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Abstract. An updated and expanded representation of organics in the chemistry general circulation model EMAC (ECHAM5/MESSy

for Atmospheric Chemistry) has been evaluated. First, the comprehensive Mainz Organic Mechanism (MOM) in the submodel

MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) was activated with explicit degradation of organic

species up to five carbon atoms and a simplified mechanism for larger molecules. Second, the ORACLE submodel (version

1.0) considers now condensation on aerosols for all organics in the mechanism. Parameterizations for aerosol yields are used5

only for the lumped species that are not included in the explicit mechanism. The simultaneous usage of MOM and ORACLE

allows an efficient estimation, not only of the chemical degradation of the simulated volatile organic compounds, but also of

the contribution of organics to the growth and fate of (organic) aerosol, with a complexity of the mechanism largely increased

compared to EMAC simulations with more simplified chemistry. The model evaluation presented here reveals that the OH

concentration is well reproduced globally, while significant biases for observed oxygenated organics are present. We also in-10

vestigate the general properties of the aerosols and their composition, showing that the more sophisticated and process-oriented

secondary aerosol formation does not degrade the good agreement of previous model configurations with observations at the

surface, allowing further research in the field of gas-aerosol interactions.
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1 Introduction

Volatile Organic Compounds (VOCs) play a pivotal role in the atmosphere by constraining the total oxidant level and serve as15

precursors of ozone (O3), carbon dioxide (CO2) and aerosols (Heald and Kroll, 2020). Due to the complexity of the chemistry

of VOCs, a comprehensive and explicit representation thereof is mostly still missing in global and regional model simulations

(Heald et al., 2005). To capture this full complexity, model simulations would become rather computationally expensive and

slow in performance. However, missing this complexity also substantially limits the current understanding of the budget of

secondary pollutants, e.g., O3 and aerosols. The challenges are twofold: 1) to understand and include the chemical degradation20

pathways, and 2) to also represent all other influencing processes (e.g. deposition, multiphase chemistry) in already complex

global/regional models.

A chemical mechanism that stands out for size and detailed oxidation of many important VOCs is the Mainz Organic Mech-

anism (MOM, Sander et al., 2019). MOM represents the chemistry of alkanes, alkenes, terpenes (isoprene and monoterpenes)

and monocyclic aromatics. The mechanism has been employed to study the impact of isoprene OH−recycling above pristine25

tropical forests (Taraborrelli et al., 2012), oxidation of monoterpenes as a source of HO2 (Hens et al., 2014; Mallik et al.,

2018) and the influence of aromatics on tropospheric ozone (Taraborrelli et al., 2021). Furthermore, MOM has been used with

extensions in order to simulate product yields of β-caryophyllene oxidation (van Eijck et al., 2013), the oxidation of alkyl

amines and formamide as source of HNCO (Rosanka et al., 2020), the atmospheric losses of stabilised Criegee intermediates

(Vereecken et al., 2017), and the most recent OH-recycling mechanisms in isoprene oxidation (Novelli et al., 2020). Yet, a full30

evaluation of the VOC distribution predicted by MOM in a global numerical model has not been published.

Furthermore, a more detailed chemical mechanism, which reduces the number of lumped species of larger VOCs, allows

an explicit coupling of the VOC chemistry with an interactive aerosol phase partitioning and an organic compound ageing,

without losing the chemical identity of the organic compounds. Previous studies (e.g. Farina et al. (2010); Tsimpidi et al.

(2016)), which treat the organic aerosol with the help of a volatility basis set (VBS) (Donahue et al., 2011), usually use lumped35

species to represent tracers with similar volatility and age structure (e.g. O:C ratio, e.g. Ng et al. (2010)) therefore without any

chemical identity or detailed degradation scheme.

In this study we present a simulation and an evaluation of the ECHAM/MESSy Atmospheric Chemistry (EMAC) general

circulation model (Jöckel et al., 2010, 2016) with a complex organic chemical mechanism (MOM, Sander et al., 2019), ac-

counting not only for the gas phase chemistry, but also for the losses via uptake/condensation into aerosols (via the ORACLE40

submodel) and cloud droplets (via the SCAV submodel). As the EMAC model has been largely evaluated in the past and for

most of the components there were no significant changes, we focus on the evaluation of organic tracers and aerosols. Most

importantly, general properties of the aerosols (such as aerosol optical depth (AOD) and particulate concentration below 2.5

µg m−3) will be discussed, as these could be strongly affected. Furthermore, changes to the global hydroxyl radical distribution

influenced by the new chemistry adopted in this study are discussed.45

A comparison for VOCs with the MIM chemical mechanism developed by Pöschl et al. (2000) that has been evaluated by

Pozzer et al. (2007) and used previously (Jöckel et al., 2006, 2016) is not shown here as in such mechanism (i) most of organics

2

https://doi.org/10.5194/gmd-2021-295
Preprint. Discussion started: 29 September 2021
c© Author(s) 2021. CC BY 4.0 License.



are either lumped, e.g. methyl vinyl ketone (MVK) and methancrolein (MACR), or missing, e.g. aromatics and monoterpenes;

(ii) primary species common to MIM and MOM would be influenced only by the different sinks (mainly OH), and a detail

description of OH budget is presented here; (iii) the model bias with respect to secondary species, e.g. oxygenated VOCs, has50

been linked to a mis-representation or lack thereof processes like in-cloud chemistry (Rosanka et al., 2021b; Franco et al.,

2021). Therefore any comparison of VOC simulations between MOM and MIM would not give any additional information on

the model-observation discrepancy and aid any future model improvement.

The model set-up is presented in Sect. 2, followed by the description of the observational dataset used for the evaluation

(Sect. 3), which is then presented for different tracers and aerosol components. This model evaluation is the basis for future55

studies on complex organic chemistry with EMAC.

2 Model configuration

EMAC is a numerical chemistry and climate simulation system that includes submodels describing tropospheric and middle-

atmosphere processes and their interaction with oceans, land, and human influences (Jöckel et al., 2016). It uses the second

version of the Modular Earth Submodel System (MESSy2) to link multi-institutional computer codes. The core atmospheric60

model is the 5th generation European Centre Hamburg general circulation model (ECHAM5 Roeckner et al., 2006). For the

present study, we applied EMAC (ECHAM5 version 5.3.02, MESSy version 2.54.0) in the T63L31-resolution, i.e. with a

spherical triangular truncation of T63 (corresponding to a quadratic Gaussian grid of approx. 1.8◦ by 1.8◦ in latitude and

longitude) and 31 vertical hybrid pressure levels up to 10 hPa, with roughly 22 levels in the troposphere. The dynamics have

been weakly nudged (Jeuken et al., 1996; Jöckel et al., 2006) towards the ERA-interim data (Berrisford et al., 2011) of the65

European Centre for Medium-Range Weather Forecasts (ECMWF) to reproduce the actual day-to-day meteorology in the

troposphere. In this study we simulated two years (2009-2010), with the first year used as spin-up time.

The anthropogenic emissions are based on the Emissions Database for Global Atmospheric Research (EDGARv4.3.2 Crippa

et al., 2018), vertically distributed following Pozzer et al. (2009). These prescribed emissions are included in the model via

the OFFEMIS submodel (Kerkweg et al., 2006b). The biogenic emissions of Non-Methane Volatile Organic Compounds70

(NMVOC) are calculated on-line using the Model of Emissions of Gases and Aerosol from Nature (MEGANv2.04, Guenther

et al., 2006, 2012). Lightning NOx production is based on the parametrization of Grewe et al. (2001), while the algorithm of

Yienger (1995) is used for soil NOx emissions, as described in detail in Jöckel et al. (2016).

Biomass burning emissions are calculated daily online based on dry matter burned from observations and fire type (Kaiser

et al., 2012). The emission factors for different tracers and fire types are taken from Andreae (2019) and Akagi et al. (2011).75

The ONEMIS submodel (Kerkweg et al., 2006b) calculates natural emission fluxes of sea-salt (Guelle et al., 2001) and of

dust (Klingmüller et al., 2018; Astitha et al., 2012). Oceanic emissions and deposition are calculated online with the AIRSEA

submodel (Pozzer et al., 2006; Fischer et al., 2012; Lana et al., 2011) for DMS, CH3COCH3, CH3OH, C5H8, HCN, and

CH3CN (a net sink for CH3OH, HCN, and CH3CN, a net source for the others). For C2–C3 alkanes and alkenes, the oceanic

offline emissions from Inness et al. (2012) have been adopted.80
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In Table 1 the total emissions are listed for all primary species emitted in the model.

