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Abstract. The subglacial bed topography is critical for modeling the evolution of Thwaites Glacier in the Amundsen Sea 

Embayment (ASE), where rapid ice loss threatens the stability of the West Antarctic Ice Sheet. However, mapping of subglacial 

topography is subject to high uncertainty. This is mainly because the bed topography is measured by airborne ice-penetrating 

radar along flight lines with large gaps up to tens of kilometers. Deterministic interpolation approaches do not reflect such 15 

spatial uncertainty. While traditional geostatistical simulation can model such uncertainty, it may be difficult to apply because 

of the significant non-stationary spatial variation of topography over such large surface area. In this study, we develop a non-

stationary multiple-point geostatistical approach to interpolate large areas with irregular geophysical data and apply it to model 

the spatial uncertainty of entire ASE basal topography. We collect 166 high-resolution topographic training images (TIs) to 

train the gap-filling of radar data gaps, thereby simulating realistic topography maps. The TIs are extensively sampled from 20 

deglaciated regions in the Arctic as well as Antarctica. To address the non-stationarity in topographic modeling, we introduce 

a Bayesian framework that models the posterior distribution of non-stationary training images to the local modeling domain. 

Sampling from this distribution then provide candidate training images for local topographic modeling with uncertainty, 

constrained to radar flight line data. Compared to traditional MPS approaches without considering TI sampling, our approach 

demonstrates significant improvement in the topographic modeling quality and efficiency of the simulation algorithm. Finally, 25 

we simulate multiple realizations of high-resolution ASE topographic maps. We use the multiple realizations to investigate the 

impact of basal topography uncertainty on subglacial hydrological flow patterns. 

1 Introduction  

The topography beneath the Greenland and Antarctic ice sheets is essential for nearly every ice sheet investigation, including 

modeling subglacial hydrology (MacKie et al., 2021), interpreting geologic conditions (Holschuh et al., 2020), estimating ice 30 

volume and sea level rise contributions (Fretwell et al., 2013), and ice sheet modeling for sea level rise projections (Le clec’h 
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et al., 2019; Seroussi et al., 2017). The characterization of subglacial topography is particularly important for Thwaites Glacier 

in the Amundsen Sea Embayment, which is experiencing accelerating ice loss (Rignot et al., 2019) that could destabilize the 

West Antarctic Ice Sheet (Joughin et al., 2014). Subglacial topography is predominantly measured with airborne ice-

penetrating radar along flight lines separated by up to tens of km (Fretwell et al., 2013; Herzfeld et al., 1993). Large gaps in 35 

data remain, which are generally interpolated deterministically using methods such as kriging (Fretwell et al., 2013) or ice 

sheet model inversions (Huss and Farinotti, 2012; Morlighem et al., 2017, 2020). These approaches produce topography that 

is unrealistically smooth and provide limited morphological information. Furthermore, deterministically interpolated 

topography does not sample the uncertainty space, making it difficult to quantify uncertainty in ice sheet models with respect 

to topographic uncertainty.  40 

 

These issues have previously been addressed with two-point geostatistical simulation, such as sequential Gaussian simulation 

(SGSIM) (MacKie et al., 2021). The objective of geostatistical simulation is to generate multiple realizations of phenomena 

that reproduce the spatial variability of observations, as modeled by variogram or spatial covariance and can be used to quantify 

uncertainty (e.g. Deutsch and Journel, 1998). Thwaites Glacier has previously been simulated by Goff et al. (2014), though 45 

only one realization was generated. Geostatistical simulation has also been applied in Antarctica and Greenland to quantify 

uncertainty in subglacial hydrology (MacKie et al., 2020, 2021; Zuo et al., 2020).  

 

However, spatial variation over very large areas is inherently non-stationary. For example, The Greenland and Antarctic ice 

sheets are thousands of km across and contain a globally wide range of topographic and geologic settings. This means that the 50 

nature of spatial variation changes significantly and possibly in complex ways over the domain of interest. Traditional 

geostatistical ways of dealing with non-stationary data is through the modeling of trend functions (e.g. Pyrcz and White, 2015) 

or using covariates (e.g. Almeida and Journel, 1994; MacKie et al., 2021). However, such approaches typically model the 

variation in the mean (trend) or some degree of correlation (co-simulation). Another approach is using a non-stationary spatial 

covariance model (Schmidt and O’Hagan, 2003). Such approach becomes exceedingly difficult to apply over large areas 55 

because of the use of Markov chain Monte Carlo in its Bayesian inference. Regardless, all these approaches are limited in 

expressing non-stationary in terms of a mean or covariance function only. 

 

The non-stationary bed topography is directly measured using high-resolution remote sensing data such as satellite images, 

but only in deglaciated areas (Porter et al., 2018). Deglaciated topographic images reveal glaciated morphologies resembling 60 

the topography beneath the ice sheets (King et al., 2009; Margold et al., 2015; Spagnolo et al., 2017). They therefore bear 

significant information on the subglacial topography. Exposed topography has previously been used to perform deterministic 

interpolations (Clarke et al., 2009). However, satellite imagery of deglaciated topography has not been explored to 

stochastically simulate subglacial topography.  

 65 
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Recent developments in multiple-point geostatistics (MPS) has shown great potentials in using high-resolution training images 

(e.g. satellite images) to fill remote sensing gaps (e.g. Gravey and Mariethoz, 2020; Mariethoz et al., 2012; Yin et al., 2017; 

Zakeri and Mariethoz, 2021; Zuo et al., 2020). MPS approaches use the training images (TIs) as explicit prior models to 

generate realistic topographical models and quantify spatial uncertainty. The simulation of non-stationary and morphologically 

complex topography can also be achieved with MPS (Hoffimann et al., 2017a, 2019; Mariethoz and Caers, 2014). Compared 70 

to alternative machine learning or deep learning approaches (Laloy et al., 2018; Mo et al., 2020), MPS has a flexible 

conditioning capability and can accommodate sparse and non-uniform sampling in space. It can generate multiple topographic 

model realizations conditioned to the radar line observations, without requiring a large amount of training data.  

