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Abstract. Realistic simulation of the Earth’s mean state climate remains a major challenge and yet it is crucial for predicting 30 

the climate system in transition. Deficiencies in models’ process representations, propagation of errors from one process to 

another, and associated compensating errors can often confound the interpretation and improvement of model simulations. 

These errors and biases can also lead to unrealistic climate projections as well as incorrect attribution of the physical 

mechanisms governing the past and future climate change. Here we show that a significantly improved global atmospheric 

simulation can be achieved by focusing on the realism of process assumptions in cloud calibration and subgrid effects using 35 

the Energy Exascale Earth System Model (E3SM) Atmosphere Model version 1 (EAMv1). The calibration of clouds and 

subgrid effects informed by our understanding of physical mechanisms leads to significant improvements in clouds and 

precipitation climatology, reducing common and longstanding biases across cloud regimes in the model. The improved cloud 
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fidelity in turn reduces biases in other aspects of the system. Furthermore, even though the recalibration does not change the 

global mean aerosol and total anthropogenic effective radiative forcings (ERFs), the sensitivity of clouds, precipitation, and 40 

surface temperature to aerosol perturbations is significantly reduced. This suggests that it is possible to achieve improvements 

to the historical evolution of surface temperature over EAMv1 and that precise knowledge of global mean ERFs is not enough 

to constrain historical or future climate change. Cloud feedbacks are also significantly reduced in the recalibrated model, 

suggesting that there would be a lower climate sensitivity when running as part of the fully coupled E3SM. This study also 

compares results from incremental changes to cloud microphysics, turbulent mixing, deep convection, and subgrid effects to 45 

understand how assumptions in the representation of these processes affect different aspects of the simulated atmosphere as 

well as its response to forcings. We conclude that the spectral composition and geographical distribution of the ERFs and cloud 

feedback as well as the fidelity of the simulated base climate state are important for constraining the climate in the past and 

future. 

1 Introduction 50 

The Energy Exascale Earth System Model (E3SM) version 1 (E3SMv1) (Golaz et al., 2019;Caldwell et al., 2019) includes an 

atmospheric component called the E3SM atmosphere model (EAM) version 1 (EAMv1) (Rasch et al., 2019). EAMv1 was 

released in April 2018 together with the fully coupled E3SMv1 and all of its model components. EAMv1 uses a revised 4-

mode version of the modal aerosol module (MAM)(Liu et al., 2012;Liu et al., 2016;Wang et al., 2020); an updated 2-moment 

cloud microphysics scheme (Gettelman and Morrison, 2015;Gettelman et al., 2015) (hereafter MG2); the Cloud Layers Unified 55 

By Binormals (CLUBB) parameterization (Golaz et al., 2002;Larson et al., 2002;Larson and Golaz, 2005;Bogenschutz et al., 

2013) for turbulence, shallow convection, and cloud macrophysics, the Zhang and McFarlane (1995) (hereafter ZM) 

parameterization for deep convection with the addition of convective momentum transport (Richter and Rasch, 2008) and a 

modified dilute plume calculation (Neale et al., 2008). The model shows general success in simulating present-day climatology, 

producing improved simulation compared to atmospheric simulations of previous-generation Earth system models (ESMs) 60 

(Rasch et al., 2019) that participated in the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5)(Taylor et al., 

2012).  

 

However, EAMv1 still produces significant regional cloud and precipitation biases that are common in many ESMs (Zhang 

et al., 2019a;Xie et al., 2018;Brunke et al., 2019). These persistent errors include the underestimation of coastal stratocumulus 65 

(Sc), overly bright trade cumulus (Cu), mislocation of the Sc-to-Cu transition regions, and a notable underestimate of the areal 

extent of clouds over the Indo-Pacific warm pool. EAMv1 also showed some new cloud biases compared to its predecessors, 

including overly bright clouds embedded within storm tracks and an unrealistically high liquid water path (LWP) in polar 

regions (Zhang et al., 2020). Closely related to these errors are biases in the mean, variability, and extremes of precipitation. 

As shown in Rasch et al. (2019), EAMv1 produces high annual mean precipitation over the global average, in high elevation 70 
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regions, and in the central Pacific, but low annual mean precipitation over Amazonia and the tropical western Pacific (TWP). 

EAMv1 contains the signature of a double intertropical convergence zone (ITCZ) that has been problematic in ESMs for over 

two decades (Mechoso et al., 1995;Dai, 2006). Furthermore, similar to many other coarse resolution models, EAMv1 produces 

too many light precipitation events and too few heavy precipitation events compared to observations (Stephens et al., 2010). 

The diurnal cycle of precipitation over regions that are strongly influenced by mesoscale convective systems (MCSs) is 75 

skewed, producing peak precipitation in the mid-day instead of late afternoon to early morning (Xie et al., 2019). These 

common and persistent biases in predictions of clouds and precipitation arise from coarse model resolution insufficient to 

represent small scale features as well as various deficiencies in parameterizations of cloud, turbulence, and convection 

processes. These deficiencies can, in turn, adversely affect other aspects of the atmosphere.  

 80 

In addition to these cloud and precipitation biases, EAMv1 also shows large biases in the simulated present-day climatology 

of surface temperature and winds, similar to other global model predictions (Morcrette et al., 2018). These biases pose 

challenges for the fully coupled E3SMv1 to produce credible projections of the future climate. As discussed in Golaz et al. 

(2019), E3SMv1 appears very sensitive to perturbations of atmospheric composition (aerosols and greenhouse gases), 

producing differences in the observed and simulated temporal evolution of the global mean surface temperature in the 20th 85 

century and a relatively high estimate of equilibrium climate sensitivity (ECS) of 5.3 K compared to estimates based on 

multiple lines of evidence including process understanding, historical climate record, and paleoclimate record (Sherwood et 

al., 2020).  

 

Many factors may contribute to the behavior and biases of the model. Biases affect the interpretation of climate projections 90 

and future model development plans. The choice of parameter settings for parameterizations is a scientifically important factor 

in creating (and reducing) these biases. This study explores the impact of changes to parameter settings (i.e., recalibration) to 

improve fidelity of model climate, and implications for climate change studies. Hence, this recalibration effort can provide 

important physical insights into future development of E3SM as well as other ESMs.   

 95 

Model calibration, or tuning, is a crucial research element in Earth system modeling. This procedure optimizes model 

fidelity by addressing the trade-off between optimizing individual processes and process interactions so that the model climate 

agrees with observables while simultaneously satisfying energy balance requirements. These multiple constraints frequently 

expose the presence of error compensations in ESMs. As discussed in depth in Hourdin et al. (2017) and Schmidt et al. (2017), 

balancing these requirements is a mix of art and science because some degree of subjectivity is inevitable and choices are made 100 

based on expert judgement. Expert judgement consists of evaluation, intercomparison, and interpretation of results. This is 

followed by changes to the model parameter settings to make the model better suited for answering specific science questions 

that originally motivated its development. During the development of EAMv1, model calibration used primarily the traditional 

one-at-a-time parameter adjustment approach (Rasch et al., 2019;Xie et al., 2018). In principle, automated procedures could 
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be employed to perform such calibrations, but they are not yet used for final calibrations (for reasons discussed below). Instead, 105 

automated procedures have been performed for an ensemble of short simulations with perturbed parameter to provide a 

systematic assessment of the parametric sensitivity (Rasch et al., 2019;Qian et al., 2018), helping to provide insight about 

multi-variate responses of the model to changes in single or multiple parameters. 

 

The traditional one-at-a-time parameter adjustment approach is inefficient and expensive in terms of both computational 110 

and human resources (Zhang et al., 2012). It is a sequential and iterative process that requires a large number (e.g., hundreds) 

of iterations consisting of 1) running a multi-year simulation; 2) performing a comprehensive evaluation using diagnostics 

packages to assess the impact of the change of a single parameter value on different aspects of the simulation; and 3) designing 

and running the next simulation based on evaluation of the current simulation. However, there exist too many uncertain 

parameters within a climate model to repeat this process and perfectly optimize its climate fidelity. 115 

 

The perturbed parameter ensemble approach (Murphy et al., 2004) has been used for quantifying parametric uncertainty. 

The EAMv1 development team adopted the short simulation ensemble approach (Wan et al., 2014;Qian et al., 2018) which 

uses 5-day simulations rather than multi-year simulations to assess the fast physics (Xie et al., 2012;Ma et al., 2014;Ma et al., 

2021). The approach significantly reduces the turn-around time and computational cost compared to the traditional multi-year 120 

simulation ensemble approach for a systematic assessment of the parametric uncertainty. One caveat, however, is that it 

requires a-priori knowledge of a manageable set of uncertain parameters and their physically, observationally, or empirically 

justifiable ranges. The parameter space is also too large to explore fully, and only a subset of parameters are typically selected 

based on physical intuition and expert judgement. In hindsight, the parameter set selected for the short simulation ensemble 

during the EAMv1 development was insufficient because parameters not included in the original ensemble were later found 125 

to be important. Another limitation is that the short simulations focus on fast physical processes and rapid adjustments. By 

design, important factors such as slow internal variability of the atmosphere (e.g., inter-annual variability) and circulation 

feedbacks are not considered, so any conclusion drawn from the short simulation ensemble might not be applicable to the 

calibration of the ESM for climate simulations. Both limitations could be mitigated if the perturbed parameter ensemble 

includes every possible combination of parameter choices and the simulations were decade-long, but the amount of 130 

computational resource for such an exercise is prohibitive.  

 

The one-at-a-time calibration approach using multi-year simulations and the short simulation ensemble approach using 

multi-day simulations are complementary to each other, but for the purpose of tuning EAMv1, both approaches shared some 

common challenges: 1) insufficient computational and human resources to explore and optimize parameter choices; 2) 135 

insufficient time to perform and analyze the simulations; and 3) improvements to one aspect of the simulation in general may 

be made at the price of degradation in other aspects, suggesting model structural deficiency in addition to parametric 
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uncertainty (Qian et al., 2018). Reconciling these contradictory results and further improving the model fidelity have been 

great challenges for the model development team. 

 140 

In contrast to the above, an important aspect of the tuning strategy we present here is that we intentionally focus only on a 

subset of parameters and skill metrics related to cloud processes rather than optimizing the model for more than a dozen of the 

metrics that the community typically relies on (Burrows et al., 2018;Hourdin et al., 2017;Mauritsen et al., 2012;Gleckler et al., 

2008). We find that when clouds in every regime are improved, other aspects of the global atmospheric simulation are also 

improved, even though they are not the direct targets for calibration. Interestingly, the recalibrated atmosphere model, denoted 145 

as EAMv1P, exhibits weaker sensitivities to aerosol perturbation and to surface warming for both clouds and precipitation. 

Because the notable biases in E3SMv1’s simulated surface temperature evolution are due to a combination of high ECS (from 

cloud feedback) and strong aerosol forcing (Golaz et al., 2019), EAMv1P may lead to improvements to the simulation of the 

20th century temperature evolution and a lower estimate of ECS when running as part of the fully coupled E3SM. More 

challenges may yet emerge in tuning fully coupled models.  150 

 

We acknowledge that our recalibration approach has several caveats. First, like all current model calibration strategies, 

our recalibration does not lead to a unique and perfect configuration and that there can are likely multiple ways to achieve a 

different model configuration with equally good present-day climate. We also acknowledge that there may be complications 

when the recalibrated atmosphere model is coupled with the ocean. Additional tuning might be required. However, the 155 

experience from this study will likely be valuable in that effort. Finally, we acknowledge that some tuning choices are better 

justified than others, because many of the uncertain parameters do not have a physically or observationally justifiable range. 

For those poorly constrained processes, the recalibration provides a way to identify the important process assumptions that 

affect our ability to accurately simulate the climate system. Future and ongoing studies that develop theoretical or observational 

constraints to reduce the uncertainties associated with these fundamental process formulations will continue to be very 160 

valuable.  

 

In Section 2, we provide a discussion on the recalibration. Section 3 shows the results from the recalibrated model. We 

draw conclusions in Section 4. 

2 Approach 165 

Because clouds in different regimes are governed by different processes, the recalibration first treats each regional cloud bias 

separately, followed by adjustments (including sea salt and dust emission factors) to refine the cloud climatology and to restore 

the top-of-atmosphere (TOA) energy balance. The TOA cloud radiative effects (CREs) are the primary tuning target but other 

cloud properties and cloud controlling factors are also assessed. We adopted the one-at-a-time parameter adjustment approach. 
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Adjustments of uncertain parameters were driven by analysis of physical mechanisms affecting the simulation in every cloud 170 

regime. We also introduced new parameters for controlling the coupling of subgrid effects between the convection, turbulence, 

and surface flux parameterizations to produce better simulation of clouds. The recalibration is described in detail in this section. 

 

2.1 Tropical clouds 
 175 

Tropical clouds and precipitation are primarily controlled by the deep convection parameterization and ice cloud microphysics. 

They interact strongly with the atmospheric circulation in the tropics through their overturning and vertical mixing of moist 

static energy. In EAMv1, cloud cover is significantly underestimated in the TWP and the eastern Pacific. Precipitation is biased 

low in the TWP and over the Amazon, and biased high in the central Pacific, which can be viewed as a displacement of the 

Walker circulation. These biases also reflect errors in the simulated Hadley cell, moderating subsidence in the subtropics and 180 

the distribution of stratocumulus and trade cumulus.  

 

Our main strategy to improve the tropical clouds and precipitation through incorporating a previously missing gustiness 

representation, which includes the subgrid wind and temperature variance in the surface flux and the ZM’s parcel buoyancy 

calculations. As we will show below, this improves the spatial distribution of cloud and precipitation, provided it is followed 185 

by subsequent parameter adjustments to keep the magnitude of tropical CREs and precipitation within a reasonable range. This 

idea is motivated in part by Harrop et al. (2018), who showed that including the Redelsperger et al. (2000) gustiness effects 

associated with deep convection over ocean increases local surface fluxes in EAMv1 running at ~ 1-degree horizontal grid 

spacing. The circulation responses significantly improve clouds and precipitation over the TWP. This is because E3SMv1 uses 

the Large and Pond (1982) and Zeng et al. (1998) parameterizations for surface fluxes of heat, moisture, and momentum over 190 

ocean and land, respectively, and these bulk aerodynamic schemes are prone to underestimate surface fluxes in regions where 

1) large-scale winds are weak; and 2) convective episodes are frequent. Enabling gustiness effects increases surface fluxes in 

those regions, and, hence, increases clouds and precipitation.  

