when using tendencies as the control group. 

We do not include other types of ML architecture, since random forest is less likely to perform as accurately as neural networks 

and cannot be implementedoutputs in GPUs (Yuval et al., 2021), and 1D CNN is not widelyaqua-planet simulations. Since we 

also used tendencies as outputs in other studies except Han et al. (2020) with unknown prognostic performance.  325 

The prognostic tests ofthe real-world simulations, we conclude that an NN-based parameterization begin at 1998-01-01 asthat 

can support long-term integration should have a startup.high accuracy regarding training and validation. As initialization, 

calling the SPwas described in SPCAM at theSection 2.2.2, we tried DNNs first step is required to generate the correct 

largescale forcings as the input for NN, and then, we extended the DNNs to ResDNNs to achieve a high offline accuracy 

(Figure 2). Even through more accurate ResDNNs have a higher probability of becoming stable parameterizations (Figure 4), 330 

we still do not have a way to determine the stability a priori. Therefore, we still used the trial-and-error method to filter out 

unstable ones and then selected the best ResDNN set that could reduplicate the total energy time evolution of SPCAM with 

the least deviation, i.e., the NN-Parameterization. 

3.2 Sensitivity tests 

We conducted prognostic runs of all three neural networks in each NN set using the NN-GCM coupler. To demonstrate the 335 

reality behind the relationships between the offline accuracy and online stability under a real-world configuration, we 

conducted sensitivity tests using 10 DNN sets and dozens of ResDNN sets and conducted the training and evaluation using 

the settings described in Section 2.2.2. In the sensitivity testtests, we freezeconducted prognostic runs (see details in Section 

3.2) using all three neural networks in each NN set using the NN-GCM coupler. 

First, we selected the best ResDNN for the 8 radiation fluxes to simplify the neural network choices,at the surface and 340 

the TOA that was shared in every NN set since their offline validation is extremelywas exceptionally accurate with  𝑅( above> 

0.98 over 50 training epochs (Figure 2b). Different fromIn contrast to the accurately trained radiation fluxes, the tendencies of 

temperaturethe dry static energy and moisture are less accurate and can hypothetically affect the prognostic performance. To 

evaluate the tendency of moistening and heating in those two tendencies using one metric, we introduceintroduced the MSE 

of the rate of change of the moist static energy changing rate (𝑑ℎ = 𝐶)𝑑𝑇𝑑𝑠 + 𝐿!𝑑𝑞!) as: ): 345 

𝑀𝑆𝐸* =	6
+
,
(𝑑ℎ-- − 𝑑ℎ./012)∆𝑝6

(
,                                                            (1) 

where 𝑔 is the acceleration due to gravity constant, 𝐶) refers tois the heat capacity of air, 𝐿! is the latent heat of water vapor, 

and ∆𝑝 is the layer thickness. Multiple ResDNN pairs for dqv and dT and DNN pairs arefor dqv and ds were trained from 5five 
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epochs to 50 epochs, carryingresulting in different offline validation accuracy. accuracies. We used the maximum number of 

steps until the model crashed to measure the prognostic performance. 350 

Figure 4 shows the offline validation 𝑀𝑆𝐸* versus the maximum prognostic steps. First,The DNN -parameterizations 

(blue triangles) are systematicsystematically less accurate than the ResDNN ones -parameterizations (blue dots and black 

inverted triangles), which is consistent with Figure 2a. They cannot run stablycould not sustain half a year of simulation in the 

prognostic tests with the best DNN -parameterization to sustain half a year of simulation.. For the ResDNNs, the less well-

trained ones with high MSE crash for a shorterMSEs also crashed after short simulation period than DNNs.periods. However, 355 

when the offline MSE decreasesdecreased to a certain level (e.g., 290 𝑊(/𝑚3), some10 of the ResDNN -parameterizations 

arewere stable for extremein long-term simulations, while others remain unstable. 

Generally, a NN parameterization of over 10 years (black inverted triangles). We speculate that can support long-term 

integration should have both good generalization abilities and high accuracy for training and validation. Above all, sufficient 

accuracy is necessary for all neural networks. From Figure 4, it can be interpreted that a vague threshold exists in the validation 360 

MSE. ResDNNs can be trained for higher accuracy since they are much deeper than DNNs with much higher model capacity. 

So, they are the more competentaccurate ResDNN sets have a higher probability of becoming stable NN-Parameterizations 

since all of the stable NN-Parameterizations are ResDNNs. 

A few unstable ResDNN sets are equally or more accurate than DNNs in this job. On the other hand,the stable ones. 

