
Reviewers 1 and 2 and Associate Editor:1

Thank you for your reviews. In previous responses, I addressed a number of questions and2

technical comments:3

• to reviewer 1: https://doi.org/10.5194/gmd-2021-296-AC2;4

• to reviewer 2: https://doi.org/10.5194/gmd-2021-296-AC3.5

In this response accompanying the submission of a revised manuscript, I respond to points raised6

about the text and figures.7

I carried out a major revision to the original manuscript. First, as suggested, I have divided8

the original manuscript into two. Most, but not all, of the material from Sects. 4 and 5 are in this9

revised manuscript. The material from Sects. 2 and 3 is used in another manuscript.10

Second, to clarify material, I have added much more background information. In the new11

manuscript, Sect. 1 discusses very high-level matters. Section 2 provides details about all the12

algorithmic subcomponents that are then assembled into the overall method in Sect. 3. Each of13

the subsections of Sect. 2 has two parts: high-level explanations followed by mathematical details.14

In a first reading, the mathematical details can be skipped.15

Third, Sect. 4 contains fewer figures and more comparisons to other methods in the text.16

Fourth, Appendix A summarizes the Islet bases for completeness, while omitting almost all the17

details of their derivation; details are now in a second manuscript.18

Fifth, in addition to removing material about the derivation of the Islet bases, I have also19

removed computer implementation details and performance figures; these are in the second20

manuscript. However, to provide clear information about the high performance of the Islet method,21

I have added new text regarding performance in the recently released E3SM version 2 early in the22

introduction (lines 18–26).23

In the following, the reviewer’s comments are italicized. Revised text from the manuscript is24

blue.25

RC1: The paper presents a new set of basis functions for semi-Lagrangian advection method in26

spectral element models. The presented method is novel and its performance in atmospheric test27

cases is encouraging. The paper therefore warrants to be published. The main drawback of the paper28

is that it is quite tedious to read. This paper essentially presents two things: (1) a novel optmized29

basis functions for 1D semi-Lagrangian advection schemes, and (2) its implementation in an atmo-30

spheric model using three different (sub-element) grids. Both of these are quite complex topics, and31

their discussion is intertwined (e.g. in section 2) and the reader is easily lost in details. The overall32

presentation should be improved before the paper can be accepted for publication. Considering the33

amount of work, I recommend a major review.34

Thanks. In reworking the presentation, I have tried to reduce the tedium by making each35

subsection in Sect. 2 have a high-level discussion followed by mathematical details that can be36

skipped. Section 3 now has no low-level details; instead, references to the mathematical details in37

subsections of Sect. 2 are provided.38

RC1: For clarity, I suggest that you clearly define the two considered problems, 1D SL advection39

method, and the implementation in 3-grid atmospheric models, already in the introduction. The40

introduction is now quite short and actually does not mention many important concepts relevant41

for the paper.42

Thanks. Sections 1 and 2 are now an extended introduction. In particular, both the 3-grid43

model and the advection method are discussed at length, first at a high level and referenced to44
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Figs. 1 and 2, then with mathematical details. Figure 2 is new and illustrates the interpolation SL45

method on spectral elements.46

RC1: Section 2 is rather difficult to follow, consider revising. I suggest to start by defining the 1D47

discretization with N elements, the interpolant functions within each element, and the properties of48

the interpolant functions (e.g. basis functions, continuity and symmetry). Presently, the interpolant49

functions first appear only in section 3.1. A figure could clarify the concepts, including the source50

and target elements/nodes. I would also define a symbol for the basis functions themselves, instead51

of using L from section 3.1 (L is the interpolant function itself). The discussion of stability becomes52

comprehensible only after the discretization has been introduced.53

Thanks. The stability material will appear in a second paper. I have attempted to build up the54

rest of the ideas piece by piece in Sect. 2. The new Fig. 2 illustrates target and source elements,55

GLL nodes on the dynamics and tracer grids, and 1D and 2D basis functions.56

RC1: As I understand, the 3 axioms of advection methods are: (1) global conservation, (2)57

preservation of constant tracers (sometimes called local conservation, or tracer consistency), and58

