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Abstract. An updated and expanded representation of or-
ganics in the chemistry general circulation model EMAC
(ECHAM5/MESSy for Atmospheric Chemistry) has been
evaluated. First, the comprehensive Mainz Organic Mecha-
nism (MOM) in the submodel MECCA (Module Efficiently5

Calculating the Chemistry of the Atmosphere) was activated
with explicit degradation of organic species up to five car-
bon atoms and a simplified mechanism for larger molecules.
Second, the ORACLE submodel (version 1.0) now consid-
ers condensation on aerosols for all organics in the mecha-10

nism. Parameterizations for aerosol yields are used only for
the lumped species that are not included in the explicit mech-
anism. The simultaneous usage of MOM and ORACLE al-
lows an efficient estimation of not only the chemical degra-
dation of the simulated volatile organic compounds but also15

the contribution of organics to the growth and fate of (or-
ganic) aerosol, with the complexity of the mechanism largely
increased compared to EMAC simulations with more sim-

plified chemistry. The model evaluation presented here re-
veals that the OH concentration is reproduced well globally, 20

whereas significant biases for observed oxygenated organ-
ics are present. We also investigate the general properties of
the aerosols and their composition, showing that the more
sophisticated and process-oriented secondary aerosol forma-
tion does not degrade the good agreement of previous model 25

configurations with observations at the surface, allowing fur-
ther research in the field of gas–aerosol interactions.

1 Introduction

Volatile organic compounds (VOCs) play a pivotal role in
the atmosphere by constraining the total oxidant level and 30

serve as precursors of ozone (O3), carbon dioxide (CO2) and
secondary organic aerosols (Heald and Kroll, 2020). Due to
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2 A. Pozzer et al.: MOM evaluation with EMAC

the complexity of the chemistry of VOCs, a comprehensive
and explicit representation thereof is mostly still missing in
global and regional model simulations (Heald et al., 2005).
To capture this full complexity, model simulations would be-
come rather computationally expensive and slow in perfor-5

mance. However, missing this complexity also substantially
limits the current understanding of the budget of secondary
pollutants, e.g. O3 and aerosols. The challenges involved are
twofold: (1) understanding and including the chemical degra-
dation pathways and (2) representing all other influencing10

processes (e.g. deposition, multiphase chemistry) in already
complex global and regional models.

A chemical mechanism that stands out for size and de-
tailed oxidation of many important VOCs is the Mainz Or-
ganic Mechanism (MOM, Sander et al., 2019). MOM rep-15

resents the chemistry of alkanes, alkenes, terpenes (isoprene
and monoterpenes) and monocyclic aromatics. The mecha-
nism has been employed to study the impact of isoprene OH
recycling above pristine tropical forests (Taraborrelli et al.,
2012), oxidation of monoterpenes as a source of HO2 (Hens20

et al., 2014; Mallik et al., 2018) and the influence of aro-
matics on tropospheric ozone (Taraborrelli et al., 2021). Fur-
thermore, MOM has been used with extensions in order to
simulate product yields of β-caryophyllene oxidation (van
Eijck et al., 2013), the oxidation of alkyl amines and for-25

mamide as source of isocyanic acid HNCO (Rosanka et al.,
2020), the atmospheric losses of stabilized Criegee interme-
diates (Vereecken et al., 2017), and the most recent OH-
recycling mechanisms in isoprene oxidation (Novelli et al.,
2020). However, a full evaluation of the VOC distribution30

predicted by MOM in a global numerical model has not been
published.

Furthermore, a more detailed chemical mechanism, which
reduces the number of lumped species of larger VOCs, al-
lows an explicit coupling of the VOC chemistry with in-35

teractive aerosol-phase partitioning and organic compound
ageing without losing the chemical identity of the organic
compounds. Previous studies (e.g. Farina et al., 2010; Tsim-
pidi et al., 2016), which treat the organic aerosol with the
help of a volatility basis set (VBS) (Donahue et al., 2011),40

usually use lumped species to represent tracers with simi-
lar volatility and age structure (e.g. O : C ratio; see Ng et al.,
2010) and therefore without any chemical identity or detailed
degradation scheme. Instead, explicit chemistry schemes al-
low a representation of secondary organic aerosol (SOA)45

formation from VOCs without the use of lumped species
and experimentally derived parameters (e.g. reaction rates,
aerosol yields). These tuning parameters can increase model
uncertainties and result in large differences between atmo-
spheric chemistry models. In addition, empirical chemical50

schemes are not mass conserving (e.g. for carbon) and the
higher-generation reaction products are lumped or ignored,
even if, for instance, they play a pivotal role for OH recy-
cling and ozone chemistry (Taraborrelli et al., 2012) or are
a major component of atmospheric brown carbon (Laskin55

et al., 2015). In general, explicit identities of model species
are essential for making further progress in quantifying the
atmospheric budget of secondary organic aerosols. By rely-
ing on high-quality (experimental and theoretical) data of the
physico-chemical properties of precursors and intermediates, 60

an ever more realistic modelling of removal, ageing and for-
mation pathways would be possible.

In this study we present a simulation and an evaluation
of the ECHAM/MESSy Atmospheric Chemistry (EMAC)
general circulation model (Jöckel et al., 2010, 2016) with a 65

complex organic chemical mechanism (MOM, Sander et al.,
2019), accounting not only for the gas-phase chemistry but
also for the losses via uptake and condensation into aerosols
(via the ORACLE submodel) and cloud droplets (via the
SCAV submodel). As the EMAC model has largely already 70

been evaluated in the past and for most of the components
there were no significant changes, we focus on the evalua-
tion of organic tracers and aerosols. Most importantly, gen-
eral properties of the aerosols (such as aerosol optical depth
(AOD) and particulate concentration below 2.5 µgm−3) will 75

be discussed, as these could be strongly affected. Further-
more, changes to the global hydroxyl radical distribution in-
fluenced by the new chemistry adopted in this study are dis-
cussed.

A comparison for VOCs with the MIM (Mainz Isoprene 80

Mechanism) chemical mechanism developed by Pöschl et al.
(2000) that has been evaluated by Pozzer et al. (2007) and
used previously (Jöckel et al., 2006, 2016) is not shown
here as in such a mechanism (i) most of organics are either
lumped, e.g. methyl vinyl ketone (MVK) and methancrolein 85

(MACR), or missing, e.g. aromatics and monoterpenes; (ii)
primary species common to MIM and MOM would be in-
fluenced only by the different sinks (mainly OH; a detailed
description of OH budget is presented in this paper); and
(iii) the model bias with respect to secondary species, e.g. 90

oxygenated VOCs, has been linked to a misrepresentation or
lack of representation of processes like in-cloud chemistry
(Rosanka et al., 2021b; Franco et al., 2021). Therefore, any
comparison of VOC simulations between MOM and MIM
would not give any additional information on the model– 95

observation discrepancy or aid any future model improve-
ment.

The model setup is presented in Sect. 2, followed by the
description of the observational dataset used for the evalu-
ation (Sect. 3), which is then presented for different tracers 100

and aerosol components. This model evaluation is the basis
for future studies on complex organic chemistry with EMAC.

2 Model configuration

EMAC is a numerical chemistry and climate simulation
system that includes submodels describing tropospheric 105

and middle-atmosphere processes and their interaction with
oceans, land and human influences (Jöckel et al., 2016). It
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uses the second version of the Modular Earth Submodel Sys-
tem (MESSy2) to link multi-institutional computer codes.
The core atmospheric model is the fifth-generation Euro-
pean Centre Hamburg general circulation model (ECHAM5
Roeckner et al., 2006). For the present study, we applied5

EMAC (ECHAM5 version 5.3.02, MESSy version 2.54.0) in
the T63L31 resolution, i.e. with a spherical triangular trun-
cation of T63 (corresponding to a quadratic Gaussian grid of
approx. 1.8◦ by 1.8◦ in latitude and longitude) and 31 verti-
cal hybrid pressure levels up to 10 hPa, with roughly 22 levels10

in the troposphere. The dynamics have been weakly nudged
(Jeuken et al., 1996; Jöckel et al., 2006) towards the ERA-
interim data (Berrisford et al., 2011) of the European Centre
for Medium-Range Weather Forecasts (ECMWF) to repro-
duce the actual day-to-day meteorology in the troposphere.15

In this study we simulated 2 years (2009–2010), with the first
year being used as spin-up time.

The anthropogenic emissions are based on the Emissions
Database for Global Atmospheric Research (EDGARv4.3.2
Crippa et al., 2018), vertically distributed following Pozzer20

et al. (2009), and have been compared to other global emis-
sion databases by Crippa et al. (2018). These prescribed
emissions are included in the model via the OFFEMIS sub-
model (Kerkweg et al., 2006b). The biogenic emissions of
non-methane volatile organic compounds (NMVOCs) are25

calculated online using the Model of Emissions of Gases
and Aerosol from Nature (MEGANv2.04, Guenther et al.,
2006, 2012). Lightning NOx production is based on the
parametrization of Grewe et al. (2001), while the algorithm
of Yienger (1995) is used for soil NOx emissions, as de-30

scribed in detail in Jöckel et al. (2016).
Biomass burning emissions are calculated daily online

based on dry matter burned from observations and fire type
(Kaiser et al., 2012). The emission factors for different trac-
ers and fire types are taken from Andreae (2019) and Ak-35

agi et al. (2011). The ONEMIS submodel (Kerkweg et al.,
2006b) calculates natural emission fluxes of sea salt (Guelle
et al., 2001) and dust (Klingmüller et al., 2018; Astitha et al.,
2012). Oceanic emissions and deposition are calculated on-
line with the AIRSEA submodel (Pozzer et al., 2006; Fis-40

cher et al., 2012; Lana et al., 2011) for DMS, CH3COCH3,
CH3OH, C5H8, HCN and CH3CN (a net sink for CH3OH,
HCN and CH3CN and a net source for the others). For C2–
C3 alkanes and alkenes, the oceanic offline emissions from
Inness et al. (2013) have been adopted.45

In Table 1 the total emissions are listed for all primary
species emitted in the model.