We review three categories of approaches to build non-stationary geospatial models using MPS. One simple way is to divide 

the non-stationary model simulation domain into several stationary zones, and then use different stationary TIs for each zone 75 

(Strebelle, 2002; Wu et al., 2008). Another way instead divides non-stationary TIs into small stationary zones.  Then MPS 

then uses different divided TI patterns to fill different locations in the simulation domain (Honarkhah and Caers, 2012; Zhou 

et al., 2014). But the zonation in either the simulation domain or training images can make it difficult to maintain smooth 

transitions between the modeling patterns. Therefore, a third way is most commonly used. It incorporates spatially continuous 

non-stationary maps (named as “auxiliary variables”) by ad-hoc weighting (Chugunova and Hu, 2008; Mariethoz et al., 2010a; 80 

Oriani et al., 2014; Zuo et al., 2020). Such auxiliary variables determine which TI patterns should fill which location in the 

simulation domain in a spatially smooth manner. The limitation is that the ad-hoc weights do not scale to the complexity of 

bed topography. The determination of weights is also subjective. More importantly, auxiliary variables are very difficult to 

obtain in subglacial topographic modeling. Another challenge in the non-stationary modeling is how to choose training images 

(Tahmasebi, 2018). This is particularly important as the MPS modeling relies on the spatial information provided by the 85 

training images. Hoffimann et al. (2019) introduced an approach to generate time-series training images to model the spatial 

and temporal evolutions of geomorphology. A training image transitional model in time was proposed to reproduce the 

nonstationary geomorphologic evolutions. However, in subglacial topographic modelling, there are no available training 

images because subglacial topographic measurements are only made along flight lines. Satellite altimetry observations from 

deglaciated areas in the Arctic offer a potential source of training imagery. However, training images retrieved from the Arctic 90 

would be logically non-stationary due to the natural variability of the landscape. Furthermore, the Arctic provides a vast amount 

of deglaciated topographic data, which presents a significant computational burden on MPS simulation algorithms. We 

therefore will need a strategy to explicitly specify which training images or patterns should go where when filling the radar 

line gaps.  

 95 

In this paper, we generalize a geospatial modeling framework to fill irregular geophysical data gaps in large areas. We will 

address the non-stationary topographic modeling by properly selecting non-stationary topographic training images using MPS. 

We first collect a large amount of topographic images to serve as the training images. These images are taken from the 

deglaciated areas in the Arctic and Antarctica. To assign the training images to local areas, we develop a probabilistic method 
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for estimating the posterior distribution over the prior set of training images. The posterior distribution is conditioned 100 

(constrained) on the radar flight line data. The posterior TI probability will be calculated using kernel density estimation 

conditioned to the actual radar line observations. Such TI sampling scheme will avoid the use of auxiliary variables with 

arbitrary ad-hoc weightings. We will demonstrate our method using the entire Amundsen Sea Embayment in West Antarctica. 

This region has alternating areas of sparse and dense measurements with a variety of radar line spacings and orientations. We 

show that the training image sampling process accommodates a range of data configurations. It will generate realistic non-105 

stationary topographic realizations that reflect the subglacial topographic uncertainty in ASE. We use the topographic 

simulations to model subglacial hydrologic flow in order to investigate the impact of topographic uncertainty on hydrologic 

uncertainty.  

2 Radar data set & training images 

The topographic data for the ASE includes seafloor bathymetry measurements from the International Bathymetric Chart of the 110 

Southern Ocean (IBCSO) (Arndt et al., 2013), subaerial topography from the Reference Elevation Model of Antarctica 

(REMA) (Howat et al., 2019), and ice-penetrating radar measurements of subglacial topography (Blankenship et al., 2001; 

Gogineni, 2012; Holschuh et al., 2020; Holt et al., 2006; Vaughan et al., 2006; Young et al., 2016). The data is gridded at a 

500-meter resolution (Figure 1). The swath bathymetry data (Arndt et al., 2013) and subglacial swath radar data (Holschuh et 

al., 2020) (provide some training imagery. To have more extensive representations of the subglacial topography, we augment 115 

the available training data with deglaciated subaerial topography from the ArcticDEM (Porter et al., 2018). The Arctic and 

much of North America was formerly covered by the Laurentide and Cordilleran ice sheets and share morphological 

similarities with Antarctic subglacial topography (King et al., 2009; Margold et al., 2015). While the seafloor and subaerial 

topography may have experienced additional depositional processes after deglaciation, any topographic alterations are likely 

minimal at a 500 m resolution. We sampled a total 166 candidate training images to capture a variety of geologic settings 120 

(Figure 2). Each training image has a size of 100x100 km2. The training image data repository is publicly accessible from 

Zenodo repository (https://zenodo.org/record/5083715#.YQT2JI5Kiiw, DOI 10.5281/zenodo.5083715) 
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 125 

Figure 1. Radar line surveys of the Thwaites and Pine Island glaciers in the Amundsen Sea Embayment of West Antarctica. Black 
lines indicate boundaries for Thwaites Glacier, ice shelves, and the grounding line (the point where the ice detaches from the bed 
and achieves flotation). The topography patches in the center of Thwaites Glacier were measured using swath radar (Holschuh et 
al., 2020). 

