
Responses to the Comments from the Reviewer 1 

Comment 1: This paper describes an interesting and potentially very useful methodology for 

realistic interpolation of sub-glacial topography (one of many potential applications).  Overall 

I think that this is solid and important contribution to the field.  The methodology is quite 

complex, however, with many steps involved.  The text is a bit dense with undefined jargon, and 

I feel the authors could do a much better job at explaining these steps, and particularly in 

explaining basic concepts.  For example, I was never sure what the authors meant by “distance” 

between two training images, and that set me at a big disadvantage in trying to comprehend 

the rest of the methodology.  Another example: the authors never define how the values of 

MDS1 or MDS2, key parameters in the methodology, are determined.  There are many more 

such examples noted in my marked-up pdf file. 

Response 1:  

First of all, we would like to thank Dr. John Goff for the review and detailed feedback. The 

comments play a constructive role in improving the quality of our manuscript. With the aim of 

better explaining the basic concepts and components, we revise numerous sentences in our 

paper. Furthermore, comments in the supplement file are responded point-by-point. The 

modifications are listed in the following. 

 

 

 

Comment 2: I hate sounding like the aggrieved reviewer, but really, the authors scant mention 

of my own paper on the conditional simulation of nearly the same data set had me at a loss.  The 

two methods are extremely different, but the ultimate product and goals are identical in trying 

to produce a realistically rough surface conditioned on existing radar soundings and 

accounting for a high degree of spatial heterogeneity.  Of particular note, my method spent a 

considerable effort on ensuring the continuity of fjord-like channels beneath the glacier, which 

are obviously very important factors in flow simulation and likewise are poorly reproduced by 

standard interpolation schemes like kriging.  How does this method perform in that measure?  I 

suspect it actually does quite well – that the highest probability deglaciated terrain training 

images do a good job in conditioning the data interpolation to that geometry.  But the authors 

do not explore that property.  The authors also did not do a good enough job distinguishing the 

superiority of their method over SGSIM.  The latter images actually looked quite good. 

Response 2:  

Comparing a new method with existing works is an important component in the scientific 

research. With the aim of accurately describing the study performed by Goff et al. (2014), we 

rewrite the sentence. The modified one is shown below: 

“Goff et al. (2014) conducted a conditional simulation of Thwaites Glacier. To improve the 

modeling quality, the channelized structures and the abrupt between lowland and highland are 

individually handled. The method has the advantage to ensure the continuity of fjord-like 

channels beneath the glacier” 

Next, we examine our multiple-point statistics (MPS) realization, sequential Gaussian 

simulation (SGSIM) realization and kriging realization in the channelized region. The maps are 

shown below. Based on the visual inspection, it is clear that the MPS realization exhibits 

comparable structures to the deglaciated areas in Arctic and Antarctica. 



 

Figure 14.  Comparison of SGSIM and proposed DS with uncertain TI selection in the local sparse lines 

area. Red circles highlight the areas where SGSIM failed to simulate meaningful channels.  

 
Training images provided to our MPS simulation in the channelized area 

 

Comment 3: As noted in my returned pdf, the figures and captions could use some work.  A 

few of the issues: A lot of the training images were just reduced from larger versions, meaning 

that the annotation was too small to read.  On several images the color white is used both to 

indicate areas of no data and Z values >500 m.  This ambiguity needs to be resolved.  Many of 

the captions were far too brief and failed to explain what is going on in the figure.   

Response 3:  

Thanks for these suggestions. We added more captions and relevant contents in our manuscript 

to better explain the figures. We also revised the figures to separate areas with non-data (non-

study area). 

 

 



Page 2 Line 43: 

Sentence: The objective of geostatistical simulation is to generate multiple realizations of 

phenomena that reproduce the spatial variability of observations, as modeled by variogram or 

spatial covariance and can be used to quantify uncertainty. 

Comment: Not the only objective.  Also to generate >>realistically rough<< fields. 

Response: 

. The target of geostatistical simulation is twofold: realistic structure and uncertainty. Therefore, 

the sentence in our paper is revised as: 

“The objective of two-point geostatistical simulation is to not only reproduce structures 

modeled by variogram or covariance but also generate multiple realizations to express 

uncertainty”. 

 

Page 2 Line 45: 

Sentence: Thwaites Glacier has previously been simulated by Goff et al. (2014), though only 

one realization was generated. 

Comment: A lot more could be said here!  My algorithm optimized for continuity along 

channel forms.  Does this do equally as well?  I also incorporated highly non-stationary 

statistical behavior.  And I only generated one realization for the paper, but could have 

generated infinite others. 