Dry deposition and sedimentation are estimated by the
DDEP (Dry DEPosition) and SEDI (SEDImentation) sub-
models (Kerkweg et al., 2006a), while wet deposition is sim-50

ulated by the SCAV (SCAVenging) submodel (Tost et al.,
2006). The dissolution of species in the liquid-phase mecha-
nism was augmented by including the liquid–gas equilibrium
for all additional organics present in the mechanism with a
Henry’s law constant (solubility) above 103 molL−1 atm−1.55

For less soluble species, wet scavenging is not expected to
be important (Crutzen and Lawrence, 2000). The Henry’s
law constants of most oxygenated VOCs of atmospheric rele-
vance are unknown, and estimation methods still quite uncer-
tain (Wang et al., 2017). As the hydroxyl (and hydroperoxyl) 60

group affects the solubility in water the most, the Henry’s law
constants of polyols from the compilation by Sander (2015)
are taken as proxies.

In the chemistry submodel MECCA (Module Efficiently
Calculating the Chemistry of the Atmosphere), we used the 65

Mainz Organic Mechanism (MOM, Sander et al., 2019), with
roughly 600 species and 1600 reactions. It originates from a
reduced isoprene oxidation mechanism (Taraborrelli et al.,
2009), which has been updated with recent kinetic data and
expanded with efficient mechanisms of OH-recycling under 70

low-NO conditions (Taraborrelli et al., 2012; Nölscher et al.,
2014). The oxidation mechanism for α-pinene and β-pinene
is based on the MCM (Master Chemical Mechanism, Jenkin
et al., 2000) with modifications according to the theoretical
work of Luc VereeckenTS2 (Vereecken et al., 2007; Capouet 75

et al., 2008; Nguyen et al., 2009; Vereecken and Peeters,
2012). The degradation of monocyclic aromatics follows the
MCM (Jenkin et al., 2003; Bloss et al., 2005) but with some
modifications for the chemistry of phenols (Cabrera-Perez
et al., 2016). The complete mechanism used in this study is 80

part of the Supplement.
Aerosol microphysics and gas–aerosol partitioning are cal-

culated by the Global Modal-aerosol eXtension (GMXe)
aerosol module (described by Pringle et al., 2010a, b). GMXe
simulates the distribution of aerosol within interacting log- 85

normal modes (in a similar approach to that of Vignati
et al., 2004; Mann et al., 2010). The lognormal modes span
four size categories (nucleation (< 6 nm radius), Aitken (6–
60 nm), accumulation (60–600 nm) and coarse (> 700 nm))
and are divided into hydrophilic (4) and a hydrophobic (3) 90

modes. The GMXe model has been extensively evaluated
previously (Pozzer et al., 2012a, b; Tost and Pringle, 2012;
Karydis et al., 2016).

Organic aerosol (OA) formation is simulated by the sub-
model ORACLE (Tsimpidi et al., 2014, v.1.0), where log- 95

arithmically spaced saturation concentration bins are used
to describe the organic aerosol components based on their
volatility. For the formation of primary (POA) and secondary
(SOA) organic aerosol from the emissions and photochemi-
cal oxidation of semivolatile and intermediate volatility or- 100

ganic compounds, the setup of Tsimpidi et al. (2016) is
used. However, the SOA formation from the oxidation of the
volatile organic compounds (VOC) in ORACLE has been
modified to accommodate the photochemical production of
components explicitly calculated by the MOM chemical 105

mechanism. An earlier version of MOM has been compared
against chamber measurements (Nölscher et al., 2014) and
improved by Novelli et al. (2020), while ORACLE was de-
rived empirically from chamber experiments (Donahue et al.,
2011) and has been evaluated against observations from a 110
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4 A. Pozzer et al.: MOM evaluation with EMAC

Table 1. Emissions of primary emitted species for the year 2010 used in this study. The values are given in units of Tg (species) yr−1 with
the exception of NO, which is given in Tg (N)yr−1.

Identifier Extended name Anthropogenic Natural or biogenic Biomass burning

BC Black carbon 4.34 – TS1 1.84
OC Organic carbon 11.05 – 15.53
SO2 Sulfur Dioxide 99.35 – 1.95
NO Nitrogen oxides 34.50 6.09 3.98
CO Carbon monoxide 537.16 106.84 289.51
NH3 Ammonia 57.67 – 4.07
C2H6 Ethane 9.00 1.32 2.91
C3H8 Propane 10.50 1.46 0.52
HCN Hydrogen cyanide – 2.13 –
CH3CN Acetonitrile – – 1.03
NC4H10 n-butane 9.90 – 0.12
IC4H10 i-butane 4.20 – 0.04
MEK Methyl ethyl ketone 1.00 0.18 0.45
CH3CHO Acetaldehyde 2.00 15.35 2.80
CH3COCH3 Acetone 1.10 35.84 1.29
CH3CO2H Acetic acid 6.52 3.45 13.20
CH3OH Methanol 9.71 105.54 6.32
HCOOH Formic acid 3.56 3.45 2.32
CH3COCO2H Pyruvic acid – 0.36 –
HCHO Methanal, formaldehyde 4.50 5.17 4.15
C2H4 Ethene 5.40 24.55 3.55
C3H6 Propene 4.26 15.76 3.01
C2H2 acetylene 5.40 – 0.23
BUT1ENE 1-butene 1.46 6.23 0.07
TBUT2ENE 1,2-dimethylethylene 1.46 – 0.05
CBUT2ENE 2-butene 1.46 – 0.20
MEPROPENE Methylpropene 1.46 – 0.20
BENZENE Benzene 5.82 – 1.42
TOLUENE Toluene 7.80 0.35 0.83
LXYL Xylenes 7.24 0.28
LTMB Trimethylbenzenes 0.95 – 0.06
PHENOL Phenol 1.70 – 2.02
STYRENE Styrene 1.87 – 0.16
EBENZ Ethylbenzene 1.91 – 0.56
LHAROM Other aromatics 3.22 – 2.86
C5H8 Isoprene 463.89 –
APINENE α-pinene – 33.18 –
BPINENE β-pinene – 18.71 –
CARENE 3-carene – 6.94 –
SABINENE Sabinene – 7.13 –
CAMPHENE Camphene – 3.20 –
MBO Methyl butenol – 1.36 –
LTERP Lumped other terpenes – 31.86 –
LALK4 Lumped pentanes 15.1 – –
LALK5 Lumped higher alkanes 21.2 – –
OLE2 Lumped higher alkenes 8.20 – –
DMS Dimethyl sulfide – 57.96 –

Geosci. Model Dev., 15, 1–38, 2022 https://doi.org/10.5194/gmd-15-1-2022



A. Pozzer et al.: MOM evaluation with EMAC 5

Figure 1. Saturation mass concentrations at 298 K (Li et al., 2016)
versus molar mass of organic tracers in EMAC. The blue dots repre-
sent those included in ORACLE, i.e. organic tracers that are allowed
to condense explicitly on aerosols under atmospheric conditions;
the green dots represent those organic tracers that are always in the
gas phase. The dashed line represents the maximum volatility con-
sidered in ORACLE (i.e. 3.2× 103 µgm−3) for the VOC oxidation
products.

field campaign by Janssen et al. (2017). Nevertheless, the
MOM+ORACLE combination still has to be fully evalu-
ated.

The effective saturation concentration of all the species
present in the MECCA submodel is calculated based on their5

elemental composition (number of carbon, oxygen, nitrogen
and sulfur atoms), following the molecular corridor approach
(Li et al., 2016) and the study by Donahue et al. (2011). In
Fig. 1, the volatility versus the molar mass is shown for all
tracers present in the model, ranging from high volatility–low10

molar mass to low volatility–high molar mass. These calcu-
lations result in 199 tracers that can partition to the aerosol-
phase, forming SOA under atmospheric conditions (i.e. with
a volatility lower than 3.2×103 µgm−3), while the other 396
tracers are considered too volatile for any condensation on15

aerosol particles. Additionally, the enthalpy of vaporization
for the same condensing species has been estimated based
on the study by Epstein et al. (2010). In addition to the 199
tracers, 11 additional “lumped species” for different oxida-
tion levels of pentanes, higher alkanes, higher alkenes and20

terpenes have been added. Following this, ORACLE calcu-
lates the partitioning of these organic species between the gas
and particle phases by assuming a bulk equilibrium and by
further assuming that all organic compounds form a pseudo-
ideal solution. The aerosol size distribution is determined by25

distributing the change in aerosol mass after the bulk equilib-
rium into each size mode using a weighting factor (Tsimpidi
et al., 2014).

The aerosol optical properties are calculated with the sub-
model AEROPT (Dietmüller et al., 2016), which is based on 30

the scheme by Lauer et al. (2007) and makes use of pre-
defined lognormal modes (i.e. the mode width σ and the
mode mean radius have to be taken into account). Lookup
tables with the extinction coefficient, the single-scattering
albedo, and the asymmetry factor for the shortwave part 35

of the spectrum and the extinction coefficient for the long-
wave part of the spectrum are pre-calculated with the help of
Mie theory-based explicit radiative transfer calculations (see
Pozzer et al., 2012a; Dietmüller et al., 2016). The aerosol
compounds explicitly considered for their refractive indices 40

are organic carbon, black carbon, dust, sea salt, water-soluble
compounds (WASO, i.e. all other water soluble inorganic
ions, e.g. NH+4 , SO2−

4 , HSO−4 , NO−3 ) and aerosol water
(H2O).