(3) monotonicity (i.e. no spurious overshoots appear). These properties apply to both the SL tracer59

advection scheme and the remap operators between grids. In section 1.2 these concepts seem to be60

mixed and referred to by different names (plausibly due to historical reasons; the so called ”property61

preservation” is just a combination of 1, 2, and 3). Consider revising.62

Local mass conservation is not the same as mass-tracer consistency. A solution can be locally63

mass conserving but not mass-tracer consistent, as well as the opposite. Mass-tracer consistency64

means that the transport solver and the dynamics solver produce or use the same air density field65

ρ to machine precision.66

I have rewritten that section as follows:67

(48–57) An approximate numerical solution for q of Eq. 4 is said to be property preserving if68

(possibly just a subset of) properties that hold for the exact solution also hold for the approximate69

one. Equation 5 implies that advection cannot introduce new extrema in the mixing ratio; advection70

is said to be shape preserving. Equation 2 with f = 0 implies the global mass is conserved. Although71

the focus of this article is not the continuity equation, we note that the Lagrangian form of the72

continuity equation, Eq. B4 in Appendix B, implies that the total mass in a Lagrangian parcel,73

which is a parcel of fluid that moves with the flow, is constant. A final property that is a special74

case of the shape preserving property relates to coupling a solver for Eq. 4 to a dynamics solver:75

mass-tracer consistency. This property means that if q is constant in space at time t0, then it76

remains constant in space at every other time. In other words, the dynamics solver and transport77

solver use the same air density. The methods in this article conserve global mass, do not introduce78

new nodal extrema, and provide mass-tracer consistency when coupled to a dynamics solver.79

Regarding local mass conservation, I now write:80

(167–170) Local mass conservation means that one can identify numerical, possibly Lagrangian,81

fluid parcels on the grid that have constant tracer mass. Local is in contrast to global mass82

conservation; the latter means that the mass of the tracer fluid is conserved over the whole domain83

but not necessarily in any identifiable parcels smaller than the domain.84

Finally, In the new Sect. 2.2, which I do not quote here because of its length, I write the specific85

property preservation problem the Islet method solves in detail, thus resolving any ambiguities that86

may arise from different terminology.87

RC1: Figures 20 and 21 shows larger diffusion for shorter time steps. Could you elaborate on88

this? Is the traditional SL property that longer time steps reduce diffusion (while the solution can89

degrade in other metrics)? How would one choose the right time step in practice? In the case of90

Eulerian transport it is easy: take the maximum stable one, and you are guaranteed to satisfy all91

the necessary properties.92
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To address the first part of this question, I added the following.93

(549–552) Essentially all SL methods, particularly when given exact trajectory data, exhibit94

greater error with smaller time step, e.g., CSLAM in TR14. This is because the only source of95

error, given exact trajectories, is the remap error. Smaller time steps correspond to more remaps96

to reach a fixed simulation time.97

I answered the second part of this question in the original response to reviewer 1. I have not98

added material to the paper to answer this part because the answer is complex and somewhat99

orthogonal to the primary material. All SL transport methods must contend with the matter of100

time step. In the standard-resolution EAM version 2 configurations, the time step is limited by the101

physics time step to six times the dynamics time step.102

RC1: Throughout the manuscript the authors use the terms “mixing ratio” and “tracer” for the103

advected quantity qi, seemingly interchangeably. For the sake of clarity I would prefer just to use104

“tracer”.105

Thanks. A tracer is a trace species, such as CO2. A mixing ratio is a dimensionless quantity.106

In meteorology the mixing ratio is typically the mass mixing ratio, e.g., grams of a species per107

kilograms of wet air. Thus, a tracer is not the same as a mixing ratio; the tracer is the substance108

whose quantity can be given by a mixing ratio or a density.109

To address this point, I have added the following:110

(33–34) The tracer transport equation in continuity form and with a source term for a tracer111

mixing ratio q and corresponding tracer density ρq is. . .112

I have also been careful to use tracer mixing ratio (q), tracer density (ρq) and air density (ρ)113

consistently throughout the manuscript.114

RC1: l35: what is the definition of “local conservation” here?115

I have added the following text:116

(167–170) Local mass conservation means that one can identify numerical, possibly Lagrangian,117