 130 
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Figure 2. (a, b) Geographical locations of the 166 training images in (a): ArcticDEM and (b): Antarctica. (c) examples of the 166 
training images 
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3 Methodology 

3.1 Multiple-point geostatistics 135 

3.1.1 Overview 

Multiple-point geostatistics (Journel and Zhang, 2006; Mariethoz and Caers, 2014; Srivastava, 2018; Strebelle, 2002) is the 

field of study that focuses on the digital representation of physical reality by reproducing high-order statistics inferred from 

training images. The emphasis in MPS lies on capturing higher-order (hence multi-point statistics) from training images that 

have been selected to be representative for a specific area of study. In that sense, it differs from spatial covariance-based 140 

(variograms) methods (e.g. Gaussian process regression or kriging) (Matheron, 1963; Williams and Rasmussen, 1996) that are 

based on spatial correlation (two values at a time). Both MPS and covariance-based methods have the ability to interpolate 

data exactly. Exact interpolation, if desired, is also where geostatistics differs from machine learning or computer vision 

methods, where such exact interpolation is not usually considered important.   

 145 

Several MPS simulation algorithms (e.g. Gravey and Mariethoz, 2020; Hoffimann et al., 2017b; Mariethoz et al., 2010; 

Strebelle and Journel, 2001) have been developed that use training images to generate multiple realizations that interpolate the 

data exactly. The algorithm used in this work is Direct Sampling (DS) (Mariethoz et al., 2010b; Mariethoz and Renard, 2010), 

which will be introduced in section 0. These algorithms do not address the challenge of selecting the training images 

themselves. For example, if an area of the simulation grid contains dense data, few training images may be compatible with 150 

that data. On the other hand, an area with sparse data may have many compatible training images. Finally, training images 

selected for two adjacent areas are not necessarily independent from each other. 

 

To date, there has not been any attempt to use MPS to interpolate ice-penetrating radar measurements of topography at the 

scale of the Amundsen Sea Embayment. In doing so, additional challenges occur that are not present in smaller study areas. 155 

The challenges may include limited amount of training images, non-stationarity over the ASE, and running time cost when 

generating high-resolution topographic maps. Before moving to the methodology that addresses these challenges, we first 

introduce the Direct Sampling method and a probabilistic framework for representing training images in metric spaces. 

3.1.2 Direct Sampling (DS)  

Direct sampling is a widely used MPS approach for achieving spatial modeling and gap filling (Mariethoz, 2018; Mariethoz 160 

et al., 2012; Zuo et al., 2020). Figure 3 provides a simplified example of DS in the context of flight lines. The values in the 

grid indicate the elevation. In general, there are two major components within DS. First, the algorithm visits an unknown 

location in the simulation grid and collects neighboring observed points as conditioning data. For example, in Figure 3(a), 

three conditioning points are detected near a unknow location (marked with “?”). DS records the values and relative locations 

of known points. Second, a searching program is launched to find the similar structure in TI. The similarity within DS is 165 
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defined by a certain distance metric. As Figure 3(d) shows, the program finds a matching structure. The center of the similar 

instance is pasted into the simulation grid. Thus, the value of an unknown point is predicted. The preceding simulation program 

is repeatedly performed until there is no unknown point in the grid.  

 

 170 

Figure 3. Conceptual example of the DS point simulation. (a) Radar lines on the simulation grid; (b) Three known points (value: 37, 
80, 86) constitute a conditioning data pattern; (c) A mismatch pattern in TI; (d) A similar pattern in TI. 

 

Based on the explanation above, there are mainly three important parameters in DS. The first one is 𝑛, the number of 

neighboring conditioning data points. It plays a key role in extracting complex patterns from the training images. In general, 175 

𝑛 ≥ 30 is suggested to deal with a continuous simulation case (Bruna et al., 2019; Meerschman et al., 2013). Another 

parameter is the distance threshold 𝑡. It determines whether to accept a TI pattern based on the mismatch distance to the 

conditioning points. The TI pattern with mismatch distance below 𝑡 will be accepted and pasted to the simulation grid. 𝑡 

therefore significantly affects the simulation efficiency and quality. A small value of 𝑡 could improve modeling quality but 

will result high computational burden. 𝑡 = 0.1 is generally recognized as the upper bound in the most cases (Meerschman et 180 

al., 2013; Zuo et al, 2020). The third main DS parameter 𝑓 is the fraction of scanned TI. With the intention of saving time and 

avoid verbatim copy, an recommended value of 𝑓 is between 0.1 and 0.5 (Mariethoz and Caers, 2014). 

3.1.3 A metric space for training images 

A metric space expresses the relationship between objects by using a distance function defining the similarity between any 

two objects. In metric spaces, we do not know the exact coordinates of objects, only how far objects are apart. Metric spaces 185 

are therefore useful in representing high-dimensional objects, such as training images. In this paper, we employ metric spaces 

for two purposes: 1) to visualize the difference between training images and 2) to estimate probabilities of training images to 

occur over some area. 

 

To define a meaningful distance between any two training images, we create a set of representative patterns for each training 190 

image. The TI morphological features are mainly concerned when creating representative patterns to compute the distance. 
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This requires first removing the effects of the original TI elevations. To do so, we rescale each TI to range between 0 and 1 by 

min-max normalization (Han et al., 2012). Then, like other MPS approaches such as SNESIM (Strebelle, 2002) and DISPAT 

(Honarkhah and Caers, 2010), we extract the spatial patterns from each TI with a fixed template. We then use the classical 

agglomerative hierarchical clustering (Romary et al., 2015) to divide the spatial patterns of each TI into a finite number of 195 

groups. The group number in agglomerative hierarchical clustering is determined by a distance threshold (between the 

clustered groups). We referred to the commonly used distance threshold in DS approach to set it as 0.1 (Meerschman et al., 

2013) of the maximum pattern distances of the TI. The TI with more complex spatial patterns will therefore have more clustered 

groups. The medoid pattern of each group is taken as the representative pattern of that group. Figure 4 shows a few 

representative patterns. The distance used in the clustering is the normalized Euclidean distance. 200 

 

Figure 4. Calculating the distance between any two training images using modified Hausdorff distance. 