 

The gustiness effects associated with deep convection wasn’t ready in time to be included in the E3SMv1 release because 195 

including the gustiness effects requires retuning of the model. In this study, we built on the success of Harrop et al. (2018) and 

extended the Redelsperger et al. (2000) parameterization to operate over both land and ocean. To account for the gustiness 

effects associated with shallow convection and turbulence, the subgrid wind variance predicted by CLUBB was passed to the 

surface flux calculations. The total wind speed used for surface flux computation is expressed as  

 200 

𝑈! = 𝑈"! + 𝑎# ∙ 𝑈#(%&)! + 𝑏# ∙ 𝑈#(()*++)!  
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where U is the total wind speed, U0 is the resolved large-scale wind speed, and Ug(ZM) and Ug(CLUBB) are the wind speed 

enhancements owing to the gustiness associated with ZM and CLUBB, respectively. The use of the Redelsperger et al. (2000) 

parameterization over land is meant as a simple approximation to incorporate a consistent gustiness treatment globally until 205 

more targeted studies of gustiness impacts over land are made into a suitable alternative parameterization. Parameters ag and 

bg are tunable parameters used for calibrating the spatial distribution of surface fluxes. The ag parameter can be set to different 

values to account for the difference in surface roughness and to provide the flexibility to adjust the model in the face of the 

structural uncertainty of this parameterization. Based on sensitivity tests, we set ag to 0.9 over ocean and 1.2 over land and bg 

to 1.5 both over land and ocean.  210 

 

Figure 1 shows that the gustiness associated with the ZM deep convection parameterization contributes about 15% to the 

total surface wind speed felt by the surface flux scheme over tropical ocean, and up to 45% over tropical land. Meanwhie,  

gustiness associated with the shallow convection and turbulence parameterization CLUBB accounts for 10-30% of the total 

surface wind speed globally. Therefore, including gustiness effects significantly increases surface fluxes (of sensible heat, 215 

moisture, and momentum) in these regions.  

 

 
Figure 1. Present-day EAMv1 climatology of wind speed (m s-1) at the lowest model level in (a) resolved motion; (b) gustiness associated 

with the ZM parameterization; and (c) gustiness associated with the CLUBB parameterization. (d-f) are the fractional contribution of the 220 
three components to the total wind speed. 

 

Next, we considered the subgrid temperature perturbation in the parcel buoyancy calculation in the ZM scheme. The 

subgrid temperature perturbation is set to 0.5 K in the Community Atmosphere Model version 5 (CAM5) (Neale et al., 2010) 

and 0.8 K in EAMv1 (Rasch et al., 2019). This treatment assumes that the subgrid heterogeneity of temperature is globally 225 

uniform. However, subgrid variability of temperature should vary in space and time. In particular, subgrid temperature 

heterogeneity is typically larger over land than over ocean. Setting a globally uniform subgrid temperature perturbation can 
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potentially create biases in the distribution of deep convection. To address this deficiency, we computed the subgrid 

temperature perturbation by taking the square root of the subgrid temperature variance (a prognostic variable in CLUBB) and 

passed that information to ZM’s parcel buoyancy calculation to account for the variability of the subgrid temperature 230 

perturbation. Based on sensitivity tests, a scaling factor of 2.0 was introduced to enhance the effect so that the simulated 

tropical clouds are in better agreement with observations (as discussed in Section 3). 

 

Accounting for the gustiness effects and the variability of subgrid temperature variance was designed for EAMv1 running 

at ~1-degree horizontal grid spacing. It is logical to expect that increasing model spatial resolution will reduce the impacts of 235 

these subgrid effects. Thus, a retuning of these subgrid effects would likely be needed when the model is run at a different 

horizontal resolution. The model configuration with only the gustiness effects and the subgrid temperature variance added to 

EAMv1 is labeled as EAMv1_SGV.  

 

While EAMv1_SGV improves the spatial distribution of tropical clouds and precipitation (discussed in Section 3), tropical 240 

CREs and precipitation become overly strong after these changes, indicating a need for additional tuning to compensate for 

the unintended changes. Among all the tunable parameters, we targeted the ones that were heavily tuned in EAMv1 and 

adjusted their values to be closer to their theoretical or nominal values. For context, in EAMv1, the coefficients controlling the 

autoconversion rate in convective clouds c0_lnd and c0_ocn (which are inversely proportional to the timescale that condensate 

is converted to precipitation) were set to 0.007, more than 3 times larger than the nominal rate used in Lord et al. (1982). The 245 

consequence is that little condensate is detrained from convective updrafts, producing cirrus clouds with very low water content 

in the upper troposphere. To compensate for the weak source of ice water, EAMv1 assumes more Aitken mode sulfate aerosols 

are efficient homogeneous ice nuclei. As a result, EAMv1 produces relatively high cloud ice number (Ni) with small ice water 

content and weak sedimentation rates, making the cirrus clouds more persistent and highly reflective. In this recalibration, we 

chose to:  250 

1. Increase the supply of condensed water to cirrus clouds by reducing c0_lnd and c0_ocn to their nominal value 0.002 

2. Reduce the deep convective cloud fraction parameter dp1 

3. Increase the downdraft mass fraction parameter alfa 

4. Reduce the assumed ice crystal radius detrained from deep convection (ice_deep)  

5. Increase the sensitivity of deep convection to surface temperature changes by reducing the number of lowest layers 255 

skipped for computing maximum moist static energy (mx_bot_lyr_adj) while maintaining numerical stability  

6. Enhance the lateral entrainment of deep convection by increasing the magnitude of dmpdz  

 

It is worth noting that changing dmpdz has different effects on CREs in different parts of the tropics and a significant impact 

on the subtropical CREs, but the exact mechanism is unclear and requires further investigation. We took an iterative approach 260 
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to retune the model, adjusting one parameter at a time and assessing its impacts after each simulation. The model configuration 

with only these ZM parameter changes added to EAMv1 is labeled as EAMv1_ZM (Table 1). 

 

In addition to changes made to the deep convection scheme in EAMv1_ZM, we also introduced two microphysical changes 

in MG2 in order to refine the tropical CRE (Table 3): 1) we increased the size threshold for sulfate aerosols to act as 265 

homogeneous ice nuclei (so4_sz_thresh_icenuc) to reduce ice number concentration and increase ice crystal size and thus the 

sedimentation rate; and 2) we increased ice_sed_ai to further increase the ice sedimentation rate. Combining the two MG2 

changes with EAMv1_SGV and EAMv1_ZM, these adjustments increase cloudiness in the western and eastern Pacific and 

decrease cloudiness in the central Pacific as well as weaker subsidence in the subtropics.  

 270 
Table 1. Description of tunable parameters and their values in EAMv1 and EAMv1_ZM.  

Parameter Description EAMv1 EAMv1_ZM 
alfa Downdraft mass flux fraction adjustment 0.1 0.14 
c0_lnd Coefficient for converting convective cloud water to rain over 

land 
0.007 0.002 

c0_ocn Coefficient for converting convective cloud water to rain over 
ocean 

0.007 0.002 

dmpdz Parcel fractional mass entrainment rate (m-1) -0.7e-3 -1.2e-3 
dp1 Deep convective cloud fraction parameter 0.045 0.018 
ice_deep Ice particle radius detrained from deep convection (10-6 m) 16.e-6 14.e-6 
mx_bot_lyr_adj Number of lowest layers skipped for computing maximum 

moist static energy 
2 1 

2.2 Subtropical low clouds 

Realistic simulation of low clouds across various cloud regimes requires not only a realistic simulation of the large-scale 

meteorological conditions, but also a versatile parameterization that is able to describe different subgrid characteristics of 

clouds and atmospheric thermodynamic conditions in different cloud regimes. Following Medeiros and Stevens (2011), cloud 275 

regimes are determined by the vertical velocity at 500hPa and the lower tropospheric stability. We also assessed the 

geographical distribution of those clouds. The CLUBB parameterization employed in EAMv1 uses a multi-variate probability 

density function (PDF) to describe the subgrid variability of cloud, thermodynamic, and dynamic variables, all of which are 

closely connected to changes of the subgrid vertical velocity 𝑤′. The second and third moments of 𝑤′, 𝑤′!##### and 𝑤′"#####, are 

prognostic variables in CLUBB, meaning that the skewness of the 𝑤′ PDF, 𝑆𝑘# ≡ (𝑤′"#####)/(𝑤′!#####"/!), is predicted according to 280 

the governing equations. This is a critical treatment because it allows CLUBB to produce different subgrid characteristics in 

different regimes. As illustrated in Golaz et al. (2002), a low skewness corresponds to a rather symmetric PDF of 𝑤′ 

characteristic of the stratus and stratocumulus regimes, whereas a high skewness is more characteristic of a trade cumulus 

regime in which stronger and isolated updrafts embedded in subsidence occur more frequently. In principle, CLUBB can be 

used to represent the deep convection regime as well (Thayer-Calder et al., 2015;Guo et al., 2015), but it requires significant 285 
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amount of effort to enable that unification such that EAMv1 still uses ZM for a separate treatment of deep convection. The 

limit of 𝑆𝑘# ≤ 4.5	is imposed in EAMv1 in order to prevent numerical instability in CLUBB’s equations. To simulate different 

subgrid variabilities in different regimes, CLUBB uses different damping coefficients and different widths of the	𝑤′ PDF as a 

function of 𝑆𝑘#: For X* set to the diffusivity or variance of a CLUBB’s prognostic variable (e.g., vertical velocity variance, 

total water variance, etc.), 𝑋∗ = 𝑋𝑏 + (𝑋 − 𝑋𝑏) ∙ 𝑒&'.)∙(
!"#
$% )

&
, where X* is a linear combination of low skewness values X (C1, 290 

C11, and gamma_coef in Table 2) and high skewness values Xb (C1b, C6rtb, C6rthlb, C11b, and gamma_coefb in Table 2) 

with a weighting factor 𝑒&'.)∙(
!"#
$% )

&
 where Xc is a transition factor (C1c, C6rtc, C6rthlc, C11c, gamma_coefc in Table 2). For 

instance, the damping coefficient for 𝑤′!#####, C1*, is expressed as a function of skewness, C1, C1b, and C1c: 𝐶1∗ = 𝐶1𝑏 +

(𝐶1 − 𝐶1𝑏) ∙ 𝑒&'.)∙-
!"#
'(% .

&

.  

 295 

Although this variable skewness treatment provides a way to simulate different subgrid characteristics in different regimes, 

it is poorly constrained—the equation describing X* and the chosen values of parameters X, Xb, and Xc are somewhat ad hoc. 

In EAMv1, we set C1b and gamma_coefb to be the same as C1 and gamma_coef, respectively, to reduce unconstrained 

assumptions. This is a simple choice that reduces the number of free parameters in CLUBB but it also limits the flexibility of 

the CLUBB parameterization with implications for the model fidelity. As shown in (Brunke et al., 2019), EAMv1 produces 300 

overly bright shallow Cu and a significant bias in near-coast Sc. Therefore, we explored a different pathway in this study by 

setting C1 and C1b, and gamma_coef and gamma_coefb to different values and used the simulated low cloud CREs as the 

tuning target to determine the parameter values. Improvements in the simulated clouds are significant, as will be shown in 

Section 3. However, it is worth noting that these improvements do not suggest that this treatment or the parameter settings are 

the correct representation of the physical processes in the real world. Rather, our study should be viewed as a demonstration 305 

that it is useful to enable the variable skewness treatment to facilitate the production of different subgrid characteristics in 

different cloud regimes. Reducing the level of complexity of the physics may sometimes compromise the model fidelity and 

can lead to further uncertainties in climate projections. As we further show in Section 3, these changes also affect aerosol-

cloud interactions, cloud feedbacks, and, ultimately, climate sensitivity. Future studies that employ sufficient observations 

(from Doppler lidar, for example) or large eddy simulations (LES) to either constrain the parameter values in the current 310 

parameterization or develop a new parameterization to mimic the real-world subgrid characteristics in different regimes would 

be highly valuable. 

 

To recalibrate CLUBB, we first increased the overall cloudiness by: 

 315 
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1. Weakening turbulent mixing in the planetary boundary layer (PBL), which reduces PBL decoupling and mixing 

between the PBL and the free troposphere. This was achieved by increasing C1, C1b, C6rtb, C6rthlb, and C14, 

increasing C_k10, and increasing the eddy length scale threshold (Figure 2a,b);  

2. Facilitating cloud formation by reducing the width of the 𝑤′ PDF via reducing gamma_coef and gamma_coefb;  

3. Promoting Sc-like symmetric mixing rather than shallow Cu-like asymmetric mixing by reducing Skw via increasing 320 

C8.  

4. Allowing larger horizontal variation in subgrid characteristics by enlarging the difference in parameter values between 

high- and low- skewness regimes (i.e., X’s and Xb’s), as determined from satellite observations (Zhang et al., 2019b), 

and modifying the Xc values to refine the transition between low- and high-skewness regime.  

 325 

The change in the width of the 𝑤′ PDF also affects the in-cloud cloud liquid water mixing ratio (Qc) variance, resulting in 

variable enhancement factors for warm rain processes in cloud microphysics. We also reduced the cloudiness in the shallow 

Cu regime by decreasing the lateral entrainment (i.e., reducing mu). These changes increase the skewness in the shallow Cu 

regime (Figure 2c,d), and lead to a realistic Sc-to-Cu transition (as discussed in Section 3). The model configuration with only 

these CLUBB parameter changes added to EAMv1 is labeled as EAMv1_CLUBB (Table 2). 330 
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Figure 2. Present-day climatology of (a) mean subgrid vertical velocity variance (𝑤′!#####; unit = m2s-2) at 925 hPa in EAMv1; (b) the 𝑤′!#####  

difference between EAMv1_CLUBB and EAMv1; (c) the skewness of subgrid vertical velocity (𝑆𝑘" ≡ (𝑤′######)/(𝑤′!######/!)) in EAMv1; and 335 
(d) the 𝑆𝑘"	difference between EAMv1_CLUBB and EAMv1 at 925 hPa. 