fluid parcels on the grid that have constant tracer mass. Local is in contrast to global mass118

conservation; the latter means that the mass of the tracer fluid is conserved over the whole domain119

but not necessarily in any identifiable parcels smaller than the domain.120

RC1: l155: “This structure arises as follows. Consider a continuous discretization using a121

nodal np-basis, np = d+ 1, with np the number of nodes. The grid has N elements. Each row of the122

space-time matrix corresponds to a target node.” This description is too brief to be understandable,123

please elaborate. This is my interpretation of the discretization: The 1D domain is divided into N124

elements. The solution in each element is approximated by a continuous function, defined by np125

basis functions. Thus a function f in an element e can be written as fe(x) =
∑np

i=1 fiψi(x) where126

ψi and fi denote the i-th basis function and its corresponding coefficient. Each basis function is127

associated with a node xi within the element; The basis is Lagrangian (a.k.a. nodal), i.e. fi(xi) = 1.128

Furthermore, the discretization of the function is continous across element interfaces, implying that129

the neighboring elements share a (exactly one?) basis function. Furthermore, the basis is assumed130

to be symmetric about the center point of the element.131

This passage has been removed, as the topic will appear in a second paper. However, I have132

added text following your suggestions in Sect. 2 to clarify relationships among elements, nodes, and133

bases.134

RC1: l156: “Each row of the space-time matrix corresponds to a target node.” You should135

define the space-time matrix for this statement to be comprehensible.136

I have removed references to the space-time matrix in this manuscript, as the matrix is needed137

only for stability analysis, which will appear in a companion paper.138
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RC1: l177: Have you defined the basis to be symmetric somewhere?139

In the revised manuscript, I write that the basis is symmetric in Sect. 2.1.2 (background mate-140

rial) and Appendix A (precise description of the Islet bases):141

(186–187) Each basis is a nodal basis: a basis function has value 1 at one node and 0 at every142

other node. Thus, each basis function is associated with a node. For example, in Fig. 2(b), the143

blue basis function is associated with the third node of six. The basis is symmetric; basis function144

k ∈ {0, . . . , np − 1} is the mirror image of basis function np − k − 1. Thus, the blue and cyan145

functions are mirror images around reference coordinate 0.146

(779–782) In addition, the basis is symmetric, meaning basis function φ
np

i (x) = φ
np

np−1−i(−x).147

Thus, first, support nodes are specified for regions 0 through bnp/2c− 1, and the support nodes for148

the remaining regions are determined by symmetry. Second, if np is even, then the middle region,149

r = np/2− 1, has support nodes Inp
r that are symmetric around reference coordinate 0.150

RC1: l195: “L provides a basis for degree-d polynomials.” I would say that the basis functions151

are the Πi functions defined in the equation of L; L itself is the interpolant function defined by the152

basis and the specific nodal values y(i).153

Thanks. This material will appear in a companion paper.154

RC1: l195: “These are supported by n = d+ 1 points, each an element in the n-vector xn.” To155

be consistent with the literature I would use the term “node” instead of “point”.156

In the revised manuscript, I use “node” when referring specifically to GLL nodes but continue157

to use “point” when referring to general grid points.158

RC1: l204: “Given a departure point x” These properties define the interpolant functions, thus159

there’s no need to say that x is a departure point, it can be any point within the element.160

Thanks. This material will appear in a companion paper.161

RC1: l208: I think this constraint is equivalent to saying that the basis must Lagrangian or162

nodal?163

This material will appear in a companion paper. The basis need not be Lagrangian (e.g., it164

turns out to be piecewise polynomial), but it must admit a nodal representation.165

RC1: l246: only here you define a d-degree polynomial. This would be useful already in section166

2.167

This material will appear in a companion paper.168

RC1: l257: what is Runge’s phenomenon? what is Lebesque constant? help the reader to169

understand the rationale behind your work.170

This material will appear in a companion paper.171

RC1: Section 3.6: the description of the search algorithm is quite technical and could perhaps172

be moved to the appendix; it is not necessary to follow the main storyline of the paper.173