3 Observational data 45

3.1 Aircraft measurements

Due to the high complexity of the MOM mechanism, we
do not expect the model to be capable of representing
polluted episodic conditions. Additionally, investigations of
these conditions should be accompanied with detailed pro- 50

cess studies, as has been done in previous studies with this
mechanism (e.g. Lelieveld et al., 2018; Tadic et al., 2021).
Instead we want to demonstrate its ability to reproduce back-
ground conditions in a climatological sense. For this reason,
three different aircraft databases were chosen, which are all 55

based on profiles of several flights and seasons, are taken over
background regions, and provide an extensive set of observed
trace gases.

3.1.1 NASA ATom campaign

We used observational data from the NASA Atmospheric 60

Tomography Mission (ATom). The ATom campaign took
place from July 2016 to May 2018 and included measure-
ments in four different seasons (six flights each). During the
flights with the NASA DC-8 aircraft, numerous profiles were
recorded (see Fig. 2), which makes the dataset perfect for the 65

evaluation of atmospheric model simulations. The data used
in this evaluation was taken from the “Merged Atmospheric
Chemistry, Trace Gases, and Aerosols, Version 2 dataset”
(Wofsy et al., 2021) and are based on the following instru-
ments: the UC-Irvine Whole Air Sampler (WAS; Barletta 70

et al., 2019), the Trace Organic Gas Analyzer (TOGA; Apel
et al., 2021), the California Institute of Technology Chemi-
cal Ionization Mass Spectrometer (CIT-CIMS; Allen et al.,
2019), the NOAA Chemical Ionization Mass Spectrometer
(NOAACIMS; Veres et al., 2021), the Georgia Tech Ion- 75

ization Mass Spectrometer (GTCIMS; Huey et al., 2019),
the NOAA Nitrogen Oxides and Ozone Instrument (NOyO3;
Ryerson et al., 2019), and the NOAA Picarro G2401 spec-

https://doi.org/10.5194/gmd-15-1-2022 Geosci. Model Dev., 15, 1–38, 2022



6 A. Pozzer et al.: MOM evaluation with EMAC

trometer (NOAA-Picarro; McKain and Sweeney, 2021). The
ATom observations were subdivided into data for different
regions for this study (Fig. 2; namely Northwest Pacific,
Southwest Pacific, East Pacific, Southern Ocean, South At-
lantic, North Atlantic, and North Canada/Alaska/Greenland)5

based on expected homogeneous properties of organic com-
pounds in those regions. A climatological comparison be-
tween the simulated year (2010) and the data from the ATom
campaign (2016–2018) will be performed in order to further
evaluate whether the MOM mechanism is able to reproduce10

remote conditions. For that purpose we divided the altitude
range into 12 bins (linearly between 0.5 and 12.5 km) and
defined a maximum of 336 (7 regions× 4 seasons× 12 al-
titude bins) points of interest (POI). For each POI we com-
pared the mean value of all observations in the specific re-15

gion, altitude bin and season to the mean value of all accord-
ingly simulated values in 2010 in the range of ±1 d around
the flights conducted in that region.

3.1.2 Emmons database

We also used the database of aircraft measurements of trace20

gases produced by Emmons et al. (2000). It is based on ob-
servations from numerous aircraft campaigns that took place
during the period 1990–2001 to create observation-based
climatologies of chemical species relevant to tropospheric
chemistry. Although these measurements cover only limited25

time periods and regions, they provide valuable information
about the vertical distribution of the analysed trace gases.
Note that the field campaigns used in this evaluation have
been extended to also include observations after the year
2000, such as those from the TOPSE and TRACE-P cam-30

paigns.

3.1.3 Heald database

The aircraft evaluation is completed by aircraft measure-
ments for organic aerosols presented by Heald et al. (2011).
This dataset includes organic aerosol measurements from 1735

aircraft campaigns during the period 2001–2009. Here, sim-
ilar to Emmons et al. (2000), we consider the aircraft cam-
paigns representative for the period and the regions, i.e. as
an observation-based climatology. Therefore, we compared
these data with the model results for the year 2010, yield-40

ing an improved evaluation of the vertical distribution of the
organic aerosols in the troposphere.

3.2 Station measurements

3.2.1 NOAA-INSTAAR

Data from the National Oceanic and Atmospheric Adminis-45

tration (NOAA) Institute of Arctic and Alpine Research (IN-
STAAR) Global Monitoring Program were also used in this
study. The network consists of 44 background stations from
the NOAA Global Greenhouse Gases Reference Network

(GGGRN) (Pollmann et al., 2008), where pairs of whole air 50

samples are collected weekly and shipped to a central labo-
ratory for analyses. For this study, we considered measure-
ments of ethane, propane, iso-butane and n-butane from this
network.

3.2.2 EPA 55

The Clean Air Markets Division of the U.S. Environmen-
tal Protection Agency (EPA) operates the Clean Air Status
and Trends Network (CASTNET), with a total of 97 sta-
tions. Here, we include weekly filter pack data from 81 sta-
tions for SO2−

4 , NO−3 , NH+4 , Na+, Mg2+, Ca2+, K+ and 60

Cl− for the year 2010. The data can be downloaded at https:
//www.epa.gov/castnet (last access: 2 March 2022).

3.2.3 IMPROVE

In order to evaluate the simulated regional background
OA concentrations, we use monthly averaged PM2.5 OA 65

measurements during the year 2010 from the Intera-
gency Monitoring of Protected Visual Environments (IM-
PROVE) program (http://views.cira.colostate.edu/fed, last
access: 21 September 2021). IMPROVE is a cooperative
measurement effort in the United States designed to charac- 70

terize current visibility and aerosol conditions in scenic areas
(primarily national parks and forests). This network includes
198 monitoring sites that are representative of the regional
haze conditions over North America. IMPROVE co-located
samplers collect 24 h samples every 3 d. 75

3.2.4 EMEP

The co-operative programme for monitoring and evaluation
of the long-range transmission of air pollutants in Europe
(EMEP) is a science-based and policy-driven programme un-
der the Convention on Long-range Transboundary Air Pollu- 80

tion for international co-operation to solve transboundary air
pollution problems. We use data from 42 stations, although
the number of stations providing sufficient data for a certain
species ranges from 22 to 42 (see Table 6). As Teflon filters
are predominantly used, depending on the respective station, 85

the concentrations of particulate nitrate can be systematically
underestimated (Ames and Malm, 2001). The data were ob-
tained from the EBAS database (http://ebas.nilu.no/, last ac-
cess: 21 September 2021), and stations that did not provide
full coverage of monthly mean values for the year 2010 were 90

excluded from the analysis.

3.2.5 EANET

The Acid Deposition Monitoring Network in East Asia
(EANET) regularly has monitored acid deposition since Jan-
uary 2001. A total of 13 countries currently participate in 95

this effort, submitting data from a total of 54 sites. We use
monthly averaged aerosol concentrations from 15 to 25 sta-
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Figure 2. Flight paths of the four ATom campaigns. The respective altitude is coloured, and the paths are sub-divided into seven different
remote regions, namely the Northwest Pacific (1), Southwest Pacific (2), East Pacific (3), Southern Ocean (4), South Atlantic (5), North
Atlantic (6), and North Canada/Alaska/Greenland (7).

tions for the year 2010, with the data obtained from the
Network Center for EANET, which are archived at https:
//monitoring.eanet.asia/document/public/index (last access:
2 March 2022). It is worth mentioning that EANET does not
include OA observations. The simulated PM2.5 OA over East5

Asia is evaluated against collected short-term measurement
data as summarized by Jo et al. (2013).

3.3 Remote sensing observations

3.3.1 MOPITT

MOPITT (Measurement of Pollution in the Troposphere) is10

a sensor onboard the NASA’s Terra satellite. We use the
MOPO3JM version 8 product of MOPITT, which provides
monthly mean gridded column-integrated CO, vertical pro-
files of CO mixing ratios at 10 regularly spaced pressure lev-
els from the surface up to 100 hPa and the corresponding av-15

eraging kernels (Deeter et al., 2019). The MOPO3JM prod-
uct is based on the joint near-infrared (NIR) and thermal-
infrared (TIR) retrievals of CO. We apply the MOPITT
averaging kernels to the EMAC CO profiles according to
Eq. (1) to ensure the same level of smoothing as that in the20

MOPO3JM product.

xrtv = Axtrue+ (I−A)xa (1)

Here, xtrue is the EMAC profile, xa is the a priori profile,
A is the averaging kernel matrix and I represents an identity
matrix.25

3.3.2 MODIS

The MODerate resolution Imaging Spectroradiometer
(MODIS) sensor is also located on the Terra satellite. Here,
AOD550 data (i.e. aerosol optical depth at 550 nm) from
the MODIS Level 3 (Col. 6.11) gridded product are used 30

at a spatial resolution of 1◦× 1◦. The data are available
through the Atmosphere Archive & Distribution System
(LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/, last
access: 21 September 2021). The Deep Blue algorithm (Hsu
et al., 2004) was used here for the aerosol AOD. 35

3.3.3 IASI

Global observations of a suite of VOCs are retrieved from
the thermal infrared measurements of the nadir-viewing IASI
(Infrared Atmospheric Sounding Interferometer) instruments
(Clerbaux et al., 2009). The VOC dataset exploited here con- 40

sists of total column densities of methanol, acetone, formic
and acetic acids, and PAN, all retrieved on a near-global and
daily basis from the IASI/MetOp-A observations with the
aid of the ANNI (Artificial Neural Network for IASI) v3
retrieval framework. This neural-network-based retrieval ap- 45

proach does not rely on a priori information of the total col-
umn densities, and hence the products can be used directly
for unbiased comparisons with model data (see Franco et al.,
2018; Whitburn et al., 2016). The satellite products are fil-
tered for measurements affected by clouds and poor retrieval 50

performance. The uncertainties on the individual retrieved
column densities can be large but are considerably reduced
by averaging numerous observations in space and time, as
has been done in this study by comparing annual averages
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on the model grid. A full description of the ANNI frame-
work, the characterization of the VOC products, and com-
parisons of the satellite data with independent measurements
can be found in Franco et al. (2018, 2019, 2020), Mahieu
et al. (2021) and references therein. These studies, thanks5

to comparisons with ground-based column density measure-
ments of VOCs and column densities derived from aircraft
profiles, indicate no large systematic biases in the IASI data
and no dependence on the latitude, although an underesti-
mation (locally up to 30 %) of the highest column densities10

over tropical source regions (e.g. the Amazon basin) has been
identified for all the IASI VOC products (except PAN). The
accuracy of the IASI measurements is therefore sufficient to
provide a global evaluation of the EMAC performance, con-
sidering the large uncertainties that still affect the emissions15

and atmospheric modelling of the VOCs. For both IASI and
the model, daily gridded averages were constructed at the
spatial resolution of the model grid. To have similar tempo-
ral coverage over the year between model and satellite ob-
servations, the EMAC daily averages were masked when the20

corresponding IASI data were missing for the same day and
location.