Table 1: . Emissions of primary emitted species for the year 2010 used in this study. The units are in Tg(species) yr−1 with

the exception of NOx, in Tg(N) yr−1

Tracer extended name Anthropogenic Natural/Biogenic Biomass Burning

BC Black Carbon 4.34 1.84

OC Organic Carbon 11.05 15.53

SO2 Sulfur Dioxide 99.35 1.95

NOx nitrogen oxides 34.50 6.09 3.98

CO carbon monoxide 537.16 106.84 289.51

NH3 ammonia 57.67 4.07

C2H6 ethane 9.00 1.32 2.91

C3H8 propane 10.50 1.46 0.52

HCN hydrogen cyanide 2.13

CH3CN acetonitrile 1.03

NC4H10 n-butane 9.90 0.12

IC4H10 i-butane 4.20 0.04

MEK methyl ethyl ketone 1.00 0.18 0.45

CH3CHO acetaldehyde 2.00 15.35 2.80

CH3COCH3 acetone 1.10 35.84 1.29

CH3CO2H acetic acid 6.52 3.45 13.20

CH3OH methanol 9.71 105.54 6.32

HCOOH formic acid 3.56 3.45 2.32

CH3COCO2H pyruvic Acid 0.36

HCHO methanal,formaldehyde 4.50 5.17 4.15

C2H4 ethene 5.40 24.55 3.55

C3H6 propene 4.26 15.76 3.01

C2H2 acetylene 5.40 0.23

BUT1ENE 1-butene 1.46 6.23 0.07

TBUT2ENE 1,2-dimethylethylene 1.46 0.05

CBUT2ENE 2-butene 1.46 0.20

MEPROPENE methylpropene 1.46 0.20

BENZENE benzene 5.82 1.42

TOLUENE toluene 7.80 0.35 0.83
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LXYL xylenes 7.24 0.28

LTMB trimethylbenzenes 0.95 0.06

PHENOL phenol 1.70 2.02

STYRENE styrene 1.87 0.16

EBENZ ethylbenzene 1.91 0.56

LHAROM other aromatics 3.22 2.86

C5H8 isoprene 463.89

APINENE α-pinene 33.18

BPINENE β-pinene 18.71

CARENE 3-carene 6.94

SABINENE sabinene 7.13

CAMPHENE camphene 3.20

MBO methyl butenol 1.36

LTERP lumped other terpenes 31.86

LALK4 lumped pentanes 15.1

LALK5 lumped higher alkanes 21.2

OLE2 lumped higher alkenes 8.20

DMS Dimethyl sulfide 57.96

Dry deposition and sedimentation are estimated by DDEP and SEDI submodel (Kerkweg et al., 2006a), while wet deposition

is simulated by the SCAV submodel (Tost et al., 2006). The dissolution of species in the liquid phase mechanism was augmented

by including liquid-gas equilibrium for all additional organics present in the mechanism with a Henry’s law constant (solubility)

above 103 mol L−1 atm−1. For less soluble species, wet scavenging is not expected to be important (Crutzen and Lawrence,85

2000). The Henry’s law constants of most oxygenated VOCs of atmospheric relevance are unknown and estimation methods

still quite uncertain (Wang et al., 2017). As the hydroxyl (and hydroperoxyl) group affects the solubility in water the most, the

Henry’s law constants of polyols from the compilation by Sander (2015) are taken as proxies.

In the chemistry submodel MECCA, we used the Mainz Organic Mechanism (MOM, Sander et al., 2019), with roughly

600 species and 1600 reactions. It originates from a reduced isoprene oxidation mechanism (Taraborrelli et al., 2009), which90

has been updated with recent kinetic data and expanded with efficient mechanisms of OH-recycling under low-NO conditions

(Taraborrelli et al., 2012; Nölscher et al., 2014). The oxidation mechanism for α-pinene and β-pinene is based on the MCM

(E. Jenkin et al., 2000) with modifications according to the theoretical work of L. Vereecken (Vereecken et al., 2007; Capouet

et al., 2008; Nguyen et al., 2009; Vereecken and Peeters, 2012). The degradation of monocyclic aromatics follows the MCM

(Jenkin et al., 2003; Bloss et al., 2005) but with some modifications for the chemistry of phenols (Cabrera-Perez et al., 2016).95

The complete mechanism used in this study is part of the electronic supplement.
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Aerosol microphysics and gas/aerosol partitioning are calculated by the Global Modal-aerosol eXtension (GMXe) aerosol

module (described by Pringle et al., 2010a, b). GMXe simulates the distribution of aerosol within interacting lognormal modes

(in a similar approach to that of Vignati et al., 2004; Mann et al., 2010). The lognormal modes span four size categories

(nucleation (< 5 nm radius), Aitken (5–50 nm), accumulation (50–500 nm), and coarse (>500 nm)), and are divided into a100

hydrophilic (4) and a hydrophobic (3) modes. The GMXe model has been extensively evaluated (Pozzer et al., 2012a, b; Tost

and Pringle, 2012; Karydis et al., 2016).

Organic Aerosol (OA) formation is simulated by the submodel ORACLE (Tsimpidi et al., 2014, , v.1.0), where logarith-

mically spaced saturation concentration bins are used to describe the organic aerosol components based on their volatility.

For the formation of primary (POA) and secondary (SOA) organic aerosol from the emissions and photochemical oxidation105

of semivolatile and intermediate volatility organic compounds the setup of Tsimpidi et al. (2016) is used. However, the SOA

formation from the oxidation of the volatile organic compounds (VOC) in ORACLE has been modified to accommodate the

photochemical production of components explicitly calculated by the MOM chemical mechanism. The effective saturation

concentration of all the species present in the MECCA submodel is calculated based on their elemental composition (number

of carbon, oxygen, nitrogen, and sulfur atoms), following the molecular corridor approach (Li et al., 2016) and the study by110

Donahue et al. (2011). In Figure 1, the volatility versus the molar mass is shown for all tracers present in the model, ranging

from high volatility – low molar mass to low volatility – high molar mass. These calculations result in 199 tracers which, under

atmospheric conditions, can partition to the aerosol phase forming SOA (i.e., with a volatility lower than 3.2× 103 µg m−3),

while the other 396 tracers are considered too volatile for any condensation on aerosol particles. Additionally, the enthalpy of

vaporization for the same condensing species has been estimated based on the study by Epstein et al. (2010). In addition to115

the 199 tracers, 11 additional "lumped species" for different oxidation levels of pentanes, higher alkanes, higher alkenes and

terpenes have been added. Then, ORACLE calculates the partitioning of these organic species between the gas and particle

phases by assuming a bulk equilibrium, and by further assuming that all organic compounds form a pseudo-ideal solution. The

aerosol size distribution is determined by distributing the change in aerosol mass after the bulk equilibrium into each size mode

using a weighting factor (Tsimpidi et al., 2014).120

The aerosol optical properties are calculated with the submodel AEROPT (Dietmüller et al., 2016), which is based on the

scheme by Lauer et al. (2007) and makes use of predefined lognormal modes (i.e., the mode width σ and the mode mean radius

have to be taken into account). Lookup tables with the extinction coefficient, the single scattering albedo, and the asymmetry

factor for the shortwave, and extinction coefficient for the longwave part of the spectrum are pre-calculated with the help of Mie

theory-based explicit radiative transfer calculations (see Pozzer et al., 2012a; Dietmüller et al., 2016). The aerosol compounds125

explicitly considered for their refractve indices are organic carbon, black carbon, dust, sea salt, water-soluble compounds

(WASO, i.e. all other water soluble inorganic ions, e.g.: NH+
4 , SO2−

4 , HSO−4 , NO−3 ), and aerosol water (H2O).
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Figure 1. Saturation mass concentrations at 298 K (Li et al., 2016) versus molar mass of organic tracers in EMAC. The blue dots represent

those included in ORACLE, i.e., organic tracers which, under atmospheric conditions, are allowed to condense explicitly on aerosols, the

green dots represent those organic tracers always in the gas phase. The dashed line represents the maximum volatility considered in ORACLE

(i.e. 3.2× 103 µg m−3) for the VOC oxidation products.

3 Observational data

3.1 Aircraft measurements

We used the database of aircraft measurements of trace gases produced by Emmons et al. (2000). It is based on observations130

from numerous aircraft campaigns that took place during the period 1990–2001 to create observational-based climatologies of

chemical species relevant to tropospheric chemistry. Although these measurements cover only limited time periods and regions,

they provide valuable information about the vertical distribution of the analysed trace gases. Note that the field campaigns used

in this evaluation have been extended, also including observations after the year 2000, such as those from the TOPSE and

TRACE-P campaigns.135

In addition to the Emmons et al. (2000) database, we also included the aircraft measurements for organic aerosols presented

by Heald et al. (2011). This dataset includes organic aerosol measurements from 17 aircraft campaigns during the period

2001–2009. Here, similar to Emmons et al. (2000), we consider the aircraft campaigns representative for the period and the

regions, i.e., as an observational-based climatology. Therefore, we compared these data with the model results for the year

2010, yielding an improved evaluation of the vertical distribution of the organic aerosols in the troposphere.140
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3.2 Station measurements

3.2.1 NOAA-INSTAAR

Data from the National Oceanic and Atmospheric Administration (NOAA) Institute of Arctic and Alpine Research (INSTAAR)

Global Monitoring program were also used in this study. The network consists of 44 background stations from the NOAA

Global Greenhouse Gases Reference Network (GGGRN) (Pollmann et al., 2008), where pairs of whole air samples are collected145

weekly and shipped to a central laboratory for analyses. For this study, we considered measurements of ethane, propane, iso-

and n-butane from this network.

3.2.2 EPA

The Clean Air Markets Division of the U.S. Environmental Protection Agency (EPA) operates the Clean Air Status and Trends

Network (CASTNET), with a total of 97 stations. Here, we include weekly filter pack data from 81 stations for SO2−
4 , NO−3 ,150

NH+
4 , Na+, Mg2+, Ca2+, K+ and Cl− for the year 2010. The data can be downloaded at www.epa.gov/castnet, last access on

December 10, 2020.

3.2.3 IMPROVE

In order to evaluate the simulated regional background OA concentrations, we use monthly averaged PM2.5 OA measurements

during the year 2010 from the Interagency Monitoring of Protected Visual Environments (IMPROVE) program155

(http://views.cira.colostate.edu/fed, last access on September 21, 2021). IMPROVE is a cooperative measurement effort in

the United States designed to characterize current visibility and aerosol conditions in scenic areas (primarily National Parks

and Forests). This network includes 198 monitoring sites that are representative of the regional haze conditions over North

America. IMPROVE collocated samplers collect 24 hour samples every three days.