Response:  

. We have modified the description as follows: 

“Goff et al. (2014) conducted a conditional simulation of Thwaites Glacier with a geostatistical 

framework. To improve the modeling quality, the channelized structures and the abrupt 

between lowland and highland are individually handled. The method has the advantage to 

ensure the continuity of fjord-like channels beneath the glacier, which is an important factor in 

flow simulation.” 

 

 

 

Page 2 Line 29: 

Sentence: However, spatial variation over very large areas is inherently non-stationary. 

Comment: This term is more appropriate for temporal fields.  For spatial fields, the better term 

is statistically heterogeneous. 

Response:  

Thanks for this suggestion. In this paper, one of our focused problems is spatial non-stationarity, 

not heterogeneity. Heterogeneity and non-stationarity are different, at least as is traditional used 

in geostatistics, for example in subsurface applications. Heterogeneity is opposite to 

homogeneity, which mean no spatial variation. In non-stationary, the spatial correlation 

structure itself varies in space, which need not be the case for heterogeneity. This is a common 



problem when modeling very large area such as the West Antarctica. We cannot use the same 

TIs for non-stationary (see Figure 11) for non-stationary, otherwise the model will not honor 

the spatial correlations between the local subareas. Therefore, we will keep “non-stationary” 

 

Page 2 Line 56: 

Sentence: Regardless, all these approaches are limited in expressing non-stationary in terms of 

a mean or covariance function only. 

Comment: Again - my method did incorporate a high degree of statistical heterogeneity.  A 

little credit is due! 

Response:  

Thanks for this comment. We have revised this paragraph in the paper revision and highlighted 

the contribution of the reviewer’s paper. 

 

Page 3 Line 74: 

Sentence: We review three categories of approaches to build non-stationary geospatial models 

using MPS. 

Comment: This paragraph is too detailed for introduction.  Includes concepts not yet 

introduced (e.g., "ad hoc weighting". 

Response:  

We appreciate the reviewer for this advice. In order to keep concise, we added more 

explanations and reorganize several sentences. The modified paragraph is as follows: 

“We briefly review three categories of approaches to build non-stationary geospatial models 

using MPS. The first way is to divide non-stationary TI or simulation grid into several stationary 

subareas. Each stationary simulation area has its specified stationary TI  (Honarkhah and Caers, 

2012; Strebelle, 2002; Wu et al., 2008; Zhou et al., 2014). But the zonation brings difficulties 

to create a smooth transition between subareas. Therefore, the second third way is most 

commonly used. It incorporates spatially continuous non-stationary maps (named as “auxiliary 

variables”) with weighted aggregation or so-called “ad-hoc weighting” (Chugunova and Hu, 

2008; Mariethoz et al., 2010; Oriani et al., 2014; Zuo et al., 2020). Such auxiliary variables 

determine which TI patterns should fill which location in the simulation domain in a spatially 

smooth manner. The limitation is that the ad-hoc weights do not scale to the complexity of bed 

topography. The determination of weights is also subjective. More importantly, auxiliary 

variables are very difficult to obtain in subglacial topographic modeling. Another challenge in 

the non-stationary modeling is how to choose training images (Tahmasebi, 2018). This is 

particularly important as the MPS modeling relies on the spatial information provided by the 

training images. Different from the above two methods, Hoffimann et al. (2019) introduced an 

approach to generate time-series training images to model the spatial and temporal evolutions 

of geomorphology, which is similar to Pirot et al. (2014, 2015). A training image transitional 

model in time was proposed to reproduce the nonstationary geomorphologic evolutions. 

However, in subglacial topographic modelling, there are no available training images because 

subglacial topographic measurements are only made along flight lines. Satellite-based 

observations from deglaciated areas in the Arctic offer a potential source of training imagery. 

However, training images retrieved from the Arctic would be logically non-stationary due to 



the natural variability of the landscape. Furthermore, the Arctic provides a vast amount of 

deglaciated topographic data, which presents a significant computational burden on MPS 

simulation algorithms. We therefore will need a strategy to explicitly specify which training 

images or patterns should go where when filling the radar line gaps” 

 

Page 3 Line 76: 

Sentence: Then MPS then uses different divided TI patterns to fill different locations in the 

simulation domain. 

Comment: delete ‘then’ 

Response:  

Thanks for the careful check. The redundant word is removed. 

 

Page 3 Line 77: 

Sentence: But the zonation in either the simulation domain or training images can make it 

difficult to maintain smooth transitions between the modeling patterns. 

Comment: However, 

Response:  

Thanks for the careful check. We apply the word ‘However’ instead of ‘But’. 

“However, one limitation of the partitioning strategy is discontinuity. The zonation brings a 

difficulty to create a smooth transition between subareas.” 

 

 

 

Page 3 Line 96: 

Sentence: In this paper, we generalize a geospatial modeling framework to fill irregular 

geophysical data gaps in large areas. 