3.3.4 AERONET

The AOD observations have been obtained from the global
AErosol RObotic NETwork (AERONET Holben et al., 1998;25

Dubovik et al., 2000). The cloud-screened quality-assured
Level 2 AOD data used in this study were obtained from
the website http://aeronet.gsfc.nasa.gov/cgi-bin/combined_
data_access_new (last access: 21 September 2021), includ-
ing the AOD daily averages.30

3.4 Pseudo-observations

Global annual averages of fine particulate matter with an
aerodynamic diameter below 2.5 µm (PM2.5) have been ob-
tained from Hammer et al. (2020). In this dataset, a com-
bination of satellite-observed AOD, numerical model and35

ground-based PM2.5 measurements were used to estimate
PM2.5 on a global scale at high resolution.

4 Results

In Table 2 the evaluation of organic tracers using observa-
tions from the ATom campaign is presented, while Table 340

shows the comparison of the model results with the aircraft
campaign data from Emmons et al. (2000) for selected trac-
ers. There are no measurements of acetic acid (CH3COOH)
from the ATom campaign, and the observations of ethene
(C2H4) and propene (C3H6) are very limited. Thus, they will45

not be considered for discussion. In the Emmons database,
there are no observations of i-butane (iC4H10) and n-butane
(nC4H10).

CO, C2H6 and O3 are very well represented because more
than 85 % of the simulated values are within a factor of 2 50

compared to the observations for these species (PF2). Other
species (such as PAN) show insufficient agreement with both
observation sets, while other species do not show consis-
tent behaviour between the comparisons. For some species
(such as the alkene C3H6 in the Emmons database), a gen- 55

eral clear underestimation is seen in the Emmons database,
which is coherent with previous results (Pozzer et al., 2006).
An interesting feature can be observed for methyl hydroper-
oxide (CH3OOH) and formaldehyde (HCHO): both species
are strongly underestimated by the simulation compared to 60

the ATom observations (see Table 2; M/O of 0.47 and 0.61,
respectively), while they are highly correlated with the ob-
servations (≈ 0.9). Thus, the vertical shape is very well re-
produced, but the sources and sinks seem to be systemat-
ically underestimated and overestimated, respectively. This 65

feature is depicted in Fig. 3. The evaluation results for se-
lected species will be analysed in more detail in the follow-
ing.

4.1 CO

Figure 4 shows the seasonal (MAM: March, April, May; 70

JJA: June, July, August; SON: September, October, Novem-
ber; DJF: December, January and February) mean modified
EMAC and MOPITT CO vertical column densities (VCDs).
Here, we term it as “modified” EMAC VCDs because MO-
PITT averaging kernels are applied to the simulated CO pro- 75

files to account for the sensitivity of MOPITT. To highlight
the difference in spatial patterns of EMAC and MOPITT, we
also show the absolute bias in the bottom panel.

We note that the spatial patterns are in good agreement be-
tween simulation and observations. In particular, the elevated 80

CO background in the outflow regions (over oceans) in the
northern hemisphere is well represented during boreal winter
(DJF) and spring (MAM). The outflow region around South
America in SON is also simulated well. Over land, a good
agreement is found for Europe, the central and eastern United 85

States, northern Africa, Australia, Russia, and the Indian sub-
continent, with a mean bias within ±1× 1018 molec.cm−2.
During the biomass burning seasons (JJA in central Africa
and north and northeast China and SON in South America),
we observe an overestimation of∼ 30 % by EMAC. By com- 90

paring EMAC’s total CO column densities to IASI CO satel-
lite retrievals, Rosanka et al. (2021a) found that EMAC un-
derestimates CO in Indonesia in SON 2015. In 2015, a par-
ticularly strong El Niño led to severe peatland fires, which re-
sulted in large CO emissions. Rosanka et al. (2021a) attribute 95

the underestimation to a too low biomass burning emission
factor for peatland used by EMAC. Here, we do not find any
underestimation of CO in Indonesia in SON (see Fig. 4), as
the year 2010 was a year with low biomass burning emissions
in Indonesia (van der Werf et al., 2017). Following their anal- 100

ysis, the recent biomass burning emission factor estimate by

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

Geosci. Model Dev., 15, 1–38, 2022 https://doi.org/10.5194/gmd-15-1-2022

http://aeronet.gsfc.nasa.gov/cgi-bin/combined_data_access_new
http://aeronet.gsfc.nasa.gov/cgi-bin/combined_data_access_new
http://aeronet.gsfc.nasa.gov/cgi-bin/combined_data_access_new


A. Pozzer et al.: MOM evaluation with EMAC 9

Table 2. Summary of simulated and observed mixing ratios of different tracers from the ATom campaign (Wofsy et al., 2021). N .points is
the number of points used for the statistical estimation. The arithmetic mean of the model simulated mixing ratios (M), the observed mixing
ratios (O) and the corresponding standard deviations (MSTD, OSTD) (in pmolmol−1) are listed in the subsequent columns (for CO and
O3 units are nmolmol−1). PF2 denotes the percentage of simulated points within a factor of 2 with respect to the observations, and RMSE
represents the root-mean-square error between simulated and observed points. CORR is the Pearson correlation coefficient. CE1

Species (instrument) N .points M MSTD O OSTD M/O PF2 RMSE CORR

CO (NOAA-Picarro) 332 76.86 18.98 81.22 23.99 0.98 100.0 10.56 0.82
C2H4 (WAS) 143 7.63 9.33 17.65 27.79 0.64 32.2 12.61 0.26
C2H6 (WAS) 334 369.47 191.54 550.41 375.48 0.79 86.5 195.09 0.87
C3H6 (WAS) 30 0.74 0.82 7.77 7.33 0.11 0.0 7.03 0.54
C3H8 (WAS) 330 48.38 65.63 83.64 130.04 0.97 61.5 44.92 0.87
CH3COCH3 (TOGA) 331 417.38 127.29 370.67 259.18 2.37 74.3 163.93 0.6
CH3OH (TOGA) 333 372.0 186.19 601.5 393.94 1.02 64.0 292.98 0.5
CH3OOH (CIT-CIMS) 306 161.03 143.64 419.17 412.65 0.47 33.0 259.92 0.89
HCHO (TOGA) 321 102.31 82.41 156.88 106.11 0.63 73.2 55.81 0.92
HCOOH (NOAACIMS) 168 39.44 21.43 188.59 359.94 0.61 35.7 155.87 0.3
HNO3 (CIT-CIMS) 334 207.64 350.83 121.83 259.36 2.98 42.5 127.17 0.69
H2O2 (CIT-CIMS) 334 470.86 444.63 363.72 397.68 2.11 68.9 153.47 0.87
PAN (GTCIMS) 241 30.71 34.7 75.43 51.33 0.54 36.5 50.13 0.38
O3 (NOyO3) 334 88.26 113.49 66.01 80.95 1.37 92.5 26.5 0.89
iC4H10 (TOGA) 319 6.88 13.72 9.71 18.63 0.83 52.7 4.94 0.89
nC4H10 (TOGA) 316 15.79 31.81 17.14 33.62 1.17 58.5 8.41 0.89

Table 3. The same as Table 2 but for the comparison of our simulation results to the dataset of Emmons et al. (2000).

Species N .points M MSTD O OSTD M/O PF2 RMSE

CO 457 90.41 32.63 94.86 72.11 1.03 99.3 63.991
C2H4 454 25.16 139.23 45.93 175.49 1.06 45.2 110.05
C2H6 473 539.19 320.22 826.09 544.14 0.70 88.8 409.24
C3H6 332 6.25 63.13 13.70 53.09 0.40 6.9 32.64
C3H8 472 94.96 123.26 164.99 225.57 0.89 59.7 149.02
CH3COCH3 246 520.61 274.71 608.50 310.84 0.92 87.4 291.65
CH3OH 37 595.76 369.59 913.86 373.06 0.66 78.4 426.52
CH3OOH 366 210.71 190.79 376.80 321.19 0.66 52.7 251.34
HCHO 213 198.08 377.76 192.24 299.65 1.44 64.3 235.36
HCOOH 53 32.67 7.05 58.92 43.55 0.87 64.1 49.41
CH3COOH 53 13.50 7.08 51.08 28.31 0.34 20.7 46.51
HNO3 416 151.33 188.49 162.15 285.72 1.25 59.9 237.42
H2O2 411 634.08 611.96 745.48 875.21 1.09 80.0 516.44
PAN 395 62.46 71.30 162.60 186.81 0.61 40.0 185.79
O3 506 68.23 76.00 51.06 26.10 1.31 92.6 62.54

Andreae (2019) suggests that EMAC underestimates the CO
emission factor by about 10 % in central South America and
Africa. It must however be stressed that the uncertainties in
the biomass burning emissions are substantial, depending on
regions and species (Carter et al., 2020). In contrast, in South5

America the overprediction of EMAC’s CO column densities
can be partially attributed to EMAC’s tendency to overesti-
mate biogenic emissions of CO precursors in this region (see
Rosanka et al., 2021b, a), as also shown in Sect. 4.2.3 and
4.2.4.10

Figure 5 shows the 2010 annual mean measured and simu-
lated surface CO mixing ratio at the WDCGG stations sorted

according to their latitude coordinates. The relative bias at all
stations is also shown on a global map in the inset of Fig. 5.
Similar latitudinal gradients are seen for the measurements 15

and simulations with high values around the mid-latitudes of
the Northern Hemisphere. The measured and simulated CO
agree within 1σ annual variability for 106 out of 113 stations
for which data were available for the year 2010. The bias be-
tween model and simulation was found to be less than 20 % 20

of the observations for 96 stations.

https://doi.org/10.5194/gmd-15-1-2022 Geosci. Model Dev., 15, 1–38, 2022
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Figure 3. Scattered simulated values of CH3OOH and HCHO against the observations of the ATom measurements. The different colours
represent the altitude. Both species are generally underestimated by our simulations, but at the same time there is a high correlation between
the simulation and observations.