Previous studies showedhave shown that high-capacity (more hidden layers and more weights and biases) models are harder 365 

to train and are more likely to overfit produce overfitting (Goodfellow et al., 2016). Thus, the prognostic stability differences 

between less well-trained ResDNNs and the well-trained ones are drastic compared with DNNs. Also, someSome overly 

trained ResDNNs with lowest validation loss are speculated to overfit. Thoseproduce overfitting models, and therefore, they 

are less likely to generalize to unknown backgrounds caused by accumulated errors in the ML-GCM system, ending up model 

crashes. However, those are just intuitive experiences but not guarantee ways for stabilitycausing the model to crash. 370 

In the time evolution of the globalglobally averaged total energy (Figure 5). The), the system energy grows exponentially 

and then blows up for unstable ResDNN -parameterizations (the red and orange lines). In contrast, the stable ones can keep 

the total energy at a certain level and reproduce the annual cycle of fluctuations in SPCAM. Among the stable ResDNN 

schemessets, some can get nearly a perfect reproduction ofalmost perfectly reproduce the total energy evolution of SPCAM 

(the blue line), while). However, some inaccurately simulate the climate state with a largesignificant deviation (green line). 375 

Therefore, among the accurate ResDNN parameterizations (e.g., offline validation 𝑀𝑆𝐸* < 	290	𝑊(/𝑚3), we still have to 

use the trial-and-error to filter out unstable ones and then select the best ResDNN pair for moistening and heating rate that can 

reduplicate the total energy time evolution of SPCAM with the least deviation. We name this bestApart from global averages, 

the prognostic results of the 10 stable ResDNN pair together with the ResDNN in charge of radiation fluxes the NN-

Parameterization. This NN-GCM coupled model is called NNCAM and is later evaluated for climate mean states and 380 

variabilitysets vary from each other in terms of the global distribution. Figure S1 shows the precipitation spread across all of 
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the stable NN sets for the prognostic simulation from 1999 to 2003. The obvious standard deviation centers coincide with the 

heavy tropical precipitation areas. 

3.23 Gravity Wave Diagnosiswave diagnosis 

It is still a question ofunclear why unstable NN parameterizations -Parameterizations blow up models. The fast-growing energy 385 

of the unstable runs indicates a possible underlying unrealistic energy amplifying mechanism in the NN-GCM coupled NN-

GCM system. Brenowitz et al. (2020) offered several interpretations. When an unstable NN parameterization-Parameterization 

is coupled with dynamics, it tends to amplify any unrealistic perturbation perturbations caused by emulation errors and to pass 

it to the entire system through gravity waves. In contrast, the stable NN parameterizations-Parameterizations tend to dump all 

of the perturbsperturbations quickly. This iswas found to be true in our study withfor the realistic configuration. Such unstable 390 

gravity waves arewere observed in the prognostic simulation of an unstable ResDNN (the red line in Figure 5). The animation 

in Movie S1 records the first unrealistic wave, and Movie S2 documents the more intense waves afterward with a perfectly 

round shape.  after this point in time. Additionally, we found that our instable waves mostly occurred in the tropics, which is 

different from the mid-latitude instability that occurs when using ML parameterizations in aqua-planet simulations (Brenowitz 

et al.., 2020). 395 

Brenowitz et al. (2020) also introduced an analysis tool that calculates the wave energy spectra of a hierarchy model that 

couples the linear response functionsLinear Response Functions (LRF) of aan NN-based parameterization to a simplified two-

dimensional linear dynamic system, wherein which perturbations can propagate in 2D2-D gravity waves. We applyapplied the 

tool in ourthis study and detectdetected similar results ofin the unstable mode for the unstable ResDNN with a positive energy 

growth rate across all wave numbers at phase speed betweenspeeds of 5 m/s to -20 m/s (Figure S1b). WhileS2b). In contrast, 400 

the stable ResDNN showsexhibited a stable mode withfor the growth rate of nearly all wave numbers and phases below zero 

(Figure S1aS2a). 

4 Offline Validation of NN-Parameterization 

Before evaluating the prognostic results, demonstration ofthe offline performance with geographic information is neededneeds 

to be demonstrated for the following purposes: 1) Toto show how well our NN-Parameterization emulates the SP infor a 405 

realistic configuration compared with the baseline CAM5 physics and with previous studies.; and 2) Toto reveal the 

strengthstrengths and weaknessweaknesses of the NN emulations with the correct input, give and to provide clues to the 

analysis of the prognostic results in the following section. We performed offline testing withusing a realistically 

configuratedconfigured SPCAM from January 1st1, 1999, to December 31st31, 2000, wherein which the NN-Parameterization 

iswas diagnostically run paralleledparallel to the SP, and so doeswas the CAM5 physics. The results overfor the entire second 410 

year of the simulation period arewere chosen for evaluation, which was completely independent from the training dataset. 

