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Abstract. In climate models, subgrid parameterizations of convection and cloud are one of the main reasons for the biases in 

precipitation and atmospheric circulation simulations. In recent years, due to the rapid development of data science, Machine 10 

learning (ML) parameterizations for convection and clouds have been proven the potential to perform better than conventional 

parameterizations. At present, most of the existing studies are on aqua-planet and idealized models, and the problems of 

simulated instability and climate drift still exist. In realistic configurated models, developing a machine learning 

parameterization scheme remains a challenging task. In this study, a groupset of deep residual multilayer perceptronsneural 

networks (ResDNNs) with strong nonlinear fitting ability is designed to learnemulate a superparameterization (SP) with 15 

different types of outputs. Sensitivity tests show that high accuracy is necessary to develop a stable ML parameterization 

scheme from cloud-resolving model outputs. Multi-target training is achieved to best balance. Trial-and-error is used to acquire 

the fits across diverse neural network outputs. The optimal machine learning parameterization, named NN-Parameterization, 

is further chosen among feasible candidatesResDNN set for both high performance and long-term simulation. The results show 

that stability, named NN-Parameterization. In offline validation, NN-Parameterization performs wellemulates the SP results 20 

far better than the conventional subgrid parameterizations. Then, in the multi-year climate simulations andprognostic test, NN-

Parameterization reproduces reasonable climatology andclimate mean states but still with some biases. Most importantly, NN 

parameterization successfully reproduces the climate variability in a general circulation model (superparameterizated GCM),, 

with aan over 30-time faster running speed of about 30 times faster than the cloud-resolving model embedded 

Superparameterizated GCM. Under real geographical boundary conditions, the hybrid ML-physical GCM well simulates the 25 

spatial distribution of boreal summer precipitation and significantly improves the frequency of precipitation extremes, which 

is largely underestimated in the Community Atmospheric Model version 5 (CAM5) with the horizontal resolution of 1.9°×2.5°. 

Furthermore, the hybrid ML-physical GCM simulates a stronger signal of the Madden-Julian oscillation with a more 

reasonable propagation speed, which is too weak and propagates too fast in than CAM5. This study is a pioneer to achieve 

multi-year stable climate simulations using a hybrid ML-physical GCM in actual land-ocean boundary conditions. It 30 

demonstrates the emerging potential for using machine learning parameterizations in climate simulations. 



 

2 

 

1 Introduction 

The general circulation models (GCMs) have been widely used for studying climate variability, prediction and projections. 

Despite decades of GCM development, most GCMs still suffer from many systematic biases, especially at low latitudes. A 

prominent tropical bias in most current GCMs is the double intertropical convergence zone (ITCZ) syndrome, which is 35 

characterized by two parallel zonal bands of annual precipitation straddling the equator over the central and eastern Pacific 

(Mechoso et al., 1995; Lin, 2007; Zuidema et al., 2016; Zhang et al., 2019; Lu et al., 2020). Convectively coupled equatorial 

waves and the Madden-Julian Oscillation (MJO), featured by eastward propagating convective cloud clusters, are also not well 

simulated in GCMs (Ling et al., 2017). The simulated MJOs in GCMs are often too weak and propagate too fast (Lin et al., 

2006). 2017; Cao and Zhang, 2017). 40 

Many studies have attributed most of these biases to the imperfection of the parameterization schemes for atmospheric 

moist convection and cloud processes in current GCMs (Song and Zhang, 2009; Zhang and Song, 2010; Oueslati and Bellon, 

2013; Crueger and Stevens, 2015; Deng et al., 2016; Cao and Zhang, 2017; Peters et al., 2017; Song and Zhang, 2018; Zhang 

and Song, 2019). Cloud-related processes span a large range of spatial scales, from micron-scale cloud nucleation, meter-scale 

turbulence, to individual convective cells and organized convective systems, which are a few kilometers to hundreds of 45 

kilometers in size, and to tropical disturbances, which have a spatial scale of thousands of kilometers. They directly influence 

the radiation balance and hydrological cycle of the earth system. Their interaction and interact with the atmospheric circulation 

affects, affecting the transport and distribution of energy and is the largest source of precipitation biases.(Emanual et al., 1994). 

Therefore, it is very important to simulate the cloud and convection process in GCMs correctly. However, the current GCMs 

used for climate simulation have a horizontal resolution of ~100km and a vertical hydrostatic coordinate. ThereforeThus, in 50 

most GCMs, besides parameterized cloud microphysics, convection and its influence on the atmospheric circulation are 

represented by convective parameterization schemes, which are usually based on simplified theories, limited observations, and 

empirical relationships (Tiedtke, 1989; Zhang and McFarlane, 1995; Zhang, 2002; Wu, 2012; Storer et al., 2015; Zhao et al., 

2018; Seo et al., 2019; Xie et al., 2019; Lopez-Gomez et al., 2020; Hourdin et al.,Lopez-Gomez et al., 2020). Those schemes 

regard convective heat and moisture transport as the collective effects of idealized individual kilometer-scale convective cells. 55 

They cannot represent the effects of many complicated convective structures, including organized convective systems, leading 

to large uncertainties and biases in climate simulations. (Bony et al., 2015). 

Cloud Resolving Models (CRMs), on the other hand, have long been used to simulate convection. Because CRMs have 

higher horizontal and vertical resolutions and can explicitly resolve the thermodynamic processes in convection, they simulate 

convection more accurately, including convective organization (Feng et al., 2018). In recent years, CRMs have been applied 60 

toused as superparameterization (SP) in low-resolution GCMs to replace conventional cumulus convection and cloud 

microphysical parameterization schemes, such as. The commonly used SP model is the superparameterized version of the 

Community Atmosphere Model (SPCAM) developed by the National Center for Atmospheric Research (Grabowski and 

Smolarkiewicz, 1999; Grabowski, 2001, 2004; Khairoutdinov and Randall, 2001; Randall et al., 2003; Khairoutdinov et al., 
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2005). Compared with conventional cumulus convection and cloud microphysical parameterization schemes, SPCAM 65 

performs better in simulating mesoscale convective systems, diurnal cycles of precipitation, monsoons, precipitation frequency 

distribution, and MJOs (Khairoutdinov et al., 2005; Bretherton et al., 2014; Jiang et al., 2015; Jin et al., 2016; JonesKooperman 

et al., 2019; Hannah et al., 20202016). However, when using 2D CRM as SP, the improvement on climate mean states is not 

obvious (Khairoutdinov et al., 2005). Also, SPCAM requires far more computing resource required for SPCAM is an 

orderresources than the same resolution CAM in 1 to 2 orders of magnitude larger compared with that for CAM. Theaccording 70 

to the resolution of the CRM subdomain. Thus, the use of SPCAM in long-term climate simulations and ensemble prediction 

is restricted by the current computing resource. Developing novel and computationally efficient schemes for high performance 

convection and cloud processes is still an open problem in GCM development. 

The conventional theory-driven parameterization schemes are based on the limited mathematical theory and observations, 

guided by physical laws of atmospheric motion, while the data-driven parameterization scheme can identify and extract 75 

complex nonlinear relationships from high resolution and high-fidelity data sets. More recentlyIn the last 5 years, the rapid 

development of machine learning (ML) technologies, especially deep learning technologies such as neural networks (NNs), 

has provided novel approaches to constructing parameterization schemes. Machine learning can identify and discover complex 

nonlinear relationships that exist in large data sets and model them. Several studies have used machine learning methods to 

develop convection and cloud parameterization schemes (e.g., Schneider et al., 2017; Dueben and Bauer, 2018; Gentine et al., 80 

2018; Rasp et al., 2018). These studies followed a similar approach. The first step is to derive a target dataset from a reference 

simulation, which is later used for machine learning algorithmmodels training. Then, the trained onesmachine learning models 

are often evaluated offline against other independent reference simulations and finally implemented in a GCM to replace the 

conventional parameterization schemes (Rasp, 2020).. 

Krasnopolsky et al. (2013) first proposed a proof-of-concept for developing convection parameterization based on the 85 

NN technique. Specifically, an ensemble of shallow NNs was applied to learn convective temperature and moisture tendencies, 

with training data from CRM simulations forced by observations in the tropical western Pacific. The resulting convective 

parameterization scheme was able to simulate the main features of cloud and precipitation in the NCAR CAM4 diagnostically. 

However, the key issue of prognostic validation in 3-D GCMs was not addressed. Recent studies have investigated ML 

parameterizations in prognostic mode in simplified aqua-planet GCMs. For example, Rasp et al. (2018) developed a deep fully 90 

connected NN algorithm(DNN) to predict convection and clouds, which was trained with the data from an aqua-planet SPCAM. 