Figure 4. Global seasonal mean maps of CO vertical column densities (VCDs) for the year 2010 for EMAC (top), MOPITT (middle) and
bias (EMAC−MOPITT) (bottom).

4.2 Volatile organic compounds

4.2.1 C2–C4 alkanes

Alkanes are VOC ubiquitously present in the atmosphere
that are mainly emitted from anthropogenic activities. In
Fig. 6 the scatterplots of model results and in-situ observa-5

tions from the NOAA/INSTAR database are presented. The
statistic for each plot is summarized in Table 4. The model
seems to reproduce satisfactorily the mixing ratios of the C2–
C4 alkanes with more than 98 %, 91 %, 84 % and 79 % of the
simulated values lying within a factor of 2 of the observations10

for C2H6, C3H8, i-C4H10 and n-C4H10, respectively. Further-
more, the average ratios show that a slight overestimation
is present for i-butane and n-butane, whereas the model un-
derestimates the mixing ratios of ethane and propane. This

is confirmed by the comparison with the Emmons et al. 15

(2000) database (Table 3), which shows that both ethane and
propane are underestimated by the model with respect to the
vertical profile as well (column M/O). The comparison with
ATom observations (Table 2) also shows an underestimation
(albeit smaller) of ethane and propane. However, for i-butane 20

we see a slight underestimation in the evaluation using ATom
observations in contrast to the NOAA/INSTAR database.

Figure 6 also shows a noticeable underestimation of the
mixing ratios in the region between 30 and 0◦ N for propane
and the butanes. This is clearly due to the underestimation 25

of the oceanic emissions, as these stations (i.e. at Mahe Is-
land, Seychelles (SEY); The American Samoa Observatory
(SMO); Ascension Island, UK (ASC); and Easter Island,
Chile (EIC)) are all strongly influenced by oceanic emis-
sions. It must be pointed out that no oceanic emissions were 30

Geosci. Model Dev., 15, 1–38, 2022 https://doi.org/10.5194/gmd-15-1-2022
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Figure 5. Latitudinal gradient of the annual mean (2010) of the measured and simulated surface CO mixing ratio at the WDCGG measure-
ment stations. The error bars show the 1σ standard deviation of the annual mean (based on daily mean output). The map in the inset shows
the annual bias between the simulation and measurements at the locations of the WDCGG stations.

Figure 6. Scatterplot of measured and simulated surface alkanes mixing ratios at the NOAA/INSTAAR measurement stations for the year
2010 (in pmolmol−1). The colour code denotes the latitude of the stations.
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included in the simulation for i-C4H10 and n-C4H10 but that
these are necessary for a correct representation of butanes, as
already shown previously (Pozzer et al., 2010). However, the
underestimation in this region is not present in the compari-
son to the ATom observations.5

4.2.2 C2–C3 alkenes

In contrast to alkanes, the alkenes are mostly emitted by the
biosphere. The comparison to the ATom campaign can only
be based on a very limited number of observations, and thus
it will not be covered in this discussion. As shown in Table 310

in the comparisons with the Emmons et al. (2000) database,
the numerical simulation of alkenes diverges more from the
observations than the simulated alkanes do. Both C2H4 and
C3H6 are underestimated compared to the observations (see
the model mean against observed mean comparison in Ta-15

ble 3). Nevertheless, while C2H4 is reasonably reproduced
overall (the average of the ratios is equal to 1.06; see Ta-
ble 3), for C3H6 a strong underestimation is present (the av-
erage of the ratios is equal to 0.4; see Table 3). This is shown
in Fig. 7, where examples of the vertical distribution of C2H420

are shown. The issues in simulating C3H6 have been already
pointed out by Pozzer et al. (2006), where similar results
were obtained with large underestimation of this tracer. As
alkenes are mostly removed by reaction with OH, there are
strong indications that these reactions are too fast; in addi-25

tion, a substantial lack of emissions could be present, for in-
stance from natural sources, as suggested by Li et al. (2021).

4.2.3 CH3OH

CH3OH is the most abundant oxygenated VOC in the Earth’s
atmosphere (Singh et al., 2001) and is primarily emitted by30

terrestrial vegetation (Jacob et al., 2005). Other sources in-
clude biomass burning, the oceans and secondary formation
in the troposphere (see, e.g. Millet et al., 2008; Stavrakou
et al., 2011). The annual global distributions of CH3OH total
column densities obtained from the IASI measurements and35

EMAC of the year 2010, as well as their differences, are pre-
sented in Fig. 8. Over land, the satellite and model spatial dis-
tributions of CH3OH are relatively consistent, with the main
source regions observed within the tropics (mainly over the
Amazon basin and central Africa), in Southeast Asia, and at40

Northern Hemisphere mid-latitudes and high latitudes. How-
ever, important differences in magnitude exist. Over tropi-
cal forests, EMAC indeed simulates annual CH3OH column
densities up to 2 times larger than those retrieved from the
IASI observations (3.0–3.5× 1016 molec.cm−2). This can be45

partly ascribed to the high temperature bias that exists in
the model over these areas (Hagemann and Stacke, 2015),
which induces an excess of biogenic VOC emissions from
the MEGAN submodel due to its high temperature sensitiv-
ity (Guenther et al., 2006). This is confirmed by a compar-50

ison of the simulated isoprene mixing ratios in the Amazon

Figure 7. Vertical profiles of C2H4 (in pmolmol−1) for some se-
lected campaigns from Emmons et al. (2000). Asterisks and boxes
represent the average and the standard deviation (with respect to
space and time) of the measurements in the region, respectively. The
simulated average is indicated by the red line, and the correspond-
ing simulated standard deviation with respect to time and space is
indicated by the dashed lines. The number of measurements is listed
on the right-hand side.

rainforest with observations from the AMAZE-08 campaign
(Martin et al., 2016) and from the ATTO tower (Yáñez Ser-
rano et al., 2015). In comparison to the AMAZE-08 cam-
paign, the simulated isoprene measurements are overesti- 55

mated by more than a factor of 3 (6.1± 1.2 nmolmol−1 sim-
ulated and 1.9± 1.4 nmolmol−1 observed), while the over-
estimation factor for the ATTO tower is on average approx-
imately 1.6, being higher in February–March and lower in
October–November. 60

Furthermore, dry deposition of methanol in tropical rain-
forests is likely under-represented by the Wesely (1989) ap-
proach used here (Karl et al., 2004). The potential contribu-
tion of an additional non-stomatal pathway favourable un-
der humid conditions (Müller et al., 2018) has been shown 65

by Emmerichs et al. (2021) for a less soluble species. On
the other hand, EMAC underestimates the CH3OH column
densities at mid-latitudes and high latitudes of the Northern
Hemisphere, indicating that biogenic and/or biomass burn-
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Table 4. Summary of simulated and observed mixing ratios of different tracers in the NOAA/INSTAAR database (station observations). The
columns are the same as in Table 3.

Species N .points M MSTD O OSTD M/O PF2 RMSE

C2H6 450 742.54 551.02 1038.32 845.09 0.77 98.4 621.54
C3H8 447 262.87 417.25 393.13 745.48 0.91 91.5 755.93
i-C4H10 436 70.60 97.44 73.73 126.46 1.23 84.8 124.23
n-C4H10 423 160.49 231.75 146.89 293.97 1.46 79.6 307.80

ing VOC emissions are too low during summertime in these
regions. The southeastern US is the region in North Amer-
ica where most of the simulated CH3OH enhancement ex-
ists, driven by substantial biogenic emissions in summer-
time, while larger column densities are measured by IASI5

during the same season further northwards in the boreal re-
gions. Over the oceans, EMAC underestimates the observed
CH3OH column densities by ∼5× 1015 molec.cm−2, which
might result from an insufficient transport from the continen-
tal source regions and/or from missing secondary source(s)10

(see, e.g. Bates et al., 2021; Müller et al., 2016). This is con-
firmed by the comparison of model results with the aircraft
observations of the ATom campaign and the Emmons et al.
(2000) database, where the methanol model mean is consid-
erably lower than the observed one. This is most prominent15

over Pacific regions in the Northern Hemisphere at lower al-
titudes, as depicted in Fig. 9. However, with respect to the
vertical profile CH3OH is not generally underestimated in
comparison with the ATom campaign, as it is instead overes-
timated at higher altitudes and for lower absolute values.20

4.2.4 CH3COCH3

Acetone is the one of the most abundant oxygenated VOCs
in the Earth’s atmosphere after CH3OH (Singh et al., 2001).
Its sources include the terrestrial vegetation, the oxidation
of hydrocarbon precursors of biogenic and anthropogenic25

origin, the oceans, and biomass burning (e.g. Jacob et al.,
2002; Pozzer et al., 2010; Fischer et al., 2012). The ace-
tone column densities obtained from the EMAC simula-
tion and the IASI observations exhibit major discrepancies
in terms of global distribution (Fig. 11). The satellite in-30

strument detects the largest acetone column densities (up
to 2× 1016 molec.cm−2) at mid-latitudes and high latitudes
of the boreal hemisphere, ascribed to important emissions
of biogenic precursors during summertime (Franco et al.,
2019), but a moderate burden at low latitudes and over the35

tropical forests. It is worth noting that this pattern is in
agreement with the global acetone measurements obtained
with the ACE-FTS satellite limb sounder (Dufour et al.,
2016). Conversely, EMAC simulates strong hotspots of ace-
tone within the tropics, especially over South America and40

Africa, with annually averaged column densities larger than
2× 1016 molec.cm−2, but underestimates the acetone abun-
dance by up to a factor of 2 in the Northern Hemisphere.