3.2.4 EMEP160

The co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe (EMEP)

is a scientifically-based and policy-driven programme under the Convention on Long-range Transboundary Air Pollution for

international co-operation to solve transboundary air pollution problems. We use data from 42 stations, although the number

of stations providing sufficient data for a certain species ranges from 22 to 42 (see Table 5). As Teflon filters are used pre-

dominantly, depending on the respective station, the concentrations of particulate nitrate can be systematically underestimated165

(Ames and Malm, 2001). The data were obtained from the EBAS database (http://ebas.nilu.no/, last access on September 21,

2021) and stations not providing full coverage of monthly mean values for the year 2010 were excluded from the analysis.
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3.2.5 EANET

The Acid Deposition Monitoring Network in East Asia (EANET) regularly monitors acid deposition as from January 2001.

Thirteen countries participate currently in this effort, submitting data from a total of 54 sites. We use monthly averaged aerosol170

concentrations from 15 to 25 stations, with the data obtained from the Network Center for EANET, at https://monitoring.

eanet.asia/document/public/index, last access on September 21, 2021. It is worth mentioning that EANET does not include

OA observations. The simulated PM2.5 OA over East Asia is evaluated against collected short-term measurement data as

summarized by Jo et al. (2013).

3.3 Remote sensing observations175

3.3.1 MOPITT

The MOPITT (Measurement of Pollution in the Troposphere) is a sensor onboard the NASA’s Terra satellite. We use the

MOPO3JM version 8 product of MOPITT which provides monthly mean gridded column integrated CO, vertical profiles of

CO mixing ratios at ten regularly spaced pressure levels from the surface up to 100 hPa as well as the corresponding averaging

kernels (Deeter et al., 2019). The MOPO3JM product is based on the joint near-infrared (NIR) and thermal-infrared (TIR)180

retrievals of CO. We apply the MOPITT averaging kernels on the EMAC CO profiles according to equation 1 to ensure the

same level of smoothing as that in the MOPO3JM product.

xrtv =Axtrue + (I −A)xa (1)

Here, xtrue is the EMAC profile, xa is the a priori profile, A is the averaging kernel matrix and I represents an identity matrix.

3.3.2 MODIS185

The MODerate resolution Imaging Spectroradiometer (MODIS) sensor is also located on the Terra satellite. Here, AOD550

data (i.e., Aerosol Optical Depth at 550 nm) from the MODIS Level 3 (Col. 6.11) gridded product are used at a spatial

resolution of 1◦× 1◦. The data are available through the Atmosphere Archive & Distribution System (LAADS)

(https://ladsweb.modaps.eosdis.nasa.gov/ , last access on September 21, 2021). Here the Deep Blue algorithm (Hsu et al., 2004)

was used for the aerosol AOD.190

3.3.3 IASI

Global observations of a suite of VOCs are retrieved from the thermal infrared measurements of the nadir-viewing IASI

(Infrared Atmospheric Sounding Interferometer) instruments (Clerbaux et al., 2009). The VOC dataset exploited here consists

of total columns of methanol, acetone, formic and acetic acids, and PAN, retrieved near-globally on a daily basis from the

IASI/Metop–A observations with the aid of the ANNI (Artificial Neural Network for IASI) v3 retrieval framework. This neural195

network-based retrieval approach does not rely on a priori information of the total column and, hence, the products can be
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used directly for unbiased comparisons with model data (see Franco et al., 2018; Whitburn et al., 2016). The satellite products

are filtered for measurements affected by clouds and poor retrieval performance. The uncertainties on the individual retrieved

column can be large, but are considerably reduced by averaging numerous observations, as done in this study by comparing

annual averages. A full description of the ANNI framework, the characterization of the VOC products, and comparisons of200

the satellite data with independent measurements can be found in Franco et al. (2018, 2019, 2020) and references therein. For

both, IASI and the model, daily gridded averages were constructed at the spatial resolution of the model grid. To have similar

temporal coverage over the year between model and satellite observations, the EMAC daily averages were masked when the

corresponding IASA data were missing for the same day and location.

3.3.4 AERONET205

The AOD observations have been obtained from the global AErosol RObotic NETwork (AERONET Holben et al., 1998;

Dubovik et al., 2000). The cloud-screened quality-assured Level 2 AOD data used in this study were obtained from the website

http://aeronet.gsfc.nasa.gov/cgi-bin/combined_data_access_new (last access on September 21, 2021) including AOD daily

averages.

3.4 Pseudo observations210

Global annual averages of fine particulate matter with an aerodynamic diameter below 2.5 µm (PM2.5) have been obtained

from Hammer et al. (2020). In this dataset, a combination of satellite observed AOD, numerical model, and ground-based

PM2.5 measurements were used to estimate PM2.5 on a global scale at high resolution.

4 Results

In Table 2, the comparison of the model results with the aircraft campaign data from Emmons et al. (2000) is presented for215

selected tracers. In general the model reproduces the main features observed, as more than 82 % of the simulated values are

within a factor of 2 compared to the observations for all species. Nevertheless, for some species (such as the alkene C4H6), a

clear underestimation is seen, cohering with former results (Pozzer et al., 2006).

4.1 CO

Figure 2 shows the seasonal (MAM: March, April, May; JJA: June, July, August; SON: September, October, November; DJF:220

December, January and February) mean modified EMAC and MOPITT CO vertical column densities (VCD). Here, we term it

as “modified” EMAC VCDs because MOPITT averaging kernels are applied on the simulated CO profiles to account for the

sensitivity of MOPITT. To highlight the difference in spatial patterns of EMAC and MOPITT, we also show the absolute bias

in the bottom panel.

We note that the spatial patterns are in good agreement between simulation and observations. In particular, the elevated CO225

background in the outflow regions (over oceans) in the northern hemisphere is well represented during boreal winter (DJF)

10
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Species N.points MM MSTD OM OSTD MM/OM PF2 RMSE

CO 457 90.41 32.63 94.86 72.11 1.03 100.0 63.991

C2H4 454 25.16 139.23 45.93 175.49 1.06 89.2 110.05

C2H6 473 539.19 320.22 826.09 544.14 0.70 100.0 409.24

C3H6 332 6.25 63.13 13.70 53.09 0.40 93.6 32.64

C3H8 472 94.96 123.26 164.99 225.57 0.89 93.2 149.02

CH3COCH3 246 520.61 274.71 608.50 310.84 0.92 97.9 291.65

CH3OH 37 595.76 369.59 913.86 373.06 0.66 100.0 426.52

CH3OOH 366 210.71 190.79 376.80 321.19 0.66 96.7 251.34

HCHO 213 198.08 377.76 192.24 299.65 1.44 84.5 235.36

HCOOH 53 32.67 7.05 58.92 43.55 0.87 96.2 49.41

CH3COOH 53 13.50 7.08 51.08 28.31 0.34 100.0 46.51

HNO3 416 151.33 188.49 162.15 285.72 1.25 82.4 237.42

H2O2 411 634.08 611.96 745.48 875.21 1.09 91.7 516.44

PAN 395 62.46 71.30 162.60 186.81 0.61 96.7 185.79

O3 506 68.23 76.00 51.06 26.10 1.31 92.8 62.54

Table 2. Summary of simulated and observed mixing ratios of different tracers in the Emmons et al. (2000) database. N.points is the number

of points used for the statistical estimation. The arithmetic mean of the model simulated mixing ratios (MM), the observed mixing ratios

(OM), and the corresponding standard deviations (MSTD, OSTD) in pmol/mol are listed in the subsequent columns. For CO and O3 the

units are in nmol/mol. PF2 denotes the percentage of simulated points within a factor of 2 with respect to the observations, and RMSE

represents the root mean square error between simulated and observed points.

and spring (MAM). The outflow region around south America in SON is also simulated well. Over land, a good agreement

is found for Europe, central and Eastern United States, northern Africa, Australia, Russia, and the Indian subcontinent with a

mean bias within ± 1×1018 molecules cm−2. During the biomass burning seasons (JJA in central Africa, north and north-east

China and SON in south America), we observe an overestimation of ∼ 30 % by EMAC. By comparing EMAC’s total CO230

columns to IASI CO satellite retrievals, Rosanka et al. (2021c) found that EMAC tends to underestimate CO in Indonesia in

SON 2015. In 2015, a particularly strong El Niño led to severe peatland fires, which resulted in large CO emissions. Rosanka

et al. (2021c) attribute the underestimation to a too low biomass burning emission factor for peatland used by EMAC. Here,

we do not find any underestimation of CO in Indonesia in SON (see Fig. 2), since the year 2010 was a year with little biomass

burning emissions in Indonesia (van der Werf et al., 2017). Following their analysis, the recent biomass burning emission235

factor estimate by Andreae (2019) suggests that EMAC underestimates the CO emission factor by about 10 % in Central South

America and Africa. It must however be stressed that the uncertainties on biomass burning emissions are substantial, depending

on regions and species (Carter et al., 2020). In contrast, in South America the overprediction of EMAC’s CO columns can be
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Figure 2. Global seasonal mean maps of CO vertical column densities (VCD) for the year 2010 for EMAC (top), MOPITT (middle), and

bias (EMAC - MOPITT), (bottom).

partially attributed to EMAC’s tendency to overestimate biogenic emissions of CO precursors in this region (Rosanka et al.,

2021b, c).240

Figure 3 shows the 2010 annual mean measured and simulated surface CO mixing ratio at the WDCGG stations sorted

according to their latitude coordinates. The relative bias at all stations is also shown on a global map in the inset of Figure

3. Similar latitudinal gradients are seen for the measurements and simulations with high values around the mid-latitudes of

the northern hemisphere. The measured and simulated CO agree within 1σ annual variability for 106 out of 113 stations for

which data were available for the year 2010. The bias between model and simulation was found to be less than 20 % of the245

observations for 96 stations.