The NN parameterization was then implemented in the corresponding aqua-planet CAM and produced multi-year prognostic 

results close to SPCAM. TheyFor this NN parameterization, Rasp (2020) found that minor changes, either to the training 

dataset or in the input/output vectors, can lead to model integration instabilities. Brenowitz and Bretherton (2019) fitted a DNN 

for convection and clouds to the coarse-grained data from a near-global aqua-planet cloud-resolving simulation using the 95 

System for Atmospheric Modeling (SAM). The NN scheme was then tested prognostically in a coarse-grid SAM. Their results 

showed that there were unphysical correlations learned by the network, and information in the upper levels from the input 

vector had to be removed to produce stable long-term simulations. Rather than using NNs, Yuval and O’Gorman (2020) used 
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random forest to develop an ML parameterization based on the training data from a high-resolution idealized 3-D model with 

a setup of equatorial beta plane. Stable simulations that replicated the climatology of the high-resolution model were achieved 100 

after they implemented this parameterization in a coarse resolution GCMThey used two independent random forests to emulate 

different processes separately and ensured physical constraints by predicting subgrid fluxes instead of tendencies. Later, Yuval 

et al. (2021) completed the same task with NNs. Both works achieved stable simulations in coarse resolution aqua-planet 

GCMs. Brenowitz et al. (2020) proposed methods to interpret and stabilize ML parameterization of convection. In their work, 

a wave spectra analysis tool was introduced to explain why ML coupled GCMs blew up. 105 

Although machine learning is a promising approach for developing new parameterizations, issues of instability and 

climate drift still prevent it from the application of machine learning parameterization in models. Rasp (2020) proposed coupled 

online learning to tackle instabilities and biases in NN parameterizations, which is a concept illustration using the idealized 

Lorenz 96 model. In real-world climate models with varied underlying surfaces, convection and clouds are more diverse under 

different climate backgrounds, which makes the task of developing ML-based parameterizations more complicated. A few 110 

early works have shown the feasibility of using neural networks fitting cloud processes in real-world models. Han et al. (2020) 

used a 1-D deep residual convolutional neural network (ResNet) to emulate moist physics in SPCAM. This ResNet based 

parameterization fitted the targets with high accuracy and is successfully implemented in a single column model. Mooers et al. 

(2021) got a high-skill DNN via auto-automated machine learning technique and forced an offline land model with DNN 

emulated atmospheric fields. However, neither of these studies have tested their NNs prognostically for long-term simulations 115 

with ML parameterized GCMs. This study uses a group. Similar to the idea of several NNs for different processes in Yuval 

and O’Gorman (2020), this study uses a set of NNs to emulate convection and cloud processes in SPCAM with an actual global 

land-ocean distribution. We apply two innovative methodsuse the residual connections in neural network models: multi-target 

trainingHan et al. (2020) to achieve balanced results across diverse neural network outputs and multilayer perceptron acquire 

super deep neural networks with residual blocks (ResMLP) to enhancegreat nonlinear fitting ability. Furthermore, an optimal 120 

DNN emulator is chosen among a set of well trained neural networks by using multi-target trainingwe conduct systematic trial-

and-error to filter out unstable NN parameterizations and ResMLP, to achieveget the best ResDNN set with both high-

performanceaccuracy and long-term simulationsstability. The NN parameterization scheme is then implemented in the 

realistically configurated CAM to obtain long-term stable simulations. Technically, NNs are commonly implemented via high-

level programming languages such as Python and deep learning libraries. However, GCMs are mainly written in Fortran, 125 

making it difficult to integrateintegrating with deep learning algorithms. inconvenient. Therefore, we introduce a DNNan NN-

GCM coupling platform in which the DNN modelNN models and the GCMGCMs can interact through data transmission. This 

coupling strategy can facilitate the development of ML-physical hybrid models with high flexibility. Under real-geography 

boundary conditions, our work achieves more than 10-year stable climate simulations in Atmospheric Model Intercomparison 

Project (AMIP)-style experiments by using a hybrid ML-physical GCM. The simulation results may show some biases in 130 

climate mean fields but successfully reproduce variability in SPCAM. To our knowledge, this is the first time a decade-long 

stable real-world climate simulation is achieved with a NN-based parameterization.  
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The remainder of this paper is organized as follows. Section 2 briefly describes the model, the experiments, the DNN 

algorithm, and the DNN-GCM coupling platform. Section 3 analyses the simulation stability of NNCAM. Section 4 presents 

the offline validation of the DNN scheme, focusing on the output temperature and moisture tendencies. Results of multi-year 135 

simulations, employing the DNN parameterization scheme, are shown in section 4Section 5. A summary and conclusions are 

presented in section 5Section 6. 

2 Methods and data 

In this study, we choose SPCAM as the reference model to generate target simulations. A groupset of DNNsNNs is trained 

with the target simulation data using optimized hyperparameters. Then, they are organized as a subgrid physics emulator and 140 

implemented into the superparameterized version of Community Atmospheric Model (SPCAM), replacing both the CRM 

based SP and CRMthe radiation. effects of the CRM. This DNNNN-enabled GCM is referred to as NNCAM hereafter. 

2.1 SPCAM setup and data generation 

The GCMs used in this study are the CAM5.2 developed by the National Center for Atmospheric Research and its 

superparameterized version SPCAM (Khairoutdinov and Randall, 2001; Khairoutdinov et al., 2005). A complete description 145 

of CAM5 is given by Neale et al. (2012). The dynamic core of CAM5 has a horizontal resolution of 1.9°×2.5° and 30 vertical 

levels with a model top at about 2 hPa. To represent moist processes, CAM5 adopts a plume-based treatment of shallow 

convection (Park and Bretherton, 2009), a mass-flux parameterization scheme for deep convection (Zhang and McFarlane, 

1995), and an advanced two-moment representation of cloud microphysical processes (Morrison and Gettelman, 2008; 

Gettelman et al., 2010). In the AMIP experiments we conducted, CAM5 is coupled to a land surface model Community Land 150 

Model version 4.0 (Oleson et al., 2010) and uses prescribed sea surface temperatures and sea ice concentrations.  

In this study, SPCAM is used to generate the training data. In SPCAM, a two-dimensional (2-D) CRM is embedded in 

each grid column of the host CAM as SP. The 2-D CRM has 32 grid points in the zonal direction and 30 vertical levels that 

are shared with the host CAM. The CRM handles convection and cloud microphysics to replace the conventional 

parameterization schemes, and the radiation is calculated on the CRM subgrids to include the cloud-radiation interaction at 155 

cloud scale (Khairoutdinov et al., 2005), referring to CRM radiation hereafter. The other physical processes). Under realistic 

configuration, the planetary boundary layer process, orographic gravity wave drags, and the dynamic core are computed on 

the CAM grid as usual. One conceptual advantage of using SPCAM as the reference simulation is that the subgrid and grid-

scale processes are clearly separated, making it easy to define the parameterization task for an ML algorithm (Rasp, 2020). 

2.2 NN-Parameterization 160 

In the NNCAM, a DNN emulator is trained with the target data from the 2-D CRM and CRM radiation to achieve better results 

than the CAM5 with conventional parameterizations. In the following section, we refer to this DNN emulator as the NN-
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Parameterization. As shown in Figure 1, the NN-Parameterization replaces the CRM moist physics and radiation calculations 

in SPCAM. It is coupled with the dynamic core and other parameterization schemes in each time integration loop in NNCAM. 

NN-Parameterization is a challenging deep learning application. It integrates the NNs into a scientific computing program 165 

for continuous time integration. In the numerical model system, the prediction errors of the NNs are at the risk of being 

amplified by the continuous iterations with the dynamic core and other physical processes, causing model state drift and even 

model crashes in NNCAM. This is expected to be more difficult in the GCMs with real land-ocean distributions. Because of 

the energy exchange between the land and the atmosphere, the nonlinearity of the simulation system is more complicated than 

the idealized aqua-planet models, bringing more uncertainties and more numerical sensitivities. In this section, we propose a 170 

DNN based Parameterization that can fit the grid average of the 2-D CRM data in SPCAM, and on this basis, achieve high 

computational performance and stable time integration. 

2.2.1 Data sets 

The NN-Parameterization, as is a deep learning emulator of the CRMSP and the CRM its cloud-scale radiation effects in 

SPCAM, is designed to replace physics processes in the host CAM5, including deep and shallow convection, cloud 175 

microphysics and macrophysics, and radiation.. Therefore, the inputs of this emulator are borrowed from CRM inputs the SP 

input variables such as the grid-scale state variables and forcings composed of the dynamic core and the planetary boundary 

diffusion. They are the, including specific humidity !!, temperature T, largescale water vapor forcing ""#!"$ #%&and temperature 

forcing ""'"$#%&. Additionally, we select surface pressure $& and solar insolation (SOLIN) at the top of the model from the 

radiation module. The outputs of NN-Parameterization are subgrid-scale tendencies of moisture ""#!"$ # and of temperature ""'"$# 180 

at each model level as well as net shortwave and longwave radiative fluxes at both the surface and the TOA. This heating is 

composed of moist heating in the CRMSP and the GCM-grid-averaged SP radiative heating from the CRM radiation module. 