Such a mismatch between satellite and model distributions
points to major deficiencies in the current emission invento- 45

ries of acetone and its precursors. For example, the extremely
large acetone column densities simulated by EMAC over the
Persian Gulf and the Indo-Gangetic Plain can be attributed
to the highly elevated emissions of propane – an important
precursor of acetone – in these regions. In vegetated regions, 50

an underestimation of acetone dry deposition, accounting for
20 % of the total loss globally (Khan et al., 2015), likely con-
tributes to the mismatch. According to measurements, sig-
nificant amounts of acetone are removed during the night
through non-stomatal uptake (Karl et al., 2004; Müller et al., 55

2018). However, over remote areas and the oceans, the sim-
ulated acetone abundance is consistent with the IASI mea-
surements, with vertical column densities in the range of
0.5–1.0× 1016 molec.cm−2. The model nevertheless simu-
lates a slight overestimation over the oceans at low latitudes 60

compared to IASI, especially in the outflows of the tropical
hotspots.

Compared to the ATom observations the model overesti-
mates the mixing ratios, especially at high altitudes, leading
to a large value of M/O, while the simulated and observed 65

mean are of a comparable magnitude. However, 74.3 % of
the simulated values are still within a factor of 2 of the ob-
servations (see Table 2). Figure 10 depicts the vertical col-
umn densities of observations and simulations over the north-
ern part of North America and Greenland, a region where 70

CH3COCH3 is largely underestimated by the model in com-
parison to IASI. In Northern Hemisphere summer (July–
August; ATom-1) this strong underestimation can also be ob-
served for the ATom observations. However, for other sea-
sons this is not the case. Overall, simulation results show 75

only a small underestimation for this region. Compared to
the Emmons et al. (2000) database, the model results present
a much better agreement, with only a somewhat small bias
(see Table 3). This apparent agreement with the observations
is due to the uneven distribution of the field campaign present 80

in the observational dataset (see Emmons et al., 2000, their
Fig. 1, and Huijnen et al. (2019), their Fig. 1). In fact, most
of the campaigns in which acetone was measured took place
over the ocean, where the model is correct or slightly overes-
timates the total column densities observed by IASI. In con- 85

trast, only few campaigns in the Northern Hemisphere are
present in the dataset (such as ABLE-3B and POLINAT-2)
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Figure 8. Annually averaged CH3OH total column densities (in molec.cm−2) from IASI satellite observations (a) and simulated by EMAC
(b) and the EMAC-to-IASI column density differences (c) for the year 2010.

Figure 9. Vertical profiles of CH3OH of model simulations and ATom observations over the Pacific region (region 1 in Fig. 2) in the Northern
Hemisphere, represented by box and whisker plots for altitude bins. The white line marks the median, the box corresponds to lower and upper
quartiles, and the whiskers represent the 5th and 95th percentiles. The numbers on the right indicate the number of points of interest (POI,
averaged values for region, flight and altitude) considered for each altitude bin.

for which the model strongly underestimates the observed
values. As a result of the sparsity of these observations, Ta-
ble 3 presents a quite fair agreement between model and air-
craft observations, an agreement which is, however, not cor-
roborated by the more spatially complete comparison with5

the IASI total column densities.

4.2.5 HCOOH

Formic acid is the dominant organic acid in the troposphere
and a product of the degradation of a large suite of VOC
precursors, but its observed abundance is generally severely10

underestimated by state-of-the-art global models (e.g. Mil-
let et al., 2015; Paulot et al., 2011; Stavrakou et al., 2012).
Similarly, in our simulation the EMAC model largely under-
estimates the HCOOH total column densities derived from
the IASI observations by up to a factor of 4, particularly in15

remote environments (see Fig. 12). Although the two main
tropical source regions identified by IASI – the Amazon

basin and central Africa – are reproduced by EMAC, the
magnitudes of the simulated HCOOH column densities are
too low in comparison to the satellite measurements. It also 20

has to be mentioned that the apparent agreement over Ama-
zonia is possibly due to the high temperature bias in the re-
gion and the subsequent excess of simulated isoprene emis-
sions during the dry season. Over the other source regions
(e.g. Southeast Asia and the southeastern US), the model un- 25

derestimation is more pronounced, particularly in the North-
ern Hemisphere. The large enhancement of HCOOH col-
umn densities observed with IASI over western Russia (∼
8× 1015 molec.cm−2), attributed to the August 2010 wild-
fires, is not reproduced by EMAC (< 2× 1015 molec.cm−2) 30

and suggests that the biomass burning emissions of VOCs are
underestimated.

The general underestimation of simulated versus observa-
tional data is also confirmed by the comparison with aircraft
observations. The model strongly underestimates the obser- 35
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Figure 10. The same as Fig. 9 but for CH3COCH3 and for the region over Canada, Alaska and Greenland (region 7 in Fig. 2) for the different
ATom campaigns and seasons.

Figure 11. The same as Fig. 8 but for CH3COCH3.
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vations by the ATom campaign, especially at low altitudes
and for high absolute values (see Table 2, the observed mean
is higher by more than a factor of 4 compared to the model
mean). In general, there is very low agreement between sim-
ulated values and ATom observations, as only around 35 %5

of the simulated values are within a factor of 2 of the ob-
servations and the Pearson correlation coefficient is only 0.3.
Although the underestimation of the model results compared
to the Emmons et al. (2000) database is less apparent, it must
be noted that only a limited number of merged data (53; see10

Table 3) is available for the comparison with aircraft obser-
vations. It must be stressed that Franco et al. (2021) showed
the importance of in-cloud chemistry for this tracer, which is
missing in this study. The lack of adequate in-cloud chem-
istry would therefore explain the almost ubiquitous underes-15

timation of this tracer.

4.2.6 CH3COOH

Acetic acid is the second most abundant carboxylic acid in
the troposphere and, based on the IASI retrievals, presents a
spatial pattern, regional seasonality and vertical abundance20

that resemble those of HCOOH (Franco et al., 2020). Like
the latter, CH3COOH is produced from the oxidation of var-
ious tropospheric precursors but has emission factors from
biomass burning that are 3 to 10 times larger than those of
HCOOH (Akagi et al., 2011; Andreae, 2019). CH3COOH is25

more difficult to detect in the infrared IASI spectra, and its
retrievals are subject to larger uncertainties, particularly over
ocean (see Franco et al., 2020). Therefore, here we limit the
comparison with EMAC to the continents, excluding mea-
surements over desert areas that are altered by surface emis-30

sivity artefacts (Fig. 13). From the comparison, conclusions
similar to those of HCOOH can be drawn for CH3COOH:
the two main tropical source regions are relatively well re-
produced by EMAC (with a better agreement over Africa
in this case), whereas the observed CH3COOH levels are35

underpredicted in the Northern Hemisphere by up to a fac-
tor of 4. The comparison with aircraft observations (see Ta-
ble 3) again confirms this strong underestimation over the
ocean as well, as the only campaign in the dataset including
CH3COOH measurements is the PEM-Tropics-A, which was40

performed over the Pacific ocean.
These results confirm that the VOC emissions and oxi-

dation pathways leading to the formation of CH3COOH in
the troposphere are still poorly understood and constrained
(e.g. Khan et al., 2018; Paulot et al., 2011). For example,45

acetaldehyde – a major CH3COOH precursor via its reac-
tion with OH (Lei et al., 2018) – is well known to be largely
underestimated by global models (Millet et al., 2010; Wang
et al., 2019). On the other hand, the large model versus ob-
servations differences in Southeast Asia also point to missing50

emissions from biomass burning. Finally, in-cloud chemistry
could be important in the CH3COOH formation, analogous

to formic acid (Franco et al., 2021), and this process could
bring model results and observations to a closer agreement.

4.2.7 PAN 55

Owing to its complex photochemical sources and its thermal
instability, PAN (peroxyacetyl nitrate), the main tropospheric
reservoir species of NOx , is a very challenging tracer to sim-
ulate. The comparison with the IASI data reveals that the
model correctly reproduces the main spatial patterns of PAN, 60

with the source regions and main outflows over the oceans
being correct. However, the model constantly underestimates
the observed PAN column densities over the globe. The satel-
lite column densities are indeed between 2 and 4 times the
simulated ones, with the most pronounced negative bias ob- 65

served at Northern Hemisphere mid-latitudes and high lati-
tudes. The same conclusion can be drawn from the compar-
ison with aircraft observations (Tables 2 and 3), for which
the model clearly underestimates the observed mixing ratios
consistently using the database from Emmons et al. (2000) 70

and the measurements of the ATom campaign. A closer in-
spection reveals that PAN is especially underestimated in the
middle and upper troposphere. The model–observation dis-
crepancies can mostly be attributed to the unsatisfactory rep-
resentation of different VOCs. For example, we have seen 75

that the model results do not agree with observations for ace-
tone, which is an important precursor of the peroxyacetyl
radical in the free troposphere (Fischer et al., 2014). Further-
more, the strongest model underestimation appears to be ex-
actly where CH3COCH3 the most underestimated, confirm- 80

ing that deficiencies in simulated precursor patterns are the
main cause of the PAN biases. Additionally, sensitivity sim-
ulations suggested that the PAN formation in global models
is more sensitive to the representation of VOCs than the one
of NOx (Fischer et al., 2014). Finally, an insufficient vertical 85

transport of VOCs from the planetary boundary layer to the
free troposphere in the model might also reduce the amount
of PAN because PAN is more stable at the lower temperatures
of the free troposphere.