 

Table 2. Description of tunable parameters and their values in EAMv1 and EAMv1_CLUBB.  

Parameter Description EAMv1 EAMv1_CLUBB 
C1 Coefficient for 𝑤′!##### damping at low 𝑆𝑘" 1.335 2.4 
C1b Coefficient for 𝑤′!##### damping at high 𝑆𝑘" 1.335 2.8 
C1c Coefficient for 𝑆𝑘"dependency of C1  1.0 0.75 
C6rtb Coefficient for 𝑤′𝑞%′####### damping at high 𝑆𝑘" 6.0 7.5 
C6rtc Coefficient for 𝑆𝑘" dependency of C6rt 1.0 0.5 
C6thlb Coefficient for 𝑤′𝜃&′####### damping at high 𝑆𝑘" 6.0 7.5 
C6thlc Coefficient for 𝑆𝑘"dependency of C6rthl 1.0 0.5 
C8 Coefficient for 𝑤′###### damping  4.3 5.2 
C11 Coefficient for 𝑤′###### damping at low 𝑆𝑘" 0.80 0.7 
C11b Coefficient for 𝑤′###### damping at high 𝑆𝑘" 0.35 0.2 
C11c Coefficient for 𝑆𝑘" dependency of C11 0.5 0.85 
C14 Coefficient for 𝑢′!#### and 𝑣′!####	damping 1.06 2.0 
c_k10 Ratio of eddy diffusivity of momentum to heat 0.30 0.35 
gamma_coef The width of the Gaussian distribution at low 𝑆𝑘" 0.32 0.12 
gamma_coefb The width of the Gaussian distribution at high 𝑆𝑘" 0.32 0.28 
gamma_coefc Coefficient for 𝑆𝑘"  dependency of the Gaussian 

distribution width 
5.0 1.2 

mu Fractional entrainment rate (m-1) 1.e-3 5.e-4 
wpxp_L_thresh Eddy length scale threshold for Newtonian and buoyancy 

damping of 𝑤′𝑞%′####### and 𝑤′𝜃&′####### (m) 
60 100 

 

Uncertainties in cloud microphysical processes affect all non-deep-convective clouds, including subtropical clouds. The 340 

tuning of the microphysical processes is justified by fundamental process-level uncertainties as well as simplifying 

assumptions made in bulk microphysics schemes (including the MG2 scheme used in EAMv1) regarding particle size 

distributions and the subgrid scale distribution of cloud properties. To increase cloudiness in the Sc regime, we weakened 

cloud-top entrainment by enhancing droplet sedimentation (Bretherton et al., 2007). Next, we essentially removed the 

unphysical lower bound of subgrid vertical velocity used for cloud droplet nucleation (wsubmin) by setting the parameter to a 345 

very low value that was almost never reached. This improves the coupling between the simulated subgrid updraft velocity and 

the cloud microphysical properties such as droplet number, size, and condensate amount. We also adjusted the warm rain 

processes by restoring the heavily tuned prc_exp1, the exponent of droplet number (Nc) in the autoconversion parameterization 

in EAMv1 (Rasch et al., 2019), to the nominal value based on observations (Wood, 2005). This increases cloudiness in areas 

where more aerosols are present. The accretion process is also enhanced to compensate for the reduction of precipitation from 350 

the change in autoconversion. The above microphysical modifications designed to optimize stratocumulus will be combined 

with additional microphysical tunings inspired by cloud types at other latitudes (see Section 2.3). 
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It is worth noting that the autoconversion parameterizations in EAMv1 is based on Khairoutdinov and Kogan (2000), which 

is a function of Qc and Nc. However, the parameter values (i.e., the scale factor and exponents of Qc and Nc) for different 355 

cloud regimes are very different (Kogan, 2013), indicating that the autoconversion process is governed by more factors than 

those considered in the current parameterization. Therefore, there is no one set of parameter values that can optimally represent 

the autoconversion process for all cloud regimes. Adjusting these parameters to achieve reasonably good representation of 

cloud and precipitation simulations is possible, but one should use caution when interpreting the results and acknowledge the 

fundamental deficiency of the underlying process representations in the model. Given the importance of warm rain processes 360 

(autoconversion and accretion) in simulating clouds and precipitation and their responses to forcings, developing new 

parameterizations that can flexibly represent these processes over a broad range of cloud types to address this model deficiency 

should be included in the roadmap toward next generation ESMs. 

2.3 Mid- and high-latitude clouds 

Another significant cloud bias present in mid- and high latitudes in EAMv1 can be attributed to excessive supercooled liquid 365 

clouds due to a suppressed Wegener–Bergeron–Findeisen (WBF) process (Rasch et al., 2019). This insufficient conversion 

from liquid to ice is a consequence of an inherited value of a scaling factor of 0.1 that tuned down the WBF process rate 

significantly. The WBF rate was previously tuned down in order to address an underestimate supercooled liquid clouds in 

CAM5 (Tan et al., 2016;DeMott et al., 2010;Liu et al., 2011). However, EAMv1 eliminated one of the sources of this bias by 

replacing the Meyers et al. (1992) ice nucleation (IN) scheme from CAM5 with a classical-nucleation-theory (CNT)-based 370 

scheme (Hoose et al., 2010;Wang et al., 2014). The CNT scheme addresses the overproduction of ice crystals by Meyers et al. 

(1992), which scavenges liquid water rapidly. Replacing the Meyers et al. (1992) scheme but maintaining the slow WBF 

conversion from liquid to ice produced unrealistically high liquid water path (LWP) in mid- and high latitudes: The LWP 

poleward of 60N and over the Southern Ocean is 15-30% higher than the LWP in the tropics (see discussion in Section 3.1; 

Figure 3). Such an unrealistic meridional distribution of LWP can cause significant biases in the radiative energy distribution, 375 

atmospheric circulation, and water cycle. The excessive cloud liquid water in mid- and high latitudes can also lead to strong 

aerosol-cloud interactions and biases in long range transport of aerosols due to strong wet scavenging (Wang et al., 2013). The 

high-resolution configuration of E3SMv1 reverted the IN scheme to Meyers et al. (1992) to address this bias (Caldwell et al., 

2019), but the error compensation from two incorrect cloud processes can potentially produce biases in cloud microphysical 

properties, adversely impacting the credibility of climate projections.  380 

 

In this study, we adopted an alternative approach to address this bias. Zhang et al. (2019a) shows that improvements can 

be made by increasing the WBF process rate. Therefore, we retained the new CNT-based IN scheme that had been shown to 

perform better than the Meyers et al. (1992) scheme, and significantly increased the scale factor for the WBF process to 

increase the conversion from liquid to ice. This adjustment is superposed with additional benefits from the parameter 385 
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adjustments in the ZM scheme (Section 2.1) that improved the upper tropospheric ice clouds in the tropics and increased ice 

clouds in the mid-latitudes. The model configuration with only the MG2 parameter changes added to EAMv1 is labeled as 

EAMv1_MP (Table 3). The combination of EAMv1_MP and EAMv1_ZM lead to lower LWP and higher ice water path (IWP) 

in the mid- and high latitudes (see discussion in Section 3.1; Figure 3).  

 390 
Table 3. Description of tunable parameters and their values in EAMv1 and EAMv1_MP.  

Parameter Description EAMv1 EAMv1_MP 
cld_sed Liquid droplet sedimentation adjustment 1.0 1.8 
ice_sed_ai Ice particle fall speed parameter  500 1200 
micro_mg_accre_enhan_fac Liquid cloud accretion adjustment  1.5 1.75 
micro_mg_berg_eff_factor WBF process adjustment 0.1 0.7 
prc_exp1 Exponent of liquid droplet number concentration in 

autoconversion  
-1.2 -1.4 

so4_sz_thresh_icenuc Aitken model sulfate aerosol size threshold for homogeneous 
ice nucleation (m) 

0.05e-6 0.08e-6 

wsubmin Minimum subgrid vertical velocity used for liquid droplet 
nucleation (m s-1) 

0.2 0.001 

 

2.4 Model simulations 

The final revised model (labeled as EAMv1P) includes all changes discussed above and two additional changes to the scale 

factors for emissions of sea spray and dust aerosols (Table 4) so that the global mean aerosol optical depth (taer) is similar 395 

between EAMv1 and the recalibrated model.  

 
Table 4. Description of emission scale factors and their values in EAMv1 and EAMv1P.  

Parameter Description EAMv1 EAMv1P 
seasalt_emis_scale Adjustment for sea spray aerosol mobilization 0.85 0.60 
dust_emis_fact Adjustment for dust mobilization 2.05 2.8 

 

In this paper, we show model results from grouped parameter adjustments instead of individual parameter changes. Model 400 

configurations are listed in Table 5. The effects and the mechanisms of each individual parameter adjustment require further 

investigation and will be documented in separate manuscripts. 

 
Table 5. List of model configurations. 

Configuration Description 
EAMv1 Default EAMv1 configuration 
EAMv1_CLUBB EAMv1 with only the CLUBB changes 
EAMv1_MP EAMv1 with only the MG2 changes 
EAMv1_SGV EAMv1 with only the inclusion of subgrid effects  
EAMv1_ZM EAMv1 with only the ZM changes 
EAMv1P EAMv1 with all the changes  

 405 
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Each model configuration was used for 11-year long global atmospheric simulations (first year dscarded for spin-up) in 

which the atmosphere model was coupled with an interactive land model but sea surface temperature (SST) and sea ice cover 

were prescribed. Emissions of aerosols and their precursors were obtained from CMIP phase 6 (CMIP6) emission datasets 

(Hoesly et al., 2018;van Marle et al., 2017). We ran the coarse resolution EAM configuration (i.e., ne30np4, which corresponds 

to approximately 1-degree horizontal grid spacing) with 410 

  

1) Present-day (Year 2000 here) forcing;  

2) Pre-industrial (Year 1850 here) forcing;  

3) Present-day forcing, except for pre-industrial aerosol emissions;  

4) Pre-industrial forcing with SST elevated by 4 K uniformly;  415 

5) Present-day forcing with SST, sea ice, and solar constant set to pre-industrial conditions.  

 

We compute the effective radiative forcing (ERF) from these prescribed-SST-and-sea-ice experiments (Hansen et al., 

2005). Forster et al. (2016) compared different methodologies for computing the ERF and recommend the prescribed-SST-

and-sea-ice method. The differences between 1) and 3) provide information on the impacts of anthropogenic aerosols. 420 

Contrasting 2) and 4) provides climate feedback estimates. Total anthropogenic ERF (ERFant), also termed total adjusted 

forcing, is derived by comparing 5) and 2) (Forster et al., 2013). ERFant includes anthropogenic forcing (greenhouse gas 

concentrations, aerosols, and land use land cover change) and rapid adjustments in water vapor, clouds, and temperature.  

3 Results 

3.1 Clouds 425 

Table 6 summarizes the global mean present-day climatology of cloud properties using the various model configurations listed 

in Table 5. Satellite observations summarized in Stubenrauch et al. (2013) and Neubauer et al. (2019) are also provided but 

we note that it is dangerous, and can be misleading, to compare model state variables with satellite retrievals without using a 

simulator since large retrieval and sampling uncertainties exist. The CREs are computed by double radiation calls in the model. 

Shortwave and longwave CREs contributed from liquid clouds, ice clouds, convective clouds, and snow are independently 430 

computed. Rain droplets are not radiatively active in EAMv1. Because radiative transfer is nonlinear, the sum of the CREs 

from clouds and snow are not equal to the total CRE.  

 

Compared with EAMv1, EAMv1_CLUBB shows lower-magnitude top-of-atmosphere (TOA) net CREs due primarily to 

a reduction of liquid clouds in the shallow Cu regime. EAMv1_MP also produces lower-magnitude total shortwave and 435 

longwave CREs, but it is attributable to the reduction of CREs from both liquid and ice clouds from increasing the WBF 
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process. EAMv1_SGV only marginally increases CREs but EAMv1_ZM significantly enhance the CREs from liquid and ice 

clouds, though the convective CREs are significantly reduced in EAMv1_ZM because the convective cloud fraction is much 

lower as a result of reducing the deep convective cloud fraction parameter dp1. The CRE differences are consistent with the 

differences in cloud optical depth (tcld). In contrast, cloud fractions and cloud heights are relatively invariant between different 440 

configurations. EAMv1_MP reduces LWP, IWP, Nc, and Ni mostly in mid- and high latitudes, and EAMv1_ZM increases 

them mostly in the tropics. The EAMv1P configuration combines all of the changes and produces global mean net CRE (-

24.28 Wm-2) not very different from that in EAMv1 (-24.7 Wm-2), but we emphasize that the spatial distribution of clouds is 

as important as global mean values because different cloud regimes may respond to perturbations differently. 
 445 

Table 6. Global mean 10-year averaged cloud properties of EAMv1, EAMv1_CLUBB, EAMv1_MP, EAMv1_SGV, EAMv1_ZM, 

EAMv1P, and satellite observations summarized in Stubenrauch et al. (2013) and Neubauer et al. (2019). Relevant cloud properties listed 

here are TOA shortwave cloud radiative effects (SWCRE; unit = Wm-2) and that of liquid clouds (SWCREliq), ice clouds (SWCREice), snow 

(SWCREsnow), and convective clouds (SWCREconv); TOA longwave cloud radiative effects (LWCRE; unit = Wm-2) and that of liquid clouds 