 

After clustering and medoid selection, training images are now represented expressed by a set of representative patterns. We 

define the difference between any two training images as the difference between their sets of representative patterns. To do 205 

this, we use the modified Hausdorff distance (Dubuisson and Jain, 1994; Huttenlocher et al., 1993). This distance is commonly 

used to define the difference between shapes of high-dimensional objects. If we call the set of representative patterns for 

training image A as 𝒜 and for training image B as ℬ, then the modified Hausdorff distance is 

 

𝑑𝑖𝑠(𝑇𝐼!, 𝑇𝐼") = 𝑚𝑎𝑥 7 #
|𝒜|
∑ min𝑑(𝑥!, ℬ)&!∈𝒜 , #|ℬ|∑ min𝑑(𝑦" ,𝒜))"∈ℬ =     (1) 210 

where 𝑥!  is any representative pattern in 𝒜, and 𝑦"  is any pattern in ℬ. 𝑑(. ) is the Euclidean distance between any two 

representative patterns. |𝒜| and |ℬ|  are respectively the sizes of 𝒜  and ℬ . In essence, the modified Hausdorff distance 
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represents the maximum of expected minimum distances between the two TIs’ representative patterns. Once a distance is 

defined, we can visualize the metric space in low-dimensional Cartesian space using multi-dimensional scaling or MDS 

(Scheidt et al., 2018). MDS projects high-dimensional objects into a 2D cartesian space, where the difference between points 215 

in that space approximates the Hausdorff distance. Figure 5 show the projection of 166 training images in 2D, each dot 

represents a training image. Training images that are similar map close to each other in the scatterplot. 

 

 

Figure 5. Visualization of the metric space using multi-dimensional scaling (MDS) into a two-dimensional cartesian space. Each dot 220 
on the plot represents a TI.  

 

3.2 Illustration case & overview of the mapping strategy 

To illustrate the proposed methodology, we focus on a small area of the ASE overlapping Pine Island Glacier (see Figure 6). 

In this area, we observe a variety of radar line geometries and densities, as well as elevation changes. This smaller area is 225 

divided into 4 subareas. Strategies for such subdivision will be discussed later in the application to the entire domain.  

Direct sampling, by construction, avoids any artifact boundary, because the data template is not aware of the subareas. With 

this strategy, two problems now need to be addressed. First, we need to find training images that are consistent with radar data 

within a selected area. There could be multiple such training images. Second, we need to model training image cross-correlation 

between different areas. Training images of two adjacent areas are not necessarily independent. Our approach is to model the 230 

posterior distribution of each area through a probability aggregation problem. 
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Figure 6 a subset of the pine island glacier is used to illustrate the methodology. 

 

3.3 Formulation of the problem through probability aggregation 235 

Our goal is to estimate, for each area 𝐴#, . . . 𝐴* the posterior distribution of the training image, given the flight radar line data 

𝑑!#, or  

 

𝑃A𝑇𝐼(𝐴+)B𝑑!$ , 𝑑!% , 𝑑!& , 𝑑!'C           (2) 

 240 

𝑇𝐼(𝐴+) is a discrete random variable that has 166 possible outcomes. To achieve this, we first estimate individual conditional 

probability 𝑃(𝑇𝐼(𝐴+)|𝑑!(), then aggregate them into a single estimate for Eq (2). We will use a simple aggregation model that 

uses log-ratios (Allard et al., 2012), as follows: 

 

𝑟+, = 𝑙𝑜𝑔 H
-(/0(!#)|2!()	

#4-(/0(!#)|2!()	
I             (3) 245 

 

To aggregate these individual conditional probabilities, the log-ratios can be summed relative to the prior: 

 

𝑟+ − 𝑟 = ∑ A𝑟+, − 𝑟C*
,5#              (4) 

Here, 𝑟+  is the log-ratio of 𝑃A𝑇𝐼(𝐴+)B𝑑!$ , 𝑑!% , 𝑑!& , 𝑑!'C in Eq (2). 𝑟  is the log-ratio of the prior. The prior is a uniform 250 

distribution over all training images.  Thus 𝑟 is calculated as: 

𝑟 = 𝑙𝑜𝑔 K -(/0(!#))	
#4-(/0(!#)

L = 𝑙𝑜𝑔 K #/#77	
#4#/#77

L = −5.10        (5) 
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Then, we can solve Eq (4) for 𝑟+ and invert the log-ratio to get 𝑃(𝑇𝐼(𝐴+)|𝑑!$ , 𝑑!% , 𝑑!& , 𝑑!').  

 

However, in summing, we make a conditional independence assumption (Allard et al., 2012). Indeed, summing logarithms is 255 

equivalent to making products of the actual probabilities, which entails a form of conditional independence. Assuming 

conditional independence, when that assumption is untrue in reality, often results in overconfidence and too small uncertainty. 

To mitigate this issue, we add an additional weight term:  

 

𝑟+ − 𝑟 = ∑ 𝑤+,A𝑟+, − 𝑟C*
,5#            (6) 260 

 

Logically, we would like the weight to account for the correlation between data in different regions. For example, if data of 

region 𝐴+ is highly correlated with data in region 𝐴,, then they are likely redundant with respect to the training image selection. 