4.2 Volatile Organic Compounds

4.2.1 C2-C4 Alkanes

Alkanes are VOC ubiquitously present in the atmosphere, mainly emitted from anthropogenic activities. In Figure 4 the scatter

plots of model results and in-situ observations from the NOAA/INSTAR database are presented. The statistic for each plot is250

summarized in Table 3. The model seems to reproduce satisfactorily the mixing ratios of the C2-C4 alkanes with more than

98, 91, 84 and 79 % of the simulated values lying within a factor of two to the observations for C2H6, C3H8, i−C4H10 and

n−C4H10, respectively. Furthermore, the average ratios show that a slight overestimation is present for i-butane and n-butane,

whereas the model tends to underestimate the mixing ratios of ethane and propane. This is confirmed by the comparison with
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Figure 3. Latitudinal gradient of the annual mean (2010) of the measured and simulated surface CO mixing ratio at the WDCGG measure-

ment stations. The error bars show the 1σ standard deviation of the annual mean (based on daily mean output). The map in the inset shows

the annual bias between the simulation and measurements at the locations of the WDCGG stations.

the Emmons et al. (2000) database (Table 2), which shows that both, ethane and propane, are underestimated by the model,255

also with respect to the vertical profile (column MM/OM).

Figure 4 shows also a noticeable underestimation of the mixing ratios in the region between 30◦ N and 0◦ N, for propane

and the butanes. This is clearly due to the underestimation of the oceanic emissions, as these stations (i.e., at Mahe Island, Sey-

chelles (SEY), The American Samoa Observatory (SMO), Ascension Island, UK (ASC), and Easter Iland, Chile (EIC)) are all

strongly influenced by oceanic emissions. It must be pointed out that for i−C4H10 and n−C4H10, no oceanic emissions where260

included in the simulation, but that these are necessary for a correct representation of butanes, as already shown previously

(Pozzer et al., 2010).

4.2.2 C2-C3 Alkenes

Differently from alkanes, the alkenes are mostly emitted by the biosphere. As shown in Table 2, the numerical simulation

of alkenes diverges more from the observations than the simulated alkanes do. Both, C2H4 and C3H6, are underestimated265

compared to the observations (see model mean, MM, against observed mean, OM in Tab. 2). Nevertheless, while C2H4 is

overall reasonably reproduced (average of the ratios equal to 1.06, see Table 2), for C3H6 a strong underestimation is present

(average of the ratios equal to 0.4, see Table 2). This is shown in Fig. 5, where examples of the vertical distribution of C2H4
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Figure 4. Scatter plot of measured and simulated surface alkanes mixing ratios at the NOAA/INSTAAR measurement stations for the year

2010. The units are in pmolmol−1. The color code denotes the latitude of the stations.

Species N.points MM MSTD OM OSTD MM/OM PF2 RMSE

C2H6 450 742.54 551.02 1038.32 845.09 0.77 98.4 621.54

C3H8 447 262.87 417.25 393.13 745.48 0.91 91.5 755.93

i−C4H10 436 70.60 97.44 73.73 126.46 1.23 84.8 124.23

n−C4H10 423 160.49 231.75 146.89 293.97 1.46 79.6 307.80

Table 3. Summary of simulated and observed mixing ratios of different tracers in the NOAA/INSTAAR database (station observations). The

columns are as in Table 2

.

are shown. The issues in simulating C3H6 have been already pointed out by Pozzer et al. (2006), where similar results were

obtained with large underestimation of this tracer.270

4.2.3 CH3OH

CH3OH is the most abundant oxygenated VOC is the Earth’s atmosphere (Singh et al., 2001), primarily emitted by the terres-

trial vegetation (Jacob et al., 2005). Other sources include biomass burning, the oceans and secondary formation in the tropo-

sphere (e.g., Millet et al., 2008; Stavrakou et al., 2011). The annual global distribution of CH3OH total columns obtained from
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Figure 5. Vertical profiles of C2H4 in pmolmol−1 for some selected campaigns from Emmons et al. (2000). Asterisks and boxes represent

the average and the standard deviation (w.r.t. space and time) of the measurements in the region, respectively. The simulated average is

indicated by the red line and the corresponding simulated standard deviation w.r.t. time and space by the dashed lines. On the right hand side,

the number of measurements is listed.

the IASI measurements and EMAC of the year 2010 as well as their differences are presented in Fig. 6. Over land, the satellite275

and model spatial distributions of CH3OH are relatively consistent, with the main source regions observed within the tropics

(mainly over the Amazon Basin and central Africa), in Southeast Asia, and at Northern Hemisphere mid- and high latitudes.

However, important differences in terms of column magnitude exist. Over the tropical forests, EMAC indeed simulates annual

CH3OH columns up to two times larger than those retrieved from the IASI observations (3.0–3.5× 1016 molecules cm−2).

This can be partly ascribed to the high temperature bias that exists in the model over these areas (Hagemann and Stacke, 2015),280

which induces an excess of biogenic VOC emissions from the MEGAN submodel. Furthermore, dry deposition of methanol

in tropical rainforests is likely under-represented by the Wesely (1989) approach used here (Karl et al., 2004). The potential

contribution of an additional non-stomatal pathway favourable under humid conditions (Müller et al., 2018) has been shown by

Emmerichs et al. (2021) for a less soluble species. On the other hand, EMAC underestimates the CH3OH columns at mid- and
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Figure 6. Annually averaged CH3OH total columns (in molecules cm−2) from IASI satellite observations (left), simulated by EMAC

(middle), and the EMAC–to–IASI column differences (right), for the year 2010.

high latitudes of the Northern Hemisphere, indicating that biogenic and/or biomass burning VOC emissions are too low during285

summertime in these regions. Southeast US is the region in North America where most of the simulated CH3OH enhancement

exists, driven by substantial biogenic emissions in summertime, while larger columns are measured by IASI during the same

season further northwards in the boreal regions. Over the oceans, EMAC underestimates the observed CH3OH columns by

∼5× 1015 molecules cm−2, which might result from an insufficient transport from the continental source regions and/or from

missing secondary source(s) (see e.g., Bates et al., 2021; Müller et al., 2016). This is confirmed by the comparison of model290

results with the Emmons et al. (2000) database, where the methanol model mean is considerably lower than the observed one.

4.2.4 CH3COCH3

Acetone is the one of the most abundant oxygenated VOCs in the Earth’s atmosphere after CH3OH (Singh et al., 2001). Its

sources include the terrestrial vegetation, the oxidation of hydrocarbon precursors of biogenic and anthropogenic origin, the

oceans and biomass burning (e.g., Jacob et al., 2002; Pozzer et al., 2010; Fischer et al., 2012). The acetone total columns295

obtained from the EMAC simulation and the IASI observations exhibit major discrepancies in terms of global distribution

(Figure 7). The satellite instrument detects the largest acetone columns (up to 2× 1016 molecules cm−2) at mid- and high

latitudes of the boreal hemisphere, ascribed to important emissions of biogenic precursors during summertime (Franco et al.,

2019), but a moderate burden at low latitudes and over the tropical forests. It is worth noting that this pattern is in agreement

with the global acetone measurements obtained with the ACE–FTS satellite limb sounder (Dufour et al., 2016). Conversely,300

EMAC simulates strong hotspots of acetone within the tropics, especially over South America and Africa, with annually

averaged columns larger than 2× 1016 molecules cm−2, but underestimates the acetone abundance by up to a factor of 2 in the

Northern Hemisphere. Such a mismatch between satellite and model distributions points to major deficiencies in the current

emission inventories of acetone and its precursors. For example, the extremely large acetone columns simulated by EMAC

over the Persian Gulf and the Indo Gangetic Plain can be attributed to the highly elevated emissions of propane – an important305

precursor of acetone – in these regions. In vegetated regions, an underestimation of acetone dry deposition, accounting globally
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Figure 7. Same as Fig. 6, but for CH3COCH3.

for 20 % of the total loss (Khan et al., 2015), likely contributes to the mismatch. According to measurements, significant

amounts of acetone are removed during night through non-stomatal uptake (Karl et al., 2004; Müller et al., 2018). However,

over remote areas and the oceans, the simulated acetone abundance is consistent with the IASI measurements, with vertical

column integrals in the range of 0.5–1.0× 1016 molecules cm−2. The model, nevertheless, simulates a slight overestimation310

over the oceans at low latitudes compared to IASI, especially in the outflows of the tropical hotspots. Compared to the aircraft

observations, the model results present a much better agreement than when compared against remote sensed data, with only a

somewhat small bias (see Tab. 2). This apparent agreement with the observations is due to the uneven distribution of the field

campaign present in the observational dataset (see Emmons et al. (2000), Fig.1 and Huijnen et al. (2019), Fig.1). In fact, most of

the campaigns in which acetone was measured took place over the ocean, where the model is correct or slightly overestimating315

the total column observed by IASI. In contrast, only few campaigns in the Northern Hemisphere are present in the dataset (such

as ABLE-3B, and POLINAT-2) for which the model strongly underestimates the observed values. As a result of the sparsity of

the aircraft observations used, Table 2 presents a quite fair agreement between model and aircraft observations, an agreement

which is, however, not corroborated by the more spatially complete comparison with the IASI total column.