Comment: Again - too much detail in this paragraph for introduction. 

Response: In order to better explain our work, we have shortened this paragraph as follows: 

“In this paper, we generalize a geospatial modeling framework to fill irregular geophysical data 

gaps in large areas. We will use MPS to address the non-stationary topographic modeling by 

probabilistically selecting non-stationary training images. We first collect a large amount of TIs 

from the deglaciated areas in the Arctic and Antarctica. Then we will develop a probability 

aggregation method to estimate each TI’s probability of being assigned to different local radar 

lines. Such probabilistic TI selection scheme will avoid the use of auxiliary variables with 

arbitrary ad-hoc weightings. We will demonstrate our method using the entire Amundsen Sea 

Embayment in West Antarctica. This region has alternating areas of sparse and dense 

measurements with a variety of radar line orientations. We show that the training image 

sampling process accommodates a range of data configurations. It will generate realistic non-



stationary topographic realizations that reflect the subglacial topographic uncertainty in ASE. 

In addition, we will use the topographic realizations to model subglacial hydrologic flow. The 

impact of topographic uncertainty on hydrologic uncertainty is further investigated. ” 

 

 

Page 4 Line 101: 

Sentence: The posterior TI probability will be calculated using kernel density estimation 

conditioned to the actual radar line observations. 

Comment: example of too much detail/jargon for intro 

Response: With the intention of improving the quality, we remove several the technical details 

and jargon in the introduction section. 

 

 

 

Page 4 Line 103: 

Sentence: We will demonstrate our method using the entire Amundsen Sea Embayment in 

West Antarctica. 

Comment: (ASE) 

Response:  

We are grateful for the careful inspection. The ignored abbreviation is added. 

“We will demonstrate our method using the entire Amundsen Sea Embayment (ASE) in West 

Antarctica.” 

 

 

 

Page 4 Line 113: 

Sentence: The data is gridded at a 500-meter resolution (Figure 1). 

Comment: are 

Response: 

Thanks for the check. This sentence is refined as: 

“The data are gridded at a 500-meter spatial resolution with the nearest neighbor strategy 

(Figure 1).” 

 

 

 



Page 4 Line 115: 

Sentence: The swath bathymetry data (Arndt et al., 2013) and subglacial swath radar data 

(Holschuh et al., 2020) (provide some training imagery. 

Comment: delete 

Response:  

We check this sentence and the new one is in the following. 

“The swath bathymetry data (Arndt et al., 2013) and subglacial swath radar data (Holschuh et 

al., 2020) provide some training imagery.” 

 

Page 5 Line 126: 

Sentence: Figure 1. 

Comment: What are the X and Y coordinates? 

Response:  

We have added coordinates to the Figure 1.  

 

Page 6 Line 132: 

Sentence: Figure 2. (a, b) Geographical locations of the 166 training images 

Comment: It's not really clear where these 166 patches are located, exactly. 
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Response:  

Again, sorry, we do not have the exact coordinate locations in our dataset.  

 

Page 6 Line 132: 

Sentence: (c) example of the 166 training images 

Comment: These are in need of horizontal scale. 

Response:  

Horizontal scale is added to the revision.  

 

 

Page 7 Line 149: 

Sentence: The algorithm used in this work is Direct Sampling (DS) (Mariethoz et al., 2010b; 

Mariethoz and Renard, 2010), which will be introduced in section 0. 

Comment: ?? 

Response:  

The sentence is rephrased as follows: 

“The algorithm used in this work is Direct Sampling (DS) (Mariethoz et al., 2010b; Mariethoz 

and Renard, 2010), which will be introduced in the following section.” 

 

Page 8 Line 174: 

Sentence: Based on the explanation above, there are mainly three important parameters in DS 

Comment: Enumerate (1), (2), and (3) rather than "one", "another", and "third".   

Response:  

We rewrote this paragraph, and the new version is in the following: 

“Based on the explanation above, there are mainly three key parameters within DS. (1) the 

number of conditioning points 𝑛. In a continuous simulation scenario, 𝑛 ≥ 30 is suggested to 

extract complex patterns from TI as well as the simulation grid (Bruna et al., 2019; Meerschman 

et al., 2013). (2) the distance threshold 𝑡. Because a conditioning pattern of big size is applied, 

it is possible that there is no completely matching structure in TI. Therefore, the program would 

accept a training pattern whose distance with the conditioning pattern is lower than 𝑡. When 

many suitable patterns exist in TI, the first pattern found by the searching program is suggested. 