Since we use the real geography, we also. Also, it is important to include direct and diffuse downwelling solar radiation fluxes 

as output the NN-Parameterizationvariables to force the coupled land surface model, which is critical to improve the 

performance of the NNCAM. Specifically, they are solar downward visible direct to surface (SOLS), solar downward near 185 

infrared direct to surface (SOLL), solar downward visible diffuse to surface (SOLSD), and solar downward near infrared 

diffuse to surface (SOLLD). Those downwelling solar radiation fluxes with separation of direct versus diffusion are introduced 

for different land cover types and processes in the land surface model (Mooers et al., 2021). TheIn the end, the precipitation is 

derived from column integration of predicted moisture tendency to keep basic water conservation.  

       The large-scale forcings are commonly not included in previous studies with aqua-planet configuration. However, under 190 

realistic configuration, such forcings are composed of the dynamics and the planetary boundary layer diffusion, thereby 

carrying critical information about the complex background circulations and surface condition. Similarly, those downwelling 

solar radiation fluxes with separation of direct versus diffusion records the received solar energy by the coupled surface model 
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with different land cover types and processes (Mooers et al., 2021). If not included, the land surface is not heated up by the 

sun, therefore, seriously weaking the sea and land breeze and monsoon circulations. 195 

Table 1 lists the input and output variables and their normalization factors. There are 30 model levels for each profile 

variables. Therefore, the input vector consists of 122 elements for 4 profile variables and 2 scalars, while the 68-element output 

vector is made of 2 profiles and 8 scalars. All input and output variables are normalized to ensure that they are in the same 

magnitude before they are put into the NN-parameterization for training, testing, model prognostic validation. The 

normalization factor for each variable shown in the supplemented codebase is determined by the maximum of its absolute 200 

values.  

In this study, the target model SPCAM is run for 3 yearsThe training dataset used by all considered NNs is 40% temporally 

random sampled from the 2-year SPCAM simulation from January 1, 1997 to December 31, 1999 with a time step of 30 min. 

The first year of SPCAM simulations1998. Notably, random sampling is for spinup,only done in the secondtime dimension 

but not in latitude and third years are for training, with a total of 484 millionlongitude, including all 13,824 samples. In from 205 

global grid points for each selected time step. To avoid any mix or temporal connection between the training process, 64% of 

the data are randomly selected for training set and 16% is foroffline validation in every training epoch to monitor the 

performance and to prevent overfitting, and the remaining 20% of the data are used for testing. 

2.2.2 Multi-Target ResMLP 

In this study, the NN-Parameterization is an isolated column subgrid parameterization. This means that the inputs and 210 

outputs of NN-Parameterization are both 1-D vectors. Compared with machine learning tasks such as computer vision and 

natural language processing, the data input and output of NN-Parameterization are relatively simpler. Thereforeset, we choose 

the commonly used multilayer perceptron (MLP) to achieve a better generalization. random sample 40% timesteps from the 

SPCAM simulation in the year 2000 as offline validation set in the sensitivity test. 

2.2.2 A ResDNN Set 215 

In the development of the NN parameterization -Parameterization scheme, it is found that the NN has awhen different 

fitting capability forvariables are used as the output of the neural network, the training difficulty is quite different types of 

output variables. It usually has higher accuracy in predicting radiative. Especially, the neural network's ability to fit the 

radiation heating and scalar fluxes and temperature tendency, while the accuracy is lower in predicting moisture tendencyis 

significantly stronger than the tendencies variables. This is also found in Gentine et al. (2018), in which the coefficient of 220 

determination (R2) of radiative heating tendency is higher than that of moisture tendency at most model levels. The physical 

processes behind the data representing convection and radiation are different, introduce high nonlinearity in the NN-

Parameterization. 

The distribution of different physical variables also varies greatly. UsingWe believe that using a single NN with one target 

to train the relatively independent physicalall variables, i.e., moisture tendency, temperature tendency, and radiation fluxes, 225 
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inevitably causes mutual interference. Since gradient descending is applied to optimize the network in training, mutual 

interference between different targets is expected to cause the cancel out of gradient directions used for descending (Crawshaw 

et al., 2020; Zhang et aland Yang., 2021) and ultimately affect the convergence of the network. 

As shown in Figure 2, we divide the single network prediction target, a single stacked 1-D output, into multiple targets, and 

We use multiple NNsdifferent neural networks to train these targets separatelythe tendency of moisture and temperature, and 230 

radiation fluxes, respectively. By doing so, we avoid the gradient cancellation between multiple targets and improve the 

convergence speed and fitting accuracy when training the network. As described in Section 3.1, when using the same network 

configuration, radiation fluxes are trained much easier with higher accuracy than tendencies of moisture and temperature. We 

admit that putting heating and moistening rate in two different NNs arbitrarily cut physical connections between them. But 

this separation is surely doing training more easily in the developing stage. 235 

After dividing multiple targets, the learning target of NN-Parameterization still contains a lot of nonlinear information. 

This research attempts to construct a deeper neural network so that NNs can have stronger nonlinear fitting abilities. As the 

depth of a fully connected neural network increases, its performance becomes saturated and begins to decline when the depth 

increases further (HeIn this study, to mimic the column-independent SP and its radiation effects, the input and output of NN-

Parameterization have to be both 1-D vectors. This means that the data input and output of NN-Parameterization are much 240 

simpler than those in the existing mainstream machine learning problems, such as image recognition and text-speech 

recognition, so it is impossible to apply most of the existing complex neural networks directly. Taking the convolutional neural 

network CNN as an example, the study of Albawi et al. (2017) shows that CNN has more advantages than DNN in the learning 

of large-scale images. The problem we face is that the input is a 122-dimensional vector stitched by multiple different physical 

quantities with only 4 30-element 1D profiles plus 2 scalars, which cannot meet the requirements of “large-scale” (generally 245 

at least 32×32 two-dimensional images). So, there is no need to use CNN. Hornik et al. (1989) proved that a single-layer neural 

network can approximate any function. Although the problem that NN-Parametrization needs to deal with is highly nonlinear, 

from the point of view of machine learning, it is essentially a mapping problem from a 122-element 1D-vector to a 1D-vector 

with a length of 68. According to the universal approximation theorem, DNN is feasible. Therefore, when constructing NN-

Parametrization, we first tried to use DNN for fitting, and introduced residual connections to extend DNN to ResDNN. 250 

After numerous experiments, we got the best hyperparameters of DNN and ResDNN. When training a Fully connected 

DNN, the hidden layer width of the network should be set to 512, and the network depth should not exceed 7, otherwise it will 

affect the convergence of the DNN. In order to make the neural network capture more non-linear information, enhance the 

fitting ability. We introduce skip connections to extend the 7-layer DNN to 14-layer ResDNN. The network structure of 

ResDNN is shown in Figure 1. In the training process, both DNN and ResDNN use an initial learning rate of 0.001 and a 255 

learning rate decaying strategy as cosine annealing (Loshchilov et al., 2016) without dropout and L2 regularization. Adam 

(Kingma and Ba, 2014) is chosen as the optimizer to minimize the mean squared errors (MSEs). The results in Figure 2 show 

that ResDNN can fit data is significantly better than DNN, with details described in Section 3.1. At the same time, the 

sensitivity tests in section 3 also prove that no DNN model can ensure the stable simulation of NNCAM. So, we chose 
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ResDNNs sets as stable candidates to build NN-Parameterization. After obtaining all well-fit ResDNN sets, the next step is to 260 

couple the candidates into NNCAM one by one for prognostic tests and find sets that can support stable simulation. To 

complete this extremely challenging task, we have more than 50 prognostic tests. All experiments and analyses on stability 

will be introduced in section 3 as well. 

 et al., 2016). For this reason, we use residual blocks to solve the problem of network degradation. By testing different 

depths and widths, we finally determined the network architecture for the optimal performance. As shown in Figure 3, a total 265 

of 7 residual blocks are used to form a deep neural network, and each residual block includes two 512 node-wide dense layers 

connected with a layer jump. Therefore, the deep neural network that has 14 layers with 3.5 million parameters is named 

ResMLP hereafter. As shown in Figure 4, under multi-target training with the same hyperparameters, ResMLP’s fitting 

accuracy (R2) for different output variables is better than MLP, achieving a balanced prediction result, that is, the R2 of each 

variable is as close to 1 as possible, especially tendencies of moisture and temperature.  270 

Ott et al. (2020) found that on aqua-planet, the fitting accuracy of an NN-Parameterization is positively correlated with 

the stability of prognostic validation. In the real-world prognostic validation, we also find that the fitting accuracy of NN-

Parameterization has an important impact on stability. When NN-Parameterization is under-fitting, NNCAM can only run for 

a few days before it crashes. To obtain a feasible NN-Parameterization, a well-fit is necessary. As shown in Table 2, after 

multiple trials, we determine the hyperparameter configuration of ResMLP for high fitting accuracy. It can support NNCAM 275 

to run stably for at least several months. 