4.2.5 HCOOH320

Formic acid is the dominant organic acid in the troposphere and a product of the degradation of a large suite of VOC precursors,

but its observed abundance is generally severely underestimated by state-of-the-art global models (e.g., Millet et al., 2015;

Paulot et al., 2011; Stavrakou et al., 2012). Similarly, in our simulation the EMAC model largely underestimates the HCOOH

total columns derived from the IASI observations by up to a factor of 4, in particular in remote environments (see Fig. 8).

Although the two main tropical source regions identified by IASI – the Amazon Basin and central Africa – are reproduced325

by EMAC, the magnitude of the simulated HCOOH columns are too low in comparison to the satellite measurements. It

also has to be mentioned that the apparent agreement over Amazonia is possibly due to the high temperature bias in the

region and the subsequent excess of simulated isoprene emissions during the dry season. Over the other source regions (e.g.,

Southeast Asia and Southeast US), the model underestimation is more pronounced, in particular in the Northern Hemisphere.
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Figure 8. Same as Fig. 6, but for HCOOH.

The large enhancement of HCOOH columns observed with IASI over western Russia (∼8× 1015 molecules cm−2), attributed330

to the August 2010 wildfires, is not reproduced by EMAC (<2× 1015 molecules cm−2) and suggests that the biomass burning

emissions of VOCs are underestimated.

The general underestimation of simulated versus observational data is also confirmed by the comparison with the aircraft

database (Emmons et al., 2000), as shown in Table 2. Although this underestimation of the model results is less apparent

compared to that of the total column observations, it must be noted that only a limited number of merged data (53, see Table 2)335

is available for the comparison with aircraft observations and therefore such a comparison provides only an indication rather

than a quantitative estimate. It must be stressed that Franco et al. (2021) showed the importance of in-cloud chemistry for this

tracer, which is missing in this study. The lack of adequate in-cloud chemistry would therefore explain the almost ubiquitous

underestimation of this tracer.

4.2.6 CH3COOH340

Acetic acid is the second most abundant carboxylic acid in the troposphere and, based on the IASI retrievals, presents a spatial

pattern, regional seasonality, and vertical abundance, which resemble those of HCOOH (Franco et al., 2020). Like the latter,

CH3COOH is produced from the oxidation of various tropospheric precursors, but has emission factors from biomass burning

that are 3 to 10 times larger than those of HCOOH (Akagi et al., 2011; Andreae, 2019). CH3COOH is more difficult to detect

in the infrared IASI spectra and its retrievals are subject to larger uncertainties, in particular over the oceans (see Franco et al.,345

2020). Therefore, we limit here the comparison with EMAC to the continents, excluding measurements over desert areas that

are altered by surface emissivity artefacts (Fig. 9). From the comparison, conclusions similar as for HCOOH can be drawn

for CH3COOH: the two main tropical source regions are relatively well reproduced by EMAC (with a better agreement over

Africa in this case), whereas the observed CH3COOH levels are underpredicted in the Northern Hemisphere by up to a factor

of 4. The comparison with aircraft observations (see Table 2) confirms again this strong underestimation also over the ocean,350

as the only campaign in the dataset including CH3COOH measurements is the PEM-Tropics-A, which was performed over

the Pacific ocean.
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Figure 9. Same as Fig. 6, but for CH3COOH. In this figure area above the ocean were excluded.

These results confirm that the VOC emissions and oxidation pathways leading to the formation of CH3COOH in the tropo-

sphere are still poorly understood and constrained (e.g., Khan et al., 2018; Paulot et al., 2011). For example, acetaldehyde – a

major CH3COOH precursor via its reaction with OH (Lei et al., 2018) – is well known to be largely underestimated by global355

models (Millet et al., 2010; Wang et al., 2019). On the other hand, the large model versus observations differences in Southeast

Asia also point to missing emissions from biomass burning. Finally, in-cloud chemistry could be important in the CH3COOH

formation, analogously to formic acid (Franco et al., 2021), and this process could bring model results and observations to a

closer agreement.

4.2.7 PAN360

Owing to its complex photochemical sources and its thermal instability, PAN (Peroxyacetylnitrate), the main tropospheric

reservoir species of NOx, is a very challenging tracer to simulate. The comparison with the IASI data reveals that the model

reproduces correctly the main spatial patterns of PAN, with the source regions and main outflows over the oceans being correct.

However, the model constantly underestimates the observed PAN columns over the globe. The satellite column values are

indeed between two and four times the simulated PAN columns, with the most pronounced negative bias observed at Northern365

Hemisphere mid- and high latitudes. The same conclusion can be drawn from the comparison with the aircraft emissions (Table

2), for which the model clearly underestimates the osberved mixing ratios. A closer inspection reveals that PAN is especially

underestimated in the middle and upper-troposphere. The model–to–observations discrepancies can mostly be attributed to

the unsatisfactory representation of different VOCs. For example, we have seen that the model results do not agree with

observations for acetone, which is an important precursor of the peroxyacetyl radical in the free troposphere (Fischer et al.,370

2014). Furthermore, the strongest model’s underestimation appears to be exactly where CH3COCH3 is at most underestimated,

confirming that deficiencies of simulated precursor patterns are the main cause of the PAN biases. Additionally, sensitivity

simulations suggested that the PAN formation in global models is more sensitive to the representation of VOCs (Fischer et al.,

2014). Finally, an insufficient vertical transport of VOCs from the planetary boundary layer to the free troposphere in the model

might also reduce the amount of PAN, because PAN is more stable at the lower temperatures of the free troposphere.375
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Figure 10. Same as Fig. 6, but for PAN.

4.3 OH

The simulated distribution of the hydroxyl radical (OH) is in line with the findings by Lelieveld et al. (2016) (further denoted

as L16), who earlier thoroughly analysed the MOM performance in EMAC with a setup featuring a simplified treatment of

aerosol microphysics and gas/aerosol partitioning. The total OH turnover (composition of annual production and loss terms,

shown in Fig. 11) of 234 Tmol yr−1 in 2010 is 7 % less than that found by L16 and is consistent with the addition of the380

explicit treatment of secondary organic formation processes of aerosols and changes in trace gas emission fluxes. The OH

production in the VOC- and ROOH-initiated reactions is 3 % lower in both, the free troposphere (FT), and the boundary layer

(BL). This is compensated by the increased share of primary production (P , via the O(1D)+H2O pathway), especially in the

BL (4 % increase vs. 2 % in the FT). Regarding the partitioning of the OH sinks, however, no substantial changes can be noted

(see Fig. 11, right panel). Together with the reduction of the secondary sources (S), the resulting OH recycling probability rOH385

(defined as 1−P/(S+P ), see details in L16) establishes at 59 % and 62 % in the BL and FT, respectively. Being about 5 %

lower than the estimate reckoned by L16, such high rOH values signify still highly stable (buffered) OH concentrations and

therefore a likewise stable tropospheric oxidative capacity obtained with this model set-up.

The simulated annual air mass-weighted average hydroxyl concentrations are 12.1 (troposphere), 12.0 (FT) and 13.6 (BL)

1015 molecules cm−3 in the year 2010, which correspond to OH chemical removal lifetimes of 1.59, 1.78 and 0.53 s, respec-390

tively. The diagnosed tropospheric OH inter-hemispheric gradient (NH/SH ratio) is 1.17, lower than that estimated by L16

(1.20) due to the increased OH reactivity via VOC and SOA in the NH and at the lower end of the model estimates reviewed

there. By not being in agreement with the measurement-based estimates suggesting hemispheric symmetry in tropospheric

OH (Patra et al., 2014; Wolfe et al., 2019), the pronounced asymmetry in atmospheric models results from asymmetric OH

production due to skewed distributions of O3 and NOx prevailing in the NH, and calls for further studies in this direction.395

Overall, the simulated tropospheric hydroxyl radical distribution is comparable to that thoroughly analysed by L16 with

a minor increase in reactivity of up to 5 % when calculated from the changes to the CH4 and MCF (CH3CCl3) lifetimes

against removal by OH (τOH). The here estimated τOH(CH4) values are 8.4 and 4.4 years in the FT and BL, respectively; the

tropospheric τOH(MCF) value is obtained to be 4.9 years.
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Figure 11. Simulated OH production (left) and sink (right) by category in the troposphere (top) and boundary layer (bottom) in this study and

by Lelieveld et al. (2016) (denoted L16). Values are annual totals in Tmol/yr for 2010. Percentages denote fractions attributed to particular

categories (see L16 for for details).

4.4 Aerosol Optical Depth400

In order to evaluate the overall performance of the model in reproducing aerosol distribution, the AOD at 550 nm simulated by

the model is compared to satellite based and station observations. Figure 12 shows the annual average AOD of the simulation

and of the observations (satellite). The distribution is remarkably similar, with the high AOD regions (Northern Africa and

Soth Eastern Asia) being well simulated by the model. Open ocean AOD of ' 0.2 AOD units are reproduced by the model,

with slightly underestimated AOD over the central Atlantic (possibly due to slightly underestimated dust outflow from the405

northern Africa region). To quantify the model capability to reproduce the AOD, in Figure 13, the model daily AODs are

compared to the collocated (in space and time) observations from MODIS and the AERONET instruments (middle and bottom

row, respectively). For comparison, the same scatter plot has been produced comparing MODIS and AERONET directly (top

row). The model has difficulties in reproducing the daily variability of AERONET AOD, with only 58 % of the simulated

AOD within a factor of 2 to the observational data. Even the correlation is considerably low, with an R2 equal to 0.33. Very410

similar results are obtained by comparing the model results to the satellite AOD observations, with again only 57 % of the

simulated data within a factor of 2 to the observations. Once monthly averages are used for the inter-comparison, the statistics

remain almost unchanged with just a small improvement in the slope of the fitting curve (see Fig. 13, central column). Finally,

using the annual averages for the intercomparison, the coefficients of determination R2 almost double (0.633 and 0.567 for

the comparison of the model with MODIS and AERONET data, respectively), while more than 80 % of the model results are415
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Figure 12. Global map of AOD from model results and the MODIS observations for the year 2010 (annual average).

within a factor of 2 to the observations (either satellite or in-situ). To put these results into context, the same analysis has

been performed comparing the MODIS data and AERONET stations. Although the satellite observations outperform (slightly)

the model results compared to the AERONET measured AOD in the case of the daily and monthly averages, for the annual

averages the model seems to perform equally well, with a similar coefficient of determination and a fraction of values within a

factor of 2 to the observations. Due to the intrinsic characteristics of the model (such as its relative coarse resolution) it is not420

expected to have a good representation of the short term variability.