This material will appear in a companion paper.174

RC1: Section 4: mention TTPR already in the introduction as it seems to be relevant for the175

entire Islet method.176

Thanks. I have moved the definition to Sect. 1.3:177

(104–106) We refer to this approach as tracer transport p-refinement (TTPR). In the finite178

element method, p-refinement means increasing the basis polynomial degree. In the Islet method,179

we increase ntp relative to nvp to represent the mixing ratio fields at higher resolution.180

RC1: l439: earlier tracer tendencies were denoted by fi∆t181
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Thanks. I have now written the defintion explicitly:182

(410–412) Second, ∆q ≡ f∆t is remapped from the physics grid to the tracer grid, where ∆t is183

the physics parameterization time step. Either of f or ∆q is sometimes called a tendency.184

RC1: l442: “immediate element neighbors” Are these neighbors that share an edge or vertex?185

Thanks. I now write:186

(426–427) Let an element’s neighborhood contain itself and every other element that shares a187

vertex with it.188

RC1: l464: “In contrast, ...” Meaning unclear, please revise.189

Thanks. I have rewritten the DSS discussion and moved it to its own subsection, Sect. 2.4.190

Section 2 builds up notation and concepts step by step, so the new explanation of the DSS and the191

generalized DSS hopefully is clearer.192

RC1: l507: What is “tracer density”? Is it just ρ? Then, for clarity, I’d call it “density”193

ρ is the air density, where “air” is the total content of the parcel. The tracer density is ρq,194

where q is the tracer mixing ratio. In a previous comment, I addressed how I have clarified these195

concepts in the text.196

RC1: section 4.3: while computational efficiency is important, I would move this section to the197

appendix, as it198

This material will appear in a companion paper.199

RC1: l570: “is proportional to the number of grid points” Should read: “proportional to the200

square of number of grid points”201

This material will appear in a companion paper. However, by “grid points” I mean general202

points in a grid, regardless of spatial dimension. In Sect. 2, I explain the tensor-product grid in203

greater detail, hopefully clarifying that essentially none of the new manuscript is concerned with204

1D grids.205

RC1: l572: what is a naive h-halo exchange and how does it differ from what is proposed here?206

This material will appear in a companion paper, and I will explain the concepts in greater detail.207

“Naive” means deterministically exchanging data in all elements that might have a source-target208

relationship. Instead, in my implementation, I exchange only the data that are needed to determine209

the solution based on the flow-dependent domain of dependence in each time step, substantially210

reducing the communication volume. Thus, in general, the structure of the communicated data211

changes in each communication round.212

RC1: section5, l606: please mention the problem domain (full sphere?) and the equations that213

are being solved (pure advection on the tracer grid?)214

Thanks. I now write:215

(502–503) Except in Sect. 4.3, the equation is the sourceless advection equation, Eq. 4. Two-216

dimensional, time-dependent flow, u(x, t), is prescribed on the sphere.217

RC1: l631: why can you not use the dynamical core to compute the density? the chosen approach218

seems rather ad-hoc; can you guarantee that density values are realistic?219

Thanks. The new Appendix B derives the ISL discretization of the continuity equation, starting220

with the Reynolds transport theorem and then describing the details of the numerical quadrature,221

step by step, that lead to the discretization.222

The experiments are run with a standalone program that is not part of the dynamical core.223

In addition, to run many long experiments, which are used in stability verification, I need a fast224

method to compute density; thus, an interpolation semi-Lagrangian method makes sense. Note225
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that the air density is used for only property preservation calculations, so the details of its solution226

are not impactful.227

RC1: scaling figures 6-8, 11-16: for easier readability do not use red line twice for np=6 and228

np=12. x axis label is missing.229

Thanks. I have added the label and used a different color for each value of ntp.230

RC1: l703: “has even more accuracy” Can you quantify this? Is the difference significant?231

Thanks. I have added a number of quantitative comparisons, as follows, where the first passage232

addresses the particular line in your question.233

(590–599) For example, the most accurate shape-preserving method in TR14 for the nondiver-234

gent flow with Gaussian hills IC is HEL-ND-CN1.0, by a substantial margin (cyan curves in Fig. 1,235

bottom right, of TR14). The ntp = 12 Islet scheme with the long time step, Fig. 4, is approximately236

three times more accurate than HEL-ND-CN1.0 in the l2 norm at resolution 0.375◦ and approxi-237

mately twice as accurate at resolution 3◦. Yet HEL-ND is, quoting TR14, an “unphysical” method.238