(LWCREliq), ice clouds (LWCREice), snow (LWCREsnow), and convective clouds (LWCREconv); cloud fraction (unit = %) of the total column 450 
(Fcld,tot), below 700hPa (Fcld,low), between 400 and 700 hPa (Fcld,med) and above 400 hPa (Fcld,hgh); optical depth of all clouds (tcld) and that of 

liquid clouds (tliq), ice clouds (tice), snow (tsnow), convective clouds (tconv), and all clouds below 700 hPa (tlow) and above 400 hPa (thgh); 

column-integrated total LWP (unit = g m-2) and IWP (unit = g m-2), Nc (unit = 109 m-2) and Ni (unit = 109 m-2); altitude of the top (Zhgh,top; 

unit = km) and base (Zhgh,top; unit = km) of clouds above 400 hPa and altitude of the top (Zlow,top; unit = km) and base (Zlow,top; unit = km) of 

clouds below 700 hPa. 455 
Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P OBS 
SWCRE -49.31     -45.37 -45.11 -50.30 -54.15 -47.27 -46 
SWCREliq -34.87 -31.36 -30.52 -35.33 -37.22 -30.23  
SWCREice -10.73 -10.01 -8.22 -10.85 -16.62 -13.96  
SWCREsnow -6.22 -6.03 -4.72 -6.22 -6.83 -5.32  
SWCREconv -5.73 -5.47 -5.78 -6.27 -2.59 -2.71  
LWCRE 24.61 23.55 20.98 24.66 27.11 22.99 28 
LWCREliq 10.95 10.06 7.18 10.85 10.89 6.59  
LWCREice 14.19 13.56 11.03 14.27 17.49 14.47  
LWCREsnow 6.79 6.69 4.66 6.77 7.16 5.03  
LWCREconv 1.23 1.22 1.27 1.27 0.51 0.54  
Fcld,tot 67.95 65.58 65.98 69.21 69.50 66.22 0.56-0.74 
Fcld,low 42.73 39.73 43.04 44.58 42.80 41.10 0.26-0.62 
Fcld,med 27.18 26.92 25.99 26.75 28.99 27.29 0.12-0.42 
Fcld,hgh 38.88 38.28 35.72 39.31 40.44 37.52 0.13-0.54 
tcld 8.25 7.65 7.27 8.19 9.61 8.00 4-10 
tliq 5.37 4.92 4.58 5.25 4.24 4.36  
tice 0.48 0.43 0.34 0.48 1.02 0.82  
tsnow 0.50 0.49 0.47 0.50 0.58 0.52  
tconv 1.90 1.81 1.89 1.97 2.37 2.30  
tlow 5.61 5.09 5.38 5.59 6.10 5.26  
thgh 0.62 0.60 0.53 0.63 0.87 0.69  
LWP 53.71 51.11 47.02 52.98 58.79 49.77 30-120 
IWP 11.07 10.49 9.72 11.11 20.35 17.98 25 
Nc 14.35 13.22 12.83 14.16 15.53 11.91  



17 

 

Ni 0.29 0.25 0.17 0.29 0.57 0.43  
ZHCT 11.90 11.83 11.70 11.94 11.92 11.74  
ZHCB 8.87 8.82 8.75 8.89 8.84 8.72  
ZLCT 2.04 2.01 2.03 1.98 2.11 2.03  
ZLCB 0.61 0.57 0.60 0.59 0.60 0.55  

 

Figure 3 shows that the changes made in EAMv1_ZM increase the IWP significantly at most latitudes except the polar 

regions. This is likely due to the combination of reducing the convective autoconversion efficiency (by reducing c0_lnd and 

c0_ocn) and decreasing the ice particle size detrained from deep convection (by reducing ice_deep), which increases the ice 

crystal number and prolongs the lifetime of ice clouds. EAMv1_MP shows a slight reduction of IWP in the Southern Ocean, 460 

while significantly reducing LWP in mid- and high latitudes. This remedies the unrealistically high LWP in those regions in 

EAMv1 due to its weak WBF process.  

 

These changes in condensate also lead to a more realistic liquid condensate fraction (LCF) thermal dependence (Figure 

3d). Because of the general IWP increase in EAMv1_ZM, the meridional distribution of LCF is reduced as a result of changes 465 

made in ZM (Figure 3c). Interestingly, the global mean atmospheric temperature where ice and liquid each contribute to 50% 

of total condensate, T5050 (McCoy et al., 2015;McCoy et al., 2016), in EAMv1 is about 240 K, which is significantly lower 

than observational estimates of 254-258 K (McCoy et al., 2016). While the CMIP5 models tend to freeze liquid condensates 

at higher temperatures (Cesana et al., 2015;Tan et al., 2016;McCoy et al., 2016), EAMv1 appears to have overcorrected this 

bias and produced excessive supercooled liquid at low temperatures. Consistent with Zhang et al. (2019a), EAMv1_MP 470 

increases the T5050. Combining with changes introduced in EAMv1_ZM, EAMv1P produces a much more reasonable T5050 

of 254K, which is at the lower bound of the observational estimates. We note that even though Hu et al. (2010) provided an 

observationally derived LCF-T relationship based on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 

(CALIPSO) measurements (Winker et al., 2007), EAMv1 does not have the CALIPSO cloud phase simulator (Cesana and 

Chepfer, 2013) so that a fair comparison is not possible. Evaluating the model LCF-T relationship against satellite observations 475 

in a consistent way will be very useful and requires further investigation.  

 

Differences in the simulated cloud phase can have important implications for aerosol-cloud interactions (ACI) because the 

physical processes regulating the interactions between aerosols and warm cloud and between aerosols and cold clouds are very 

different. The simulated cloud phase can also affect cloud feedbacks to warming (Tan et al., 2016). The ACI and cloud 480 

feedbacks will be discussed in Section 3.4 and 3.5. 
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Figure 3. Zonal mean of (a) ice water path (IWP); (b) liquid water path (LWP); and (c) liquid condensate fraction (LCF), defined as the 

ratio of liquid to total cloud condensate amount; and (d) LCF as a function of temperature (unit = K) between 30°S and 80°S. The horizontal 485 
dashed line in (d) denotes T5050 (McCoy et al., 2016;McCoy et al., 2015) where ice and liquid each contributes to 50% of the total 

condensate. The observational estimate of T5050 range (McCoy et al., 2016) are shown in the gray shaded area.  

 

Figure 4 illustrates how the most challenging TOA SWCRE biases in EAMv1 (Figure 4a) are greatly remedied by the 

cumulative effects of our retuning (Figure 4f), with intermediate subpanels decomposing the grouped parameter changes in 490 

ways that help illustrate how they are intended to address those biases independently and jointly. By enabling the variable 

skewness treatment in CLUBB and the adjustments that follow, the overly bright shallow Cu and the significant lack of Sc in 

EAMv1 are greatly improved in EAMv1_CLUBB. SWCRE associated with coastal Sc is increased by about 10-20 Wm-2 off 

the coast of California and by about 30-40 Wm-2 off the coast of Peru and Chile, while over the shallow Cu regime SWCRE 

is reduced by 20-30 Wm-2. The elevated Skw in the shallow Cu regime also reduces the cloud water removal time scale (not 495 

shown).  In EAMv1_MP, tuning up the WBF process corrects the SWCRE bias at mid- and high latitudes. With increasing 

fraction of ice condensate, the cloud water removal timescale is reduced (not shown) because warm rain processes are less 

efficient in removing condensate than ice precipitation processes (Mülmenstädt et al., 2021). Adjustments to cloud droplet 

sedimentation and warm rain processes make moderate improvements to Sc. Changes to ice crystal sedimentation and sulfate 

aerosol size result in significant reduction in tropical SWCRE, as upper tropospheric clouds respond to these adjustments the 500 

most. Furthermore, EAMv1_SGV increases clouds in areas where large-scale winds are weak and convection occurs 

frequently, including the TWP and Amazonia. Some effects on the eastern Pacific are also observed. EAMv1_ZM further 

increases cloudiness in the ITCZ, especially in the western and eastern Pacific. Cloudiness in the Southern Pacific Convergence 
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Zone (SPCZ) is also improved. Setting c0_lnd and c0_ocn to lower values essentially slows down the convective 

autoconversion process, leading to longer water removal timescale in the tropics. Combining all the changes, EAMv1P shows 505 

improved cloud distribution with reduced biases in the tropics, subtropics, and mid- and high latitudes, indicating that the 

changes discussed in Section 2 are appropriate.  

 

 
Figure 4. Difference of present-day TOA SWCRE (W m-2) climatology between (a) EAMv1 and Clouds and Earth’s Radiant Energy 510 
System (CERES) (Wielicki et al., 1996) Energy Balance and Filled (EBAF) Edition 4.1 (Loeb et al., 2012;Loeb et al., 2003;Loeb et al., 
2018) averaged over 2001-2010; (b) EAMv1_CLUBB and EAMv1; (c) EAMv1_MP and EAMv1; (d) EAMv1_SGV and EAMv1; (e) 
EAMv1_ZM and EAMv1; and (f) EAMv1P and EAMv1. Model TOA SWCRE are 10-year averages. Stippling denotes significant 
difference at the 95% confidence level based on a Student’s t-test. 
 515 

Further evaluation using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud 

simulator (Chepfer et al., 2008), as part of the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator 

Package (COSP) (Bodas-Salcedo et al., 2011), that samples the model at 1:30 PM local time for comparisons of total cloud 

fraction with version 3.1.2 of the General Circulation Model-Oriented CALIPSO Cloud Product (GOCCP) (Chepfer et al., 

2010)) shows similar results. Figure 5 shows cloud bias reductions in the Northern Hemisphere high latitudes, the 520 

stratocumulus regions, TWP, and over tropical lands. These improvements match our expectation, increasing our confidence 

in the model clouds. However, there are some differences between the comparisons in Figure 4 and 5. In Figure 4, EAMv1 

shows overly bright clouds in trade cumulus regions and over the Southern Ocean and EAMv1P reduces these biases. Figure 

5 shows that EAMv1 produces less clouds in trade cumulus regions and more clouds over then Southern Ocean than GOCCP, 

and EAMv1P increases the bias in trade cumulus regions and does not change the Southern Ocean bias. This could indicate 525 
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that the improvements to the TOA SWCRE over these regions are achieved by compensating errors between cloud fraction 

and cloud optical depth.  

 

 
Figure 5. Total cloud fraction between (a) EAMv1 and the version 3.1.2 of the GOCCP total cloud fraction (Chepfer et al., 2010) averaged 530 
over 2007-2017; (b) EAMv1_CLUBB and EAMv1; (c) EAMv1_MP and EAMv1; (d) EAMv1_SGV and EAMv1; (e) EAMv1_ZM and 

EAMv1; and (f) EAMv1P and EAMv1. Model cloud fractions are derived from the CALIPSO cloud simulator (Chepfer et al., 2008) sampled 

at 1:30 PM local time.  

 

Given the importance of low clouds in Earth’s radiation budget, we investigate the planetary boundary layer (PBL) 535 

properties in different model configurations to gain insights into the physical mechanisms associated with the parameter 

adjustments. Table 7 shows that the adjustments to CLUBB parameters affect the simulated PBL properties significantly, as 

expected. The adjustments to CLUBB parameters directly reduce the 𝑤′!#####925 and increase 𝑆𝑘#925, but they also govern the 

turbulent mixing and cloud processes in the PBL, producing a complex set of overall impacts on the macroscale properties of 

the PBL. The weaker 𝑤′!#####925 indicates a shallower PBL, reducing both the PBL decoupling strength (PBLdcp, defined as the 540 

difference between cloud base height and lifting condensation level (LCL) (Jones et al., 2011) as well as the frequency of 

occurrence of decoupled PBL. The cloud-top entrainment rate for PBL clouds (we) is reduced as a result. It is interesting to 

note that the changes to the ZM deep convection scheme can also reduce cloud-top entrainment, presumably through 

strengthening of the large-scale subsidence in the sub-tropics. On the other hand, higher 𝑆𝑘#925 indicates that the model 

produces more asymmetric mixing and shallow Cu-like clouds. This matters for cloud feedback since an increase of Cu-like 545 

clouds and decrease of Sc-like clouds can lead to weaker low cloud feedback (Cesana et al., 2019) and results will be discussed 
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further in Section 3.5. Finally, we find that the inverse relative variance of cloud water, which affects the enhancement factors 

of autoconversion, accretion, and immersion freezing (Morrison and Gettelman, 2008), are not sensitive to the parameter 

changes. Thus, there is a limited impact on these three processes from changes in subgrid in-cloud water variance. 

 550 
Table 7. Global mean 10-year averaged PBL properties of EAMv1, EAMv1_CLUBB, EAMv1_MP, EAMv1_SGV, EAMv1_ZM, and 

EAMv1P. Relevant PBL properties listed here are subgrid vertical velocity variance (𝑤′!#####, unit = m2 s-2) and the subgrid vertical velocity 

skewness (𝑆𝑘") at 925 hPa; PBL decoupling strength (PBLdcp; unit = km); PBL decoupling frequency (FREQdcp; unit = %); cloud-top 

entrainment rate (we; unit = m day-1); and inverse relative variance of cloud water at 925 hPa (𝜈925). Only columns with clouds in PBL are 

sampled. 555 
Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P 
𝑤′!#####925  0.13 0.09 0.13 0.12 0.13 0.09 
𝑆𝑘"925 0.45 0.90 0.47 0.41 0.50 1.02 
PBLdcp 0.32 0.28 0.32 0.30 0.31 0.26 
FREQdcp 26.20 22.90 26.38 25.67 25.90 22.05 
we 171.9 148.8 171.7 164.8 143.4 121.5 
𝜈925 2.91 2.83 2.85 3.05 2.92 2.87 

 

Next, we compare the estimated inversion strength (EIS) (Wood and Bretherton, 2006) between model simulations and a 

reanalysis dataset. The EIS was computed following the CFMIP diagnostics code catalogue (Tsushima et al., 2017). EIS has 

traditionally been considered as an important cloud controlling factor affecting low clouds and low cloud feedback (Klein et 

al., 2017;Myers et al., 2021). Figure 6 shows that EAMv1 generally underestimates EIS, except in the tropics. The revised 560 

model EAMv1P alleviates many of the biases, but some biases remain. EAMv1_CLUBB reduces the bias over land in general 

(except for north Africa) as well as the mid- and high-latitude ocean. EAMv1_MP shows significant difference in the polar 

regions, indicating that reducing supercooled liquid in the mixed phase cloud regime can change polar PBL properties. 

