
Reviewer 2:1

Thank you for your questions. In the following, the reviewer’s comments are italicized.2

RC2: (1) The stability associated with the SL method is that the deformational Courant number3

(Lipschitz condition) should not exceed unity, in plain language, the trajectories should not cross4

intersect (see, Staniforth & Cotes 1992 MWR paper). Is the cubic ISL method (lines 115-120)5

unstable due to this condition? Need some explanation.6

No. In the first example, lines 118–122, the flow is uniform in space and constant in time. Thus,7

the trajectories are parallel lines and so cannot intersect. In addition, the deformational Courant8

number is 0 because the flow is uniform in space.9

The second example, described in lines 123–127, is more complicated. We analyze this case in10

Appendix A of this letter.11

RC2: (2) The SL transport scheme can be stabilized using a limiter, filter or with an explicit12

diffusion (see, Ullrich & Norman, QJRMS, 2014). You can use the native high-order SE interpo-13

lation (basis function) for the SL transport combined with the limiter which you are already using14

for the Islet method. It will be interesting to see how the Islet method compares with this simple15

SL-SE scheme employing 4x4 GLL grid (I guess that is the SE grid choice made for the operational16

E3SM).17

A limiter or filter makes a linear discretization nonlinear. A method that assures bounded-18

ness of the solution leads to stability because the solution is bounded in norm. However, for a19

nonlinear discretization, consistency and stability are not enough to assure convergence. In con-20

trast, our method satisfies a necessary condition for stability of a linear discretization; because the21

discretization is linear, consistency and stability assure convergence.22

The dash-dotted curves in Figure 6 of the manuscript illustrate what happens when “the native23

high-order SE interpolation (basis function) for the SL transport [is] combined with the limiter.”24

The curves for ntp > 4 diverge within one cycle of the test problem. The ntp = 4 case only starts to25

diverge, but with multiple cycles or greater refinement, the divergence continues to be as substantial26

as in the ntp > 4 cases. This divergence is a result of the fact that the linear discretization’s27

maximum eigenvalue magnitude is above 1 at almost every value of ∆t, as illustrated by the red28

curve in Figure 2 of the manuscript for the case np = 8.29

We discuss the reference Ullrich & Norman, 2014 [6], in Appendix B of this letter.30

RC2: (3) It is not convincing to have 3 grid systems (physics: FV, dynamics: GLL, transport:31

tweaked GLL) in a SE modeling framework. The Fig.5 shows such a grid configuration, and it32

appears to be very challenging. At a very high (NH) resolution the data movement is a major issue33

for an element-based Galerkin model (DG/SE). A typical climate model may have O(100) tracers,34

an additional tracer grid with more DOF than the dynamic grid can exacerbate this problem. This35

will limit the use of Islet scheme, how do you address it?36

The Energy Exascale Earth System Model version 2 (E3SMv2) uses a two-grid system as a37

result of work described in [1]. Semi-Lagrangian transport, with nvp = ntp = 4, and this two-grid38

system, with nf = 2, together make the E3SMv2 Atmosphere model twice as fast as E3SMv1.39

Figure 1 shows a representative strong-scaling study comparing version 2 to version 1. I believe40

the success of this two-grid system motivates further work along these lines.41

Regarding many tracers, in the case of ntp = nvp = 4, Figure 27 of the manuscript is illustrative.42

This figure shows dynamical core performance for the full 3D method on a 3.25km cubed-sphere grid43

having 128 model levels. The throughput of the dynamical core with SL transport is only slightly44

decreased when going from 10 tracers to 40 (1.38 to 1.24 SYPD on 27,600 Summit V100 GPUs),45

while the throughput of the dynamical core with Eulerian transport is decreased substantially46