4.3 OH 90

The simulated distribution of the hydroxyl radical (OH) is
in line with the findings by Lelieveld et al. (2016) (further
denoted as L16), who earlier thoroughly analysed the MOM
performance in EMAC with a setup featuring a simplified
treatment of aerosol microphysics and gas–aerosol partition- 95

ing. The total OH turnover (composition of annual produc-
tion and loss terms, shown in Fig. 15) of 234 Tmolyr−1 in
2010 is 7 % less than that found by L16 and is consistent
with the addition of the explicit treatment of secondary or-
ganic formation processes of aerosols and changes in trace 100

gas emission fluxes. The OH production in the VOC- and
ROOH-initiated reactions is 3 % lower in both the free tro-
posphere (FT) and the boundary layer (BL). This is compen-
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Figure 12. The same as Fig. 8 but for HCOOH.

Figure 13. The same as Fig. 8 but for CH3COOH. Note that areas above ocean have been excluded.

sated for by the increased share of primary production (P ,
via the O(1D)+H2O pathway), especially in the BL (4 %
increase versus 2 % in the FT). Regarding the partitioning of
the OH sinks, however, no substantial changes can be noted
(see Fig. 15b and d). Together with the reduction of the sec-5

ondary sources (S), the resulting OH recycling probability
rOH (defined as 1−P/(S+P); see details in L16) is estab-
lished at 59 % and 62 % in the BL and FT, respectively. Be-
ing about 5 % lower than the estimate reckoned by L16, such
high rOH values still signify highly stable (buffered) OH con-10

centrations and therefore a likewise stable tropospheric ox-
idative capacity obtained with this model setup.

The simulated annual air-mass-weighted average OH con-
centrations are 12.1 (troposphere), 12.0 (FT) and 13.6 (BL)
105 molec.cm−3 for the year 2010, which correspond to OH15

chemical removal lifetimes of 1.59, 1.78 and 0.53 s, respec-
tively. The diagnosed tropospheric OH inter-hemispheric
gradient (Northern Hemisphere to Southern Hemisphere ra-
tio, NH / SH) is 1.17, lower than that estimated by L16 (1.20)
due to the increased OH reactivity via VOC and SOA in the20

NH and at the lower end of the model estimates reviewed
there. By not being in agreement with the measurement-
based estimates suggesting hemispheric symmetry in tro-
pospheric OH (Patra et al., 2014; Wolfe et al., 2019), the
pronounced asymmetry in atmospheric models results from25

asymmetric OH production due to skewed distributions of O3
and NOx prevailing in the NH and calls for further studies in
this direction.

Overall, the simulated tropospheric OH distribution is
comparable to that which was thoroughly analysed by L16 30

with a minor increase in reactivity of up to 5 % when calcu-
lated from the changes to the CH4 and MCF (CH3CCl3) life-
times against removal by OH (τOH). The τOH (CH4) values
estimated here are 8.4 and 4.4 years in the FT and BL, re-
spectively; the tropospheric τOH (MCF) value is determined 35

to be 4.9 years.

4.4 Aerosol optical depth

In order to evaluate the overall performance of the model in
reproducing aerosol distribution, the AOD at 550 nm simu-
lated by the model is compared to satellite-based and station 40

observations. Figure 16 shows the annual average AOD of
the simulation and of the observations (satellite). The dis-
tribution is remarkably similar, with the high AOD regions
(northern Africa and Southeast Asia) being well simulated by
the model. Open-ocean AOD of ' 0.2 AOD units are repro- 45

duced by the model, with slightly underestimated AOD over
the central Atlantic (possibly due to slightly underestimated
dust outflow from the northern Africa region). To quantify
the model capability to reproduce the AOD, in Fig. 17 the
model daily AODs are compared to the co-located (in space 50

and time) observations from MODIS and the AERONET in-
struments (middle and bottom row, respectively). For com-
parison, the same scatterplot has been produced comparing
MODIS and AERONET directly (top row). The model has
difficulties in reproducing the daily variability of AERONET 55
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Figure 14. The same as Fig. 8 but for PAN.

Figure 15. Simulated OH production (a, c) and sink (b, d) by cate-
gory in the troposphere (a, b) and boundary layer (c, d) in this study
and the study of Lelieveld et al. (2016) (denoted L16). Values are
annual totals (in Tmolyr−1) for 2010. Percentages denote fractions
attributed to particular categories (see L16 for details).

AOD, with only 58 % of the simulated AOD within a factor
of 2 of the observational data. Even the correlation is con-
siderably low, with an R2 equal to 0.33. Very similar results
are obtained by comparing the model results to the satellite
AOD observations, with again only 57 % of the simulated5

data within a factor of 2 of the observations. Once monthly
averages are used for the inter-comparison, the statistics re-
main almost unchanged with just a small improvement in the
slope of the fitting curve (see Fig. 17, central column). Fi-
nally, using the annual averages for the intercomparison, the10

coefficients of determination R2 almost double (0.633 and
0.567 for the comparison of the model with MODIS and
AERONET data, respectively), while more than 80 % of the
model results are within a factor of 2 of the observations (ei-
ther satellite or in situ). To put these results into context, the15

same analysis has been performed comparing the MODIS
data and AERONET stations. Although the satellite obser-

Figure 16. Global map of AOD from model results and the MODIS
observations for the year 2010 (annual average).

vations (slightly) outperform the model results compared to
the AERONET-measured AOD in the case of the daily and
monthly averages, for the annual averages the model seems 20

to perform equally well, with a similar coefficient of deter-
mination and a fraction of values within a factor of 2 of the
observations. Due to the intrinsic characteristics of the model
(such as its relatively coarse resolution) it is not expected to
have a good representation of the short-term variability. 25

4.5 Fine particulate matter (PM2.5)

The comparison of model results for PM2.5 (i.e. fine parti-
cles with an aerodynamic diameter smaller than 2.5 µm) was
performed against the dataset of Hammer et al. (2020). Al-
though this dataset is not a pure observational dataset, it has 30

a global coverage and has been constrained from in situ mea-
surements. The comparison is done for PM2.5 at 35 % rela-
tive humidity, i.e. dry fine particulate mass (in µgm−3). In
Fig. 18, the maps of the annual average of the model results
and the pseudo-observation dataset are shown. Although the 35

distribution patterns appear to be similar, the model under-
estimates the fine particle concentration over northern India
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Figure 17. Scatterplots of AOD estimated by the EMAC model in this study versus the MODIS and the AERONET observations. The
left, middle and right columns show scatterplots using daily, monthly and annual averages, respectively. Both model- and satellite-based
observations were sampled at the AERONET locations. In each plot the coefficients of the linear fit, the coefficient of determination and the
fraction of data within a factor of 2 are listed.

and eastern China, whereas the opposite happens over east-
ern Africa and the Middle East. On the other hand, the model
seems to reproduce PM2.5 quite accurately over both Europe
and North America, and even the locally enhanced levels of
PM2.5 (∼ 30 µgm−3) in Canada from boreal forest biomass5

burning are reproduced well by the model.
In Fig. 19, the scatterplot of the two datasets is shown,

while in Table 5 the statistics for the different regions pre-
sented in the figures are listed. Due to the large grid res-
olution difference, the pseudo-observations have been ag-10

gregated to the grid resolution of the model. As already
noted from the global map, the model underestimates PM2.5
over South Asia and East Asia by ∼ 40% and ∼ 20%, re-
spectively. Nevertheless, in both regions more than 70 % of
the model results are within a factor of 2 of the pseudo-15

observations. As shown by Pozzer et al. (2012a, 2017) and
more recently by Miao et al. (2020), BC and OC are very im-
portant for the PM2.5 budget in East Asia and South Asia. As
shown by Crippa et al. (2018) and Saikawa et al. (2017) the
emissions of these tracers are associated with large uncertain-20

ties in these regions, which could strongly affect our results.
However, the model agrees well with data from Europe and
North America, with more than 95 % of the model results
being within a factor of 2. The overall comparison indicates
that the model agrees well with the pseudo-observations, as 25

the spatiotemporal averages of the two datasets are very close
(17.1 µgm−3 for the model and 19.4 µgm−3 for the pseudo-
observations), with more than 70 % of the model-simulated
PM2.5 within a factor of 2 of the pseudo-observed PM2.5.

4.6 Aerosol composition 30

For the evaluation of the simulated mass concentrations of
sulfate, nitrate, ammonium, sodium, and five species related
to sea spray and organic aerosols, we use in situ measure-
ments from different monitoring networks, as described in
Sect. 3.2. Co-located time series of simulated and observed 35

quantities were obtained via bilinear interpolation of the grid-
ded model data at ground level to the respective site loca-
tion. The analysis is based on monthly mean concentrations,
which are derived from daily (model data, EMEP observa-
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Figure 18. Global map of PM2.5 from model results and the Ham-
mer et al. (2020) dataset for the year 2010 (annual average, in
µgm−3). The data from Hammer et al. (2020) does not contain val-
ues over the ocean.

Figure 19. Scatterplots of PM2.5 of model results versus data from
Hammer et al. (2020) for the year 2010 (annual average, in µgm−3).
Light blue, red, green and orange depict points located in Europe,
North America, East Asia and South Asia, respectively. Grey points
indicate the remaining parts of the world.

tions) and weekly (EPA) data, with the exception of EANET,
which directly provides monthly averages. Note that some
monitoring stations are located relatively close to each other,
such that the reported concentrations may not be independent
of each other, which can lead to an overestimation of the de-5

grees of freedom in the calculation of quantities such as the
root-mean-square error.