Following the conventions inof Han et al. (2020) and Mooers et al. (2021), we chooseused the mean fields and the coefficient 
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of determination (𝑅() as the twoevaluation metrics for evaluations.. It should be noted that the NN-Parameterization was tuned 

to emulate the SP, and the CAM’s parameterization was tuned to obtain close results to the observations. The latter is merely 

introduced as a baseline.  415 

The mean diabatic heating and drying rates produced by convection and, large-scale condensation, and cloud radiation 

effects in SPCAM and the NN-Parameterization are in close agreement. Figure 6 shows the latitude-height cross-sections of 

the annual mean heating and moistening rates in SPCAM and the corresponding NN-Parameterization. At 5 °N, SPCAM 

showsexhibits the maximum latent heating in the deep troposphere, corresponding to the deep convection atin the ITCZ. In 

the subtropics, there is heating and moistening occur in the lower troposphere, corresponding to the stratocumulus and shallow 420 

convection in the subtropics. In the midlatitudesmid-latitudes, there is a secondary heating maximum below 400 hPa due to 

midlatitudethe mid-latitude storm tracks. All of these features are well reproduced by the NN-Parameterization. NoteIt should 

be noted that in the midtropospheremid-troposphere, the ITCZ peak in the drying rates rate in the ITCZ is slightly weaker in 

the NN-Parameterization compared with that ofthan in SPCAM (FigureFigures 6c and 6d).  

In addition to the mean fields, the high prediction skill of the NN-Parameterization is also shown indemonstrated by the 425 

spatial distribution of the 𝑅(. values. To demonstrate illustrate the 𝑅( forvalues of the 3D3-D variables such as the diabatic 

heating and moistening, same asfollowing Mooers et al. (2020),2021), the zonal averages arewere calculated in advance before 

the 𝑅( calculation for each location in the pressure-latitude cross-section. For the diabatic heating, the 𝑅( value is above >0.7 

overthroughout the entire mid to lowmiddle and lower troposphere, and the high skill regions with 𝑅( values of greater than 

0.9 concentratesare concentrated in the low levels but are extended to extend into the mid-troposphere in the storm tracks 430 

(Figure 7a). As forFor the moistening rate, the high skill zones concentrateare concentrated in the mid tomiddle and upper 

troposphere (Figure 7b), leavingwith low skill areas below. ThoseThe regions with low accuracylower accuracies are generally 

located in the mid to low middle and lower troposphere in the tropics and subtropics, correspondingwhich correspond to the 

deep convection atin the ITCZ and the shallow convection in the subtropics. Nonetheless, the tendencies fromof the diagnostic 

CAM5 parameterization hardly draw any similarityare not similar to those simulated by the SP, except for a few locations in 435 

the mid tomiddle and upper troposphere in the tropics and polar regions (FigureFigures 7c &and 7d).  

The global distribution of the 𝑅( forvalues of the precipitation predictions is shown in Figure 8. Our NN-Parameterization 

shows a great prediction skill globallyproduced excellent predictions in most of the in mid- and high-latitude regions, especially 

in the midlatitude storm tracks. TheHowever, the prediction skill is relatively low in many of the ocean areas between 30°S 

toand 30°N and in some midlatitude mid-latitude areas over continents (Figure 8a), in). In particular, the results are not ideal 440 

in the ITCZ deep convection regions. Moreover, for shallow convection in Subtropical along the equatorial regions, in the 

subtropical Eastern Pacific, and Subtropicalin the subtropical Eastern Atlantic, the precipitation prediction skill hits bottom, 

corresponding to the subtropical . These areas correspond to the low skill zones forof the moistening rate (Figure 6b). On the 

other handin the middle and lower troposphere from the equator to the subtropics (Figure 7b). As a baseline, the total 

precipitation simulated byusing the CAM5 parameterizations is much less analogous to the SP than the NN-Parameterization 445 
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withand has a systematically lower accuracy globally. The CAM5 precipitation can reachachieve a relatively high accuracy 

along the mid-latitude storm tracks, but failit fails in most regions in the tropics.  (Figure 8b). 

Generally, the NN-Parameterization performsperformed far better than the CAM5 parameterization in the 1-year period 

in the offline testing, and shows similar it had an accuracy assimilar to that of the DNN inused by Mooers et al. (20202021). 

The use of real-geography geographic data can significantly decrease the emulation skill of a deep learning model (Mooers et 450 

al., 2021), where). This is because the convection backgrounds of real geographic data are much more complex with meridional 

and zonal asymmetric and seasonal variatedseasonally varying circulations, not to mention. In addition, the orographorography 

and various types of underlying land surface. In thatsurfaces also add complexity. In this case, the ResDNN is a valuable NN 

architecture that can bring good performanceperforms well as thean automated hyperparameter tuning algorithm without 

searchingthat does not need to search for hundreds of NN candidates. Still, our NN-Parameterization is exposed toproduced 455 

low accuracy predictions in subtropical shallowalong the equator over the oceans where the convection areas, a great challenge 

for machine learning emulation of moistening rate and precipitation. In those regions, the local variance/std is close to zero. 

But the NNs in our study are trained in the loss function of mean squared error, which complex and vigorous and in subtropical 

ocean areas where the convection is not sensitive to small values. 

5 Long-term Prognostic Validation 460 

weak and concentrated at low levels. This indicates that the NN-Parameterization is selected forstill inadequate in rems 

of its emulation skill when simulating various types of deep and shallow convection in the tropics. 