The value of 𝑡 has a significant influence on the DS performance. A small value could improve 

the modeling quality while bring a computational burden. In the most cases, 𝑡 = 0.1 is generally 

recognized as the upper bound (Meerschman et al., 2013; Zuo et al, 2020). (3) the fraction of 

scanned TI 𝑓. Repeated morphological structures can be common in TI. With the aim of saving 

time, we can scan only a fraction of TI. For example, 𝑓 = 0.1 implies that the computer only 

inspects 10% TI. According to the investigation conducted by Mariethoz and Caers (2014)., a 

recommended value of 𝑓 ranges from 0.1 to 0.5.” 



 

 

 

Page 8 Line 180: 

Sentence: t = 0.1 is generally recognized as the upper bound in the most cases (Meerschman et 

al., 2013; Zuo et al, 2020) 

Comment: Is t dimensionless?  If so, how is it normalized to the dimensions of the grid?  A 

value of t = 0.1 doesn't have any meaning to me. 

Response: 

 t is a user-defined threshold to determine whether a training pattern is accepted. Thus, t is 

dimensionless. In this paper, we apply a normalized Euclidean distance to measure the 

similarity between two patterns. Figure 3 provides a simplified example to explain the pattern 

searching program. It should be noted that the maximum and minimum values in TI are 99 and 

0, respectively. As Figure 3(b) displays, a conditioning pattern 𝑃𝑛=3
1 = (86,80,37) with three 

known points is checked. Then, the computer launches a random searching procedure. As 

shown in Figure 3(c), a pattern 𝑃𝑛=3
2 = (21,7,30)  is created. The distance metric is as follows: 

𝑑𝑖𝑠(𝑃𝑛=3
1 , 𝑃𝑛=3

2 ) = √
1

3
(

(86 − 21)2

(99 − 0)2
+

(80 − 7)2

(99 − 0)2
+

(37 − 30)2

(99 − 0)2 )  ≈ 0.57 

 

 
Figure 3. A conceptual example of the DS point simulation. (a) Radar lines on the simulation grid; (b) Three 

known points (value: 37, 80, 86) constitute a conditioning data pattern; (c) A mismatch pattern in TI; (d) A 

similar pattern in TI. 

 

Because the distance is much larger than the threshold, the program has to test another point in 

TI. As Figure 3(d), a pattern 𝑃𝑛=3
3 = (87,81,39) is found. The distance between 𝑃𝑛=3

1  and 𝑃𝑛=3
3  

is 0.01. Consequently, 𝑃𝑛=3
3  is output as the searching result. The program assigns the value 83 

to the simulating point. 

The detailed explanation about the pattern distance can be found in Mariethoz et al, 2010 and 

Zuo et al, 2020. 

 

 

Page 8 Line 181: 



Sentence: The third main DS parameter f is the fraction of scanned TI. 

Comment: This needs more explanation.  fraction of what? 

Response:  

Thanks for this comment. We add more description in the new paragraph. The explanation is 

listed below: 

“(3) the fraction of scanned TI 𝑓. Repeated morphological structures can be common in TI. 

With the aim of saving time, we can scan only a fraction of TI. For example, 𝑓 = 0.1 implies 

that the computer only inspects 10% TI. According to the investigation conducted by Mariethoz 

and Caers (2014)., a recommended value of 𝑓 ranges from 0.1 to 0.5.” 

 

 

 

Page 8 Line 181: 

Sentence: With the intention of saving time and avoid verbatim copy, an recommended value 

of f is between 0.1 and 0.5 (Mariethoz and Caers, 2014) 

Comment: This is lazy.  You can avoid verbatim copy by summarizing.   

Response: The redundant words are removed. We exhibit the modified sentence below. 

“According to the investigation conducted by Mariethoz and Caers (2014), a recommended 

value of 𝑓 ranges from 0.1 to 0.5.” 

 

 

 

Page 9 Line 193: 

Sentence: Then, like other MPS approaches such as SNESIM (Strebelle, 2002) and DISPAT 

(Honarkhah and Caers, 2010), we extract the spatial patterns from each TI with a fixed template. 

We then use the classical agglomerative hierarchical clustering (Romary et al., 2015) to divide 

the spatial patterns of each TI into a finite number of groups. The group number in 

agglomerative hierarchical clustering is determined by a distance threshold (between the 

clustered groups). We referred to the commonly used distance threshold in DS approach to set 

it as 0.1 (Meerschman et al., 2013) of the maximum pattern distances of the TI. The TI with 

more complex spatial patterns will therefore have more clustered groups. The medoid pattern 

of each group is taken as the representative pattern of that group 

Comment: find this text to be incomprehensible.  far too much unexplained jargon.  Figure 4 

provides no help given the lack of explanation.  You really need to match up this explanation 

with the figure. 