It is run for comparison with the practically useful HEL scheme. After HEL-ND, the next most239

accurate method in the l2 norm at 0.375◦ resolution is CSLAM-CN5.0. The Islet method with the240

long time step, the same as that of CSLAM-CN5.0, is at least as accurate for ntp ≥ 8. With the241

short time step, the same as that of CSLAM-CN1.0, the Islet method is at least as accurate as242

CSLAM-CN1.0 for ntp ≥ 6. At 3◦ resolution, no method other than HEL-ND-CN1.0 provides l2243

norm below 10−2; the Islet method does for ntp ≥ 8 with the long time step and ntp ≥ 10 (only244

ntp = 12 is shown) with the short time step.245

(609–610) For example, with a long time step, for ntp = 8, this value is a little coarser than 3◦;246

for ntp = 12, approximately 6◦. For comparison, no model in TR14 reports a value larger than 2.5◦.247

(627–628) There is no summary number that can be compared directly with the results in Fig. 5248

of TR14, but, visually, the curves for ntp ≥ 8, resolution 1.5◦, and on the tracer grid are among the249

best of those in TR14.250

(642–644) In Figs. 11–14 in TR14, the smallest value of lr at 1.5◦ among the property-preserving251

methods is 2.15×10−4, by the UCISOM-CN5.5 method, except for a value of 0 by HEL-ND, which,252

again, cannot be used in practice. For the long time step, the Islet method gives at least as small253

a value for ntp ≥ 6; for the short time step, ntp ≥ 8.254

(648–656) This diagnostic is more difficult to compare than lr because very dissipative methods255

tend to have a large value of lr and consequently a very small value for lu. In contrast, a very256

accurate method, for which lr is small, can have a larger lu value than a very dissipative method.257

One means of comparison is to consider the best lu values among methods that obtain, say, lr ≤258

5×10−4. In Figs. 11–14 in TR14, the smallest value of lu at 1.5◦ under this restriction is 0, obtained259

by the HEL-CN1.0 and HEL-CN5.5 methods. These HEL variants are practically usable, unlike260

HEL-ND, and are designed to preserve tracer correlations exactly. Other than the HEL methods,261

the next best value is 4.80 × 10−5, again by the UCISOM-CN5.5 method. For both the long and262

short time steps, at 1.5◦, the Islet method gives at least as small a value for ntp ≥ 8. However,263

even with the constraint on lr, comparison is not straightforward, as the UCISOM methods are not264

strictly shape-preserving and so have lo > 0.265

(653–655) Although TR14 does not provide error norm values for this problem, those in Fig. 7266

of TS12 can be compared with the Islet method’s values at 1.5◦ resolution and the long time step267

(left column of Fig. 14). The Islet method’s values of l2, linf , φmin, and φmax are at least as good268

as those in Fig. 7 of TS12 for ntp ≥ 6.269

RC1: l711: “For each value ...” unclear sentence, please revise.270

I have revised this passage as follows:271
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(618–621) For each possible value τ of the tracer mixing ratio at the initial time, the area over272

which the mixing ratio is at least τ at the midpoint time is computed. For the cosine bells IC,273

τ ∈ [0.1, 1]. The diagnostic is then this area divided by the correct area, which for nondivergent274

flow is the area at the initial time. The perfect diagnostic value is 100% for all τ ∈ [0.1, 1] and 0275

otherwise.276

RC1: l741: 0 in m(0) stands for time t=0?277

Thanks. Yes. I have now made clear the dependence on space and time:278

(670–674) Two tracer mixing ratios, a source q1 = s and a manufactured tracer q2 = m, are279

paired. At time t = 0, m(x, t) is set to 0, where x is position on the sphere. A tendency ∆m is280

applied to m on the physics grid: ∆m(x, t) ≡ −[cos(2π(t+ ∆t)/T )− cos(2πt/T )]s(x, t)/2, so that281

the exact solution is m(x, t) = (1− cos(2πt/T ))s(x, t)/2 and, in particular, m(x, T/2) = s(x, T/2).282