However, we find that a high R2 may not guarantee the stability of real-world prognostic validation. We have trained 

several groups of ResMLPs with doubled samples and epochs, having their R2 increased by 1% to 2%. Surprisingly, NNCAM 

using these ResMLPs crashed even earlier than before. As a result, high fitting accuracy is necessary but not sufficient for both 

high performance and long-term simulations. In this work, we proposed a trial-and-error method to effectively find the optimal 280 

neural network that can guarantee both multi-year and high performance simulations. Firstly, we used the hyperparameter 

configuration of Table 2 as a baseline and prepared 50 groups of ResMLPs with similar R2 as candidate models using different 

train samples and epochs. Secondly, we conducted comprehensive prognostic tests on these candidate neural networks and 

obtained the feasible NN-Parameterization schemes that can support NNCAM’s stable simulation for multiple years. To our 

knowledge, running the relatively shorter NNCAM simulation is enough to screen out the feasible networks for stable 285 

simulations since we found that the ResMLP groups that cannot support long-term integration made NNCAM to collapse 

within half a year of simulation; and the feasible groups, on the other hand, coupled stably in NNCAM for the first half a year 

and showed no sign of crashes in the 10-year prognostic simulation. Finally, the optimal NN-Parameterization was selected 

for the best performance ResMLP group among the feasible candidats. 

2.2.3 Implementation of NN-Parameterization 290 

After being fully trained with CRM data, theThe NN-Parameterization is implemented into SPCAM to replace both the CRM 

and CRMbased superparameterization and its radiation effects on the basis of coarse grid average. In the beginning of each 
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timestep, NNCAM calls the NN-Parameterization and predict the moisture tendency ""#!"$ # , the temperature tendency ""'"$# 

and radiation fluxes. Then the DNN predictions are returned to NNCAM, updating the model states and fluxes. Additionally, 

the surface total precipitation is derived from column integration of the predicted moisture tendency. The near -surface 295 

conditions of the atmosphere and downwelling radiation fluxes are transferred to the land surface model. After the coupling 

of the land surface model and the prescribed SST, the host CAM5 performs the planetary boundary layer diffusion and let its 

dynamic core complete a timestep integration (Figure 1). In the next timestep, the dynamic core returns the new model states 

to the NN-Parameterization as inputs again. During the whole process, NN-Parameterization and GCM will constantly update 

each other’s status. How to couple the NN Parameterization (DNN) with GCM and run efficiently and effectively is the key 300 

ofto the implementation of NNCAM. To solve these problems, we develop the DNNNN-GCM coupler that integrates 

DNNNNs into NNCAM, which will be introduced in the following section. 

2.3 The DNNNN-GCM Coupler 

Deep learning research mainly uses machine learning frameworks based on Python interfaces to train neural network models 

and deploy them through C++ or Python programs. While GCM is mainly developed in Fortran, it is a very challenging work 305 

to call a neural network model based on Python/C++ interface in GCM codes written in Fortran. Solving the problem of code 

compatibility between DNNNN and GCM can significantly help develop DNNNN based Parameterizations for climate models. 

To implement a DNNNN based Parameterization in current climate model which is mostly developed in Fortran, many 

researchers try to get the network parameters (e.g., weight, bias) from the machine learning models and implement the DNNNN 

models (e.g., DNNs) with hard coding in Fortran. At runtime, NNCAM will call DNNa NN parametrization as a function 310 

(Rasp et al., 2018; Brenowitz and Bretherton, 2019). Recently, some researchers have developed a Fortran-neural network 

interface that can be used to deploy DNNs into GCMs (Ott et al., 2020). This interface can import neural network parameters 

from outside of Fortran program, and the Fortran-based implementation ensures that it can be flexibly deployed in GCMs. 

However, embedding DNNa NN parameterization in NNCAM is still a troublesome task with no existing coupling framework 

to support many of the latest network structures. This problem will restrict developers from building more powerful DNNsNNs 315 

and deploying them in NNCAM. 

In this research, we regard NN-Parameterization as a component model coupled to NNCAM. We develop the coupler to 

bridge NN-Parameterization with the host CAM5. Through this coupler, the neural network can communicate with the dynamic 

core and other physical schemes in NNCAM in each time step. When NNCAM is running, as shown in ①	in Figure 5, the 

coupler receives the state and forcing output from dynamic core in Fortran based CAM5. For each input variable, we use the 320 

native MPI interface in CAM5 to gather the data of all processes to the master process into a tensor. Then, as shown in ②	of	
Figure 5, the coupler will transmit the gathered tensor through the data buffer to the NN-Parameterization running on the same 

node as the master process. The NN-Parameterization gets the input, infers the outputs, and transmits them back to the coupler. 

As shown in ③	of	Figure 5, the coupler will first write these tendencies and radiation fluxes back to the master process and 
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then broadcast the data to CAM5 processes running on the computing nodes through the MPI transmission interface. Therefore, 325 

other parameterizations get the predictions from NN-Parameterization to complete the follow-up procedures (④ in Figure 5).  

In practice, the DNNNN-GCM Coupler introduces a data buffer that supports system-level interface, which is accessible 

by both Fortran based GCM and Python based DNNNN without supplementary foreign codes. This can avoid code 

compatibility issues when building Machine Learning coupled numerical models. It supports all mainstream machine learning 

frameworks, including native PyTorch and TensorflowTensorFlow. Based on the coupler, one can efficiently and flexibly 330 

deploy the Deep Learning Model in NNCAM, and can even take advantage of the latest developed neural networks. 

All neural network models deployed through DNNNN-GCM Coupler can support GPU accelerated inference to achieve 

excellent computing performance. In this study, we ran SPCAM and NNCAM on 196192 CPU cores. NNCAM also used 2 

GPUs for acceleration. During the NNCAM runtime, each time step of NNCAM requires NN-Parameterization to complete 

an inference and conduct data communication with NNCAM. This is a typical high-frequency communication scenario. We 335 

evaluated the amount of data (about 20MB for CAM5 with the horizontal resolution of 1.9°×2.5°) that needs to be transmitted 

for each communication, and determined to establish a data buffer on a high-speed solid-state drive to ensure a balance of 

performance and compatibility. It takes about 1x10
-2

 seconds to access the data buffer in each time step, which is enough to 

support the efficient simulation of NNCAM. The Simulation Years per Day (SYPD) of NNCAM based on DNNNN-GCM 

Coupler has aan impressive performance improvement, when using 192 Intel CPU cores, the SYPD of nearly 30x compared 340 

to SPCAM, and reaches half is 0.3, the speedSYPD of CAM5 is 20, and the SYPD of NNCAM is 10. It is worth noting that, 

NNCAM based on NN-GCM coupler uses an additional GPU to accelerate NN-Parameterization. When NN-GCM Coupler is 

not used, NN-Parameterization is implemented by Fortran and accelerated by Fortran-based Math Kernel Library, the SYPD 

is 1.5. 

3 A Road to Stability 345 

3.1 Sensitivity Tests and Trial-and-error 

To develop a stable NN parameterization, we propose a ResDNN set, where each neural network is responsible for predicting 

a class of variables (see section 2.2.2). One may wonder whether the ResDNN architecture is necessary and whether offline 

accuracy of NNs matters in online stability. This section tries to deal with the questions via a series of sensitivity tests.  

To prove the necessity of the ResDNN architecture, we use the 7-layer DNN as the control group. We do not include 350 

other types of ML architecture, since random forest is less likely to perform as accurately as neural networks and cannot be 

implemented in GPUs (Yuval et al., 2021), and 1D CNN is not widely used in other studies except Han et al. (2020) with 

unknown prognostic performance.  

The prognostic tests of NN parameterization begin at 1998-01-01 as a startup. As initialization, calling the SP in SPCAM 

at the first step is required to generate the correct largescale forcings as the input for NN parameterizations. In the sensitivity 355 

test, we freeze the ResDNN for the 8 radiation fluxes to simplify the neural network choices, since their offline validation is 
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extremely accurate with  ,( above 0.98 over 50 training epochs (Figure 2b). Different from the accurately trained radiation 

fluxes, the tendencies of temperature and moisture are less accurate and can hypothetically affect the prognostic performance. 

To evaluate the tendency of moistening and heating in one metric, we introduce the MSE of moist static energy changing rate 

(-ℎ = 0)-1 + 3!-!!) as:  360 

456* =	7+, (-ℎ-- − -ℎ./012)∆<7(,                                                            (1) 

where	=	is the gravity constant, 0) refers to the heat capacity of air, 3! is the latent heat of water vapor, and ∆< is the layer 

thickness. Multiple ResDNN pairs for dqv and dT and DNN pairs are trained from 5 epochs to 50 epochs, carrying different 

offline validation accuracy.  