5 Long-Term Prognostic Validation 

The NN-Parameterization produced the best prognostic performance in Section 3.1. It iswas coupled in the realistic 

configuratedrealistically configured SPCAM to replace the SP and its cloud-scale radiation effects. This coupled model is 465 

called referred to as NNCAM afterwardshereinafter and is compared with SPCAM and CAM5. All The start time of all three 

model starts atwas January 1st1, 1998 as start up. They arewere all run for 6 years with the first year for spin up and the next 5 

years from (January 1st1, 1999, to December 31st31, 2003) for evaluation and comparison. Later, the simulation of NNCAM 

iswas extended for another 5 years to December 31st31, 2008, to showdemonstrate its stability. Due to the excessive computing 

resources consumptionrequired, the SPCAM simulation of SPCAM iswas not get extended. In the analysis of the prognostic 470 

results, the following arewere selected for demonstration ofto demonstrate the multi-year climatology and variability: multi-

year 

(1) The mean fields of temperature and humidity, fields; 

(2) The mean precipitation, field; 

(3) The precipitation frequency distribution,; and the 475 
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(4) The Madden –Julian Oscillation. 

As was mentioned in the introduction section, SPCAM, which uses the 2-D SAM as the SP, does not simulate better mean 

climate states than its host coarse-grid model CAM5, but it excels in climate variability. What is remarkable about NNCAM 

is not its performance in simulating the mean climate, but its ability to achieve a stable multi-year prognostic simulation under 

a real-world global land–ocean distribution. The advantages and problems of this study will provide important references for 480 

future research on NN-based stable long-term model integrations. 

5.1 Climatology 

5.1.1 Vertical profiles of temperature and humidity 

In this section, we first evaluate the vertical structurestructures of the mean temperature and humidity fields. Figure 9 shows 

the zonally averaged vertical profiles of the air temperature and specific humidity as simulated by theusing NNCAM and the 485 

CAM5, in contrast compared to the SPCAM simulations. Overall, the NNCAM simulatesimulated reasonable thermal and 

moisture structurestructures. However, it is shown that NNCAM has some biases inthe multi-year mean fields of temperature 

and humiditymoisture fields produced by NNCAM are more biased than those produced by CAM5, which is shown as reflected 

by the larger root mean squaredsquare errors (RMSEs) or(Figure 9) and larger differences thancompared to those of CAM5 

(Figure S2). 10). The larger deviations are temperature biases in the tropopause, where. In this region, the cold-point region is 490 

thinner and warmer in NNCAM than in SPCAM and CAM5. In addition, there are cold biases above 200 hPa and warm biases 

blow over the polar regions in NNCAM. For the humidity field, there are slight dry biases over the equator and wet biases 

elsewhere in NNCAM. Even with thethese biases, the mean climate mean states are consistent with those in the last 5-year 

years of the simulation for NNCAM (Figure S3), which indicates almost nothat the climate driftstates simulated by NNCAM 

are constant in the long-term simulation. 495 

5.1.2 Precipitation 

Figure 1011 shows the spatial distributions of the winter (December-January-February) and summer (June-July-August) mean 

precipitation simulated byusing SPCAM, NNCAM, and CAM5. The SPCAM simulation results are regarded as the reference 

precipitation. In SPCAM (Figure 10aFigures 11a and 10b11b), massive precipitation can be foundobserved in regions ofthe 

Asian monsoon region and midlatitudethe mid-latitude storm tracks over the northwest Pacific and Atlantic oceans. In the 500 

tropics, the primary peaks ofin the rainfall areoccur in the eastern Indian Ocean and Maritime Continent regions. FurthermoreIn 

addition, two zonal precipitation bands are located at 0°–-10°N in the equatorial Pacific and Atlantic oceans, constituting the 

northern ITCZ. The southern South Pacific Convergence Zone (SPCZ) is mainly located at around 5°S–-10°S near the western 

Pacific warm pool region and experiences a southeast tilttilts southeastward as it extends eastward into the central Pacific. The 

main spatial patterns of the SPCAM precipitation climatology are properly reproduced by both NNCAM and CAM5. InFor 505 

NNCAM, the strong rainfall centers are well simulated over the tropical land regions overof the Maritime Continent, the Asian 
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monsoon region, and South America, and Africa (Figure 10cFigures 11c and 10d11d). In addition, the heavy summertime 

precipitation over the Northwestern Pacific simulated by SPCAM is well represented inby NNCAM (Figure 10aFigures 11a 

and 10c). In11c). For CAM5, there is too little precipitation over thatthis area (Figure 10e11e). Moreover, NNCAM can 

maintainmaintained the spatial pattern and global average of the precipitation in the next 5-year years of the simulation, 510 

reassuringdemonstrating its long-term stability (Figure S4). 