EAMv1_SGV enhances the EIS as a result of convection invigoration. Similarly, EAMv1_ZM directly reduces the bias in the 

tropics and produces enhanced EIS in mid- and high latitudes through large-scale circulation responses. 565 
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Figure 6. Estimated inversion strength (EIS; unit = K). The EIS computed from European Centre for Medium-Range Weather Forecasts’ 

(ECMWF’s) fifth generation global meteorological reanalysis (ERA5) (Hersbach et al., 2019) is used for the comparison with EAMv1.  

 570 

Figure 7 shows that changes in EAMv1_CLUBB also significantly reduce the PBL decoupling strength (Jones et al., 2011). 

The decoupled PBL is often a sign that the PBL grows too deep, so that the negative buoyancy at the top of the PBL is 

insufficient to mix through the sub-cloud layer (Wood, 2012). These conditions favor the transition from Sc to shallow Cu 

(Wood, 2012;Xiao et al., 2011), reducing the overall cloudiness and contributing to the lack of Sc in EAMv1. This longstanding 

regional cloud bias is primarily alleviated by adjustments to CLUBB parameters, particularly the increases of C1 and C1b that 575 

reduces  𝑤′!#####. Furthermore, EAMv1_SGV also reduces the PBL decoupling strength over tropical land as well as subtropical 

and mid-latitude ocean, likely due to the enhanced surface flux which moistens the PBL. The recalibrated model EAMv1P 

shows the collective effect of significant reduction in decoupling strength (Figure 7) and frequency (not shown).  
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 580 
Figure 7. PBL decoupling strength (unit = m) defined as the difference between LCL and the altitude of cloud base (Jones et al., 2011). The 

PBL decoupling strength is computed at every cloud physics timestep (dt = 5 minutes), averaged over samples where decoupled PBL is 

detected. 

 

We also diagnose the cloud-top entrainment efficiency (Bretherton et al., 2007) in different model configurations to further 585 

clarify the physical mechanisms associated with the parameter adjustments. Cloud-top entrainment efficiency is defined as 

𝐴 = 𝑤/∆𝑏 𝑧0 𝑤∗"⁄ , where 𝑤/  is the entrainment rate computed by differencing the resolved vertical motion and change of 

inversion height (𝑧0 ), ∆𝑏 is the virtual potential temperature jump scaled into buoyancy jump  (∆𝑏 = 𝑔 ∆*+
*,-.

 ) where the 

reference virtual potential temperature 𝜃1/2  is 300 K, and 𝑤∗  is the convective velocity (𝑤∗ = (2.5 ∫ 𝑤′𝑏′######𝑑𝑧3/
' )4 "⁄ )  that 

measures the buoyancy integrated over the boundary layer where b’ is the buoyancy perturbation and  𝑤′𝑏′###### is the buoyancy 590 

flux. Figure 8 shows that the largest differences are again a result of changes made in CLUBB. As 𝑤′!#####  is reduced, 

EAMv1_CLUBB produces a shallower PBL consistent with a reduced cloud-top entrainment efficiency. In EAMv1_MP, the 

enhancement of liquid and ice sedimentation also reduces entrainment efficiency (Bretherton et al., 2007). EAMv1_SGV 

generally enhances the surface fluxes and produces a deeper and relatively less stable PBL, leading to enhanced mixing 

between the PBL and the free troposphere.  595 
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Figure 8. Cloud-top entrainment efficiency (Bretherton et al., 2007). The cloud-top entrainment efficiency is computed at every cloud 

physics timestep (dt = 5 minutes) of the model.  

 600 

The changes in PBL decoupling strength and cloud-top entrainment efficiency shown in Figs 7 and 8 are consistent with 

expectations and affirm our understanding of the physical mechanisms connecting the parameter adjustments, CREs, and PBL 

properties, even though they are not directly controlled by any tunable parameters. Unfortunately, currently there is no global 

observational estimate for decoupling frequency and cloud-top entrainment efficiency so we cannot assert that the recalibration 

improves these physical mechanisms taken alone. But put together, they constitute a reassuring sign that relevant metrics of 605 

macroscale low cloud dynamics are associated with desired changes in TOA SWCRE in logical ways. Future studies that 

derive decoupling frequency and cloud-top entrainment efficiency, as well as other important cloud controlling factors, from 

field campaign measurements for evaluating models in particular regions and time periods would be highly valuable. 

3.2 Precipitation 

Table 8 shows the global mean precipitation characteristics. We find that adjustments to the ZM scheme (e.g., reducing the 610 

convective autoconversion efficiency and convective cloud fraction) lead to a reduction of convective precipitation (PRECC) 

and an increase of large-scale precipitation (PRECL). Here convective precipitation refers to the precipitation produced by the 

ZM deep convection parameterization and large-scale precipitation refers to the precipitation produced by the MG2 cloud 

microphysics parameterization. While EAMv1 produces more convective precipitation than large-scale precipitation, the 

revised model EAMv1P corrects this bias so that the model is in better agreement with observational estimates (Yang et al., 615 

2013). The shift from convective to large-scale precipitation is expected to improve precipitation characteristics (Yang et al., 

2013) because more detailed cloud microphysics processes are considered for large-scale clouds. 

 

Nevertheless, the common bias in ESMs of producing frequent drizzle and light precipitation is pronounced in EAMv1 and 

adjustments of parameters have only a marginal impact. This suggests that the precipitation PDF bias is not related to 620 
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parametric uncertainty and perhaps is attributed to model’s structural deficiency such as issues with the trigger and closure in 

its deep convection scheme, as well as the coarse resolution insufficient to simulate strong moisture convergence or 

dependency of precipitation formation on unresolved mesoscale forcing. Such an interpretation is consistent with many 

intercomparisons between super-parameterized and conventionally-parameterized versions of the Community Earth System 

Model (CESM) (Kooperman et al., 2016) that have sampled different structural formulations for rainfall production. Recent 625 

studies indicated that using an improved convective trigger (Xie et al., 2019) or incorporating a stochastic convection scheme 

(Wang et al., 2021) into ZM can also help address the “too-frequent-too-weak” precipitation biase in EAMv1. Lastly, we show 

that the fraction of large-scale precipitation produced by autoconversion (Rauto in Table 8) in EAMv1 is already much lower 

than its predecessor model CAM5 even at 0.25-degree horizonal grid spacing (Ma et al., 2015), and the changes in EAMv1_MP 

further reduce the autoconversion fraction. This change will affect the model estimate of aerosol indirect effects (Posselt and 630 

Lohmann, 2009;Wang et al., 2012;Gettelman et al., 2013). 

 
Table 8. Global mean 10-year averaged precipitation fields of EAMv1, EAMv1_CLUBB, EAMv1_MP, EAMv1_SGV, EAMv1_ZM, and 

EAMv1P. Relevant precipitation variables listed here are total, convective, and large-scale precipitation rates (PRECT, PRECC, and PRECL; 

unit = mm day-1); ratio of deep convective precipitation to total precipitation (Rconv); frequency of occurrence (unit = %) of no precipitation 635 
(FREQdry), drizzle with precipitation rates less than 0.5 mm day-1 (FREQdrizzle), light precipitation with precipitation rates between 0.5 and 8 

mm day-1  (FREQlight), moderate precipitation with precipitation rates between 8 and 80 mm day-1  (FREQmoderate), and heavy precipitation 

with precipitation rates exceeding 80 mm day-1 (FREQheavy); and ratio of autoconversion to total precipitation (Rauto). 

Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P 
PRECT 3.07 3.02 3.10 3.09 3.02 3.01 
PRECC 1.76 1.74 1.79 1.82 1.32 1.38 
PRECL 1.32 1.29 1.32 1.27 1.70 1.63 
Rconv 0.57 0.58 0.58 0.59 0.44 0.46 
FREQdry 6.38 6.30 6.41 6.50 5.98 6.13 
FREQdrizzle 50.94 51.08 50.59 50.16 50.02 49.07 
FREQlight 34.23 34.33 34.44 34.84 36.35 37.17 
FREQmoderate 8.41 8.26 8.52 8.46 7.57 7.56 
FREQheavy 0.05 0.05 0.05 0.05 0.10 0.09 
Rauto 0.20 0.21 0.12 0.20 0.16 0.11 

 

As discussed in Rasch et al. (2019) and shown in Figure 9, EAMv1 produces high annual mean precipitation over the 640 

globe, over high elevation, over the Maritime Continent, and in the central Pacific, but low annual mean precipitation over 

Amazonia and oceanic TWP. With an improved cloud distribution, we find the precipitation simulation improves as well. 

Figure 9 shows that tropical precipitation is greatly improved. EAMv1_SGV enhances precipitation in TWP, eastern Pacific, 

and Amazonia, while EAMv1_CLUBB and EAMv1_ZM reduce precipitation in the central Pacific and western Indian Ocean, 

while increasing precipitation in the SPCZ. This suggests that the displaced Walker circulation in EAMv1 is significantly 645 

improved in the recalibrated model. EAMv1_SGV also reduces precipitation bias over high elevation regions such as the 

Andes and Himalayas likely through non-local circulation response. We also find an unexpected improvement from the ZM 
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changes by reducing the double ITCZ bias. While the physical mechanism remains unclear and requires further investigation, 

our results corroborate the finding of Song and Zhang (2018) that the double ITCZ bias is sensitive to the adjustments in the 

deep convection parameterization, which affects the tropical clouds (and energy budget) and precipitation directly and the 650 

large-scale circulations indirectly. 

 

 
Figure 9. Total precipitation rate differences (unit = mm day-1). The Global Precipitation Climatology Project (GPCP) version 2.3 dataset 

(Huffman et al., 2001) is used for the comparison with EAMv1. 655 
 

In summary, the recalibrated model with improved clouds also produces more realistic present-day precipitation 

climatology. Pronounced precipitation biases in the tropics, over land, and over high elevation are significantly reduced. The 

improved realism of the precipitation distribution is consistent with the improved cloud distribution. These improvements lead 

to a more realistic atmospheric circulation and positive impacts on other aspects of the simulated atmosphere. The remaining 660 

biases in tropical clouds and precipitation could be related to coarse model resolution which fails to resolve islands, narrow 

mountain ranges, mesoscale convection, and small-scale meteorological fields (Wang et al., 2018), along with the deficiency 

in representing the triggering of deep convection (Xie et al., 2019).  The lack of representing ice clouds in CLUBB can also 

contribute to remaining biases in mid- and high latitudes (Zhang et al., 2020).  

3.3 Other aspects of the present-day climate 665 
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Our recalibration is governed by an understanding of the physical mechanisms present in the atmosphere and their 

representation in parameterizations. Our effort has focused on improving the CREs across cloud regimes. Improvements to 

clouds and precipitation have been accomplished that are consistent with our expectations, but evaluation of other aspects of 

the simulated present-day climate is essential. While the possibility of compensating biases always exists, our confidence in 

the underlying physics in the model will be increased if many other aspects are also improved. Otherwise, we are forced to 670 

suspect that the model achieves its behavior primarily through compensating biases. 

 

Near-surface air temperature is an important state variable for validating the fidelity of the ESMs. Both dynamical and 

physical processes affect the temperature field, so an appropriate balance between these processes is essential for producing a 

realistic simulation of present-day conditions. Therefore, the near-surface air temperature can also be viewed as a minimum 675 

requirement for providing some confidence in projections of future climate. However, like many weather and climate models 

(Morcrette et al., 2018), EAMv1 produces significant near-surface air temperature biases. The Northern Hemisphere (NH) 

high latitudes exhibit a 1-5 K warm bias and there are cold biases in other places (Figure 10). The warm high latitude bias and 

the cold tropical bias produce a weaker equator-to-pole temperature gradient, which can cause errors in mid-latitude 

baroclinicity, storm tracks, and large-scale circulations. It can also lead to excessive melting of sea ice and land ice, which has 680 

adverse impacts on ocean circulation. Figure 10 shows that the parameter adjustments that aim to improve CREs generally 

improve the near-surface temperature, and the changes in EAMv1_MP lead to the largest improvements. This suggests that 

the liquid cloud bias in EAMv1 due to the underactive WBF process coupled with the CNT-based IN parameterization may 

be responsible for the near-surface temperature bias. Strong liquid-to-ice conversion improves the CREs and subsequently 

affects the near-surface temperature, which will further impact circulations and affect other aspects of the Earth’s climate. 685 
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Figure 10. 2-meter height air temperature (unit = K). The ERA5 reanalysis is used for the comparison with EAMv1. 

 

Surface winds affect the physical climate and the biogeochemical cycle in a variety of ways. In EAMv1, surface winds 690 

affect surface flux of heat, moisture, and momentum, which influence the thermodynamic properties in the PBL but also more 

generally the atmospheric energy and water cycles. The emissions of sea spray aerosols and mineral dust are a function of 

surface winds. Over the ocean, surface winds drive the ocean surface currents and influence the mixed layer depth, heat budget, 

and carbon uptake in the ocean. Figure 11 shows that surface winds in EAMv1 are significantly stronger than those in the 

MERRA-2 reanalysis, especially in the Southern Ocean and North Atlantic. In the tropical Pacific Ocean, the trade easterlies 695 

are too strong, which pushes the cold tongue into the Indo-Pacific warm pool. The wind direction biases are reduced in 

EAMv1_SGV when the gustiness parameterization is enabled such that the subgrid winds are accounted for in surface flux 

calculations. EAMv1_ZM also shows some minor improvements in TWP. Combining all the model changes, the revised model 

EAMv1P shows significant improvements in surface winds in many parts of the tropics, North Atlantic, and Southern Ocean. 