4.5 Fine particulate mater (PM2.5)

The comparison of model results for PM2.5 (i.e. fine particles with an aerodynamic diameter smaller than 2.5 µm) was per-

formed against the dataset of Hammer et al. (2020). Although this dataset is not a pure observational dataset, it has a global

coverage and has been constrained from in-situ measurements. The comparison is done for PM2.5 at 35 % relative humidity,425

i.e. dry fine particulate mass (in µg m−3). In Figure 14, the maps of the annual average of the model results and the pseudo-

observation dataset are shown. Although the distribution patterns appear to be similar, the model tends to underestimate the

fine particle concentration over northern India and eastern China, on the one hand, while the opposite happens over east Africa

and the Middle East. On the other hand side, the model seems to reproduce PM2.5 quite accurately over both Europe and North

America, and even the locally enhanced levels of PM2.5 (∼ 30 µg m−3) in Canada from Boreal forest biomass burning are430

nicely reproduced by the model.

In Figure 15, the scatter plot of the two datasets is shown, while in Table 4 the statistics for the different regions presented

in the figures are listed. Due to the large grid resolution difference, the pseudo-observations have been aggregated to the grid

resolution of the model. As already noted from the global map, the model tends to underestimate PM2.5 over South Asia and

East Asia by ∼ 40% and ∼ 20%, respectively. Nevertheless, in both regions, more than 70 % of the model results are within435
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Figure 13. Scatter plots of AOD estimated by the EMAC model in this study versus the MODIS and the AERONET observations. Left,

Middle and Right: scatter plots using daily, monthly and annual averages, respectively. Both, model and satellite based observations, were

sampled at the AERONET locations. In each plot the coefficients of the linear fit, the coefficient of determination and the fraction of data

within a factor of 2 are listed.

a factor of 2 of the pseudo-observations. The model agrees well, however, with data from Europe and North America, with

more than 95 % of the model results within a factor of two. The overall comparison indicates that the model agrees well with

the pseudo-observations, as the spatial-temporal averages of the two datasets are very close (17.1 µg m−3 for the model and
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Figure 14. Global map of PM2.5 from model results and the Hammer et al. (2020) dataset for the year 2010 (annual average) in µgr/m3.

The data from Hammer et al. (2020) does not contain values over the ocean.

19.4 µg m−3 for the pseudo-observations), with more than 70 % of the model simulated PM2.5 within a factor of two of the

pseudo-observed PM2.5.440

Figure 15. Scatter plots of PM2.5 of model results versus data from Hammer et al. (2020) for the year 2010 (annual average) in µg m−3.

Light blue, red, green, and orange colors depict points located in Europe, North America, East Asia, and South Asia, respectively. Grey

points indicate the remaining parts of the world.
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Region MM OM MM/OM PF2

Europe 11.4 14.3 0.80 98.8

North America 4.8 5.2 0.92 95.2

South Asia 31.2 50.3 0.62 72.6

East Asia 31.2 37.1 0.84 82.1

World 18.4 19.4 0.94 71.4

Table 4. Summary for simulated and pseudo-observed, annually averaged PM2.5. MM and OM denote the arithmetic mean of the simulated

and observed concentrations, respectively, in µgm−3. PF2 is the percentage of simulated points within a factor of 2 with respect to the

observations.

4.6 Aerosol Composition

For the evaluation of the simulated mass concentrations of sulfate, nitrate, ammonium, sodium and five species related to

sea spray and organic aerosols, we use in-situ measurements from different monitoring networks, as described in Sect. 3.2.

Co-located time series of simulated and observed quantities were obtained by bilinear interpolation of the gridded model data

at ground level to the respective site location. The analysis is based on monthly mean concentrations, which are derived from445

daily (model data, EMEP observations) and weekly (EPA) data, with the exception of EANET, which directly provides monthly

averages. Note that some monitoring stations are located relatively close to each other, such that the reported concentrations

may not be independent from each other, which can lead to an overestimation of the degrees of freedom in the calculation of

quantities such as the root mean square error.

4.6.1 Sulfate (SO2−
4 )450

Observed particulate sulfate concentrations are reproduced well by the model. The monthly mean concentration is matched

closely for North America (EPA) and slightly underestimated for Europe (EMEP) and East Asia (EANET) (see Table 5).

For EPA and EMEP data, more than 80% of the simulated monthly mean concentrations lie within a factor of two of the

observations, and more than 70% for EANET. The standard deviation of observed monthly mean values is lower than the root

mean square error (RMSE) for all monitoring networks, which is an indication for a good quality of the model results (Barna455

and Lamb, 2000). Also, RMSE is lower in the present study compared to a similar analysis by Pozzer et al. (2012a) in which,

however, a longer time period of four years (2005-2008) was investigated. Pozzer et al. (2012a) also report a relatively large

spread (observation standard deviation equal to 5.3 µgm−3) of the measured sulfate concentrations in EANET, which is likely

to be caused by a comparably low number of stations which cover a large region with strong spatial gradients.

The close overall agreement of average concentrations simulated by the model (MM) with the observations (OM) for EPA460

can partly be attributed to underestimated high concentrations in summer (composite of June, July and August, “JJA”), which

are compensated by overestimated lower concentrations from autumn to spring (see Figure 16). Relative deviations are largest
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Species Network Nstation MM MSTD OM OSTD MM/OM PF2 RMSE

SO2−
4 EPA 81 1.92 0.99 1.88 1.20 1.35 84.3 0.93

SO2−
4 EMEP 42 1.68 1.05 1.79 1.21 1.37 83.7 0.95

SO2−
4 EANET 25 2.83 1.65 3.58 4.06 1.58 71.0 3.49

NO−3 EPA 81 1.89 1.97 0.77 1.07 4.29 36.9 1.88

NO−3 EMEP 22 3.34 2.89 1.93 2.15 3.75 55.3 2.97

NO−3 EANET 23 3.34 3.34 1.45 2.43 8.36 32.6 3.47

NH+
4 EPA 81 1.09 0.89 0.73 0.53 1.84 64.8 0.77

NH+
4 EMEP 27 1.31 1.17 0.92 0.86 1.69 62.0 0.92

NH+
4 EANET 23 1.40 1.35 1.00 1.14 2.38 54.7 1.07

Na+ EPA 81 0.16 0.22 0.16 0.36 2.19 61.1 0.23

Na+ EMEP 24 0.57 0.43 0.60 0.73 2.03 53.1 0.57

Na+ EANET 21 0.92 0.81 1.22 1.67 2.89 46.8 1.53

Mg2+ EPA 81 0.05 0.06 0.05 0.05 2.06 42.7 0.06

Mg2+ EMEP 22 0.17 0.13 0.07 0.09 4.65 32.6 0.16

Mg2+ EANET 15 0.29 0.21 0.24 0.26 2.38 57.8 0.27

Ca2+ EPA 81 0.06 0.12 0.26 0.27 0.60 16.2 0.37

Ca2+ EMEP 28 0.14 0.25 0.15 0.25 1.60 51.5 0.24

Ca2+ EANET 19 0.23 0.22 0.75 1.97 1.44 45.2 2.07

K+ EPA 81 0.03 0.05 0.07 0.04 0.83 19.8 0.08

K+ EMEP 25 0.09 0.13 0.08 0.07 1.42 60.0 0.14

K+ EANET 20 0.12 0.09 0.26 0.34 0.98 47.1 0.37

Cl− EPA 81 0.35 0.65 0.14 0.51 5.92 24.7 0.53

Cl− EMEP 24 2.16 1.59 0.86 1.05 37.24 29.5 1.82

Cl− EANET 17 2.63 2.55 1.90 2.88 4.38 39.2 2.62

OA IMPROVE 155 1.32 1.11 0.92 0.73 1.73 0.65 1.01

OA EMEP 12 1.43 0.77 2.55 2.27 0.83 0.60 2.35

OA EASIA 9 9.20 9.91 16.07 11.41 0.51 0.42 9.25

Table 5. Summary of simulated and observed monthly averaged aerosol concentrations for SO2−
4 , NO−3 , NH+

4 , Na+, Mg2+, Ca2+, K+,

Cl− and organic aerosols (OA) and different observational networks (second column). Nstation is the number of stations providing data for

the respective species and network; note that this is not the sample size for the shown statistics. The next columns provide the arithmetic

mean of the simulated (MM) and observed concentrations (OM), and the respective standard deviations (MSTD, OSTD) in µgm−3. PF2

denotes the percentage of simulated points within a factor of 2 with respect to the observations, and RMSE represents the root mean square

error between simulated and observed points.
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in winter and autumn, when observed concentrations are much lower than simulated concentrations. In Europe (EMEP), the

highest concentrations are observed during the winter months, which is captured by the model.