Generally, the NNCAM drawsresults are more similaritysimilar to SPCAM than the CAM5 results in terms of the spatial 

distribution of the summertime multiyearmulti-year precipitation, with smaller RMSERMSEs and globalglobally averaged 

biases. However, in theon a difference plot (Figure 11S5), NNCAM moderately underestimates the precipitation along the 

equator, in the Indian monsoon region, and maritime continentover the Maritime Continent in the summer (Figure 11aS5a). In 515 

the boreal winter, NNCAM simulates a weak andSPCZ that is excessively separated SPCZ from the ITCZ, with both 

precipitation centers shiftingshifted away from each other. As a result, we detect underestimation occurs in the equatorial 

regions of the maritime continent as well asMaritime Continent and in the SPCZ but, while overestimation onoccurs to the 

north of the equator in the WestWestern Pacific (Figure 11b), which makesS5b), and thus, NNCAM less resembleresembles 

SPCAM less than CAM5 in this season. This simulation biases in NNCAM are speculated linked to the weaker drying 520 

tendencies of the ITCZ midtroposphere from the NN parameterization and low accuracyunderestimation of NNCAM 

predictionsthe precipitation along the equator can also be observed in the zonal mean multi-year precipitation plots (Figure 

12). There is a more significant minimum zone in the equatorial precipitation near the equator compared with in SPCAM and 

CAM5 for the annual average (Figure 12a) and the boreal winter average (Figure 12c). 

 In contrast to the oceanic rainfall, NNCAM predicts the precipitation over the land surfaces with good skill in the tropics 525 

(land fraction equal to 1), which resembles the tropical land rainfall intensity of SPCAM and Tropical Rainfall Measuring 

Mission (TRMM) observations of the annual and boreal summer averages (Figures 12d and 12e). According to Kooperman et 

al. (2016), SPCAM predicts the Asian and African Monsoon activity better, which leads to the more accurate land rainfall in 

such areas. This is related to the stronger convective variability in the SP than the conventional parameterizations. As an 

emulator of SPCAM, NNCAM inherits this strength. 530 

5.2 Variability 

5.2.1 Frequency Distributiondistribution of Precipitationprecipitation 

Moreover, NNCAM showsexhibited a better performance in simulating the precipitation extremes. Figure 1213 shows the 

probability densitiesdensity function of the simulated daily precipitation in the tropics (30°S−30°N) with a precipitation 

intensity interval of 1 mm day-1. InFor CAM5, the heavy precipitation events exceeding 20 mm day-1 are greatly underestimated. 535 

In addition, for CAM5, the light to moderate precipitation events between (2−20 mm day-1) are overestimated, with an unreal 

probability peak around 10 mm day-1 in CAM5, which is a typical simulation bias found in simulations with parameterized 

convection but not inand no explicitly resolved convectionsconvection (Holloway et al., 2012). Compared with CAM5, the 
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spectral distribution of the precipitation infor NNCAM is much closer to that of SPCAM. The heavy rainfall events are 

substantially enhanced, and the overestimated moderate precipitation occurrence between (2−20 mm day-1) is reduced, with 540 

no spurious peak at around 10 mm day-1.  

5.2.2 The MJO 

The MJO is a crucial tropical intraseasonal variability at thethat occurs on a time scale of 20–100 days (Wheeler and Kiladis, 

1999). Figure 1314 presents the wavenumber and frequency spectra for the daily equatorial precipitation daily anomalies 

fromfor SPCAM, NNCAM, and CAM5 in 4four consecutive boreal winterwinters from 1999 to 2003. SPCAM shows 545 

widespread power signals over zonal number of zones 1-–4 and periods betweenof 20-–100 plusdays, as well as a peak around 

at zonalzone numbers of 1−3 and periods of 70-−100-day days for the eastward propagation (Figure 13a14a). Similarly, infor 

NNCAM, there is a spectral peak at the wavenumbers of 1−2 and periods of 50-–80 daydays for eastthe eastward propagation 

(Figure 13b14b), exhibiting intense intraseasonal signals.  For CAM5 (Figure 13c14c), the spectral power is concentrated 

around 30-day days and exhibits more extended periods (greater than 80 days) at a wavenumber of 1 for the eastward 550 

propagation. In addition, CAM5 also shows signals of westward propagation aroundwith a 30-day period. Compared with 

CAM5, NNCAM showsexhibits stronger intraseasonal power and resembles SPCAM better. To quantify this similarity, we 

calculatecalculated the coefficientcoefficients of determination 𝑅( offor the precipitation spectrum inspectra of NNCAM and 

CAM5, using the spectrum inof SPCAM as the target value. The 𝑅( value of the precipitation spectrum 𝑅( in NNCAM (0.51) 

is much higher than that infor CAM5 (0.40). 555 

The MJO is characterized by the eastward propagation of deep convective structures along the equator. Generally, it 

generally forms over the Indian Ocean, strengthens over the Pacific, and weakens inover the eastern Pacific due to 

interactioninteractions with cooler SSTs (Madden and Julian, 1972). Figure 1415 presents the longitude-time lag evolution 

offor the 10°S−10°N meridional averaged daily anomalies of the intraseasonal (filtered withusing a 20-–100 -day bandpass) 

precipitation and 200 hPa zonal wind (U200) in the boreal winter. The results show that both SPCAM and NNCAM reasonably 560 

reproduce the eastward propagatingpropagation of the convection from the Indian Ocean across the Maritime Continent toand 

into the Pacific (Figure 14aFigures 15a and 14b),15b). This is confirmed by both the precipitation field and U200 field. 