(0.97 to 0.44 SYPD with the same number of GPUs). Section 4.3 of the manuscript discusses47
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Figure 1: Performance of the Energy Exascale Earth System Model (E3SM) version 2 Atmosphere
Model (EAMv2) on the ANL LCRC Chrysalis cluster. (a) Strong-scaling study of the standard-
resolution version 1 (v1, blue) and version 2 (v2, red) models. Each model has 40 tracers. Tracer
transport is over 6 to over 8 times faster than in v1 due to use of semi-Lagrangian transport in v2.
The overall model (“Total”) is 2 to 2.5 times faster than v1, with most of the remaining speedup
due to the use of separate physics parameterizations and dynamics grids. (b) Proportion of time
spent in key subcomponents, with the total v1 time normalized to 1, for the models run on 85
Chrysalis nodes. Tracer transport, red with circles, is sped up by almost 6.5. The green region
encapsulates the part of the model that uses the physics grid; it is decreased by a factor 1.8 in v2.

the communication details for ntp > nvp. Importantly, only the fundamental step of the method,48

obtaining interpolated values, scales in communication volume proportionally to (ntp)
2; a scaling of49

this sort is true of any method as basis order increases. Equally importantly, there are no additional50

communication rounds when ntp > nvp.51

RC2: (4) With real data you have velocity information only available at the GLL (dynamics)52

grid, the way you find the 2D trajectory information using the 3D Cartesian coordinates leads to53

additional computational overhead when the method is extended to the 3D application (line 470-54

475). This needs some justification, why not use the spherical (u,v) components or corresponding55

contravariant vectors?56

Figure 27 of the manuscript shows results for the full 3D application, and Figure 1 of this letter57

also uses the full 3D solver. (u, v) should not be used because of the poles. Contravariant compo-58

nents can be used but require details to handle coordinate systems between elements. Cartesian59

coordinates avoid these details at the cost of one extra variable. However, the trajectory compu-60

tation is a negligible part of the overall transport step even at just 10 tracers, making this extra61

variable also negligible. Finally, as either or both of ntp and tracer count increase, the relative cost62

of the trajectory computation decreases.63

RC2: It is not clear that the maximum eigenvalue required for the interpolation is the tracer data64

dependent, in that case you have a serious computational overhead for the multi-tracer applications,65

Please clarify!66

The maximum eigenvalue computation is used only in deriving basis sets. It is not used in a67

simulation. I am sorry that this point was not clear in the manuscript.68
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RC2: What is the computational halo requirement for an SE stencil with NxN GLL points, when69

the shape preserving limiter is applied?70

The limiter requires extrema data from adjacent elements. The extrema data per adjacent71

element is two scalars, independent of ntp. Thus, the relative cost decreases with increasing ntp.72

This communication pattern is the same as for the original Eulerian SE method used in the SE73

dynamical core.74

RC2: (5) What is the special advantage of using Islet method? It seems you have introduced a75

complex numerical method for a relatively simple linear transport problem.76

Although the transport problem may be simple, it can have a large computational cost in77

Earth system models because of the large number of tracers. Thus, this work focuses on improving78

computational efficiency, like other projects that develop tracer transport methods for passive79

tracers, e.g., those in [3]. Computational efficiency is the ratio of a measure of solution accuracy to80

a measure of computational work. The Islet method combines a very efficient class of SL methods,81

the remap-form interpolation class, with details specific to element-based methods. It provides two82

parameters, ntp and nf , to efficiently trade between accuracy and speed. Importantly, it does not83

require the dynamics solver to be modified, regardless of parameter values, making it possible to84

tune tracer transport parameters without also having to modify the dynamics solver.85

Similar reasons led to the work to separate the physics and dynamics grid [2, 1]. In both these86

papers, additional complexity was introduced to transfer data between grids. But the result was87

an increase in computational efficiency in each Earth system model.88

RC2: If mass-fixing is the way to go, one could use the RBF-based (Kriging type) interpolator89

which provides very accurate solution, and no need for the expensive search for max eigenvalue etc.90

Interpolation methods require careful stability analysis. This is in contrast to exactly integrated91