Response:  

 In order to better explain our method, we have re-written this paragraph by removing un-

necessary jargons: 



“Then, like other MPS approaches (Honarkhah and Caers, 2010; Strebelle, 2002), we extract 

all the spatial patterns from each TI with a fixed template. Next, we use the classical 

agglomerative hierarchical clustering (Romary et al., 2015) method to divide the spatial patterns 

of each TI into a finite number of groups. The number of groups is determined by a distance 

threshold between the clustered groups in agglomerative hierarchical clustering. As mentioned 

in Section 3.1.2, we set the distance threshold as 0.1 since it is commonly used to distinguish 

two patterns in DS (Meerschman et al., 2013). Therefore, TI with more complex spatial patterns 

will have more clustered groups, thus more representative patterns. The medoid pattern of each 

group is taken as the representative pattern of the TI. 

Moreover, the diversified caption of Figure 4 is shown in the following. 

 

 

Figure 4. Calculating the distance between any two training images (TI_A and TI_B) using modified 

Hausdorff distance.  There are three key steps: (1) Extracts training patterns with a fixed template. (2) The 

representatives are selected by a hierarchical clustering method. In this example, the computer found 16 

important patterns from TI_A and 21 patterns are from TI_B. The number of representatives is dependent 

on the complexity of morphology. (3) Calculates the modified Hausdorff distance between two pattern sets. 

The output distance becomes an indicator of similarity between two TIs. 

 

 

Page 9 Line 199: 

Sentence: Figure 4 shows a few representative patterns. The distance used in the clustering is 

the normalized Euclidean distance. 

Comment: This needs to be defined. 

Response: Thanks for this suggestion. The definition of the normalized Euclidean distance is 

an important concept in our paper. With the purpose of making the paper concise, we provide 

a reference here: 

“In this case, we apply the normalized Euclidean distance (Mariethoz et al. 2010) as the metric.” 

 



 

 

Page 9 Line 202: 

Sentence: Figure 4. Calculating the distance between any two training images using modified 

Hausdorff distance. 

Comment: This caption is inadequate to explain what is going on in the image. I really can't 

figure out what is happening. What are the individual patterns in columns A and B? Also, the 

annotations in the A and B column are far too small to read.   

Response:  

We have added more detailed explanations for this caption.  

 

Page 9 Line 204: 

Sentence: After clustering and medoid selection, training images are now represented 

expressed by a set of representative patterns 

Comment: repetitive   

Response:  

This sentence is improved as follows: 

“After clustering and medoid selection, TIs are expressed by a set of representative patterns.” 

 

 

Page 10 Line 215: 

Sentence: MDS projects high-dimensional objects into a 2D cartesian space, where the 

difference between points in that space approximates the Hausdorff distance. 

Comment: Really having trouble getting to this point.  I just don't have any sense of how 

"distance" is being defined here.  Also, are MDS1 and MDS2 defined in Figure 5? 

Response:  

We are sorry that the insufficient explanation brings confusion. First, we improve our 

description to express the definition of distance. The new content is shown in the following: 

“We define the distance between any two training images as the difference between their 

representative patterns. A small distance indicates that two TIs have similar morphological 

structures.” 

 

Then, we explain the main idea of MDS in detail in Line 215. Similar to the principal 

component analysis and other dimension reduction techniques, MDS1 and MDS2 are 

coordinates calculated from projection on the principal vectors. 

“Once a distance is defined, we can visualize the metric space in low-dimensional Cartesian 

space using multi-dimensional scaling or MDS (Scheidt et al., 2018). The main idea of MDS is 



to project objects from a high-dimensional space into a 2D cartesian space, to visualize the 

similarity between all the TIs. Figure 5 show the projection of 166 training images in 2D, each 

dot represents a TI. Similar training images map close to each other in the MDS scatterplot.” 

In addition, the caption of Figure 5 is improved: 

 
Figure 5. Visualization of the metric space using multi-dimensional scaling (MDS) into a two-dimensional 

cartesian space. Each dot on the plot represents a TI. It shows TIs with similar morphology are close in this 

metric space. 

 

 

Page 10 Line 227: 

Sentence: Direct sampling, by construction, avoids any artifact boundary, because the data 

template is not aware of the subareas. 

Comment: aware? 

Response:  

We refine this sentence as follows: 

“Direct sampling, by construction, avoids any artifact boundary between the radar line subareas, 

because the data template is not limited by subareas borders. 

 

 

 

Page 10 Line 230: 

Sentence: Training images of two adjacent areas are not necessarily independent. 

Comment: Explain why this is important 

Multi-dimensional scaling of training images

[m]

[m]

[m]

[m]

[m]

[m]



Response:  

The main reason is that there is spatial correlation between neighboring areas. In Figure 6, the 

area A2 has the similar morphology to the area A3. In comparison, the structures in A1 and A4 

are considerably different. In order to create a satisfactory transition, TI selection of A2 should 

not be a complete independent process. 