Therefore, we conclude that NNCAM captures the key MJO propagation simulated inby SPCAM. In contrast, the time lag plot 

offor CAM5 depicts an unpleasant westinaccurate westward propagation. Same asSimilar to the precipitation spectrum, the 

𝑅( value of the time lag coefficient is shown to quantify the resemblance.similarities between the simulations. The time lag 565 

coefficient of the U200 infield for NNCAM is much closer to that for SPCAM than CAM5, with a waymuch higher  𝑅(, value, 

indicating that the NN-Parameterization successfully emulates the convection variability of the SP and reflects it, which is 

reflected in the dynamic fields.  
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6 Summary and Conclusions 

ThisIn this study investigates, the potential of deep neural network -based parameterizations in SPCAM to reproduce long-570 

term climatology and climate variability. was investigated. We presentdeveloped an NN-Parameterization, via a ResDNN set, 

to emulate the SP with a 2D2-D CRM and its cloud scale radiation in effects in for a realistic configuratedrealistically 

configured SPCAM with a true land-ocean distribution and orography. The input variables toof the NN-Parameterization 

include the specific humidity, temperature, largescale water vapor and temperature forcings, surface pressure, and solar 

insolation. The output variables of the NN-Parameterization consist ofinclude the subgrid tendencies of the moisture and 575 

temperature, net dry static energy and the radiation fluxes at the top of the model and surface, and solar radiation fluxes down 

to the surface.. We proposedpropose a set of 14-layer deep residual neural networks, in which each NN is in charge of one 

typegroup of output variablevariables. With such a design, we gain thegained a best emulation accuracy for each predictor. 

Via aThrough systematic trial-and-error searching procedure, we arewere able to firstly select sets of ResDNNs that support 

stable prognostic climate simulations, and then choose, we chose the best set with the lowest climate errors as the formal NN-580 

Parameterization. Moreover, athe mechanism of the unreal perturbation amplification is foundwas identified in the GCM 

simulations with unstable NN parameterizations with-Parameterizations using the spectrum diagnostic tool invented inby 

Brenowitz et al. (2020). 

The offline test showstests demonstrated the greatgood skills of the NN-Parameterization in emulating the SP outputs and 

itsthe cloud scale radiation effects inof SPCAM. The overall diabatic heating and drying rates in the NN-Parameterization and 585 

SPCAM are in close agreement. When implemented in the host SPCAM to replace its time-consuming SP and its radiation 

effects, the NN-Parameterization successes insuccessfully produced an extensive stable long-term stable prognostic simulation 

and predictspredicted reasonable mean vertical structures in temperature and humidity, structures and the precipitation 

distributions. Compared with the SPCAM target simulation, NNCAM still produces some biases in the mean fields, such as a 

warmer troposphere over the polar regions and in the tropopause and underestimation of strong precipitation underestimation 590 

in the equatorial regions. On the other handIn addition, the better climate variability inof SPCAM overcompared to CAM5 is 

wellwas learned well by our NN-Parameterization and was reproduced inby NNCAM, with better frequency infor extreme 

rainfall, and a similar MJO spectrum and, propagation direction, and speed. Although withDespite the current biases in the 

climate states so far, NNCAM can still be regarded as thea first attempt to prognostically couple a NN-based parameterization 

in realistic configurated 3Dand a realistically configured 3-D GCM. 595 

Many previous studies have well-studied machine learninginvestigated ML parameterizations implemented in aqua-

planet configurated 3D GCM.configured 3-D GCMs. Some faced instability problems in coupled simulations (Brenowitz and 

Bretherton, 2019), while someothers succeeded in producing stable long-term stable prognostic simulations with deep fully- 

connected neural networks (Rasp et al., 2018; Yuval et al., 2021)), as well as random forest algorithms (Yuval and O’Gorman, 

2020). In contrast to aqua-planet simulations, the spatial heterogeneity is prominent over the land in GCMs, which are 600 

configurated with configured using real-geography geographic boundary conditions. In this case, a plain fully connected neural 
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networks the SP output (Mooers et al., 2021). The convection, clouds, and interactions with the interacted radiation ofin the 

CRM together with and the real-geography geographic boundary conditions are without a doubt far more complicated than in 

idealized models. To meet the new demand underfor realistic configurationconfigurations, we designdesigned a ResDNN with 

sufficient depth to further improve the nonlinear fitting ability of the NN-Parameterization. With the skip connections, the 7-605 

layer DNN models can be extended to 14 layers, therefore, significantthereby significantly improving the offline accuracy. In 

the prognostic tests, a fewdozen ResDNN -parameterizations can support supported a stable long -term stable run, while all of 

the DNN -parameterizations are so fartested were found to be unstable. 