The East-West gradient of observed annual mean concentrations in North America is represented well in the model, although465

the amplitude is underestimated: lower values in the West are overestimated while higher concentrations in the East are un-

derestimated (Figure 17). This feature also lead to a good agreement between observed and simulated mean concentrations in

Table 5. The North-South gradient over Europe is also captured by the model. Despite the less dense spatial distribution of

monitoring stations providing data for particulate sulfate, one can observe a correspondence between simulated and observed

annual mean concentrations, especially over Japan. One outlier in Japan with a very low observed annual mean concentration470

is located at a relatively high altitude (“Happo”, 1850 m), so that the comparison to model data on ground level may not be

appropriate for this station. The same holds for two EMEP stations, namely Jungfraujoch (Switzerland) at 3578 m, and Chopok

(Slovakia) at 2008 m, where annual mean concentrations are largely overestimated.
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Figure 16. Scatter plots of observed and simulated monthly average SO2−
4 concentrations for the year 2010 and three observational networks:

EPA, EMEP, and EANET (left to right). The coloring of the points represents a categorization into seasons (dark blue: DJF, orange: MAM,

red: JJA, light blue: SON), the respective seasonal averages of monthly concentrations are depicted as large circles. Dashed lines denote

the interval of a factor of 2 of the observations. The simulated concentrations were obtained by sampling the modeled data at the respective

station locations using bilinear interpolation over neighbouring grid points.

4.6.2 Nitrate (NO−
3 )

Nitrate is less well represented than sulfate, showing a general overestimation of observed concentrations with an average475

ratio of simulated to observed concentrations by at least 3.75. This comparably large ratio is dominated by a few stations with

small concentrations, where the median ratios lie between 1.70 and 2.84. About half (EMEP) to two thirds (EPA, EANET)

of the simulated monthly mean concentrations exceed a factor of 2 with respect to the observations. For EANET and EMEP,

the number of monitoring stations is substantially lower than for EPA, which may partly explain the larger spread in both, the
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Figure 17. Annual mean SO2−
4 concentrations for the year 2010 for the model and three observational networks: EPA, EMEP, and EANET

(left to right). Simulated data are shown as shaded contours, while the observational data are depicted as circles.

model results and observations (OSTD, MSTD). The RMSE is larger than the observed standard deviations for all considered480

networks, suggesting a less faithful representation of this species. This overestimation may be attributed to the usage of Teflon

filters, as nitrate can evaporate from the filters under warm and dry conditions (Ames and Malm, 2001). Schaap (2003),

Schaap et al. (2004) and de Meij et al. (2006) showed that particulate ammonium and nitrate partially evaporate from the

filters at temperatures between 15 to 20◦C and can evaporate completely at temperatures above 20◦C. Therefore, this effect

predominantly affects measurements during the warmer seasons, when nitrate concentrations are close to the annual minimum.485

An indication for overestimation due to evaporation would then be a closer agreement between model and observation in the

colder winter months. However, both in relative and absolute terms, the overestimation of monthly mean nitrate concentrations

is more pronounced in winter than in summer for the three considered networks (Figure 18). All regions show the same

seasonal cycle with respect to averaged monthly mean concentrations; a maximum in winter and a minimum in summer, both

for model results and observations. The spatial gradient of annual mean concentrations is captured well for North America490

(EPA), although the concentrations towards the East coast are generally overestimated. The low number of monitoring stations

for EANET and EMEP does not allow us to draw solid conclusions; yet we can report that the North-South gradient of nitrate

over Europe is reproduced by the model, except for an outlier at high altitude in Central Europe (Figure 19). The region with

highest simulated annual mean concentrations and strong spatial gradients is East Asia, however it is scarcely covered by

monitoring stations reporting full coverage for the considered year 2010.495

4.6.3 Ammonium (NH+
4 )

Considering the ratio of averaged monthly mean ammonium concentrations, the model overestimates the observed concen-

trations, yet to a lower degree than for nitrate (Table 5). This feature is also apparent in the fraction of simulated monthly
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Figure 18. As in Figure 16, but for NO−3 .

Figure 19. As in Figure 17, but for NO−3 .

mean values within a factor of two of the observations: 54.7% for the network in East Asia and more than 60% for Europe

and North America. The magnitude of overestimation is similar for the three networks, ranging from 40% to 50%. RMSE500

values are close to the standard deviation of observations in all networks, again indicating a good representation by the model.

The largest concentrations occur during the winter months (Figure 20). While the degree of overestimation is similar for the

different seasons in EMEP and EANET, this does not hold for EPA: summer concentrations are systematically underestimated,

whereas autumn to spring concentrations are generally overestimated. The monthly mean concentrations for winter and spring

constitute most of the values outside the factor of 2 regarding the observations for all considered regions. Both the observed505

North-South and East-West gradients of annual mean concentrations are represented well for the EPA network ((Figure 21),

though the simulated gradient is less pronounced.
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The North-South gradient of observations over Europe is also captured by the model, although the number of stations is

again comparably low. The simulated spatial patterns in East Asia also match the observations arguably well.
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Figure 20. As in Figure 16, but for NH+
4 .

Figure 21. As in Figure 17, but for NH+
4 .

4.6.4 Dust and sea spray510

This section provides an overview for species frequently found in dust and sea spray aerosol: sodium, calcium, magnesium,

potassium and chloride. As the ocean is a large source of these water-soluble species, concentrations over the sea and coastal

areas are large, as opposed to lower concentrations over the continents. Sodium, potassium, magnesium and calcium can also

be found in desert dust, for instance in the Sahara, as reported by Reid et al. (2003) and Moreno et al. (2006). However, most
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of the monitoring locations except for those in coastal areas are sampling quite remote sites far from the source regions, and515

thus can not be expected to display the full range of concentrations. In the following, we present the results for sodium in more

detail, followed by a brief overview of the remaining species.

Sodium is represented well by the model, as averaged monthly mean concentrations from model and observations agree

in general, particularly for EPA (Table 5). The mean ratio MM/OM, however, shows an average overestimation by a factor

of at least 2. The observational standard deviation OSTD for all regions is smaller than the RMSE, the latter being reduced520

compared to the results from a previous study by Pozzer et al. (2012a). For EMEP, more than 3 out of 5 simulated monthly

mean values lie within a factor of 2 of the observations and more than 53% and 46% for EMEP and EANET, respectively,

which is a substantial improvement compared to Pozzer et al. (2012a). The latter two networks offer again only a small number

of stations. Considering the average of monthly mean concentrations separated by season, one can observe an underestimation

of summer concentrations for all networks (Figure 22).525

As mentioned before, the regional distribution of stations does not cover those regions with high concentrations. However,

including the information of all networks at once, one can observe that continental stations exhibit low annual mean concen-

trations, while high concentrations can be observed for instance at stations close to the coast (i.e. Japan, Florida, Denmark,

Sweden), indicating that spatial features of the global sodium distribution are qualitatively captured (Figure 23).

Potassium, magnesium and calcium ions share spatial features with sodium in the model, exhibiting elevated values over the530

ocean, as well as over the Sahara and Gobi desert, and reduced concentrations over other continental areas.

The number of stations in EANET is quite low for all sea spray species which, on the one hand, allows for a few outliers to

dominate mean values and errors. On the other hand, EPA offers a large number of stations, yet the correspondence of model

and observations is also quite low for sea spray and dust species. Average monthly mean concentrations for magnesium are

represented well in the model, which is caused by a large overestimation of concentrations in winter months balancing an535

underestimation of summer concentrations (not shown).

Chloride concentrations are widely overestimated with respect to all three networks. The exceptionally high ratio MM/OM

for EMEP is caused by two outliers with MM/OM> 1000 due to very low observed concentrations. Without these, MM/OM

is better, with a value of 13.08.

4.6.5 Organic Aerosols (OA)540

Figure 25 shows the comparison of model calculated OA concentrations with measurements from the EMEP observational

network over Europe, the IMPROVE network over rural North American locations, as well as short-term measurement data

collected over East Asia as summarized by Jo et al. (2013). The comparison statistic is presented in Fig. 5. The model captures

relatively well the monthly average concentrations of OA over these highly populated regions of the Northern Hemisphere.

This is rather encouraging, given the expected uncertainties of the emission inventory and the complex chemistry involved to545

simulate the secondary organic aerosol formation. It is worth emphasizing that the model considers the formation of SOA solely

from the homogeneous gas-phase photochemical oxidation of its precursors. Therefore, the omission of other SOA formation

pathways (e.g., from aqueous-phase and heterogeneous reactions) can add to the model bias. This is mostly evident during
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Figure 22. As in Figure 16, but for Na+.

Figure 23. As in Figure 17, but for Na+.

winter (e.g., over Europe), when the relative importance of these processes on SOA formation is increasing due to the lower

photochemical activity and the limited conversion of gas phase organic precursors to SOA. In addition, recent studies have550

provided strong evidence that the uptake of water-soluble gas-phase oxidation products (even small carbonyls like formalde-

hyde and acetic acid) can be the main driver of SOA pollution during haze events over Eastern Asia (Gkatzelis et al., 2020).

Given the coarse resolution of the model and its inability to simulate these SOA formation pathways, the observed total OA

concentrations are expected to be systematically underestimated by the model over Eastern Asia. Nevertheless, model results

are in general in reasonable agreement with observations with the exception of the strong underestimation over Beijing and555

Shijiazhuang, which brings the MM/OM to very low value (i.e. 0.51). Over Europe, the model also tends to underestimates

OA, with MM/OM of 0.83 (see Tab. 5). The model performs worst during winter. Tsimpidi et al. (2016) has identified the lack
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Figure 24. As in Figure 16, but for OA.