In the fully coupled E3SM, these improvements may lead to more realistic ocean circulations as well as ocean-atmosphere 700 

exchange of heat, moisture, momentum, trace gases, and aerosols. 
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Figure 11. Winds at the lowest model level. The surface winds from the Modern-Era Retrospective Analysis for Research and Applications 

Version 2 (MERRA-2) (Gelaro et al., 2017) is used for the comparison with EAMv1. 705 
 

Although our recalibration is only targeted to improve CRE features (Figure 4), those changes can affect aerosols as well 

because cloud processing is an important sink in the aerosol lifecycle. Figure 12 shows that the changes in EAMv1_MP and 

EAMv1_ZM increase the aerosol loading, while EAMv1_SGV produces lower aerosol loading. The changes in aerosol loading 

are partially due to the changes in wet scavenging. In EAMv1_MP, the reduction of supercooled liquid water path increases 710 

aerosol loading in mid- and high latitudes because liquid clouds remove aerosols efficiently. EAMv1_SGV enhances the 

surface moisture flux which also increases wet scavenging, and the weakened convective autoconversion in EAMv1_ZM 

reduces the wet removal of aerosols. We also find that the revisions have reduced dust emissions over the Sahara because of 

the weakened turbulence in EAMv1_CLUBB. Collectively, the recalibrated model EAMv1P reduces the aerosol optical depth 

(taer) biases in the NH mid- and high- latitudes, in the tropics, and over land in general. There are, however, remaining taer 715 

biases in the subtropics, eastern Pacific, eastern Atlantic, and Southern Ocean.  
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Figure 12. Clear-sky aerosol optical depth (taer). The MODIS onboard Aqua taer data product (Levy et al., 2013) is used for comparison with 

EAMv1. Model clear-sky taer is sampled at 1:30 PM local time. 720 

 

In addition to improvements in near-surface temperature, surface winds, and column-integrated aerosols, we observe 

improvements to sea level pressure (SLP) as well as temperature and wind fields in the recalibrated model EAMv1P (Figure 

13). While EAMv1_CLUBB and EAMv1_MP do not produce different results from EAMv1, we find that the meridional wind 

at 850 and 500 hPa (coded as numbers 4 and 7) in EAMv1_SGV and EAMv1_ZM are in better agreement with ERA5 as their 725 

normalized standard deviation reduces. Many other aspects of the climate are carefully evaluated using E3SM standard 

diagnostics (https://portal.nersc.gov/project/e3sm/beharrop/EAMv1P/). We find that the recalibrated model shows 

improvements in most aspects of the simulated present-day climate (despite the fact that they were not tuning targets), and 

small or no degradation in others. We conclude that when improvements in simulating clouds across regimes are achieved by 

applying adjustments based on an understanding of the physical mechanisms, those changes are manifested by more realistic 730 

simulation of many features of the global atmosphere. Because the correct response of the nonlinear climate system depends 

on both realistic base state and realistic process representations, the improved realism in the recalibrated model EAMv1P 

provides greater confidence in estimating the responses of the climate system to anthropogenic forcings and, ultimately, the 

ECS. 

 735 
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Figure 13. Taylor diagram (Taylor, 2001) comparing sea level pressure, temperature, and winds in EAMv1, EAMv1_CLUBB, EAMv1_MP, 

EAMv1_SGV, EAMv1_ZM, and EAMv1P with the ERA5 reanalysis.  

3.4 Responses to anthropogenic aerosols 740 

The role of aerosols in the climate system is a major uncertainty in projections of Earth’s future climate as well as in interpreting 

how the climate has been forced over recent decades. The uncertainty has been attributed to both a lack of understanding of 

aerosol emissions in pre-industrial times (Carslaw et al., 2013) as well as uncertainties associated with modeling aerosol and 

cloud processes (Regayre et al., 2018;Yoshioka et al., 2019). E3SMv1 produces notable biases in the historical evolution of 

surface temperature due to a combination of high ECS (from cloud feedback) and strong aerosol forcing, both of which are 745 

likely to be too large (Golaz et al., 2019). In this section, we assess the cloud and precipitation responses to anthropogenic 

aerosols in the recalibrated model where processes influencing aerosols and clouds operate differently from EAMv1 and the 

simulated present-day atmosphere is more realistic than that in EAMv1. Our goal is to understand the impacts and the physical 

mechanisms of the parameter adjustments on cloud and precipitation responses to aerosols. The effects of anthropogenic 
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aerosols are assessed by differencing paired simulations where one uses the present-day aerosol emissions and the other uses 750 

the pre-industrial aerosol emissions (see Section 2 for the experiment design). 

 

Table 9 shows the global mean net total ERFant in EAMv1 is quite low compared to CMIP5 (Forster et al., 2013) and other 

previous generation models (Kiehl, 2007). This is mostly attributed to the aerosol ERF (ERFaer) (Golaz et al., 2019). 

EAMv1_MP increases ERFant, but other parameter adjustments lower ERFant so that the recalibrated model EAMv1P produces 755 

about the same ERFant. ERFaer comprises the ERF associated with aerosol-radiation interactions (ERFari) and aerosol-cloud 

interaction (ERFaci), and aerosol-induced surface albedo changes. The ERFaer is computed by differencing all-sky TOA 

radiative flux between paired fixed SST simulations with present-day and pre-industrial aerosol emissions (Hansen et al., 

2005), which is referred to as ERF_fSST in Forster et al. (2016). ERFaci is defined as the clean-sky TOA CRE difference 

(Ghan, 2013). Note that the Ghan (2013) method removes the direct radiative effect from the anthropogenic aerosols on CREs, 760 

producing stronger ERFaci (-1.48 W m-2) compared to the Boucher et al. (2013) method (~-1 W m-2) used in Wang et al. (2020), 

which assumes that ERFaci is the residual between ERFari+aci and ERFari. EAMv1 produces slightly weaker net ERFaer (-1.42 W 

m-2) and ERFaci (-1.48 W m-2) than its predecessor CAM5’s -1.47 and -1.53 W m-2, respectively (Ghan et al., 2012). EAMv1’s 

ERFaer falls within the 68% confidence range of ‐1.6 to ‐0.6 W m-2 (where the 90% confidence range is between ‐2.0 and ‐

0.4 W m-2) estimated recently by considering various lines of evidence including models, observations, theories, energy 765 

balance requirements, and observed temperature constraints (Bellouin et al., 2020).  

 

Collectively, the net ERFaci and ERFaer in EAMv1P remain about the same as EAMv1, but EAMv1P produces significantly 

weaker ERFaci,sw and ERFaci,lw. These are due to competing effects of our microphysical versus deep convective recalibrations. 

Our microphysical tunings in EAMv1_MP significantly weaken ERFaci for two reasons. First, EAMv1_MP reduces 770 

supercooled liquid clouds in the NH storm track from tuning up the WBF process, which weakens the ERFaci due to aerosol 

effects on liquid clouds. Second, EAMv1_MP reduces the sulfate aerosols participating in homogeneous ice nucleation, an 

expected consequence of having increased the size threshold of sulfate aerosols. Since ERFaci is mostly attributed to aerosols 

effects on liquid clouds in EAMv1, reducing the amount of baseline liquid clouds reduces ERFaci. Conversely, our tunings of 

the deep convection scheme in EAMv1_ZM enhance ERFaci. Since the ZM scheme does not consider detailed cloud 775 

microphysical processes, this enhancement is likely due to the overall increase of cloudiness as shown in Figure 1. Collectively, 

the net ERFaci and ERFaer in EAMv1P remain about the same as EAMv1, but EAMv1P produces significantly weaker ERFaci,sw 

and ERFaci,lw.  

 

Both longwave and shortwave radiation affect surface temperature and atmospheric cooling rates, which govern the 780 

hydrological cycle. Because ERFaer is reduced for both shortwave and longwave in EAMv1P, the recalibrated model shows 

reduced aerosol-induced response in precipitation (Table 9) and land surface temperature (Table 9), even though the net 
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ERFaer is about the same. Furthermore, the taer difference between the paired simulations with present-day and pre-industrial 

aerosol emissions (Dtaer) in EAMv1P agrees much better with estimates from model ensembles (Watson-Parris et al., 2020) 

and from an estimate based on a combination of models and observations (Kinne et al., 2006) than that in EAMv1. Because 785 

Dtaer is significantly larger in EAMv1P than EAMv1 while ERFaci in the two model configurations are similar, the sensitivity 

of CREs to aerosol perturbations (i.e., the change of CRE per unit aerosol perturbation) is lower in EAMv1P.  

 
Table 9. Global mean 10-year averaged total ERFant derived from paired simulations with present-day and pre-industrial forcings; and 

shortwave, longwave, and net ERFaer and shortwave, longwave, net ERFaci (unit = W m-2), and the difference in total precipitation rate 790 
(PRECT, unit = mm day-1), land surface temperature (Ts; unit = K), and aerosol optical depth (taer) difference between paired simulations 

with present-day and pre-industrial aerosol emissions.  

Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P 
ERFant 1.19 1.19 1.48 1.05 0.97 1.24 
ERFaer -1.42 -1.46 -1.09 -1.55 -1.72 -1.46 
ERFaer,sw -2.19 -2.24 -1.55 -2.28 -2.36 -1.72 
ERFaer,lw 0.76 0.78 0.46 0.73 0.64 0.26 
ERFaci -1.48 -1.53 -1.25 -1.53 -1.79 -1.46 
ERFaci,sw -2.02 -2.11 -1.48 -2.11 -2.24 -1.55 
ERFaci,lw 0.54 0.58 0.23 0.58 0.45 0.08 
DPRECT -0.028 -0.024 -0.024 -0.026 -0.025 -0.021 
DTs -0.20 -0.01 -0.05 -0.09 -0.04 -0.10 
Dtaer 0.024 0.023 0.026 0.023 0.029 0.033 

 

Figure 14 shows that the recalibration leads to smaller magnitude of both positive and negative ERFaci in most places. The 

aerosol-induced strong warming in the Arctic and strong cooling in the NH storm track, East Asia, and North America are 795 

reduced, indicating a weaker local CRE response to aerosols in EAMv1P. EAMv1_MP again produces the most significant 

reduction, which we attribute to the more effective WBF process that reduces the supercooled liquid clouds. Other changes 

introduced in EAMv1_MP may also contribute to the weaker ERFaci in East Asia, Northeast Pacific, and North America, 

including 1) enhancing the sedimentation of ice and liquid cloud droplets; 2) reducing the sulfate aerosols available for 

homogeneous ice nucleation; and 3) reducing the minimum subgrid vertical velocity used for liquid droplet nucleation. 800 

Regional exceptions with enhanced ERFaci magnitude also occur and are noteworthy in the subtropical stratocumulus regions 

off the Peruvian and Namibian coasts, where our recalibration has increased the low cloud amount available to participate in 

aerosol-induced brightening.  

 

Of particular note regarding model calibration against historical temperature changes are the response of aerosol induced 805 

land surface temperature changes. In Figure 15, we show that the strong influence of aerosols on surface temperature in EAMv1 

is encouragingly reduced by each of our incremental recalibrations. Despite the fact that the global mean ERFaer remains the 

same in EAMv1P, the temperature effects are muted. With the reduced sensitivity of surface temperature to aerosol 

perturbations, we speculate that these recalibrations might ameliorate the concerning signature of the unrealistically strong 
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cooling in the 1950s in E3SMv1 (Golaz et al., 2019), if the cause of the bias is indeed due to the overly strong aerosol forcing 810 

as hypothesized. We also find that aerosols induce opposite land temperature changes over the northeast Eurasia and the 

northwest North America. This indicates that the surface temperature changes are not determined only by local energy balance. 

Other processes in the climate system such as large-scale circulation changes also play a role. Furthermore, an empirical 

relation has been shown to exist between the global mean ERFant and ECS in climate models from both the CMIP3 and CMIP5 

collections (Kiehl, 2007;Forster et al., 2013). The relationship between ERFant and ECS exists because both values in models 815 

are sensitive to simulated clouds. Our tuning strategy specifically targets improving the representation of clouds, and it is worth 

asking whether these improvements uphold or alter the ERFant -ECS relation. The small difference in ERFant between the 

EAMv1 and EAMv1P configurations suggests the possibility of a similar small difference in ECS between these two 

configurations, and yet we find this is not the case (see Section 3.5). 

 820 

 
Figure 14. ERFaci estimated using the Ghan (2013) method in (a) EAMv1, (b) EAMv1_CLUBB, (c) EAMv1_MP, (d) EAMv1_SGC, (e) 

EAMv1_ZM, and (f) EAMv1P. 
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 825 
Figure 15. Aerosol-induced changes in land surface temperature. 

 

Table 10 shows that the aerosol-induced change in cloud fraction remains small in all model configurations. For column-

integrated condensate amount, consistent with muted cloud radiative responses to aerosol, EAMv1_MP significantly reduces 

the sensitivity of LWP and IWP to aerosols. EAMv1_ZM also reduces the IWP sensitivity. The droplet and ice number 830 

concentrations are highly sensitive to anthropogenic aerosols as expected, but EAMv1_MP significantly reduces the sensitivity 

of both Nc and Ni to aerosols, while EAMv1_ZM reduces only the sensitivity of Ni to aerosol perturbations. By combining the 

present-day Nc and Ni in Table 6 and the relative change of Nc and Ni due to anthropogenic aerosols in Table 10, we find that 

EAMv1_ZM produces higher Nc and Ni in the unperturbed pre-industrial environment than those in EAMv1. EAMv1_ZM 

also produces a larger Nc increase (4.79 x 109 m-2) due to anthropogenic aerosols than EAMv1 (4.58 x 109 m-2), which is 835 

consistent with the larger ERFaci. Changes in cloud macro- and micro-physical properties drive cloud optical property and 

radiative effect changes as well. EAMv1_MP reduces the sensitivity of tliq, tice, and tsnow to aerosols, leading to lower sensitivity 

of CRE for corresponding hydrometeors to aerosol perturbations. EAMv1_ZM also reduces the sensitivity of tice and tsnow to 

aerosols as well as the corresponding CRE sensitivities. This is likely due to the reduction of the ice particle size detrained 

from deep convection, which increases Ni in the unperturbed pre-industrial environment so that the ice clouds are less 840 

susceptible to aerosols. Finally, the revised model EAMv1P shows decreases in shortwave and longwave CRE responses. 

 
Table 10. Same as Table 6, except that the change of cloud properties induced by anthropogenic aerosols relative to their pre-industrial 

values (unit = %) are shown. Variables are defined in Table 6. 

Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P 
DRFcld,tot 0.37 0.56 0.20 0.50 0.48 0.38 
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DRFcld,low 0.42 0.89 0.38 0.43 0.71 0.88 
DRFcld,med 0.93 1.05 0.74 0.77 1.01 0.65 
DRFcld,hgh 0.34 0.15 -0.22 0.56 0.27 -0.17 
DRLWP 4.16 4.88 3.32 4.08 4.34 3.50 
DRIWP 2.33 2.31 0.78 2.18 0.85 -0.26 
DRNc 46.91 47.31 41.72 45.04 44.59 41.43 
DRNi 15.15 15.02 9.65 15.23 7.33 1.03 
DRtcld 11.08 11.51 9.13 10.67 10.11 8.13 
DRtliq 16.57 17.62 14.13 15.92 16.47 15.15 
DRtice 6.43 6.06 3.30 6.08 2.51 0.47 
DRtsnow 0.93 0.71 0.11 0.84 0.32 -0.31 
DRtconv 1.38 1.33 1.65 1.93 2.48 1.15 
DRtlow 11.07 11.82 9.66 10.57 10.70 9.83 
DRthgh 8.83 8.80 3.58 8.98 5.26 0.87 
DRSWCRE 3.21 3.75 2.17 3.35 3.10 1.97 
DRSWCREliq 5.32 6.11 3.97 5.43 5.97 4.93 
DRSWCREice 3.67 3.74 1.27 3.76 0.92 -0.99 
DRSWCREsnw 0.12 -0.04 -1.01 0.21 -0.30 -1.50 
DRSWCREconv -1.14 -0.69 -0.69 -0.62 -1.11 -1.68 
DRLWCRE 2.17 2.47 1.05 2.33 1.60 0.27 
DRLWCREliq 3.87 4.28 2.53 3.90 4.26 3.47 
DRLWCREice 3.76 3.92 1.78 3.83 1.94 -0.20 
DRLWCREsnw 0.89 0.72 -0.34 0.94 0.62 -0.71 
DRLWCREconv -1.88 -0.96 -1.16 -1.29 -1.66 -1.77 
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In addition to damping condensate and radiative responses to aerosol loading, our recalibration also reduces the sensitivity 

of precipitation intensity statistics. In EAMv1, anthropogenic aerosols reduce the frequency of occurrence of light precipitation 

(< 2 mm day-1) across all large-scale dynamical regimes based on large scale vertical velocity at 500 hPa, reduce light-to-

moderate precipitation (< 80 mm day-1) in strong ascending regions (< -20 hPa day-1), and increase precipitation between 2.5 

and 20 mm day-1 in general (Figure 16). The parameter adjustments in EAMv1_MP, EAMv1_SGV, and EAMv1_ZM all lead 850 

to weakened precipitation response compared to EAMv1. In consequence, cloud and precipitation processes become less 

sensitive to aerosol perturbations in the recalibrated model.   

 

In summary, the recalibration reduces the overall responses of CREs, surface temperature, and hydrological cycle to 

aerosols. Evaluation of the hydrological cycle response to aerosols indicates total precipitation rate is influenced globally 855 

(Table 9), regionally (not shown), and in terms of large-scale precipitation frequency of occurrence (using a joint PDF; Figure 

16). However, the global mean ERFant, ERFaer and ERFaci remain about the same between the default model EAMv1 and the 

recalibrated model EAMv1P due to invariant effects of changes in Nc, and due to compensations in shortwave and longwave 

effects that vary in opposite directions. These analyses demonstrate that the global mean ERFs are insufficient for 

understanding or constraining the response of hydrological cycle and surface temperature to aerosols. The shortwave and 860 

longwave contribution to the total aerosol ERF as well as the spatial distribution of aerosol ERF need to be considered to 

understand how aerosols affect the Earth system. Furthermore, the unperturbed base state climate can play a role as well. As 
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shown in Figure 10, the recalibrated model reduces the surface temperature bias significantly, which can lead to a more realistic 

response of surface temperature to forcings. 

 865 

 
Figure 16. Anthropogenic aerosol-induced change in frequency of occurrence of resolved-scale precipitation as a function of vertical velocity 

at 500 hPa (unit = hPa day-1) in (a) EAMv1; and differences between (b) EAMv1_CLUBB and EAMv1; (c) EAMv1_MP and EAMv1; (d) 

EAMv1_SGV and EAMv1; (e) EAMv1_ZM and EAMv1; and (f) EAMv1P and EAMv1. Model precipitation rates are sampled at every 

model time step (dt = 30 minutes). 870 

3.5 Response to surface warming 

The response of the Earth system to surface warming is of great scientific and societal importance. ECS values in CMIP6 span 

a significantly wider range (1.8 to 5.6 K) than in CMIP5 and observationally constrained estimates (Sherwood et al., 2020), 

and their substantially higher multi-model mean value has been attributed to the same causes identified in E3SMv1: strong 
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positive cloud feedbacks (Zelinka et al., 2020). In this section, we discuss the impacts of parameter adjustments on cloud and 875 

other climate feedbacks. The feedbacks are assessed using the Cess methodology (Cess et al., 1989) by contrasting the 

difference between a control pre-industrial simulation and a perturbed simulation with SST elevated by 4 K globally (See 

Section 2 for the experiment design). 

 

Figure 17 shows that EAMv1’s total climate feedback of -1.51 W m-2 K-1 is weaker than the CMIP5 multi-model mean (-880 

1.6 W m-2 K-1), but within the inter-model spread of -1.05 to -1.95 W m-2 K-1 (Ringer et al., 2014). The less negative feedback 

suggests a faster warming in the late 20th century and a higher ECS, consistent with the findings in Golaz et al. (2019). 

EAMv1_CLUBB and EAMv1_MP produce stronger global mean feedback which will lead to lower ECS and weaker warming 

in the 20th Century, while EAMv1_ZM produces positive feedback in the tropics. The recalibrated model EAMv1P produces 

a stronger climate feedback of -1.74 W m-2 K-1, a 15% increase from EAMv1, and thus can be expected to have a lower ECS.  885 

 

 
Figure 17. Climate feedback parameter (Cess et al., 1989).  

 
In Figure 18, climate feedbacks diagnosed using the Pendergrass et al. (2018) radiative kernel reveal that the non-cloud 890 

feedbacks are invariant across different model configurations and that the variation in total climate feedback is due solely to 

the spread in cloud feedbacks as a result of our parameter and subgrid adjustments. Further decomposing the cloud feedback 

into its total, shortwave, and longwave components via cloud radiative kernels (Zelinka et al., 2012a, b;Zelinka et al., 2013) 

indicates that cloud feedbacks are weakened from 0.77, 0.35, and 0.42 W m-2 K-1 in EAMv1 to 0.47 (-39%), 0.20 (-43%), and 

0.27 W m-2 K-1 (-35%) in EAMv1P. The stronger negative total climate feedback from the weakened positive cloud feedback 895 

suggest that the recalibration will produce a slower warming in the late 20th Century and lower ECS. 
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Figure 18b shows that EAMv1_CLUBB and EAMv1_MP both reduce the magnitude of shortwave cloud feedback. 

EAMv1_MP strengthens the negative shortwave cloud optical depth feedback likely due to the reduction of mean-state 

supercooled liquid in mixed phase clouds (by strengthening the WBF process). The weaker cloud feedback in 900 

EAMv1_CLUBB comes from the reduction of cloud amount feedback. This is likely due to the fact that EAMv1_CLUBB 

improves the simulation of shallow Cu. Because Sc cloud amount decreases more with warming than shallow Cu (Cesana et 

al., 2019;Cesana and Del Genio, 2021;Myers et al., 2021;Scott et al., 2020), producing shallow Cu rather than Sc reduces cloud 

amount feedback. In other words, EAMv1_CLUBB simulates a control-state climate with more Cu and less Sc than the default 

EAMv1, so the positive feedback from warming-induced reductions of low cloud cover is weakened because Cu are more 905 

resilient to warming than Sc. In the meantime, EAMv1_CLUBB reduces the decoupling strength and cloud-top entrainment 

in the Sc regime, which can also reduce the cloud amount feedback.  

 

Contrary to the effects introduced by EAMv1_CLUBB and EAMV1_MP, EAMv1_ZM enhances total cloud feedback. 

Figure 18b shows that EAMv1_ZM significantly reduces both shortwave and longwave cloud optical depth feedbacks and 910 

diminishes longwave cloud amount feedback. The large reduction of the negative shortwave cloud optical depth feedback 

results in a stronger positive total cloud feedback. This indicates that changes made in EAMv1_ZM, particularly 1) reducing 

ice particle radius detrained from deep convection (ice_deep) and 2) reducing convective autoconversion (c0_ocn and c0_lnd), 

which make convective clouds and their anvils opaque in the present-day climate, result in a weaker sensitivity of CRE to 

surface warming. However, the physical mechanisms relating those tuning choices to cloud feedbacks remain unclear and 915 

require further investigation. 
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Figure 18. (a) climate feedbacks and (b) cloud feedbacks decomposed using radiative kernels (Pendergrass et al., 2018;Zelinka et al., 2012b, 

a;Zelinka et al., 2013). 920 
 

Figure 19 shows that parameter adjustments affect cloud feedbacks in different geographical regions. The total cloud 

feedback appears to be a balance between cloud optical depth feedback and cloud amount feedback, as the cloud altitude 

feedback is insensitive to our adjustments in parameters and subgrid effects. In the tropics, the recalibrated model EAMv1P 

shows stronger positive total cloud feedback (Figure 19a), which can be attributed to the enhanced cloud optical depth feedback 925 

introduced by EAMv1_SGV and EAMv1_ZM. This highlights the importance of realistic representation of cloud properties 

associated with deep convection, including both the deep convective clouds as well as the anvil detrained from deep 

convection. In the subtropics, EAMv1P produces weaker positive total cloud feedback due to the reduction of cloud amount 

feedback in EAMv1_CLUBB and EAMv1_ZM. EAMv1_CLUBB weakens turbulent mixing and increases the skewness Skw 

in the shallow Cu regions to facilitate asymmetric vertical mixing that enhances shallow Cu rather than the symmetric vertical 930 

mixing that enhances Sc. For this reason, a weaker positive cloud feedback is expected since Sc cloud amount decreases more 

with warming than shallow Cu (Cesana et al., 2019). EAMv1_ZM also reduces subtropical cloud amount feedback likely 

through its impacts on circulation which affects subtropical subsidence and clouds. In mid- and high latitudes, EAMv1_MP 

makes the largest contribution to modifying cloud feedbacks. Making the WBF process more efficient reduces supercooled 

liquid clouds in the mean state, which strengthens the negative cloud optical depth feedback through enhancing the negative 935 

cloud phase feedback (Tan et al., 2016). We note that the high latitude cloud optical depth feedback is highly uncertain. 

Sherwood et al. (2020) estimated the feedback to be near zero based on two studies, Ceppi et al. (2016) and Terai et al. (2016), 
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which reported feedback estimates of similar magnitude but opposite signs. Hence, it remains unclear if the stronger negative 

cloud optical depth feedback in the Southern Ocean produced by EAMv1_MP and EAMv1P is closer to reality, but this 

essentially reduces the global total cloud feedback due to the sign reversal of the total cloud feedback in the Southern Ocean.  940 

 

 
Figure 19. Zonal mean of (a) total cloud feedback; (b) cloud optical depth feedback; (c) cloud amount feedback; and (d) cloud altitude 

feedback.  

 945 

In Table 11, we find that cloud fraction changes induced by surface warming are insensitive to the recalibration. LWP 

increases as the surface warms. By making the WBF process more efficient, EAMv1_MP shows a greater LWP response to 

surface warming, which weakens the positive cloud feedback as discussed previously. Liquid and ice particle numbers Nc and 

Ni are both reduced with surface warming, and parameter adjustments in EAMv1_MP and EAMv1_ZM affect the sensitivity. 

In terms of radiative properties, we find that the recalibration reverses the sign of the response of tliq to surface warming largely 950 

due to the changes made in EAMv1_MP, leading to cloud thickening instead of thinning in the lower troposphere (i.e., 

increasing tlow as surface warms). In the upper troposphere, EAMv1_ZM reduces the thgh sensitivity to surface warming, which 

weakens the positive high cloud feedback. The modifications in EAMv1_ZM have the largest impact on the changes in CRE 

response changes associated with ice clouds. Combining all the changes, the revised model EAMv1P reverses the sign of the 

liquid CREs, likely due to the cloud phase response to warming caused by increased IWP in the model. 955 

 
Table 11. Same as Table 6, except that the change of cloud properties induced by surface warming relative to their pre-industrial values 

(unit = % K-1) are shown. Variables are defined in Table 6. 
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Variable EAMv1 EAMv1_CLUBB EAMv1_MP EAMv1_SGV EAMv1_ZM EAMv1P 
DRFcld,tot  -0.61 -0.55 -0.52 -0.62 -0.70 -0.56 
DRFcld,low  -1.37 -1.36 -1.26 -1.41 -1.38 -1.17 
DRFcld,med  -2.81 -2.79 -2.40 -2.76 -3.04 -2.78 
DRFcld,hgh   0.36 0.32 0.45 0.31 -0.03 0.11 
DRLWP   1.75 1.82 2.73 1.92 2.11 3.12 
DRIWP  -3.65 -3.52 -3.79 -3.74 -4.19 -3.74 
DRNc  -2.09 -2.02 -1.39 -1.84 -1.69 -0.64 
DRNi  -2.13 -2.59 -3.54 -2.01 -4.42 -4.35 
DRtcld   0.26 0.37 0.98 0.40 0.14 1.00 
DRtliq  -0.28 -0.20 0.69 0.04 0.16 1.44 
DRtice  -2.99 -3.02 -3.53 -3.10 -4.21 -3.80 
DRtsnow  -0.25 -0.23 -0.02 -0.27 -0.97 -0.62 
DRtconv   2.50 2.66 2.70 2.26 2.30 2.48 
DRtlow  -0.54 -0.42 0.23 -0.39 -0.30 0.68 
DRthgh   7.04 6.81 6.78 7.04 4.71 4.62 
DRSWCRE   -0.72 -0.50 -0.41 -0.70 -1.07 -0.60 
DRSWCREliq   -0.48 -0.13 0.10 -0.43 -0.27 0.63 
DRSWCREice   -2.42 -2.46 -2.89 -2.50 -3.71 -3.55 
DRSWCREsnw   -0.62 -0.50 -0.51 -0.61 -1.33 -1.10 
DRSWCREconv   -0.59 -0.56 -0.42 -0.67 -0.53 -0.51 
DRLWCRE  -0.58 -0.50 -0.79 -0.53 -1.18 -1.21 
DRLWCREliq  -0.08 0.29 -0.16 0.02 0.06 0.50 
DRLWCREice  -1.18 -1.27 -1.80 -1.20 -2.27 -2.47 
DRLWCREsnw   0.36 0.40 0.31 0.42 -0.24 -0.11 
DRLWCREconv  -2.56 -2.47 -2.39 -2.63 -2.56 -2.48 

 
In assessing the impact of parameter changes to ECS, we also computed the lower tropospheric mixing index (LTMI) 960 

(Sherwood et al., 2014) and found that the recalibration leads to a 10% reduction in LTMI (not shown), which corresponds to 

about 1 K decrease in ECS based on the LTMI-ECS relationship from CMIP5. Most parameter adjustments do not alter LTMI. 