RC1: l780: what is a terminator?283

I have added the definition to the text:284

(684–686) The reactions are extremely sensitive to solar insolation. The sun’s position is held285

fixed with respect to the grid. As a result, the largest-scale spatial pattern one sees in the fields is286

the boundary dividing nonzero (day) and zero (night) solar insolation, the solar terminator ; this287

boundary is particularly visible in the right image of Fig. 17. . .288

RC1: l897: Here you define the basis functions φi. This notation would be useful throughout289

the manuscript, already in Sect 2 and 3.1.290

Thanks. I now introduce the basis functions with the symbol φ in Sect. 2.291

RC1: abstract and intro: you define an abbreviation “dycore”. I would omit it as it does not292

really save space, and it is not used frequently in the paper.293

Thanks; I have.294

RC1: l745: ”shows the results”295

Thanks; fixed.296

RC1: l815: SYPD numbers printed above ...297

Thanks; fixed.298

RC2: This manuscript describes an interpolation-based semi-Lagrangian (SL) method for the299

transport problem on spectral-element (SE) domains. The SL transport schemes are widely used for300

multi-tracer transport in atmospheric models due to their accuracy and computational efficiency.301

The classical SL method employs interpolation at the upstream locations of the backward trajectories302

to estimate the advecting scalar values at the new time level. However, such an approach is not303

conservative per se, for practical applications an arbitrary procedure known as the “mass-fixing”304

usually employed for global conservation — which may have an adverse effect for climate-scale (long305

term) integration due to the local mass drifting. On the other hand, a finite-volume formulation306

of the SL method is conservative by design, where the upstream interpolation over the Lagrangian307

element is replaced by integration constrained to be locally (hence globally) mass conservative. The308

conservative data transfer from regular Eulerian grid to the deformed Lagrangian grid often referred309

to as the remapping (re-zoning), a limiter or shape-preserving scheme is usually employed for310

physically realizable solutions. A wide body of literature is available for both conservative and311

classical SL methods.312

Re: “‘mass-fixing’ . . . may have an adverse effect for climate-scale (long term) integration due to313

the local mass drifting”: I have attempted to clarify in a number of spots the relationship between314

local mass conservation and computational efficiency. In the introduction, I write:315

(61–65) Another quality of a transport method is important: its computational efficiency. Com-316

putational efficiency is some measure of solution accuracy for a given set of computational resources.317
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Thus, when developing a new transport method, the objective is to obtain high efficiency, as mea-318

sured by diagnostic values and computational cost, constrained by the need to couple to specific319

dynamics and physics grids. Our objective in this article is to extend our highly efficient tracer320

transport method for EAM version 2. . .321

Then, later:322

(173–175) Our objective in this work is to use the freedom provided by giving up local, but not323

global, mass conservation to maximize computational efficiency.324

To address the viability of our method in long time integrations, I cite a model that uses one325

variant of it:326

(22–24) For EAM version 2, we developed a new tracer transport method that is 6.5 to over327

8 times faster than in EAM version 1, in the cases of, respectively, low and high workload per328

computer node [4] (Fig. 3).329

RC2: Implementation of conservative SL method on spherical domains tiled with high-order330

spectral-elements are very challenging. Authors have proposed an interpolation-based SL method331

Islet for the SE discretization. Instead of using the unstable native high-order interpolator (ba-332

sis function) they have devised a cumbersome numerical procedure which employs an alternative333

grid system within each spectral element, adding another layer of complexity. The Islet method334

is not conservative, nevertheless, the global conservation is achieved by mass-fixing. The authors335

argue that the Islet method can handle tracer transport as well as the remapping between physics &336

dynamics grids, and incorporate shape-preservation filters.337

While the method is complex, EAM version 2 successfully uses two grids, incorporating the new338

physics grid described in this paper and [5]. I have added the following text to support this point,339

where the text refers to EAM version 2:340

(24–26) In addition, we developed remap operators to remap data between separate grids for341

physics parameterizations and dynamics, permitting the physics parameterization computations to342

run on a coarser grid and thus 1.6 to 2.2 times faster in version 2 than in version 1 [5, 4].343

To clarify that the new basis functions are not any more difficult to use than the natural basis344

functions, I added this text to the first paragraph describing the Islet basis functions in Appendix345