Figure 4 shows the offline validation 456* versus the prognostic steps. First, DNN parameterizations (blue triangles) 365 

are systematic less accurate than ResDNN ones (blue dots and black inverted triangles), which is consistent with Figure 2a. 

They cannot run stably in prognostic tests with the best DNN parameterization to sustain half a year of simulation. For the 

ResDNNs, the less well-trained ones with high MSE crash for a shorter simulation period than DNNs. However, when the 

offline MSE decreases to a certain level (e.g., 290 >(/@3
), some of the ResDNN parameterizations are stable for extreme 

long-term simulations, while others remain unstable. 370 

Generally, a NN parameterization that can support long-term integration should have both good generalization abilities 

and high accuracy for training and validation. Above all, sufficient accuracy is necessary for all neural networks. From Figure 

4, it can be interpreted that a vague threshold exists in the validation MSE. ResDNNs can be trained for higher accuracy since 

they are much deeper than DNNs with much higher model capacity. So, they are more competent than DNNs in this job. On 

the other hand, studies showed that high-capacity models are harder to train and more likely to overfit (Goodfellow et al., 375 

2016). 3Thus, the prognostic stability differences between less well-trained ResDNNs and the well-trained ones are drastic 

compared with DNNs. Also, some overly trained ResDNNs with lowest validation loss are speculated to overfit. Those 

overfitting models are less likely to generalize to unknown backgrounds caused by accumulated errors in the ML-GCM system, 

ending up model crashes. However, those are just intuitive experiences but not guarantee ways for stability. 

In the time evolution of the global averaged total energy (Figure 5). The system energy grows exponentially and then 380 

blows up for unstable ResDNN parameterizations (the red and orange lines). In contrast, the stable ones can keep the total 

energy at a certain level and reproduce the annual cycle fluctuations in SPCAM. Among the stable ResDNN schemes, some 

can get nearly a perfect reproduction of the total energy evolution of SPCAM (the blue line), while some inaccurately simulate 

the climate state with a large deviation (green line). Therefore, among the accurate ResDNN parameterizations (e.g., offline 

validation 456* < 	290	>(/@3
), we still have to use the trial-and-error to filter out unstable ones and then select the best 385 

ResDNN pair for moistening and heating rate that can reduplicate the total energy time evolution of SPCAM with the least 

deviation. We name this best ResDNN pair together with the ResDNN in charge of radiation fluxes the NN-Parameterization. 

This NN-GCM coupled model is called NNCAM and is later evaluated for climate mean states and variability. 
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3.2 Gravity Wave Diagnosis 

It is still a question of why unstable NN parameterizations blow up models. The fast-growing energy of the unstable runs 390 

indicates a possible underlying unrealistic energy amplifying mechanism in the NN-GCM coupled system. Brenowitz et al. 

(2020) offered interpretations. When an unstable NN parameterization is coupled with dynamics, it tends to amplify any 

unrealistic perturbation caused by emulation errors and pass it to the entire system through gravity waves. In contrast, the 

stable NN parameterizations tend to dump all the perturbs quickly. This is true in our study with realistic configuration. Such 

unstable gravity waves are observed in the prognostic simulation of an unstable ResDNN (the red line in Figure 5). The 395 

animation in Movie S1 records the first unrealistic wave and Movie S2 documents more intense waves afterward with a 

perfectly round shape. Brenowitz et al. (2020) also introduced an analysis tool that calculates wave energy spectra of a 

hierarchy model that couples the linear response functions (LRF) of a NN parameterization to a simplified two-dimensional 

linear dynamic system, where perturbations can propagate in 2D gravity waves. We apply the tool in our study and detect 

similar results of unstable mode for the unstable ResDNN with positive energy growth rate across all wave numbers at phase 400 

speed between 5 m/s to 20 m/s (Figure S1b). While the stable ResDNN shows a stable mode with the growth rate of nearly all 

wave numbers and phases below zero (Figure S1a). 

4 Offline Validation of NN-Parameterization 

To assessBefore evaluating the prognostic results, demonstration of offline performance with geographic information is needed 

for the following purposes: 1) To show how well the NN-Parameterization learns the subgrid tendencies from the CRM and 405 

its effects on radiation in SPCAM, weour NN-Parameterization emulates the SP in realistic configuration compared with 

baseline CAM5 physics and with previous studies. 2) To reveal the strength and weakness of NN emulations with correct input, 

give clues to the analysis of prognostic results in the following section. We performed offline testing with a realistically 

configurated SPCAM from January 19971
st
 1999 to December 199831

st
 2000, where NN-Parameterization is diagnostically 

run paralleled to the CRM in SPCAM.SP, and so does the CAM5 physics. The results over the entire second year of 1998the 410 

period are chosen for evaluation. As suggested, completely independent from the training dataset. Following the conventions 

in Han et al. (2020) and Mooers et al. (2021), faced with the diverse realistic boundary condition, it is necessary to conduct 

such evaluation before prognostic experiments. We(2021), we choose mean fields and coefficient of determination (,() as the 

two metrics in the offline testingfor evaluations. 

The mean diabatic heating and drying rates produced by convection and large-scale condensation in SPCAM and NN-415 

Parameterization are in close agreement. Figure 6 shows the latitude-height cross-sections of the annual mean heating and 

moistening rates in SPCAM and the corresponding NN-Parameterization. At 5 °N, SPCAM shows maximum latent heating in 

the deep troposphere, corresponding to deep convection at the ITCZ. In the subtropics, there is heating and moistening in the 

lower troposphere, corresponding to stratocumulus and shallow convection in the subtropics. In the midlatitudes, there is a 

secondary heating maximum below 400 hPa due to midlatitude storm tracks. All these features are well reproduced by NN-420 
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Parameterization. Note that in the midtroposphremidtroposphere, the ITCZ peak in the drying rates is slightly weaker in NN-

Parameterization compared with that of SPCAM (Figure 6c and 6d).  

In addition to the mean fields, the high prediction skill of NN-Parameterization is also shown in the spatial distribution 

of ,(. We choose pressure-latitude cross-sections to betterTo demonstrate ,( for the 3D variables such as diabatic heating and 

moistening. Therefore,, same as Mooers et al. (2020), zonal averages are calculated in advance. before ,( calculation for each 425 

location in the pressure-latitude cross-section. For diabatic heating, ,( is above 0.7 over the entire mid to low troposphere, 

and the high skill regions with ,( greater than 0.9 concentrates in low levels but are extended to mid-troposphere in storm 

tracks (Figure 7a). As for the moistening rate, the high skill zones concentrate in the mid to upper troposphere (Figure 7b), 

leaving low skill areas below. Those regions with low accuracy are generally locatelocated in the mid to low troposphere in 

tropics and subtropics, corresponding to deep convection at ITCZ and shallow convection in subtropics. Nonetheless, the 430 

tendencies from diagnostic CAM5 parameterization hardly draw any similarity to those simulated by the SP except for a few 

locations in the mid to upper troposphere in tropics and polar regions (Figure 7c & 7d).  

The global distribution of ,( for the derived precipitation predictions is shown in Figure 8. Our NN-Parameterization 

shows a great prediction skill globally, especially in the midlatitude storm tracks. The prediction skill is relatively low in many 

areas between 30°S to 30°N and some midlatitude continents. In (Figure 8a), in particular, the prediction skill of precipitation 435 

is not ideal in the ITCZ deep convection regions. Moreover, for shallow convection in Subtropical Eastern Pacific and 

Subtropical Eastern Atlantic, the precipitation prediction skill hits bottom, corresponding to the subtropical low skill zones for 

moistening rate (Figure 7b).6b). On the other hand, the total precipitation simulated by CAM5 parameterizations is much less 

analogous to the SP than NN-Parameterization with a systematically lower accuracy globally. CAM5 precipitation can reach 

a relatively high accuracy along the mid-latitude storm tracks but fail most regions in the tropics.  440 

Generally, NN-Parameterization shows high performance performs far better than CAM5 parameterization in the 1-year 

offline testing regarding mean fields and fitting ,(. As suggested in previous studies, manually tunned fully-connected neural 

networks often fail and shows similar accuracy as the missionDNN in Mooers et al. (2020). The real-geography data can 

significantly decrease the emulation skill of fitting variables in realistically configurated simulationsa deep learning model 

(Mooers et al., 2021). NN-Parameterization succeeds in fitting diabatic heating and moistening rate, which suggests that, with 445 

a multi-target framework and the implementation of residual blocks, a well-designed DNN has a great potential), where the 

convection backgrounds are much more complex with meridional and zonal asymmetric and seasonal variated circulations, 

not to mention the orograph and various types of underlying land surface. In that case, the ResDNN is a valuable NN 

architecture that can bring good performance as the automated hyperparameter tuning algorithm without searching for 

hundreds of serving as a replacement of convection and cloud parameterization. Low accuracy of DNN predictionNN 450 

candidates. Still, our NN-Parameterization is exposed to low accuracy predictions in subtropical shallow convection areas is, 

a great challenge for machine learning emulation of moistening rate and precipitation. Similar results are noted in previous 

studies (Gentine et al., 2018 & Mooers et al., 2021). However, even with this shortcoming, NN-Parameterization still manages 

to carry in multi-year prognostic simulations with reasonable results shown in the coming Section 4. In those regions, the local 
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variance/std is close to zero. But the NNs in our study are trained in the loss function of mean squared error, which is not 455 

sensitive to small values. 