L2 projection methods, in which the projection provides stability. Interpolation methods can be92

substantially more efficient than projection methods, justifying the effort to do this analysis and to93

derive methods satisfying linear stability conditions. Because the Islet bases provide element-local94

interpolation, the stability analysis can focus on the element. An interpolation method that uses95

data beyond a single element would require mesh-dependent stability analysis. Its implementa-96

tion would require greater communication volume than an element-local method. An RBF-based97

method may be effective, but work would need to be done to analyze and implement it. The98

manuscript focuses on an element-local interpolation basis.99

Regarding the “expensive search for max eigenvalue,” I am sorry that it was not clear in the100

manuscript that this search is done only to find basis functions. Once the basis function sets are101

found based on analysis of an element, e.g. those in Table 1, they can then be used directly in102

simulations like any other basis function set.103

Thanks,104

Andrew Bradley105

Appendix A106

By equation A6 of [5], two computed trajectories, which are line segments, intersect when there107

is a point in space-time at which these computed trajectories have the same position. A bound108

of one on deformational Courant number is a sufficient condition to assure that these computed109

trajectories do not cross when they are computed according to certain algorithms. In addition, the110

deformational Courant number is used in, e.g., [5, 4] to bound the time step when solving iteratively111

for the departure points. In the examples I provide in section 2.1, trajectories are exact, and thus112

no condition governing the solution of the departure point is needed. Importantly, given exact113

trajectories, the deformational Courant number is not a means to assess stability of the space-time114

operator, as demonstrated in the first example.115
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In the second example, the flow is shear and constant in time. The deformational Courant116

number is maxx,y max(|ux|, |uy|, |vx|, |vy|)∆t = 2π∆t; thus, with ∆t = 0.2761, the number exceeds117

1. However, trajectories in this flow cannot cross, in two senses, as follows. First, the exact118

trajectories do not cross. Second, line segments connecting arrival points to exact departure points119

do not cross. The second follows from the first, which we shall demonstrate in a moment, because120

the exact trajectories in this flow are lines. For in this flow, (i) velocities are constant along lines,121

(ii) a velocity vector points along its constant-velocity line, and (iii) these lines of constant velocity122

are parallel to each other. Consider any two points in the flow and a time increment ∆t. By (ii) a123

point must stay on the line on which it started. By (i) a point on a line cannot overtake another124

point on that line. Finally, by (iii), if the two points start on separate lines, since their lines do125

not cross, the trajectories cannot, either. For this flow, we should also verify that each departure126

element is neither self-intersecting nor has reversed in orientation, both of which are possible in a127

discretization even if the continuum flow does not permit intersecting trajectories. I verified using128

orientation and convexity checks, where the latter is a sufficient condition for non-intersection, that129

no deformed element has reversed orientation or is self-intersecting. Finally, whereas the time step130

0.2761 in this example leads to an unstable operator, time steps 0.273 and 0.279 do not.131

Between the two examples, we see that a unit bound on the deformational Courant number,132

given exact trajectories and so exact departure points, is neither a necessary nor a sufficient con-133

dition for stability of the space-time operator. Similarly, the violation of the bound is neither a134

necessary nor a sufficient condition for instability.135

Appendix B136

Ullrich and Norman present a scheme that is third-order accurate when a monotonicity scheme137

is not applied, requires hyperdiffusion for stability in 2D, and is CFL-limited by hyperdiffusion [6].138

The left panel of Figure 11 of [6] suggests that if a positivity filter is applied, the method has an139

empirical order of accuracy of approximately 2.5. Positivity—the tracer must have values at least140

0—is a weaker condition than monotonicity, which requires that a tracer value in a region R is141

bounded below and above by values in the domain of dependence of the region R, where the defini-142

tion of R depends on the discretization. In the manuscript, results for the Islet method are shown143

with a monotone filter rather than just a positivity filter. Hyperdiffusion requires additional com-144

munication rounds. As the basis order increases, the hyperdiffusion-limited CFL number roughly145

decreases, from 2.44 for cubic to below 1 for quintic. Islet does not require a filter or hyperdiffusion146

for stability, regardless of basis order, and we find bases providing order of accuracy up to 9.147
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