A:346

(764–765) This article can be understood equally well by assuming the standard GLL bases are347

used; only the numerical results depend on the details of the basis functions.348

RC2: The manuscript is very long, the Islet interpolation as described by the authors is extremely349

complex. Authors failed to explain the core interpolation algorithm with clarity, there are many350

statements in the manuscript which leads to ambiguity. The numerical analysis part is very intense351

maybe more suitable for a computational math journal (e.g., SIAM / JCP) than the GMD. The352

subject covered could be split into a two-part paper, one describing the basic algorithm and analysis353

with more details and rigor, and the second part for implementation and validation with standard354

tests. This would be helpful for better reading. The current manuscript is written in an awkward355

manner and is unacceptable for publication.356

Thanks. I have split the original manuscript into two. To improve clarity, I wrote the new357

Sect. 2. Section 2 describes each algorithmic subcomponent, with the following outline correspond-358

ing to subsections:359

• Semi-Lagrangian transport360

– Types of SL methods361

– Spectral element ISL transport362
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– Definitions and notation363

– The linear advection operator364

• Property preservation365

– ClipAndAssuredSum366

– Infeasible problems367

– Local and global problems368

– Relaxed problems369

• Grid remap370

• Direct stiffness summation371

Each subsection provides a text overview followed by mathematical details. Section 3 then directly372

references each subsection from Sect. 2 as it discusses each step of the Islet method.373

RC2: Recommendation: Major revision, possibly resubmit as a two-part manuscript. Authors374

should address the following questions.375

I have separated the manuscript into two.376

RC2: (1) The stability associated with the SL method is that the deformational Courant number377

(Lipschitz condition) should not exceed unity, in plain language, the trajectories should not cross378

intersect (see, Staniforth & Cotes 1992 MWR paper). Is the cubic ISL method (lines 115-120)379

unstable due to this condition? Need some explanation.380

I addressed this comment in my previous response to reviewer 2. This material is used in381

another manuscript.382

RC2: (2) The SL transport scheme can be stabilized using a limiter, filter or with an explicit383

diffusion (see, Ullrich & Norman, QJRMS, 2014). You can use the native high-order SE interpo-384

lation (basis function) for the SL transport combined with the limiter which you are already using385

for the Islet method. It will be interesting to see how the Islet method compares with this simple386

SL-SE scheme employing 4x4 GLL grid (I guess that is the SE grid choice made for the operational387

E3SM).388

I addressed this comment in my previous response to reviewer 2. Since the material on stability389

now is used in a second manuscript, I have moved the figure and text demonstrating the effect of390

instability on the method using “the native high-order SE interpolation (basis function) for the SL391

transport combined with the limiter” to Appendix A3.392

RC2: (3) It is not convincing to have 3 grid systems (physics: FV, dynamics: GLL, transport:393

tweaked GLL) in a SE modeling framework. The Fig.5 shows such a grid configuration, and it394

appears to be very challenging. At a very high (NH) resolution the data movement is a major issue395

for an element-based Galerkin model (DG/SE). A typical climate model may have O(100) tracers,396

an additional tracer grid with more DOF than the dynamic grid can exacerbate this problem. This397

will limit the use of Islet scheme, how do you address it?398

Thanks. I addressed this comment in my previous response to reviewer 2. I have also added399

the following text to the introduction, where Fig. 3 in [4] is Fig. 1 in my response to reviewer 2400

(https://doi.org/10.5194/gmd-2021-296-AC3):401

(18–26) Because of the large number of tracers in climate models, tracer transport can be402

computationally very expensive. For example, in the Dept. of Energy’s Energy Exascale Earth403

System Model (E3SM) [2] Atmosphere Model (EAM) version 1 [3], configured with the default 40404

tracers, tracer transport takes approximately 75% of the total dynamical core wall clock time and405
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approximately 23% of the total atmosphere model wall clock time on a typical computer cluster [4]406

(Fig. 3). For EAM version 2, we developed a new tracer transport method that is 6.5 to over 8 times407

faster than in EAM version 1, in the cases of, respectively, low and high workload per computer408

node [4] (Fig. 3). In addition, we developed remap operators to remap data between separate grids409

for physics parameterizations and dynamics, permitting the physics parameterization computations410

to run on a coarser grid and thus 1.6 to 2.2 times faster in version 2 than in version 1 [5, 4].411