45 Long-term Prognostic Validation 

As described in Section 2.2, NN-Parameterization is selected for best prognostic performance in Section 3.1. It is coupled in 

NNCAMthe realistic configurated SPCAM to replace the conventional deep and shallow convection, microphysics and 

macrophysics, and SP and its cloud-scale radiation parameterizations. At the same time, the planetary boundary layer diffusion, 460 

as well as the dynamic core are still kept in the host GCM. Starting with the SPCAM checkpoint on July 1,effects. This coupled 

model is called NNCAM afterwards and is compared with SPCAM and CAM5. All three model starts at January 1
st
 1998, 

NNCAM is  as start up. They are all run for 96 years with the first year for spin up and a half to December 31, 2007. After a 

spinup for half a year, we choose the next four5 years from January 1,1
st
 1999 to December 31, 200231

st
 2003 for evaluation. 

Although long-term stable run of NNCAM is achieved, a very slow climate drift is still inevitable. Thus, we do not put the last 465 

and comparison. Later, the simulation of NNCAM is extended for another 5 years into analysis. In addition, as the referencing 

target model, SPCAM is only run from January 1, 1997 to December 31, 1999 dueto December 31
st
 2008 to show its stability. 

Due to excessive computing resources consumption. We gather the results of the last two years to compare with NNCAM 

simulations. CAM5, as, the coarse-grided conventional parameterized control model, is run from January 1, 1998 to December 

31, 2002. Similarly, the first year is for spinup and the last four years for analysis.simulation of SPCAM is not get extended. 470 

In analysis of prognostic results, the following are selected for demonstration of climatology and variability: multi-year mean 

fields of temperature and humidity, precipitation, precipitation frequency distribution, and the Madden Julian Oscillation. 

45.1 Climatology 

5.1.1 Vertical profiles of temperature and humidity 

In this section, we first evaluate the vertical structure of the mean temperature and humidity. Figure 9 presentsshows the 475 

zonally averaged vertical profiles of air temperature and specific humidity as simulated by the NNCAM and the CAM5, in 

contrast to the SPCAM simulations. Overall, the NNCAM does an excellent job in reproducing thesimulate reasonable thermal 

and moisture structure. The resulting However, it is shown that NNCAM has some biases in mean state infields of temperature 

and specific humidity of NNCAM closely resembles SPCAM throughout the troposphere., which is shown as larger root mean 

squared errors (RMSEs) or larger differences than CAM5 (Figure S2).  The larger deviations are temperature biases in the 480 

tropopause, where the cold-point region is thinner and warmer in NNCAM than in SPCAM and CAM5. In addition, there are 

cold biases above 200 hPa and warm biases blow over polar regions and in NNCAM. For the humidity field, there are slight 

dry biases over the equator in NNCAMand wet biases elsewhere in NNCAM. Even with the biases, the climate mean states 

are consistent with those in the last 5-year simulation for NNCAM (Figure S3), which indicates almost no climate drift in the 

long-term simulation. 485 
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45.1.2 Precipitation 

Figure 10 shows the spatial distributions of winter (December-January-February) and summer (June-July-August) mean 

precipitation simulated by SPCAM, NNCAM, and CAM5, with. The SPCAM simulation results are regarded as reference 

precipitation. In SPCAM (Figure 10a and 10b), massive precipitation can be found in regions of Asian monsoon and 

midlatitude storm tracks over the northwest Pacific and Atlantic oceans. In the tropics, the primary peaks of rainfall are in the 490 

eastern Indian Ocean and Maritime Continent regions. Furthermore, two zonal precipitation bands are located at 0°–10°N in 

the equatorial Pacific and Atlantic oceans, constituting the northern ITCZ. The southern South Pacific Convergence Zone 

(SPCZ) is mainly located around 5°S–10°S near the western Pacific warm pool region and experiences a southeast tilt as it 

extends eastward into the central Pacific. The main spatial patterns of SPCAM precipitation climatology are properly 

reproduced by both NNCAM and CAM5. In NNCAM, strong rainfall centers are well simulated over the tropical land regions 495 

over Maritime Continent, the Asian monsoon region, and South America and Africa (Figure 10c and 10d). In addition, the 

heavy summertime precipitation over the northwesternNorthwestern Pacific simulated by SPCAM is well represented in both 

SPCAM and NNCAM (Figure 10b10a and 10d10c). In CAM5, there is too little precipitation over that area (Figure 10f), which 

is a common bias in many GCMs. However, the equatorial region is too dry in10e). Moreover, NNCAM, especially over sea 

surface area in boreal winter can maintain the spatial pattern and global average of precipitation in the next 5-year simulation, 500 

reassuring its long-term stability (Figure 10c). S4). 

Figure 11 shows the annually averaged zonal mean precipitation from SPCAM, NNCAM, and CAM5. NNCAM generally 

reproduces very similar latitudinal variations to that of SPCAM, but with weaker precipitation intensity near the equator. 

Precipitation of both NNCAM and CAM5 agrees with SPCAM in global annual averages (Figure 11a). NNCAM results even 

come closer with SPCAM than CAM5 in boreal summer (Figure 11f). In ANN and DJF average, precipitation of NNCAM is 505 

underestimated over tropical continents but overestimated in subtropical land regions compared with SPCAM targets (Figure 

11d, e). When the ocean areas are included, the SPCZ in NNCAM is excessively separated from the ITCZ in boreal winter. Its 

precipitation center south shifted, resulting in a minimum zone of equatorial precipitation (Figure 11b). NNCAM shows 

moderate precipitation prediction biases in some latitudes in the tropics which are corresponding to the low skill regions of 

tropical and subtropical moistening rate and rainfall in Section 3. In our speculation, the weaker drying tendencies of the ITCZ 510 

midtroposphre from the NN parameterization causes separated convergence zones, leading to underestimation of equatorial 

rainfall rate. 

Generally, NNCAM draws more similarity to SPCAM than CAM5 in spatial distribution of summertime multiyear 

precipitation with smaller RMSE and global averaged biases. However, in the difference plot (Figure 11), NNCAM moderately 

underestimates precipitation along the equator, Indian monsoon region, and maritime continent in summer (Figure 11a). In 515 

boreal winter, NNCAM simulates a weak and excessively separated SPCZ from ITCZ, with both precipitation centers shifting 

away from each other. As a result, we detect underestimation in the equatorial regions of the maritime continent as well as the 

SPCZ but overestimation on the north of the equator in the West Pacific (Figure 11b), which makes NNCAM less resemble 



 

17 

 

SPCAM than CAM5 in this season. This simulation biases in NNCAM are speculated linked to the weaker drying tendencies 

of the ITCZ midtroposphere from the NN parameterization and low accuracy of NNCAM predictions in tropics. 520 

5.2 Variability 

5.2.1 Frequency Distribution of Precipitation 

Moreover, NNCAM shows better performance in simulating precipitation extremes. Figure 12 shows the probability densities 

function of simulated daily precipitation in the tropics (30°S−30°N) with a precipitation intensity interval of 1 mm day
-1

. In 

CAM5, the frequency of light rainfall events with values smaller than 1 mm day
-1

 is lower than that in SPCAM, and heavy 525 

precipitation events exceeding 20 mm day
-1

 are insufficient.greatly underestimated. In addition, light to moderate precipitation 

events between 2−20 mm day
-1

 are overestimated with an unreal probability peak around 10 mm day
-1

 in CAM5, which is a 

typical simulation bias found in simulations with parameterized convection but not in explicitly resolved convections 

(Holloway et al., 2012). Compared with CAM5, the spectral distribution of precipitation in NNCAM is much closer to SPCAM. 

Both light and heavy rainfall events are substantially enhanced, and the overestimated precipitation occurrence between 2−20 530 

mm day
-1 

is reduced. In addition, NNCAM avoids the unreal probability peak around 10 mm day
-1 

appeared in CAM5, which 

is a common simulation bias found in simulations with parameterized convection but not in explicitly resolved convections 

(Holloway et al., 2012). with no spurious peak around 10 mm day
-1

.  