We added relevant explanations in our paper: 

“Training images of two adjacent subareas are not necessarily independent because of spatial 

correlations between the subareas” 

 

Page 10 Line 231: 

Sentence: Our approach is to model the posterior distribution of each area through a probability 

aggregation problem. 

Comment: ? 

Response:  

We have explained the probability aggregation problem in section 3.3.  

 

 

Page 11 Line 241: 

Sentence: TI(Ai) is a discrete random variable that has 166 possible outcomes. 

Comment: corresponding to the 166 specific training images chosen for this application, 

correct?  The way it is written it sounds as if this is true for the general case. 

Response:  

We would like to thank the reviewer for his careful reading. Here, the number of possible 

outcomes is equal to the number of candidate TIs. Therefore, the corrected sentence is shown 

below: 

“TI(Ai) is a discrete random variable that has 166 possible outcomes (number of candidates TIs). 

To obtain the posterior distribution, 

 

 

 

Page 12 Line 262: 

Sentence: For example, if data of region Ai is highly correlated with data in region Aj, then they 

are likely redundant with respect to the training image selection. 

Comment: are 

Response: Thanks for this correction. The refined sentence is in the following: 

“For example, if data of region Ai are highly correlated with data in region Aj, then they are 



likely redundant with respect to the training image selection.” 

 

 

 

Page 12 Line 268: 

Sentence: A direct estimate of P(TI(Ai)|dAi) is challenging because the dAi are very high-

dimensional. 

Comment: What is meant by this? 

Response:  

The radar measure dAi is shown in the figure below. It is clear that each subarea contains many 

data points. For instance, there are 7982 known point in the region A2. In other words, dA2 is a 

vector of size 7982. Therefore, we describe the radar data dAi as a high-dimensional variable. 

To better describe our method, the paragraph is improved in the following: 

“A direct estimate of 𝑃(𝑇𝐼(𝐴𝑖)|𝑑𝐴𝑖
) is challenging because the 𝑑𝐴𝑖

 are very high-dimensional. 

For example, there are 7982 radar measurements in subarea A2.” 

 
Figure 6. A subset of Pine Island Glacier is used to illustrate the methodology. Apparently, A2 and A3 share 

the similar morphology. Thus, our program assigns comparable TI to these two areas. In contrast, there is a 

considerable difference between A1 and A4. 

 

 

 

Page 12 Line 269: 

Sentence: We turn this high-dimensional problem into a low-dimensional as follows. 

Comment: a low dimensional what? 

Response:  

As mentioned above, it is challenging to directly estimate the probability P(TI(Ai), dAi) because 

dAi if very high dimension. With the goal of efficiently finding the suitable TI, we convert a 

high-dimensional problem into a low-dimensional space.  

“We turn this high-dimensional problem into a low-dimensional space as follows.” 

A2A1 A3 A4

Elevation [m]

100 km



 

 

Page 12 Line 270: 

Sentence: we find those training images that constitute a set of most probable training image, 

Comment: images 

Response:  

Thank you for this check. The corrected sentence is shown below. 

“With the aim of efficiently calculate the conditional probability, we replace the radar data dAi 

of big size with the most probable training images 𝑇�̂� of low dimension.” 

 

 

 

Page 12 Line 270: 

Sentence: those images closest to the radar line data in that area 

Comment: by what measure 

Response:  

The measure of “close” and distance is conducted according to the morphological consistency 

or similarity between radar data and TIs. Accordingly, we rewrite this sentence: 

“those images closest to the radar lines in that area in terms of morphological similarities 

 

 

Page 12 Line 270: 

Sentence: Term this set as 𝑇�̂�. 

Comment: awkward - rephrase 

Response:  

We are gratitude for this suggestion. We rephrased it as follows: 

“We term this set as  𝑇�̂�. 

 

Page 12 Line 276: 

Sentence: {𝑑𝑖𝑠(𝐼𝑇𝐼(𝑇�̂�), 𝑑𝐴𝑖
)}  

Comment: define 

Response: 

We have defined this formular in detail:  



“… argmin
𝑇�̂�

{𝑑𝑖𝑠(𝕀𝑻𝑰(𝑇�̂�), 𝑑𝐴𝑖
)}. where 𝕀𝑻𝑰  is an indicator function which returns 𝑇�̂�, a 𝑛-size 

subset of 𝑻𝑰. 𝑻𝑰 = [𝑇𝐼(1), 𝑇𝐼(2),  … , 𝑇𝐼(166)] and is the total set of training images.” 

 

 

Page 13 Line 289: 

Sentence: Figure 7. Illustration of measuring the distance between training image and radar 

line data 

Comment: Again - this caption is not sufficient to explain what is going on in the figure.  Also, 

annotations are too small to read on the smaller panels. 

Response:  

Thanks for this suggestion. The new caption of Figure 7 is in the following. 