EAMv1_ZM produces lower LTMI because it reduces convective activity by weakening the convective autoconversion 

process to increase cirrus cloud opacity that stabilizes the troposphere. However, because the statistical significance of the 

relationship between LTMI and ECS has decreased in CMIP6 compared to CMIP5 (Schlund et al., 2020), LTMI might not be 965 

a good predictor for ECS in E3SM.  

 

Finally, we assess the impacts of our recalibration on the patterned response of precipitation to surface warming. In Section 

3.2 we showed that the parameter changes in EAMv1_ZM significantly reduce the ratio of convective precipitation rate to 

total precipitation rate in the present-day climatology. This change alone can lead to different precipitation responses to surface 970 

warming because different precipitation mechanisms are employed between the convection and the microphysics 

parameterizations. Figure 20 shows enhanced convective precipitation with warming in the tropics, the SPCZ, and storm tracks 

in EAMv1. EAMv1_ZM significantly reduces the response, likely due to the reduced convective autoconversion efficiency. 

Other parameter adjustments also affect the response in the Indo-Pacific warm pool, but the parameter changes do not have 

direct impact on convective precipitation so the change in response might be caused by circulation feedbacks. In the 975 
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recalibrated model EAMv1P, the convective precipitation response to surface warming is reduced mostly in the tropics. The 

global mean convective precipitation response is reduced by 0.013 mm day-1 K-1 (-24%) compared to the response in EAMv1. 

The relative increase of convective precipitation due to surface warming, however, is only slightly reduced from 3.07% K-1 in 

EAMv1 to 2.97% K-1 in EAMv1P. 

 980 

 
Figure 20. The change of convective precipitation rate induced by surface warming.  

 

The large-scale precipitation response in EAMv1 has a similar magnitude as the convective precipitation response, but the 

response is larger in the storm tracks and not as strong in the tropics (Figure 21). EAMv1_ZM significantly enhances the 985 

response in the TWP because the parameter changes in EAMv1_ZM shift the precipitation from convective to large-scale so 

that the response comes from the large-scale precipitation. The recalibrated model EAMv1P enhances the large-scale 

precipitation response by 0.018 mm day-1 K-1 (+37%), compared to EAMv1. The relative increase of large-scale precipitation 

due to surface warming is also increased from 3. 17% K-1 in EAMv1 to 4.11% K-1 in EAMv1P. 

 990 
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Figure 21. The change of large-scale precipitation rate induced by surface warming.  

 

In summary, the recalibration enhances the negative climate feedback to surface warming by reducing the positive cloud 

feedback. The storm track, shallow Cu regions, and the Indo-Pacific warm pool are the regions where the cloud feedback is 995 

most sensitive to the parameter adjustments. The largest precipitation response is seen in the tropics, SPCZ, and storm tracks. 

The parameter adjustments in the ZM deep convection parameterization produce the largest changes in the response. Because 

the default model EAMv1 and the recalibrated model EAMv1P produce different climate and cloud feedbacks, the two models 

are expected to produce different estimates of ECS, even though their ERFant are about the same. Our results are consistent 

with the findings of Smith et al. (2020) that the statistical relationship between the ERFaer and ECS established in Kiehl (2007) 1000 

and Forster et al. (2013) is challenged by modern ESMs. Fully coupled model simulations are needed to test this hypothesis.  

4 Summary and Discussion 

In this study, we have developed a new model configuration of EAMv1, named EAMv1P, using a model calibration strategy 

that focuses on calibrating CREs that can be reliably observed across cloud regimes and geographical regions. The recalibration 

was guided by our understanding of the physical mechanisms that relate biases to uncertain process assumptions, with ample 1005 

iterations to buffer unintended consequences of interventions in individual regimes against those they interact with. The 

recalibrated model produces an encouragingly improved present-day cloud and precipitation climatology and reduced 

sensitivity to aerosol perturbation and surface warming. Below we summarize the changes and behavior of the intermediate 

model configurations: 

 1010 
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• Incorporating the subgrid effects (EAMv1_SGV) was intended to increase cloudiness in regions where large-scale 

winds are weak yet convection occurs frequently (e.g., TWP and Amazon) by enhancing local surface fluxes of heat, 

moisture, and momentum in those regions. Comparing to all other intermediate model configurations, EAMv1_SGV 

produces the largest impact in reducing the tropical surface wind direction bias, which will likely reduce the cold 

tongue bias in the fully coupled E3SM. Introducing these subgrid effects also reduces precipitation biases over the 1015 

TWP, Amazon, and high-elevation regions (e.g., Himalayas and Andes). EAMv1_SGV produces only a moderately 

weakened surface temperature response and precipitation response to aerosol forcing compared to the default model 

EAMv1. 

 

• Parameter adjustments in the ZM deep convection parameterization (EAMv1_ZM) were intended to improve overall 1020 

tropical cloud amounts by weakening the convective autoconversion and reducing detrained ice crystal radius. We 

find that these changes increase IWP globally. Furthermore, we find that EAMv1_ZM is the only model configuration 

that produces a stronger ERFaci and a stronger positive cloud feedback. The enhanced ERFaci is seen in East Asia, 

Europe, and Sc and shallow Cu regions. The increased cloud feedback is primarily due to the significant reduction of 

negative cloud optical depth feedback in the tropics.  1025 

 

• Parameter adjustments in the CLUBB parameterization (EAMv1_CLUBB) were introduced to improve the 

subtropical Sc, shallow Cu, and the Sc-to-Cu transition by making parameters a function of the skewness of subgrid 

vertical velocity Skw. These changes lead to encouraging reductions in both the “too-dim stratocumulus” and “too-

bright trade cumulus” biases in modern ESMs. We find that the changes also significantly reduce the precipitation 1030 

bias over the central Pacific Ocean. The changes introduced in EAMv1_CLUBB do not affect ERFaci, but they lead 

to the largest reduction of the positive cloud amount feedback in the subtropics, compared to other intermediate model 

configurations. 

 

• Parameter adjustments in the MG2 microphysical parameterization (EAMv1_MP) were intended to 1) reduce the 1035 

excessive supercooled cloud liquid in the mid- and high latitudes by enhancing the WBF process; 2) reduce ice particle 

number by reducing the sulfate aerosol available for homogeneous ice nucleation; and 3) improve Sc by enhancing 

the droplet sedimentation rate. We find that these changes give the largest reduction in ERFaci in the mid- and high 

latitudes, in areas under great anthropogenic influence (e.g., East Asia, North America), and in the subtropics. 

EAMv1_MP also produces the weakest total cloud feedback due to the stronger negative cloud optical depth feedback 1040 

in the tropics, and mid- and high latitudes. The significant enhancement of negative cloud optical depth feedback 

results in a reversal of the sign of the total cloud feedback in the Southern Ocean. 
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The revised model EAMv1P includes all of the incremental changes discussed above. We find that EAMv1P produces a 

much more realistic CRE distribution than EAMv1 by addressing multiple regime-specific cloud biases spanning the tropics, 1045 

subtropics, and mid- and high latitudes. This is achieved through the collective effects of our modest adjustments to the ZM 

deep convection scheme and subgrid effects, CLUBB turbulence, and MG2 microphysics. The improved CRE distribution 

naturally leads to better geographic distribution of radiative energy at the TOA, which is essential for setting up a realistic 

atmospheric circulation that further improves the overall fidelity of the model atmospheric state. We have also compared 

results from grouped parameter changes to understand how process assumptions affect CRE as well as other aspects of the 1050 

simulated atmosphere. We show that the recalibrated model produces more improvements than the sum of the improvements 

from individual intermediate configuration, demonstrating the nonlinearity in the climate system and the necessity of 

combining all of the improvements that target different biases in different regimes. Further reducing the model biases by 

improving parameterizations, numerics, resolution, and calibration is an ongoing effort for the E3SM team. Incorporating 

process-oriented diagnostics in model development and calibration will be useful for ensuring that the model get the right 1055 

answer for the right reason. 

 

Cloud, precipitation, and surface temperature responses to anthropogenic aerosols and greenhouse gases are major sources 

of uncertainty in the simulated climate of the past, present, and future. Since the climate system is nonlinear, realistic estimates 

of the system’s response depend on a realistic base state. EAMv1’s deficiencies in base state fidelity likely contribute to its 1060 

biases in the historical surface temperature evolution as well as its high ECS. In contrast, the recalibrated model EAMv1P 

produces a much more realistic present-day base climate state, due to a better calibration of cloud properties and subgrid effects 

that improve the representation of physical mechanisms compared to EAMv1. Hence, the revised model EAMv1P is more 

likely to produce credible estimates of the climate system’s response to external forcings and climate projections when running 

as part of the fully coupled E3SM.  1065 

 

We show that the sensitivity of clouds, precipitation, and surface temperature to anthropogenic aerosols is significantly 

lower in the recalibrated model than in the default model, suggesting the potential to improve the historical surface temperature 

evolution over E3SMv1, such as the potential to reduce the cold bias between the 1960s and 1980s. We find that the responses 

to anthropogenic aerosols are mostly affected by parameter adjustments in EAMv1_MP and EAMv1_ZM. To simulate 1070 

historical surface temperature evolution accurately, future model development efforts should target these two 

parameterizations so that processes of cloud microphysical and deep convective processes are better constrained to represent 

real-world processes. 

 

The recalibrated model EAMv1P also produces a weaker cloud feedback compared to the default model EAMv1, 1075 

suggesting potential improvements to the surface temperature evolution, like slower warming after the 1980s and a lower ECS. 

Parameter adjustments in EAMv1_CLUBB, EAMv1_MP, and EAMv1_ZM significantly affect cloud feedbacks. Hence, to 
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reduce the uncertainty in the predictions of future climate, subgrid cloud properties and process representations including 

turbulent mixing, cloud macro- and micro-physics, and deep convection need to be better constrained. We find that EAMv1 

and EAMv1P produce different surface temperature responses to anthropogenic aerosols and different cloud feedbacks (and, 1080 

consequently, ECS) even though they produce the same global mean ERF. This suggests that the statistical relationships 

between the global mean ERF, cloud feedback, and ECS established in Kiehl (2007) and Forster et al. (2013) do not apply to 

current generation ESMs, as documented in Smith et al. (2020). This indicates that global mean ERF is not a good indicator 

of the historical and future climate change. Other factors such as the spectral composition (i.e., shortwave vs. longwave) and 

spatial distribution of the ERF and cloud feedback, as well as the realism of the unperturbed base climate state need to be 1085 

considered. Identifying the process representations that affect only ERF, those that affect only cloud feedback, and those that 

affect both is an important step toward better understanding of the evolution of the climate system. 

 

It is natural to wonder if an equivalent or superior ESM calibration might have been achievable with less human effort or 

fewer computational resources via semi-automated machine learning (ML) methods that emulate or expand the workflow 1090 

outlined in this paper. Indeed, emulating a complex model’s parameter sensitivities following human constructed trial 

simulations to aid model calibration and uncertainty quantification would be an intriguing possibility. Several recent studies 

have shown successful application of ML methods in model calibration (Cleary et al., 2021;Dunbar et al., 2021;Couvreux et 

al., 2021;Hourdin et al., 2021). In theory, reinforcement learning (RL) with an appropriately formulated agent-based 

optimization system could be guided via its loss function formulation with skill metrics that optimize for the same patterns and 1095 

mean state climate metrics that we prioritized in this study. In practice, however, this ML task faces a fundamental challenge 

that the cost of an individual agent-reward sample is performing multi-year climate simulations. The workflow outlined in this 

paper has the considerable advantage that experienced human experts make educated parameter interventions based on 

assessment of the simulation that discriminates desired effects in a nuanced way and tolerates certain unintended consequences. 

It is not clear how available ML methods could be infused with analogous physical foresight to make similar decisions, and 1100 

thus logical to expect they would require more evaluation samples to succeed via brute force. Therefore, experimenting with 

clever strategies to increase reward density and to integrate physical knowledge from experts in the ML workflow would be a 

highly worthy long-term challenge. 

 

Code and data availability. The E3SM model code and input data is available at 1105 

[https://doi.org/10.11578/E3SM/dc.20180418.36]. The model simulation data used in this study is available at 

[https://portal.nersc.gov/archive/home/p/plma/www/eamv1_tunings]. The ERA5 data is obtained from Copernicus Climate 

Change Service Climate Data Store (CDS), accessed on December 27, 2019, at 

[https://cds.climate.copernicus.eu/cdsapp#!/home]. The CERES-EBAF cloud radiative effect data and the GPCP precipitation 

climatology data are obtained from the AMWG diagnostics package, available at 1110 
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[http://www.cesm.ucar.edu/working_groups/Atmosphere/amwg-diagnostics-package/]. The MODIS data is obtained from 

NASA GIOVANNI at [https://giovanni.gsfc.nasa.gov/giovanni/]. The MERRA-2 dataset is obtained from NASA Goddard 

Earth Sciences (GES) Data and Information Services Center (DISC) at [https://disc.gsfc.nasa.gov/]. The GOCCP data is 

obtained from [https://climserv.ipsl.polytechnique.fr/cfmip-obs/]. The E3SM diagnostics package used in this study was 

archived at [https://doi.org/10.5281/zenodo.5555094]. 1115 
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