4.35.2.2 The MJO 

The MJO is a crucial tropical intraseasonal variability at the time scale of 20–100 days (Wheeler and Kiladis, 1999). Figure 535 

13 presents the wavenumber and frequency spectra for equatorial precipitation daily anomalies from SPCAM, NNCAM, and 

CAM5 in 4 consecutive boreal winter from 1999 to 2003. SPCAM shows a concentration ofwidespread power signals over 

zonal number of 1-4 and periods between 20-100 plus a peak around at zonal numbers of 1−3 and periods of 30−4070-100-

day for eastward propagation (Figure 13a). InSimilarly, in NNCAM, there is a spectral peak at the wavenumbers of 1−2 and 

longer periods of greater than 50-80 days (Figure 13b). There is also a second spectral peak with comparable wavenumbers at 540 

50−80-day periods for eastwardeast propagation, (Figure 13b), exhibiting intense intraseasonal signals.  For CAM5 (Figure 

13c), the spectral power is concentrated around 30-day and more extended periods (greater than 80 days) at wavenumber 1 for 

eastward propagation. In addition, CAM5 also shows signals of westward propagation around 30-day period. Compared with 

CAM5, NNCAM shows stronger intraseasonal power and resembles SPCAM better. To quantify this similarity, we calculate 

the coefficient of determination ,( of the precipitation spectrum in NNCAM and CAM5, using the spectrum in SPCAM as 545 

the target value. The precipitation spectrum ,( in NNCAM (0.51) is much higher than that in CAM5 (0.40). 

The MJO is characterized by the eastward propagation of deep convective structures with an average phase speed of 

around 5 m s
-1

 along the equator. Generally, it generally forms over the Indian Ocean, strengthens over the Pacific, and weakens 

in the eastern Pacific due to interaction with cooler SSTs (Madden and Julian, 19711972). Figure 14 presents the longitude-
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time lag evolution of 10°S−10°N meridional averaged daily anomalies of intraseasonal (filtered with 20-100 day bandpass) 550 

precipitation anomalies.and 200 hPa zonal wind (U200) in boreal winter. The results show that both SPCAM and NNCAM 

and CAM5 reasonably reproduce the eastward propagating convection from the Indian Ocean across the Maritime Continent 

to the Pacific (Figure 14b14a and 14c).14b), confirmed by both precipitation field and U200 field. Therefore, we conclude that 

NNCAM captures the key MJO propagation simulated in SPCAM. The average phase speedIn contrast, the time lag plot of 

eastwardCAM5 depicts an unpleasant west propagation. Same as the precipitation spectrum, ,( of deep convection the time 555 

lag coefficient is shown to quantify the resemblance. The time lag coefficient of U200 in NNCAM is much closer to 5 m s
-

1
SPCAM than the overly fast propagation speedCAM5, with a way higher  ,( , indicating that the NN-Parameterization 

successfully emulates the convection variability of the SP and reflects it in CAM5, denoted by the dashed line in Figure 14b 

and 14c.the dynamic fields.  

5 6 Summary and Conclusions and Discussion 560 

This study investigates the potential of DNNdeep neural network based parameterizations embedded into in SPCAM in 

reproducingto reproduce long-term climatology and climate variability. We present NN-Parameterization, a group of organized 

ResMLPsResDNN set, to emulate convection,the SP with a 2D CRM and its cloud processes and scale radiation in aeffects in 

a realistic configurated SPCAM with a realistic globaltrue land-ocean distribution and orography. The input variables to the 

NN-Parameterization include specific humidity, temperature, largescale water vapor and temperature forcings, surface 565 

pressure and solar insolation. The output variables of the NN-Parameterization consist of the subgrid tendencies of moisture 

and temperature as well as radiation fluxes. The output variables are divided into multiple groups, and each group is trained as 

one target through independent neural network following the same architecture. Both long-term stable and high performance 

climate simulations are finally obtained in this work. To effectively bridge the host CAM and NN-Parameterization, we have 

expanded the coupler idea in a earth system model to ensure the flexibility of embedding DNN into GCM. As a result, we can 570 

efficiently use DNNs to construct NN-Parameterization that can support NNCAM stable simulation for multi-years. This study 

is the first attempt to achieve stable climate simulations using a hybrid ML-physical GCM, which is configurated with real 

land-ocean distributions., net radiation fluxes at the top of the model and surface, and solar radiation fluxes down to the surface. 

We proposed a set of 14-layer deep residual neural networks in which each NN is in charge of one type of output variable. 

With such a design, we gain the best emulation accuracy for each predictor. Via a systematic trial-and-error searching 575 

procedure, we are able to firstly select sets of ResDNNs that support stable prognostic climate simulations and then choose the 

best set with lowest climate errors as the formal NN-Parameterization. Moreover, a mechanism of unreal perturbation 

amplification is found in GCM simulations with unstable NN parameterizations with the spectrum diagnostic tool invented in 

Brenowitz et al. (2020). 

The offline test shows the great skills of the NN-Parameterization in emulating the CRMSP outputs and CRMits cloud 580 

scale radiation effects in SPCAM. The overall diabatic heating and drying rates in the NN-Parameterization and SPCAM are 
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in close agreement. When implemented in the host coarse-grided CAM5 SPCAM to replace the conventional schemes of moist 

physicsits time-consuming SP and its radiation effects, the NN-Parameterization successes in an extensive long-term stable 

prognostic simulation and performs well in reproducing thepredicts reasonable mean vertical structures in temperature and 

humidity, and the precipitation distributions. The prominentCompared with the SPCAM target simulation, NNCAM still 585 

produces some biases in mean fields, such as a warmer troposphere over polar regions and tropopause and strong precipitation 

underestimation in equatorial regions. On the other hand, the better climate variability in SPCAM over CAM5 is well learned 

by our NN-Parameterization and reproduced in NNCAM with better frequency in extreme rainfall, similar MJO signalspectrum 

and its phasepropagation direction and speed are also well captured using our NN. Although with the biases in climate states 

so far, NNCAM can still be regarded as the first attempt to prognostically couple a NN-based parameterization in realistic 590 

configurated 3D GCM. 

MachineMany previous studies have well-studied machine learning parameterizations implemented in aqua-planet 

configurated 3D GCM have been well studied in many previous research.. Some faced instability in coupled simulations 

(Brenowitz &and Bretherton, 2019), and some tried to solve such instability through online learning (Rasp, 2020). Some others 

achievedwhile some succeeded in long-term stable prognostic simulations with deep fully-connected neural networks (Rasp 595 

et al., 2018; Yuval et al., 2021) as well as random forest (Yuval &and O’Gorman, 2020). In contrast to aqua-planet simulations, 

the spatial heterogeneity is prominent over land in GCMs which are configurated with real-geography boundary conditions. 

In this case, a plain fully connected neural networks the conventional MLPs have been unable to fit CRM outputsSP output 

(Mooers et al., 2021). The convection, clouds, and the interacted radiation of the CRM together with real-geography boundary 

conditions are no doubtfullywithout doubt far more complicated and nonlinear than in idealized models. We first propose a 600 

multi-target DNN method to control nonlinearity, reduce gradient directions cancellation during training, and make each output 

variable reachTo meet the best fit state. Moreovernew demand under realistic configuration, we design ResMLPResDNN with 

sufficient depth to further improve the nonlinear fitting ability of NN-Parameterization. A trial-and-error method is further 

presented to effectively findWith the optimal neural network for NN-Parameterization. By doing soskip connections, the NN-

Parameterization we constructed achieved good fitting accuracy in7-layer DNN models can be extended to 14 layers, therefore, 605 

significant improving offline testing and successfully carried outaccuracy. In the prognostic tests, a few ResDNN 

parameterizations can support long term stable online simulations for multiple yearsrun, while all DNN parameterizations are 

so far found unstable. 

Trial-and-error is still the only way to find stable NN parameterizations. So far, we have not come up with an a priori 

mothed that guaranteed stability. However, we do find some clues in the sensitivity tests. We believe sufficient offline accuracy 610 

is essential for online stability by confirming all inaccurate NN parameterizations unstable. On the other hand, some highly 

accurate ones still crash the prognostic simulation, where we find rapid increasing total energy. This mechanism is that unstable 

NNs cannot damp neural network emulation errors but amplify and propagate them to the entire system through gravity waves. 

The prognostic biases in mean fields in speculated as a result of by the combined effect of the emulation errors of all the 

NN-Parameterization prediction fields. Further study is required. Still, it can be related to the spatially non-uniform accuracy 615 
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of NN-Parameterization, such as relatively low fitting accuracy in tropical deep convective regions and shallow subtropical 

convection and stratiform cloud regions. Such problems have also been reported in previous studies (Gentine et al., 2018; 

Mooers et al., 2021). We believe that a NN parameterization with heterogeneous characteristics across different regions, rather 

than a globally uniform scheme, can further improve the fitting accuracy in this tropical and subtropical region. 