Hence, we will make the weight 𝑤+, function of the correlation structure between different subareas. In the next section we 

will detail the subtasks ahead: 1) modeling and estimating 𝑃(𝑇𝐼(𝐴+)|𝑑!() and 2) calculating the weights 𝑤+,. 265 

3.4 Probability of training images given radar line data. 

3.4.1 Most probable set of training images  

A direct estimate of 𝑃(𝑇𝐼(𝐴+)|𝑑!#) is challenging because the 𝑑!# are very high-dimensional. We turn this high-dimensional 

problem into a low-dimensional as follows. Using the data 𝑑!# in area 𝐴+, we find those training images that constitute a set of 

most probable training image, i.e. those images closest to the radar line data in that area. Term this set as 𝑇𝐼O. Then given this 270 

set, we replace the radar line data with the most probable set: 

 

𝑃(𝑇𝐼(𝐴+)|𝑑!#) ≅ 𝑃(𝑇𝐼(𝐴+)|𝑇𝐼O)          (7) 

 

To determine this set, we solve the following optimization problem: 275 

 

argmin
/08

T𝑑𝑖𝑠A𝕀𝑻𝑰(𝑇𝐼O), 𝑑!#CV          (8) 

where 𝑻𝑰 = Y𝑇𝐼(#), 𝑇𝐼(;), 	 … , 𝑇𝐼(#77)\ is the total set of training images. 𝕀𝑻𝑰	 is an indicator function which returns 𝑇𝐼O, a subset 

of 𝑻𝑰 of size 𝑛. We will explain how to determine the size 𝑛 of 𝑇𝐼O in the Appendix. The distance 𝑑𝑖𝑠 in Eq (8) measures the 

distance between the radar line data and any given training image. To calculate 𝑑𝑖𝑠, we rely on the same modified Hausdorff 280 

distance approach as section 3.1.3: 
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𝑑𝑖𝑠(𝑇𝐼, 𝑑) = #
|𝒟|
∑ min𝑑(𝑦=,𝒜)))∈𝒟          (9) 

𝒟 is now the set of patterns 𝑦2 extracted from the radar lines. By pattern, we mean the radar line data are scanned within a 

given template. We use flexible sized templates when scanning the radar lines over each subarea 𝐴+. The template size is 285 

randomly chosen between the maximum radius up to 15 pixels to include 40 measurement points. (Mariethoz and Caers, 2014, 

p160). 𝒜 is the set of TI representative patterns 𝑥!, obtained in section 3.13. Figure 7 provides an illustration of this idea. 

 

Figure 7. Illustration of measuring the distance between training image and radar line data. 

 290 

We use a particle swarm optimization (PSO) to minimize the distance function 	𝑑𝑖𝑠A𝕀𝑻𝑰(𝑇𝐼O), 𝑑!#C. As a heuristic optimization 

approach, PSO has its specific advantages in requiring less parameterizations, easy implementation, and fast convergency with 

good accuracy (Rezaee Jordehi and Jasni, 2013). These characteristics makes PSO a preferred optimizer for our initial training 

image selection. In conjunction with PSO, we employ the profile log-likelihood function to find the optimal size 𝑛 of 𝑇𝐼O. 

Detailed explanation on the PSO algorithm and profile log-likelihood function implementations is provided in the Appendix. 295 

Figure 8 shows the selected 𝑇𝐼O in metric space for each subarea A1, A2, A3 and A4. In this figure, we also plot examples of 

𝑇𝐼O in the radar line map grid.  
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Figure 8. (a) The estimated set of most probable training images 𝑻𝑰# for each area displayed on MDS plots. The red dots highlight 
the estimated 𝑻𝑰#. (b) Examples of 𝑻𝑰# displayed in the topographic modeling space.  300 
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3.4.2 Kernel density estimation of 𝑷(𝑻𝑰(𝑨𝒊)|𝒅𝑨𝒊) 

We will use the optimal set of training images 𝑇𝐼O to infer 𝑃(𝑇𝐼(𝐴+)|𝑑!#). We assume that the TIs near the 𝑇𝐼O on MDS plot 

(Figure 4) tend to have similarly high probability of being assigned to the radar data subarea. This is because, from the TI 

distributions in the MDS metric space, we can observe the spatial patterns of nearby TIs look similar. We therefore consider a 305 

Gaussian kernel density estimation (KDE) to predict the probability to each TI. The probability of each TI is estimated 

according to its distance with 𝑇𝐼O in the MDS plot (Figure 5): 

 

𝑃A𝑇𝐼(𝐴+)B𝑑!#C =
#
@
∑ 𝐾 K2+A(/0,/0

8+)
C

L@
D5# 	         (10) 

𝐾(𝑧) = #
√;F

exp K− G%

;
L           (11) 310 

 

Here, 𝑇𝐼OD is the 𝑘-th selected TI using PSO. 𝑛 is the size of the set 𝑇𝐼O. 𝑑𝑖𝑠(𝑇𝐼, 𝑇𝐼OD) is distance between a 𝑇𝐼 and 𝑇𝐼OD. 𝐾 is the 

Gaussian kernel function (Eq (11)). The bandwidth ℎ is the variance of the Gaussian kernel. We choose the optimal bandwidth 

by Silverman’s rule of thumb (Silverman, 1981). Figure 9 shows the KDE estimated probability of each TI for subarea A1.  

 315 

Figure 9. (a) Estimated 𝑻𝑰# for A1. The TIs are plotted in MDS space. The red dots are 𝑻𝑰#. (b) Kernel density smoothing assigns 
likelihoods (densities) to the total set of training images by using 𝑻𝑰#. 

3.5 Aggregation by weighting log-ratios 

Next, we aggregate the KDE estimated probabilities by weighting the log-ratios to obtain the posterior 

𝑃A𝑇𝐼(𝐴+)B𝑑!$ , 𝑑!% , 𝑑!& , 𝑑!'C. The weights 𝑤+, required in the log-ratio aggregation of Eq (6) is to reflect the spatial correlation 320 

between the radar line subareas. We use a variogram-based approach proposed by Fouedjio (2020) to measure spatial 
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correlation between any two areas. In detail, the variogram dissimilarity is calculated as the sum of absolute values of all direct 

and cross variograms between the two areas. 

 

𝑑𝑖𝑠𝑠𝑖𝑚A𝐴+ , 𝐴,C =
∑ I,JK𝒙#,𝒙(M,N&-,&-.OP×JG(&-)4GN&-.OP

%
-,-.