RC2: (4) With real data you have velocity information only available at the GLL (dynamics)412

grid, the way you find the 2D trajectory information using the 3D Cartesian coordinates leads to413

additional computational overhead when the method is extended to the 3D application (line 470-414

475). This needs some justification, why not use the spherical (u,v) components or corresponding415

contravariant vectors?416

I addressed this comment in my previous response to reviewer 2.417

RC2: It is not clear that the maximum eigenvalue required for the interpolation is the tracer data418

dependent, in that case you have a serious computational overhead for the multi-tracer applications,419

Please clarify! What is the computational halo requirement for an SE stencil with NxN GLL points,420

when the shape preserving limiter is applied?421

I addressed this comment in my previous response to reviewer 2.422

RC2: (5) What is the special advantage of using Islet method? It seems you have introduced423

a complex numerical method for a relatively simple linear transport problem. If mass-fixing is the424

way to go, one could use the RBF-based (Kriging type) interpolator which provides very accurate425

solution, and no need for the expensive search for max eigenvalue etc.426

I addressed this comment in my previous response to reviewer 2.427

RC2: (6) The results are looking good, authors should limit the number of figures and make an428

effort to compare the results with that of other high-order element-based schemes. Why the results429

from your own previous papers (Bosler et. al. 2019, SIAM J Sci. Computing; Guba et al. 2014,430

JCP) discussed? These results should be compared and the relative merits should be discussed.431

Thanks. I have added a number of comparisons to the text, as documented above in a response432

to reviewer 1.433

Re: Guba et al. 2014, JCP, results from that method appear in TR14 and so are included in434

the above comparisons. In addition, the performance of our ISL method is compared in lines 18–26435

of the manuscript quoted above.436

Re: Bosler et. al. 2019, SIAM J Sci. Computing, I have added the following text to make clear437

why we are pursuing an interpolation method instead of an exactly cell-integrated method:438

(152–171) Interpolation is in contrast to exactly cell-integrated methods, which accurately inte-439

grate the basis of a target (e.g. Lagrangian) element against those of the source; see, e.g., [1]. (In440

some cases, an inaccurate cell-integrated method can be interpreted as an interpolation method;441

see Appendix B for an example.) Exactly cell-integrated methods have substantially greater cost442

than interpolation methods for three reasons.443

First, to obtain smoothness in the integrand, integration is over facets computed by geometric444

intersection of a target element against source elements; intersection calculations are not needed445

in interpolation methods. Typically, to minimize computational geometry complexity, departure446

cell edges are approximated by great arcs rather than flow-distorted curves, limiting the method to447

second-order accuracy; however, [6] describe a higher-order edge reconstruction that yields a third-448

order accurate advection method. In contrast, achieving arbitrarily high order in an ISL method’s449

linear advection operator does not entail any additional complexity.450

Second, accurate integration has a larger computational cost because it requires sphere-to-451

reference point calculation and interpolant evaluations at many quadrature points.452
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Third, an exactly cell-integrated method requires a larger communication volume because all453

data from a source element are used to integrate against each target basis function.454

In trade for these additional costs, exactly cell-integrated methods are locally mass conserving,455

and the fact that they are L2 projections can be used to prove stability. Local mass conservation456

means that one can identify numerical, possibly Lagrangian, fluid parcels on the grid that have457

constant tracer mass. Local is in contrast to global mass conservation; the latter means that the mass458

of the tracer fluid is conserved over the whole domain but not necessarily in any identifiable parcels459

smaller than the domain. Although an exactly cell-integrated method is locally mass conserving,460

coupling it to a dynamics solver still generally requires additional measures to obtain mass-tracer461

consistency.462

RC2: (7) There are many undefined terms (e.g. CAAS) and notations which I am going to list,463

this should be fixed.464

Thanks. CAAS in particular is now explained in detail in Sect. 2.2.1. I have attempted to make465

the notation very clear in Sect. 2 to make Sect. 3 easier to read.466

Thanks,467

Andrew Bradley468
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