Trial-and-error is still theour only way to find stable NN-based parameterizations. SoThus far, we have not come up 

withdeveloped an a priori mothedmethod that guaranteedguarantees stability. However, we dodid find some clues in the 610 

sensitivity tests. We believe sufficient offline accuracy is essential for online stability and can be achieved by confirming all 

of the inaccurate NN parameterizations -Parameterizations as unstable. On the other handIn addition, some of the highly 

accurate ones still crash the prognostic simulation, where we find rapid increasing . In this case, the total energy. was found to 

increase rapidly. This mechanism is that unstable NNs cannot damp the neural network emulation errors but, and they amplify 

and propagate them to the entire system through gravity waves. 615 

The prognostic biases inof the mean fields inare speculated asto be a result of by the combined effect of the emulation 

errors of all of the NN-Parameterization prediction fields. Further study is required. Still, it canmay be related to the spatially 

non-uniform accuracy of the NN-Parameterization, such as the relatively low fitting accuracy in the tropical deep convective 

regions and the shallow subtropical convection and stratiform cloud regions. Such problems have also been reported in 

previous studies (Gentine et al., 2018; Mooers et al., 2021). We believe that aan NN parameterization-Parameterization with 620 

heterogeneous characteristics across different regions, rather than a globally uniform scheme, can further improve the fitting 

accuracy in thisthese tropical and subtropical regionregions. 

Embedding deep neural networks into Fortran -based atmospheric models is still a handicap. Before this study, researchers 

mainly used hard coding to build neural networks (Rasp et al., 2018; Brenowitz and Bretherton, 2019). An easier waymethod 

is to use Fortran -based neural network libraries that can flexibly import network parameters (Ott et al., 2020). These methods 625 

have been used to successfully implemented NNimplement NNs in GCMGCMs, but they can only support dense, layer -based 

NNNNs. As a result, developers cannot take advantage of the most advanced neural network structures, such as convolution, 

shortcut, self-attention, and variational autoencoder, etc., structures, to build powerful DNN ML-based 

Parameterizations.parameterizations. In this research, throughstudy, using an NN-GCM Coupler,coupler, the NN-

Parameterization cancould support the mainstream GPU-enabled machine learningML frameworks. Thanks to the simple and 630 

effective implementation of the DNNNN-GCM Couplercoupler, our NNCAM achieves achieved an SYPD 30 times SYPD 

compared tothat of SPCAM by using a ResDNN set inand NN-Parameterization, althougheven though these DNNs are much 

deeper than the previous state-of-the-art fully- connected NNs in this field. 
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Code and data availability. The original training and testing data can be accessed at https://doi.org/10.5281/zenodo.5625616.635 

 The source codes of SPCAM version 2 and NNCAM have been archived, and made publicly available for downloading from

 https://doi.org/10.5281/zenodo.5596273. 
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Table 1. Input and output variables. For the inputs, 𝒒𝒗(𝒛) is the vertical water vapor profile. 𝑻(𝒛) is the temperature profile. 765 
𝒅𝒒𝒗	𝒍.𝒔.(𝒛)and 𝒅𝑻𝒍.𝒔. are the large scale forcings of the water vapor and temperature, respectively. 𝑷𝒔 is the surface pressure; 
and Solin is the TOA solar insolation. For the outputs, 𝒅𝒒𝒗(𝒛) and 𝒅𝒔(𝒛) are the tendencies of the water vapor and dry static 
energy due to moist physics and radiative processes calculated using the NN-Parameterization. The net longwave and 
shortwave fluxes at the surface and the TOA are the surface net longwave flux (FLNS), surface net shortwave flux (FLNT), 
TOA net longwave flux (FLNT), and TOA net shortwave fluxes (FSNT). The four downwelling shortwave solar radiation 770 
fluxes are the solar downward visible direct to surface (SOLS), solar downward near infrared direct to surface (SOLL), solar 
downward visible diffuse to surface (SOLSD), and solar downward near infrared diffuse to surface (SOLLD) fluxes reaching 
the surface.  