;∑ I,NK𝒙#,𝒙(M,K&-,&-.MO-,-.
         (12) 325 

 

where 𝑑𝑖𝑠𝑠𝑖𝑚A𝐴+ , 𝐴,C is the dissimilarity between area 𝐴+ 	and 𝐴,. According to Fouedjio (2020), A𝒙+ , 𝒙,C are the spatial center 

locations of 𝐴+ 	and 𝐴,  respectively. 𝑥R  and 𝑥R.  are the radar data locations in 𝐴+  and 𝐴, . 𝐾S(∙) is the Epanechnikov kernel 

function. 𝑧(𝑥) are the radar data measured values at location 𝑥. Using the calculated 𝑑𝑖𝑠𝑠𝑖𝑚A𝐴+ , 𝐴,C, the weights 𝑤+,  are 

simply: 330 

 

𝑤+, = 1 − 2+A+TK!#,!(M

UVWN2+A+T(!#,!$),…,2+A+TK!#,!(M,…,2+A+T(!#,!')O
 , where𝑖, 𝑗 = [1,2, 3,4]     (13) 

 

With 𝑤+,, we can aggregate the probability using the Eq (4). Figure 10 shows the aggregated posterior probability of TIs for 

each subarea.  335 
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Figure 10. distribution of final aggregated TI probability in each radar line subarea.  

 

3.6 Direct sampling with TI sampling 340 

Using the aggregated posterior TI probability 𝑃(𝑇𝐼(𝐴+)|𝑑!$ , 𝑑!% , 𝑑!& , 𝑑!'), we can now sample training images from the 

posterior distribution (Figure 10) in each subarea. Figure 11 plots two realizations of sampled training images on the radar line 

map. We observe that the sampled topography TIs are different between the realizations. For example, the TIs sampled for A1 

tend to have higher elevations and more mountain peaks than A2. A2 and A4 tend to have larger scale low-elevation valleys 

that can be related to warm water routing, while the TIs in A1 and A3 data have more small-scale valleys. For each realization 345 

set of training images, we run a DS simulation. At the end, multiple realizations of topographical models are generated with 

multiple realizations of TIs. Figure 12 shows two example realizations of the DS simulated results. We can observe large 

valleys in A2 and A4 areas, while A1 and A3 areas mainly have high elevation peaks. The non-stationarity of both simulated 

topography realizations also agreed well with their sampled TIs, when compared to the TIs in Figure 11.  
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 350 

Figure 11. Examples of sampled TIs from the posterior distributions. The TIs are rescaled back to the local radar data range by 
inverting the min-max normalization.  
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Figure 12. Two realizations of DS simulated topographical models by filling the radar line gaps. Model realization number 355 
corresponds to the TI realization number in Figure 11.  

 

3.7 Comparison with traditional MPS modeling and two-point geostatistical modeling 

Our results are compared to the conventional MPS simulation without proposed TI sampling. Here, we use the same DS 

simulation parameters as our TI sampling approach, except that the training images are different. In the conventional test, we 360 

run the DS simulation by scanning all the 166 TIs to fill the radar line gaps. Figure 13a shows one realization of the simulated 

result. It is obvious that the conventional approach results in a much noisier topographical model. There are significant line 

artifacts that make the model unrealistic. To gain detailed understandings, we take a cross-section A-A’ on the Pine Island 

glacier and plot the comparison in Figure 14. We can observe that the DS without TI sampling creates a significant amount 

unrealistic elevation peaks and troughs. Especially at the main channel of Pine Island glacial (marked by the dashed box in 365 

Figure 14) where mostly radar data are available, unrealistic channels are simulated between the radar data observations. This 

suggests that, when using all the 166 TIs without proper sampling, the DS finds too large a set of patterns likely many 

incompatible with the sparse data. Our TI sampling approach avoids this problem by limiting the algorithm to a small number 

of most suitable TIs, thereby improving the result. More importantly, avoiding the channel artifacts is critically important for 

modeling subglacial hydrological flow (see section 0). In terms of running time, the conventional DS approach with 166 TIs 370 

took nearly 21 hours to simulate one realization. When using our TI sampling approach, it took less than 1 hour. Our initial 

DS implementation tests are run on a PC with an Intel i9-11900 of 2.5GHz processor and 32GB of RAM.  
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We further compare to the two-point geostatistical modeling with kriging and Sequential Gaussian Simulation (SGSIM). 

Figure 13b and Figure 13c plot topographic modeling results from kriging and SGSIM. We can observe that kriging produces 375 

the most smoothed topographical model. The over-smoothed features are very clear from the detailed cross-section in Figure 

14. After all, kriging is a deterministic modeling approach. Thus, it cannot capture location scale elevation variations and 

quantify the spatial uncertainty. Our SGSIM approach uses local ordinary kriging; this way non-stationarity is addressed by 

limited the neighborhood of spatial inference. The limitation of SGSIM, an approach based on spatial covariances, lies on its 

limitations in capturing complex morphological features, especially when the radar line data are very sparse (see the circle 380 

highlighted on Figure 13c). In Figure 15, we also compare the empirical variograms from the modeled topographical maps 

using the four different approaches. It shows the DS using sampled TIs has reproduced the observed radar data variogram. 

SGSIM maps also reproduce the variograms from the observed radar data, because it directly uses the radar data variograms 

for modeling. However, the DS without TI sampling has a nugget (noise) effect. Overall, it shows the TI sampling approach 

performs the best in terms of improving the modeling speed, simulation quality, and capturing the spatial uncertainty.  385 
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Figure 13. Subglacial topography modeled by - (a) traditional DS using all the 166 TS  (without TI sampling), (b) kriging, (c) SGSIM.   
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Figure 14. Cross-section view of the modeled topography maps at line A-A’.  

 390 

Figure 15. Variograms of the radar line data and modeled topography maps.  
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4 Application to the entire Amundsen Sea Embayment (ASE) 

4.1 Training image sampling and DS simulation 

We apply the methodology to fill the radar lines gaps of the entire ASE area to generate high-resolution topography maps. To 395 

address the spatial non-stationarity and sample TIs, we first divide the whole ASE area into local subareas. We use the 

following recursive diving steps to divide the entire ASE into 𝐿 subareas based on the radar line data density:  

Step 1. Equally divide the ASE area into four subareas.  