 

Figure 1. Illustration of measuring the distance between training image (𝑻𝑰) and radar lines data (𝒅) in 

subarea 𝑨𝟏. We first extract a group of radar data patterns 𝓓 from the simulation grid with flexible sized 

templates. Then the Hausdorff distances between the representative patterns 𝓐 and radar patterns 𝓓 are 

individually computed. Representative pattern 𝒙𝓐  has a fixed size of 23x23 pixels, while the size of 

conditioning data pattern 𝒚𝓓 varies.  

 

 

Page 13 Line 291: 

Sentence: We use a particle swarm optimization (PSO) to minimize the distance function 

𝑑𝑖𝑠(𝐼𝑇𝐼(𝑇�̂�), 𝑑𝐴𝑖
). 

Comment: What is this? 

Response:  

Based on the explanation in Section 3.4.1, one important step in our method is to find TIs that 

have the minimum distance with radar measurements. This procedure can be mathematically 
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defined as follows: 

{𝑑𝑖𝑠(𝐼𝑇𝐼(𝑇�̂�), 𝑑𝐴𝑖
)}  

Particle swarm optimization (PSO) is a widely used computational method to solve this 

optimization problem. The core idea is to iteratively improve a candidate solution with regard 

to an evaluation function. Compared with other optimization techniques, such as gradient 

descend and genetic algorithm, the advantages of PSO include less parameterizations, easy 

implementation and fast convergence with acceptable accuracy. Therefore, we choose PSO as 

a preferred optimizer for our initial TI selection. 

In order to facilitate the reading, we add a PSO review paper in the new version: 

“As a heuristic optimization approach, PSO has its specific advantages in requiring less 

parameterizations, easy implementation, and fast convergence with good accuracy (Rezaee 

Jordehi and Jasni, 2013; Sengupta et al., 2019)”  

PSO is elaborated in the Appendix section. 

 

Page 15 Line 306: 

Sentence: We therefore consider a Gaussian kernel density estimation (KDE) to predict the 

probability to each TI. 

Comment: What is this? 

Response:  

Kernel density estimation (KDE) is a statistical method to estimate a probability density 

function using only samples drawn from it. As shown in Figure 9 in our paper, PSO selects 3 

images according to the similarity between radar data in the region A1 and 166 candidate TIs. 

In the metric space, three selected TIs are highlighted by the red while other images are 

expressed by the blue. Next, we estimate the prior probability distribution P(TI(Ai)| 𝑇�̂�) on the 

basis of 𝑇�̂�. Figure 9(b) displays the resulting probabilities computed by KDE. It is worth noting 

that each dot represents a candidate TI in the metric space. Apparently, our program assigns 

large weights to the images close to the three selected TI. 

The technical detail about KDE is elaborated by Scheidt, Li and Caers in their book 

“Quantifying Uncertainty in Subsurface Systems” Section 3.3.2. Therefore, we add the 

reference in our paper: 

“We therefore consider a Gaussian kernel density estimation (KDE) (Scheidt et al., 2018) to 

predict the probability that a training image 𝑇𝐼 is assigned to a subarea 𝐴𝑖.” 



 
Figure 9. Probability computation based on the selected TIs. (a) Estimated 𝑻�̂� for subarea A1 in MDS space. 

The red dots are 𝑻�̂� while blue points represent other TIs. (b) Prior probability 𝑷(𝑻𝑰(𝑨𝟏)|𝒅𝑨𝟏
)  of each TI. 

Our kernel density estimation gives a high possibility to images close to 𝑻�̂�. 

 

 

 

Page 15 Line 313: 

Sentence: We choose the optimal bandwidth by Silverman’s rule of thumb (Silverman, 1981). 

Comment: What is this? 

Response: 

As mentioned above, we adopt kernel density estimation (KDE) estimate a probability density 

function according to TIs selected by PSO. In KDE computation, only one parameter is the 

bandwidth of kernel. A small value of bandwidth leads to spurious data artifacts and an under-

smooth result. By comparison, over-smooth is created by a large bandwidth. With the aim of 

facilitate practical applications, it is necessary to find an optimal and adaptive bandwidth in our 

case. Silverman’s rule of thumb is a commonly used method to calculate the bandwidth when 

a Gaussian kernel is applied. The detailed process is explained by Silverman in his book 

“Density estimation for statistics and data analysis”. 

The related sentence in our manuscript is changed into: 

“We calculate the optimal bandwidth h by following Silverman’s rule of thumb (Silverman, 

1981). 

 

Page 16 Line 328: 

Sentence: 𝐾𝐸(∙) is the Epanechnikov kernel function. 