Inputs Outputs 

qv(z), T(z), dqvls(z), dTls(z), Ps, Solin dqv(z), ds(z), FLNS, FSNS, FLNT, FSNT, SOLS, SOLL, 

SOLSD, SOLLD 
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Figures 1 – 15 

 

 
Figure 1. Schematic diagram of the structure of the ResDNN. It consists of seven residual blocks, each of which (dashed box) 

contains two 512 node-wide dense (fully connected) layers with an ReLU as the activation and a layer jump. The inputs and 780 

outputs are discussed in Section 2.2.2. 
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Figure 2. Fitting accuracies (R2) of both the proposed ResDNN (solid orange lines) and the DNN (dashed blue lines) for 785 

different outputs. (a) The R2 of the moist static energy changing rate (dh) versus the training epochs; and (b) the fitting accuracy 

of the average R2 for the eight radiation fluxes. Note: the R2 values are calculated for both space and time in the validation 

dataset. 
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 790 

 
Figure 3. A flow chart of NNCAM, including the NN-GCM coupler. NNCAM runs in the direction of the arrow, and each 

box represents a module. Among them, the NN-GCM coupler is indicated by the pink box. The NN-Parameterization is shown 

in the box on the right. ① The dynamic core transmits data to the NN-GCM coupler; ② and ③the data communication 

between the NN-GCM coupler and the NN-Parameterization; and ④the host GCM accepts the results from the NN-795 

Parameterization. 
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Figure 4. The mean square error of the offline moist static energy vs. the prognostic steps. The black inverted triangles (10 in 800 

total but some overlap due to their close 𝑀𝑆𝐸* values) denote stable NN coupled prognostic simulations that last for more 

than 10 years. The blue dots denote unstable simulations, and the blue triangles denote unstable DNNs. The dots with colored 

outlines are shown in Figure 5 for the time evolution of the globally averaged energy. 

  



 

30 
 

 805 

 
Figure 5. Time evolution of the globally averaged column of the integral total energy of NNCAM with different ResDNN-

parameterizations (marked with the same colors as in Figure 4), SPCAM target (black line), and CAM5 control run (grey 

dashed line). The blue line indicates the stable and accurate ResDNN, the green line indicates the stable but deviating ResDNN, 

and the orange and red lines indicate unstable ResDNNs. 810 
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Figure 6. Latitude-pressure cross sections of the annual and zonal mean heating (top) and moistening (bottom) due to moist 

physics during the year 2000 for (a, c) SPCAM simulations, and (b, d) the offline test using the NN-Parameterizations. 815 
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Figure 7. Latitude-pressure cross sections of the coefficient of determination (𝑅() for the zonally averaged heating (left panels) 
and moistening (right panels) predicted using (a & b) the NN-Parameterization in the offline one-year SPCAM run, and (c & 820 
d) the offline CAM5 parameterizations. Both were evaluated at a 30-min time step interval. Note: the areas where 𝑅( is greater 
than 0.7 are contoured in pink, and the areas where 𝑅( is greater than 0.9 are contoured in orange. 
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Figure 8. Latitude-pressure cross sections of the coefficient of determination (𝑅() for the time sequence at each location for 825 
(a) the derived precipitation predicted using the NN-Parameterization and (b) the total precipitation from the CAM5 
parameterization compared to the offline one-year SPCAM run. The predictions and SPCAM targets are for a 30 min time 
step interval. Note: the areas where 𝑅( is greater than 0.7 are contoured in pink, and the areas where 𝑅( is greater than 0.9 are 
contoured in orange. 

 830 



 

34 
 

 
Figure 9. Latitude-pressure cross sections of the zonal mean temperature (left panels) and specific humidity (right panels) 

averaged from 1999 to 2003 predicted using (a, b) SPCAM, (c, d) NNCAM, and (e, f) CAM5. 
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 835 
Figure 10. Latitude-pressure cross-section of the zonal and annual mean differences in the temperature (left panels) and 

specific humidity (right panels) between (a & c) NNCAM and SPCAM and (b & d) CAM5 and SPCAM. The simulation 

period for all of the models was from 1999 to 2003. 
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Figure 11. The mean precipitation rate (mm day-1) averaged from 1999 to 2003 for June-July-August (left panels) and 

December-January-February (right panels) predicted using (a, b) SPCAM, (c, d) NNCAM, and (e, f) CAM5. 

  



 

37 
 

 845 

 

Figure 12. The zonal mean precipitation rate (mm/day) averaged from 1999 to 2003 for (a, d) the annual mean, (b, e) June-
July-August, and (c, f) December-January-February. The black, blue, and red solid lines denote SPCAM, NNCAM, and 
CAM5, respectively. The dark green dashed line denotes the averaged results of the TRMM 3B42 daily rainfall product. 
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Figure 13. Probability densities of the daily mean precipitation in the tropics (30°S−30°N) obtained from the three model 

simulations. The black, blue, and red solid lines denote SPCAM, NNCAM, and CAM5, respectively. 
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Figure 14. The wavenumber-frequency spectra for the daily precipitation anomalies at 10°S−10°N for (a, b) SPCAM, (c, d) 

NNCAM, and (e, f) CAM5 simulations in boreal winter. 
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Figure 15. Longitude-time evolution of the lagged correlation coefficient for the 20–100-day bandpass-filtered precipitation 

anomalies (averaged over 10°S−10°N) against the regionally averaged precipitation (shading) and zonal wind at 200 hPa 865 

(contours) over the equatorial eastern Indian Ocean (80−100°E, 10°S−10°N). The dashed lines in each panel denote the 5 m s-

1 eastward propagation speed. 