Step 2. For each subarea, if it has more than N radar data points, continue to divide it into four equally size areas. 

Step 3. Repeat step 2 until amount of data measurements is below the threshold amount 𝑁. In this case, we set N=10000 400 

and divide ASE into totally of 56 subareas. 

 

Figure 16 shows the final ASE subareas with the corresponding radar data density. Next, we calculate posterior TI probability 

for each subarea 𝑃A𝑇𝐼(𝐴+)B𝑑!$ , … , 𝑑!0C. We can then use the posterior probability to sample one single TI for each subarea. 

Figure 17 plots two realizations of the sampled TIs in the entire ASE space. For each TI realization, we run DS to fill the radar 405 

line gaps to generate high-resolution topography maps. To reflect the spatial uncertainty, 20 topography map realizations are 

simulated using 20 realizations of TI sets. The generated high-resolution bed topography is shown in Figure 18.  

 

 

Figure 16. Subareas with corresponding data density, overlapped by the radar line data.  410 
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Figure 17. Two realizations of TIs assigned to the entire ASE area.  
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Figure 18. Realizations of the ASE topography after filling the radar line gaps. The circles highlight the areas with high spatial 415 
variations across the realizations.    
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4.2 Uncertainty in subglacial hydrological flow. 

We use the topographic realizations to investigate the sensitivity of subglacial water routing to topographic uncertainty. A 

water routing model was applied to 20 realizations to model the flow of water at the ice/bed interface. The direction of water 

flow is determined by calculating hydraulic potential, 𝜙, using the Shreve equation (Shreve, 1972): 420 

 

𝜙 =	𝜌Y𝑔ℎ +	𝜌+𝑔𝐻,            (14) 

 

where 𝜌Y	is the density of water (100 kg m-3), 𝜌+ is the density of ice (917 kg m-3), 𝑔 is gravitational acceleration, ℎ is bed 

elevation, and 𝐻 is ice thickness. The hydrological model is implemented using the Antarctic Mapping Tools (Greene et al., 425 

2017) and the FLOWobj function and multiple flow directions (MFD) algorithm from the TopoToolbox package (Schwanghart 

and Scherler, 2014).These functions use the hydraulic potential gradient to compute flow accumulation, or the number of 

pixels that flow into another pixel. We assume spatially uniform basal melt rates and that the water pressure is equal to the ice 

overburden pressure.  

 430 

The water routing models vary across each realization (Figure 19). In particular, the Thwaites Glacier tributaries flowing 

towards the grounding line (area where the ice meets the ocean and decouples from the bed) show significant differences across 

each realization. These tributaries are located near a system of active subglacial lakes – lakes at the ice/bed interface that 

periodically drain and refill (Smith et al., 2017). These lakes are hypothesized to be hydrologically connected, with a drainage 

and refill cycle that depends on the level of connectivity (Smith et al., 2017). Lake drainage events are associated with increases 435 

in ice velocity (Stearns et al., 2008), making it important to characterize the connectivity of active lake systems. Our results 

could be used to investigate the nature of hydrological drainage at Thwaites and highlight areas that require additional 

observational constraints. 
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 440 

Figure 19. (a) subglaical water routing from mass conservation; (b) and (c) water routing using two topographic realizations from 
our DS simulation with TI sampling; (d) flow accumulation for mass conservation; (e) mean flow accumulation for 20 topographic 
realizations from our DS simulation.   

 

5 Conclusions 445 

We developed a non-stationary multiple-point geostatistical approach to fill large-scale geophysical data gaps and applied it 

to map high-resolution subglacial topography in West Antarctica. The radar data gaps were filled using morphological features 
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learned from high-resolution topographic training images. To reflect the geospatial uncertainty, we modeled multiple 

realizations of topography maps using 166 high-resolution training images from the Arctic and Antarctica. These training 

images represent the diversity of subglacial geologic settings. We have placed them in a publicly accessible repository for 450 

training subglacial topography models. The TI repository can be further expanded in the future upon the acquisition of 

additional swath bathymetry and swath radar measurements.  

 

Our major contribution was to show a probabilistic method to model posterior TI probabilities, then sample TIs to model the 

global non-stationarity in subglacial topography. This was achieved by probabilistically assigning non-stationary TIs from the 455 

provided repository to the local radar data. We used the collected 166 topographic training images as prior. The posterior 

distribution is calculated based on the distance between each TIs and local radar data. To address the spatial correlation across 

the global area, we aggregate the TI probability between the local areas based on their spatial correlation. The aggregated 

posterior TI distribution allowed us to sample training images. Finally, we ran direct sampling to fill the radar line gaps. 

Multiple realizations of high-resolution topography maps were generated using multiple realizations of sampled training 460 

images. Such non-stationary TI sampling framework avoided the use of auxiliary variables and arbitrary ad-hoc weighting. It 

significantly improved the topography modeling quality from DS. It also dramatically reduced the DS running time when 

giving large amount of training images. Compared to the traditional deterministic interpolation (kriging) and two-point 

geostatistical simulation (SGSIM) approaches, our approach was shown to provide more realistic topographic maps for spatial 

uncertainty quantification, whilst retaining the spatial correlation measured by radar data.  465 

 

We applied our proposed approach to fill the radar line gaps for entire the Amundsen Sea Embayment in West Antarctica. The 

improved modeling efficiency enabled us to simulate 20 realistic high-resolution topographic maps on a local PC. We then 

used the 20 topographic realizations to investigate the sensitivity of subglacial water routing to topographic uncertainty. The 

results reveal significant variabilities in the Thwaites Glacier tributaries across realizations. These tributaries are near a system 470 

of active subglacial lakes, which are hypothesized to be hydrologically connected and could have the potential to influence ice 

sheet velocity. The high hydrological uncertainty in this area highlights the need for additional measurement constraints. These 

findings demonstrate the utility of geostatistically simulating subglacial topography rather than performing deterministic 

interpolations. Our non-stationary MPS framework provides a path forward for implementing geostatistical simulations at 

continental scales. 475 
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Appendix: Particle swarm optimization (PSO) and optimal TI numbers 