Embedding deep neural networks into Fortran based atmospheric models is still a handicap. Before this study, researchers 620 

mainly used hard coding to build neural networks (Rasp et al., 2018; Brenowitz and Bretherton, 2019). An easier way is to use 

Fortran based neural network libraries that can flexibly import network parameters (Ott et al., 2020). These methods have 

successfully implemented DNNNN in GCM, but they can only support dense layer based DNNNN. As a result, developers 

cannot take advantage of the most advanced neural network structures such as convolution, shortcut, self-attention, variational 

autoencoder, etc., to build powerful DNN based Parameterizations. In this research, through DNNNN-GCM Coupler, NN-625 

Parameterization can support the mainstream GPU-enabled machine learning frameworks. Thanks to the simple and effective 

implementation of the DNN-GCM Coupler, our NNCAM achieves 30 times SYPD compared to SPCAM by using four 14-

layer deep ResMLPsa ResDNN set in NN-Parameterization, although these DNNs are much deeper than the previous state-

of-the-art fully-connected NNs in this field. 

Different from the existing works, we find that high fitting accuracy of NN-Parameterization is necessary but not 630 

sufficient for both high performance and long-term simulations since neural networks with high fitting accuracy may crash 

before achieving years of stable simulation. The mechanism of the observed early-crashed simulations needs to be further 

investigated. We obtained the optimal NN-Parameterization that can perform both multi-year and high performance 

simulations by trial-and-error as an initial attempt. In addition, we observe that NN-Parameterization has spatially non-uniform 

accuracy, such as relatively low fitting accuracy in tropical deep convective regions and subtropical shallow convection and 635 

stratiform cloud regions. Such problems have also been reported in previous studies (Gentine et al., 2018; Mooers et al., 2021). 

We believe that a NN parameterization with heterogenous characteristics across different regions, rather than a globally 

uniform scheme, can further improve the fitting accuracy in this tropical and subtropical region.  

 

Code and data availability. The original training and testing data can be accessed at https://doi.org/10.5281/zenodo.5625616.640 

 The source codes of SPCAM version 2 can be accessed at https://svn-ccsm-release.cgd.ucar.edu/model_development_releas

es/spcam2_0-cesm1_1_1. The training and testing data and the associated codes of the NN parameterization schemeand NNC

AM have been archived, and made publicly available for downloading from httphttps://doi.org/10.5281/zenodo.5153501559

6273. 
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Table 1. Input and output variables. For inputs, !!(#) denotes the vertical profile of water vapor. %(#)is the profile of temperature, and 
&!!	#.%.(#)and &%#.%. are the large scale forcing of water vapor and temperature, respectively. '% is the surface pressure and Solin is the TOA 
solar insolation. For outputs, &!!(#) and &%(#) are the tendencies of water vapor and temperature due to moist physics and radiative 865 

processes calculated by the NN-Parameterization. The net longwave and shortwave fluxes at the surface and the TOA are surface net 
longwave flux (FLNS), surface net shortwave flux (FLNT), TOA net longwave flux (FLNT), and TOA net shortwave fluxes (FSNT). The 4 
downwelling solar radiation including solar downward visible direct to surface (SOLS), solar downward near infrared direct to surface 
(SOLL), solar downward visible diffuse to surface (SOLSD), and solar downward near infrared diffuse to surface (SOLLD) are shortwave 
radiation fluxes reaching the surface.  870 

Inputs Outputs 

qv(z), T(z), dqvls(z), dTls(z), Ps, Solin dqv(z), dT(z), FLNS, FSNS, FLNT, FSNT, SOLS, SOLL, 

SOLSD, SOLLD 
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Table 2. Training configuration for the baseline ResMLP 

Description Value 

Number of samples trained per iteration 1024 

Strategies for Declining Learning Rate coslr 

Initial learning rate 0.001 

Number of rounds to traverse the data set 50 

Probability of randomly setting neurons to 0 0 

L2 regularization 0 
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Figure 1. Workflow diagram of the NNCAM. In the NNCAM, both the CRM and CRM radiation in SPCAM are replaced 

with the NN-Parameterization. All other model components, including the dynamic core, coupled land surface model and 880 

prescribed ocean, and planetary boundary layer, remain the same as in SPCAM. 
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Figure 2. Schematic diagram of multi-target NN-Parameterization. It is composed of three neural networks, sharing unified 

inputs, to predict dqv(z), dT(z), the downwelling solar radiation fluxes at the surface, and net radiation fluxes at the surface and 885 

the TOA respectively. 
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Figure 3. Schematic showing the structure of ResMLPResDNN. It consists of 7 residual blocks, each of which (shown in 

dashed box) contains two 512 node-wide dense (fully-connected) layers with a ReLU as activation, and a layer jump. The 890 

input and output are discussed in section 2.2.21. 
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 895 

Figure 42. Fitting accuracies (R2) of both the proposed ResMLPResDNN (orange solid lines) and MLPDNN (blue dashed 

lines) for different targets. (a) representsshows the fitting accuracyR2 of moistening, (b) is the fitting accuracy of heating,moist 

static energy changing rate (dh) versus training epochs and (cb) shows the fitting accuracy of the average R2 over the 8 radiation 

fluxes. Note: Spatial averaging of MSE is performed before calculating R2. 
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(a) SPCAM (b) DNN

(c) SPCAM (d) DNN

T tendency (1e-5 K/s) T tendency (1e-5 K/s)

Q tendency (1e-8 kg/kg/s) Q tendency (1e-8 kg/kg/s)
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Figure 4. The offline moist static energy mean square error vs. prognostic steps. The black reversed triangles are stable NN 

coupled prognostic simulations lasting more than 10 years, blue ones are unstable simulations, and the blue triangles are for 

DNNs. The marked dots with colored outline are later exhibited in Figure 5 for time evolution of global averaged energy. 915 
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Figure 5. Time evolution of global averaged column integral total energy of NNCAM with different ResDNN 

parameterizations (marked with the same colors in Figure 4) and SPCAM target (the black line): Blue for stable and 920 

accurate ResDNN, green for a stable but deviated ResDNN, orange and red lines for unstable ResDNN. 
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Figure 6. Latitude-pressure cross sections of annual and zonal mean heating (top) and moistening (bottom) from moist physics 925 

during 1997−1998the year 2000 for (a, c) SPCAM simulations, and (b, d) offline test by the DNNNN-Parameterization. 
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Figure 7. Latitude-pressure cross sections of coefficient of determination (,() for zonal averaged heating (aleft panels) and 

moistening (bright panels). They are predicted by (a & b) NN-parameterizationParameterization in the offline one-year 

SPCAM run, and (c & d) by offline CAM5 parameterizations. Both are evaluated at 30-min timestep interval. Note: areas 

where ,( is greater than 0.7 are contoured in pink and those greater than 0.9 are contoured in orange. 935 
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Figure 8. Latitude-pressure cross sections of coefficient of determination (,() for the derived precipitation predicted by NN-

parameterization (a) and total precipitation from CAM5 parameterization (b) in the offline one-year SPCAM run. The 950 

predictions and SPCAM targets are in 30min timestep interval. Note: areas where ,( is greater than 0.7 are contoured in pink 

and those greater than 0.9 are contoured in orange. 
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Figure 9. Latitude-pressure cross sections of annual and zonal mean temperature (left panels) and specific humidity (right 

panels) from (a, b) SPCAM (1998−20011999−2003), (c, d) NNCAM (1999−2003), and (e, f) CAM5 (1999−2003).  
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(c) NNCAM DJF (d) NNCAM JJA

(a) SPCAM DJF (b) SPCAM JJA

(e) CAM5 (f) CAM5DJF JJA
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Figure 10. The mean precipitation rate (mm day
-1

) of June-July-August (left panels) and December-January-February (left 

panels) and June-July-August (right panels) for (a, b) SPCAM (1998−20011999−2003), (c, d) NNCAM (1999−2003), and (e, 965 

f) CAM5 (1999−2003). 
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 970 

Figure 11. The zonal meanGlobal distribution of precipitation rate (mm day
-1

)difference averaged for (a, d) the annual mean, 

(b, e) December-January-February,over boreal summer (left panels) and (c, f) June-July-August. Black, blue and red solid 

lines denotes SPCAM,winter (right panels) between NNCAM and SPCAM (a & b) and between CAM5, respectively. and 

SPCAM (c & d). 
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Figure 12. Probability densities of daily mean precipitation in the tropics (30°S−30°N) from the three model simulations. 

Black, blue and red solid lines denotesdenote SPCAM, NNCAM and CAM5, respectively. 980 
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Figure 13. The wavenumber-frequency spectra of 10°S−10°N daily precipitation anomalies for (a, b) SPCAM, (c, d) NNCAM, 985 

and (e, f) CAM5 simulations for boreal winter. 
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Figure 14. Longitude-time evolution of lagged correlation coefficient for the 20-100 dday band-pass-filtered precipitation 

anomaly (averaged over 10°S−10°N) against regionally averaged precipitation (shaded) and zonal wind at 200hPa (contoured) 

over the equatorial eastern Indian Ocean (80E−100°E, 10°S−10°N). Dashed lines in each panel denote the 5 m s
-1

 eastward 

propagation speed. 
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