Figure 25. As in Figure 17, but for OA.

of biomass burning emissions as the main source of this discrepancy. Later, Kodros et al. (2020) and Paglione et al. (2020)

have shown evidence that biomass burning also contributes significantly to SOA formation during wintertime following its

oxidation by the NO3 radical in the dark. Over North America, the model tends to overestimate OA over rural areas with a560

MM/OM equal to 1.73. However, as shown in Fig. 24, part of this discrepancy is explained by the low values of OA over the

US national parks.

Despite the agreement of the surface OA concentrations between model results and observations, the OA are strongly under-

estimated in the free troposphere. In Fig. 26, the model is compared with 12 field campaign measurements (Heald et al., 2011).

Our results show similar agreement to the one obtained by Heald et al. (2011), with the simulated values below the observed565

one.
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Figure 26. Model results of mean vertical profile of organic aerosol for selected field campaigns in black, and spatio-temporal standard devi-

ation as grey area. The observed mean values are depicted in solid red, with the bars representing the standard deviation of the observations.

The observed median is presented as red dashed line.

5 Conclusions

We have presented an evaluation of EMAC with a comprehensive degradation scheme for organics (MOM) in the MECCA

chemistry submodel, combined with an explicit estimation of the organic tracers’ condensation on aerosols with a VBS ap-

proach (ORACLE submodel). We have compared the model results with a large number of in-situ and satellite based remote570
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sensing observations. The evaluation focuses on carbon monoxide (CO), simple organics and aerosols, which are most in-

fluenced by the new scheme. CO is correctly reproduced compared with station measurements, with the correct north-south

gradient. Nevertheless, once the model results are compared with the satellite observations from MOPITT, an overestimation

of CO over the Amazon basin is apparent, especially in autumn, possibly due to an overestimation of the biomass burning

emissions simulated by the model. For alkanes the comparison shows a good agreement, although an oceanic source for the575

butanes is missing. In contrast, the model underestimates alkenes, and especially C3H6, which shows large differences com-

pared to the observations. Model results of oxygenated species show an indifferent picture when compared to observations,

depending on the tracer: while methanol is well reproduced, simulated acetone shows large spatial discrepancies compared

to the remotely sensed observations. In fact, for the latter, the model misses strong emissions over the boreal forests, while it

predicts instead too high total columns over tropical forests (i.e., Amazonia and Central Africa). Formic and acetic acid show580

similar agreements to the observations, with the main tropical sources well reproduced, but with a strong underestimation

elsewhere.

The aerosols at the surface are well reproduced by the model, both with respect to composition and total amount. The

annually averaged simulated AODs show a very good agreement with the AERONET station observations, but with some

deficiencies in the representation of the short term variability. The agreement of the fine particulate mass (PM2.5) near the585

surface is also quite good, with most of the simulated values within a factor of 2 to the observations. The evaluation of the

aerosol chemical composition shows a high level of agreement for near-surface sulphate and some more deviations for NH+
4

and nitrate, which are both overestimated by the model, especially the latter (even though the observations are characterized

with a high level of uncertainty). The mechanically produced primary aerosol species (dust and seasalt) show a reasonable

agreement with the observations with some substantial overestimation of the simulated chloride concentrations indicating a too590

weak acid displacement process over the continents.

Finally, the comparison of OA shows a good agreement with station observations, while the vertical distribution of the sim-

ulated values are largely underestimated, when compared with aircraft measurements, analogously to other global atmospheric

chemistry models of similar complexity, although significant improvement in this direction has been recently published (Pai

et al., 2020).595

6 Outlook

The presented model evaluation is useful for identifying areas for further model improvements. A few possible directions are

discussed next.

Emissions have always been a critical point for simulating tropospheric chemistry. It has already shown in many studies that

even anthropogenic emissions of alkanes need to be improved as severely underestimated in many inventories (e.g. Emmons600

et al., 2015; Tilmes et al., 2016), mostly coming from erroneous speciation of the total VOC emissions (Dalsøren et al., 2018)

Residential wood burning and/or biofuel use (e.g., for heating) that often contribute significantly to both POA and SOA

formation over urban areas are strongly underestimated in the emission inventories (Tsimpidi et al., 2016; Denier Van Der Gon
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et al., 2015). In addition, global models lack OA emissions from residential and commercial cooking activities that can be an

important source of OA (Mohr et al., 2012; Sun et al., 2011; Ge et al., 2012; Hayes et al., 2013). Underestimation of cold-start605

vehicle emissions (Weilenmann et al., 2009) can also lead to significant underestimation of OA formation from the transport

sector (e.g., during wintertime).

As seen in this study, the model results underestimate selected VOCs in boreal regions. The thawing of permafrost is poten-

tially an additional emission source of organic compounds at high latitudes in the northern hemisphere (Li et al., 2020), which

has not been considered yet. However, an estimate with global data sets is still missing. Furthermore, the emission of VOCs610

from biomass burning is likely strongly underestimated. In fact, overwintering fires in boreal forest (Scholten et al., 2021),

which smoulder through the non-fire season, are normally not detected by satellite observations and therefore are missing in

our used emissions dataset. Moreover, peat fires are not easily detected from space, but are characterized by larger emission

factors for many VOCs. They are important for simulating air composition during peat fires in Indonesia (Rosanka et al.,

2021c) and likely critical for resolving the model biases at high latitudes, where most of peatland is located and could be fur-615

ther released by permafrost thawing. Ramo et al. (2021) also found that small undetected fires enhance the estimated amount

of emitted carbon from biomass burning in sub-Saharan Africa by 31-101% . Finally, soil temperature and soil wetness play

an important role in the estimation of the online emissions of biogenic VOCs, and it is therefore important to have a correct

simulation of the surface properties by the underlying climate model.

Furthermore, dry deposition is a relevant process also affecting VOCs in the lower troposphere (Khan et al., 2015). The620

inclusion of the additional uptake at the plant cuticle leads to a better representation (Karl et al., 2004; Müller et al., 2018;

Emmerichs et al., 2021) and would likely reduce the overestimation of species like acetaldehyde in the Tropics, as shown here.

In the Amazon forest, the missing storage capacity of soil water leading to too high temperatures (Hagemann and Stacke, 2015)

additionally causes an underestimation of dry deposition (Emmerichs et al., 2021), while temperature-dependent processes like

VOC emissions are overestimated.625

Another source of uncertainty is related to the scavenging efficiency of gas-phase OA precursors. The water solubility of

these oxidized organic vapors is largely unknown and is typically considered uniform for all organic compounds in modeling

studies even though they become increasingly more hydrophilic during their atmospheric lifetime (Hodzic et al., 2014; Tsimpidi

et al., 2017).

The extension of MOM for the oxidation of additional VOCs has the potential to reduce the negative model biases for some630

oxygenated volatile organic compounds (OVOCs) and enhance the predicted OA levels. For instance, with an emission strength

of more than 40 Tg yr−1, anthropogenic C5- and higher hydrocarbons can be a significant source of OVOCs like acetaldehyde

and acetone (Pozzer et al., 2010). Further improvements are expected from an extended representation of the emission and

oxidation of known biogenic VOCs with more than 5 carbon atoms. Moreover, the emissions of aromatic compounds from

biogenic sources could be as large as 40 Tg yr−1 (Misztal et al., 2015). So far only a small emission of toluene is considered635

and a more comprehensive representation of biogenic aromatics would likely lead to further improvements.

The formation of SOA in most models relies on the reaction of its gas-phase precursors with reactive atmospheric radicals

(e.g., OH,O3,NO3) and their chemical aging is usually considered by the further photo-oxidation of the semivolatile products
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solely in the gas phase. However, SOA is also subject to oxidation in the aqueous phase through superficial and bulk interactions

with gas-phase oxidants (George and Abbatt, 2010). Therefore, fundamental processes of SOA formation in the aqueous640

phase (e.g., from isoprene epoxydiols (Nguyen et al., 2009) and glyoxal (Fu et al., 2008)) are typically missing from the

conventionally used parameterizations. In addition, the uptake of small carbonyls (e.g., aldehydes and acids) to the aqueous

phase and their subsequent oxidation and oligomerization has been recently linked to significant increases of SOA mass during

pollution events (Gkatzelis et al., 2021).

Recently, MOM has been coupled to the detailed Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC, Rosanka645

et al., 2021a) for cloud droplets. An explicit treatment of multiphase chemistry of OVOC has already been used for assess-

ing the global role of clouds as a sink of ozone (Rosanka et al., 2021b). By comparing EMAC’s prediction of total methanol

columns to IASI satellite retrievals (comparable to Sect. 4.2.3 and Fig. 6), they find that EMAC’s tendency to overestimate

methanol is partially reduced by the additional cloud sink. This suggests that the missing representation of in-cloud OVOC

chemistry introduces a significant bias in the present study, and therefore a more detailed multi-phase chemistry should be650

included for future studies. Furthermore, JAMOC is limited to the oxidation of OVOCs containing up to four carbon atoms

(Rosanka et al., 2021a), and an expansion to larger species (i.e. containing more than four carbon atoms) is thus desirable, in

order to improve the representation of these OVOCs in EMAC when using MOM. Finally, based on the results of Franco et al.

(2021), more detailed in-cloud chemistry could improve the representation of acids (such as acetic and formic acid), which is

clearly underestimated here where cloud chemistry is important.655
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