We perform particle swarm optimization to minimize the distance function 𝑑𝑖𝑠A𝕀𝑻𝑰(𝑇𝐼O), 𝑑!#C in Eq (8). Following the PSO 

algorithm (Rezaee Jordehi and Jasni, 2013), we start with a random initialization of 𝑚 selected TIs). Each individual TI 480 

selection is regarded as an individual particle (𝑃+). To find TIs that minimize the distance function, each particle will explore 

the whole TI space iteratively with a velocity 𝑉+. The position (TI index) of 𝑃+ at time step 𝑡 + 1 is determined by its previous 

position 𝑃+(𝑡) and searching “velocity” 𝑉+(𝑡 + 1).  

 

𝑃+(𝑡 + 1) = 𝑃+(𝑡) + 𝑉+(𝑡 + 1)           (15) 485 

 

The velocity 𝑉+(𝑡 + 1) is determined by the particle’s current logged best TI index 𝑃+Z[A\ and the best TI index 𝑃]Z[A\ for the 

whole swarm, as 

 

𝑉+(𝑡 + 1) = 𝑤 × 𝑉+(𝑡) + 𝑐# × 𝑟# × A𝑃+ − 𝑃+(𝑡)C + 𝑐; × 𝑟; × K𝑃] − 𝑃+(𝑡)L      (16) 490 

 

where 𝑉+(𝑡)	is	the	velocity	from	the	previous	time	step.		𝑤 is the “inertia weight” that controls the contribution of 𝑉+(𝑡) to 

𝑉+(𝑡 + 1). A smaller 𝑤 means less influence from the previous velocity, thus higher PSO exploration capability. Here we set 

𝑤 as 0.8 according to the study by Han et al. (2010). r1 and r2 are two random numbers for stochastic update of the velocity. 

They have a uniform distribution with the interval of [0,1]. 𝑐# and 𝑐; are the acceleration parameters that pull the particles 495 

towards 𝑃+Z[A\  and 𝑃]Z[A\ . 𝑐# = 𝑐; = 2 are recommended for most optimization problems according to Ozcan and Mohan 

(1999). We adopt the recommended settings. The swarm size 𝑚 also affects the PSO performance. So far, there are not exact 

rules  selection of swarm size (Rezaee Jordehi and Jasni, 2013). Here we use the size 𝑛 of 𝑇𝐼O to determine the swarm size 𝑚. 

We create 𝑚 = 10 × 𝑛 particles in PSO population to enhance searching ability and running time. 

 500 

Another important question is how to determine the optimal amount 𝑛 of 𝑇𝐼O. To specify 𝑛, we use a profile log-likelihood 

approach from Zhu and Ghodsi (2006) and Honarkhah and Caers (2010). Specifically, we expect that the distance between 

training images and radar line data will decease as we visit more training images. The PSO optimized distance should decrease 

dramatically when the optimal 𝑛 TIs is visited, and then start flattening out. Hence, there will be an elbow point corresponding 

to the optimal number of TI. Based on the study in Honarkhah and Caers (2010), the elbow  is found by  maximizing  profile 505 

log-likelihood.  We find the optimal number of TIs using the following steps.  

1. Run PSO to obtain the minimized distances 𝑑𝑖𝑠@ with different  𝑇𝐼O size 𝑛, where 𝑛 = 1, 2,3, … ,𝑁 − 1.  

2. For every 𝑛, we define two samples of 𝜑# = {𝑑𝑖𝑠#, 𝑑𝑖𝑠;, … , 𝑑𝑖𝑠@} and 𝜑; = {𝑑𝑖𝑠@^#, 𝑑𝑖𝑠@^;, … , 𝑑𝑖𝑠_}.  

3. Calculate the log-likelihood 𝑙@(𝑛) as:  
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𝑙@(𝑛) = −𝑛log � #
`;Fa%

�∑ (2+A#4b$)%

;a%
@
+5# + (𝑛 − 𝑁)log � #

`;Fa%
�∑ (2+A#4b%)%

;a%
_
+5@^#      (17) 510 

𝜎; = (@4#)a$%^(_4@4#)a%%

_4;
            (18) 

where 𝜇# , 𝜇;  are the means of 𝜑#  and 𝜑; , By contrast, 𝜎;  is the common scale variance. 𝜎# , 𝜎;  are the sample 

variances of 𝜑# and 𝜑;.  

4. Obtain the optimal (elbow) size 𝑛� based on the empirical maximum value of 𝑙@(𝑛).  

 515 

We use the illustration case area A1 as an example to show how to select 𝑛�.  Figure 20a plots the PSO distance function 

between A1 radar lines and TIs with varying TI numbers. We can observe a fast drop of the distance at the beginning, and the 

distance then drops slowly after 𝑛 = 3. To find out the exact elbow, we calculate the log-likelihood values and plot them in 

Figure 20b. Figure 20b clearly indicate that the optimal number of TI is 3.  

 520 

Figure 20. (a) PSO minimum distance vs. the swarm size n. (b) profile log-likelihood of curve (a), suggesting the optimal number of 
training images is 3. 

Code and Data availability  

The subglacial topography training image database is publicly available at https://doi.org/10.5281/zenodo.5083715. The MPS 

modeling codes and notebooks (MPS-BedMappingV1) used in this study are available at GitHub 525 

https://github.com/sdyinzhen/MPS-BedMappingV1, and archived at https://doi.org/10.5281/zenodo.5453360 (Yin et al, 

2021).  
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