Comment: This needs some kind of description 

Response: 

 Epanechnikov kernel is a kernel function that is of quadratic form. The expression of 

Epanechnikov kernel is defined as follows: 

𝐾(𝑢) =
3

4
(1 − 𝑢2) for |𝑢| ≤ 1 



Explaining the Epanechnikov function in detail exceeds the scope of this paper. We add a 

reference with the goal to provide mathematical procedure. 

“𝐾𝐸(∙) is the Epanechnikov kernel function (Fouedjio, 2020).” 

 

 

 

Page 19 Line 328: 

Sentence: Figure 13a shows one realization of the simulated result. 

Comment: Can you combine Figures 12 and 13 so that the comparison can be made directly 

rather than flipping back and forth between the two figures? 

Response:  

Thanks for this suggestion. We have combined the Figure 12 and 13 together. The new figure 

is shown below. 



 

Figure 12. (a) Two realizations of DS simulated topographical models by filling the radar line gaps. Model 

realization number corresponds to the TI realization number in Error! Reference source not found.. (b) line 

gaps filling by traditional DS using all the 166 TIs (without TI sampling). (c) and (d) line gaps filling using 

kriging and SGSIM.   

 

Page 20 Line 377: 

Sentence: After all, kriging is a deterministic modeling approach. 

Comment: Delete 

Response:  

We are grateful to the reviewer for this careful check. We remove the words. The new sentence 
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is displayed below: 

“Besides, Kriging is a deterministic modeling approach. It cannot quantify the spatial 

uncertainty.” 

 

 

Page 20 Line 378: 

Sentence: Our SGSIM approach uses local ordinary kriging; this way non-stationarity is 

addressed by limited the neighborhood of spatial inference 

Comment: limiting 

Response:  

The improved sentence is in the following: 

“SGSIM uses local ordinary kriging where non-stationarity is addressed by limiting the 

neighborhood of spatial inference.” 

 

 

 

Page 20 Line 379: 

Sentence: The limitation of SGSIM, an approach based on spatial covariances, lies on its 

limitations in capturing complex morphological features 

Comment: only one "limitation" should be used in this sentence 

Response:  

Thank you. We modified this sentence as follows: 

“As a covariance-based approach, the limitation of SGSIM lies on its ability to capture 

morphologically complex structures.” 

 

 

 

 

Page 20 Line 380: 

Sentence: especially when the radar line data are very sparse (see the circle highlighted on 

Figure 13c) 

Comment: You need to be clear about what is "wrong" with the circled regions.  It is not 

obvious that the SGSIM is doing anything undesirable here.   

Response:  

The contrast between our program and existing methods is an important component in the 



quality evaluation section. At first, it is necessary to define the simulation target. One key 

contribution of our method is that 166 images from the deglaciated area in Arctic and Antarctica 

becomes training images. Therefore, a competitive method should (1) reproduce morphological 

structures from TIs, (2) honor the radar observations in the simulation grid, (3) create multiple 

realizations to express spatial uncertainty, and (4) save the running time. 

With the aim of highlight the advantages, we separately compare our realizations with SGSIM 

and kriging models in the area with sparse radar data. It shows clearly the difference between 

SGSIM and our proposed DS approach.  

 

 

Figure 14.  Comparison of SGSIM and the proposed DS with uncertain TI sampling in a local sparse lines 

area. Red circles highlight the areas where SGSIM failed to simulate meaningful channels.  

 
Training images provided to our MPS simulation in the channelized area 

 

Based on the preceding realizations, the advantages of our MPS realizations can be summarized 

as follows: 

(1) MPS models have comparable morphology with TIs. Gaps between radar lines is suitably 

filled by the spatial structures in TI. By contrast, there are many fluctuations in SGSIM maps. 
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(2) There is no artifact around the radar lines in MPS realizations. 

(3) Our MPS program has an ability to create a set of realizations with the objective to express 

spatial uncertainty. 

(4) The computational efficiency is significantly improved by our method. Given a large 

number of TIs, the proposed method reduces the running time from 21 hours to less than 1 hour.  

 

 

 

Page 20 Line 381: 

Sentence: In Figure 15, we also compare the empirical variograms from the modeled 

topographical maps using the four different approaches. 

Comment: Since this field is spatially heterogeneous, how is this computation limited? 

Response:  

Thanks for this advice. Here we use the global empirical variogram mainly for a simple 

comparison. The empirical variogram is very clear to show how the different gap-filling 

methods retain the spatial correlations.  

 

Page 20 Line 384: 

Sentence: Overall, it shows the TI sampling approach performs the best in terms of improving 

the modeling speed, simulation quality, and capturing the spatial uncertainty. 

Comment: Need to do more to distinguish superiority over SGSIM. 

Response:  

We agree with reviewer. Therefore, we added Figure 14 in the revision to specifically compare 

our TI sampling approach with SGSIM.  