Table 5. Summary for simulated and pseudo-observed annually av-
eraged PM2.5. M and O denote the arithmetic mean of the simu-
lated and observed concentrations, respectively (in µgm−3). PF2 is
the percentage of simulated points within a factor of 2 with respect
to the observations.CE2

Region M O M/O PF2

Europe 11.4 14.3 0.80 98.8
North America 4.8 5.2 0.92 95.2
South Asia 31.2 50.3 0.62 72.6
East Asia 31.2 37.1 0.84 82.1
World 18.4 19.4 0.94 71.4

4.6.1 Sulfate (SO2−
4 )

Observed particulate sulfate concentrations are reproduced
well by the model. The monthly mean concentration is 10

matched closely for North America (EPA) and slightly un-
derestimated for Europe (EMEP) and East Asia (EANET)
(see Table 6). For EPA and EMEP data, more than 80 % of
the simulated monthly mean concentrations lie within a fac-
tor of 2 of the observations, as do more than 70 % of the 15

concentrations for EANET. The standard deviation of ob-
served monthly mean values is lower than the root-mean-
square error (RMSE) for all monitoring networks, which is
an indication for a good quality of the model results (Barna
and Lamb, 2000). In addition, RMSE is lower in the present 20

study compared to a similar analysis by Pozzer et al. (2012a)
in which a longer time period of 4 years (2005–2008) was in-
vestigated. Pozzer et al. (2012a) also report a relatively large
spread (observation standard deviation equal to 5.3 µgm−3)
of the measured sulfate concentrations in EANET, which is 25

likely caused by a comparably low number of stations that
cover a large region with strong spatial gradients.

The close overall agreement of average concentrations
simulated by the model (M) with the observations (O) for
EPA can partly be attributed to underestimated high con- 30

centrations in summer (composite of June, July and Au-
gust, JJA), which are compensated by overestimated lower
concentrations from autumn to spring (see Fig. 20). Rela-
tive deviations are largest in winter and autumn, when ob-
served concentrations are much lower than simulated con- 35

centrations. In Europe (EMEP), the highest concentrations
are observed during the winter months, which is captured by
the model.

The east–west gradient of observed annual mean concen-
trations in North America is represented well in the model, 40

although the amplitude is underestimated by the model:
lower observed values in the west are overestimated, while
higher observed concentrations in the east are underesti-
mated by the model (Fig. 21). This feature also led to a good
agreement between observed and simulated mean concentra- 45

tions in Table 6. The north–south gradient over Europe is
also captured by the model. Despite the less dense spatial
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Table 6. Summary of simulated and observed monthly averaged aerosol concentrations for SO2−
4 , NO−3 , NH+4 , Na+, Mg2+, Ca2+, K+, Cl−

and organic aerosols (OA) and different observational networks (second column). Nstation is the number of stations providing data for the
respective species and network; note that this is not the sample size for the shown statistics. The following columns provide the arithmetic
mean of the simulated (M) and observed concentrations (O) and the respective standard deviations (MSTD, OSTD, in µgm−3). PF2 denotes
the percentage of simulated points within a factor of 2 with respect to the observations, and RMSE represents the root-mean-square error
between simulated and observed points.

Species Network Nstation M MSTD O OSTD M/O PF2 RMSE

SO2−
4 EPA 81 1.92 0.99 1.88 1.20 1.35 84.3 0.93

SO2−
4 EMEP 42 1.68 1.05 1.79 1.21 1.37 83.7 0.95

SO2−
4 EANET 25 2.83 1.65 3.58 4.06 1.58 71.0 3.49

NO−3 EPA 81 1.89 1.97 0.77 1.07 4.29 36.9 1.88
NO−3 EMEP 22 3.34 2.89 1.93 2.15 3.75 55.3 2.97
NO−3 EANET 23 3.34 3.34 1.45 2.43 8.36 32.6 3.47
NH+4 EPA 81 1.09 0.89 0.73 0.53 1.84 64.8 0.77
NH+4 EMEP 27 1.31 1.17 0.92 0.86 1.69 62.0 0.92
NH+4 EANET 23 1.40 1.35 1.00 1.14 2.38 54.7 1.07
Na+ EPA 81 0.16 0.22 0.16 0.36 2.19 61.1 0.23
Na+ EMEP 24 0.57 0.43 0.60 0.73 2.03 53.1 0.57
Na+ EANET 21 0.92 0.81 1.22 1.67 2.89 46.8 1.53
Mg2+ EPA 81 0.05 0.06 0.05 0.05 2.06 42.7 0.06
Mg2+ EMEP 22 0.17 0.13 0.07 0.09 4.65 32.6 0.16
Mg2+ EANET 15 0.29 0.21 0.24 0.26 2.38 57.8 0.27
Ca2+ EPA 81 0.06 0.12 0.26 0.27 0.60 16.2 0.37
Ca2+ EMEP 28 0.14 0.25 0.15 0.25 1.60 51.5 0.24
Ca2+ EANET 19 0.23 0.22 0.75 1.97 1.44 45.2 2.07
K+ EPA 81 0.03 0.05 0.07 0.04 0.83 19.8 0.08
K+ EMEP 25 0.09 0.13 0.08 0.07 1.42 60.0 0.14
K+ EANET 20 0.12 0.09 0.26 0.34 0.98 47.1 0.37
Cl− EPA 81 0.35 0.65 0.14 0.51 5.92 24.7 0.53
Cl− EMEP 24 2.16 1.59 0.86 1.05 37.24 29.5 1.82
Cl− EANET 17 2.63 2.55 1.90 2.88 4.38 39.2 2.62
OA IMPROVE 155 1.32 1.11 0.92 0.73 1.73 0.65 1.01
OA EMEP 12 1.43 0.77 2.55 2.27 0.83 0.60 2.35
OA EASIA 9 9.20 9.91 16.07 11.41 0.51 0.42 9.25

distribution of monitoring stations providing data for partic-
ulate sulfate, one can observe a correspondence between sim-
ulated and observed annual mean concentrations, especially
over Japan. One outlier in Japan with a very low observed
annual mean concentration is located at a relatively high al-5

titude (Happo, 1850 m), and thus the comparison to model
data on ground level may not be appropriate for this station.
The same holds for two EMEP stations, namely Jungfraujoch
(Switzerland) at 3578 m, and Chopok (Slovakia) at 2008 m,
where annual mean concentrations are largely overestimated,10

possibly due to the coarse resolution of the model, which
cannot correctly reproduce the orography (and hence the alti-
tude) of these stations. We therefore compared SO2−

4 concen-
trations with observations from aircraft campaigns, as com-
piled by Heald et al. (2011). The results are presented in15

Fig. 22. The simulated sulfate concentrations agree well with
the aircraft observations in the free and lower troposphere,
with an underestimation in a few cases (see Fig. 22; during

the ITCT-2K4, ADIENT or IMPEX campaigns) but always
within the measured standard deviations, confirming that the 20

vertical profile of sulfate is generally well reproduced in the
lower troposphere.

4.6.2 Nitrate (NO−3 )

Nitrate is less well represented than sulfate, showing a gen-
eral overestimation of observed concentrations with an aver- 25

age ratio of simulated to observed concentrations of at least
3.75. This comparably large ratio is dominated by a few sta-
tions with small concentrations, where the median ratios lie
between 1.70 and 2.84. About half (EMEP) to two-thirds
(EPA, EANET) of the simulated monthly mean concentra- 30

tions exceed a factor of 2 with respect to the observations.
For EANET and EMEP, the number of monitoring stations
is substantially lower than for EPA, which may partly ex-
plain the larger spread in both the model results and observa-
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Figure 20. Scatterplots of observed and simulated monthly average SO2−
4 concentrations for the year 2010 and three observational networks:

EPA, EMEP and EANET (a–c). The colouring of the points represents a categorization into seasons (dark blue: DJF; orange: MAM; red:
JJA; light blue: SON); the seasonal averages of monthly concentrations are depicted as large circles. Dashed lines denote the interval of a
factor of 2 of the observations. The simulated concentrations were obtained by sampling the modelled data at the respective station locations
using bilinear interpolation over neighbouring grid points.

Figure 21. Annual mean SO2−
4 concentrations for the year 2010 for the model and three observational networks: EPA, EMEP and EANET

(a–c). Simulated data are shown as shaded contours, while the observational data are depicted as circles.

tions (OSTD, MSTD). The RMSE is larger than the observed
standard deviations for all considered networks, suggesting a
less faithful representation of this species. This overestima-
tion may be attributed to the usage of Teflon filters, as nitrate
can evaporate from the filters under warm and dry conditions5

(Ames and Malm, 2001). Schaap et al. (2004) and de Meij
et al. (2006)TS3 showed that particulate ammonium and ni-
trate partially evaporate from the filters at temperatures be-
tween 15 to 20 ◦C and can evaporate completely at temper-
atures above 20 ◦C. Therefore, this effect predominantly af-10

fects measurements during the warmer seasons when nitrate
concentrations are close to the annual minimum. An indi-
cation for overestimation due to evaporation would then be
a closer agreement between model and observation in the
colder winter months. However, both in relative and abso-15

lute terms, the overestimation of monthly mean nitrate con-
centrations is more pronounced in winter than in summer for

the three considered networks (Fig. 23). All regions show
the same seasonal cycle with respect to averaged monthly
mean concentrations: a maximum in winter and a minimum 20

in summer both for model results and observations. The spa-
tial gradient of the annual mean concentrations is captured
well for North America (EPA), although the concentrations
towards the east coast are generally overestimated. The low
number of monitoring stations for EANET and EMEP does 25

not allow us to draw solid conclusions; however, we can re-
port that the north–south gradient of nitrate over Europe is
reproduced by the model, with the exception of an outlier at
high altitude in Central Europe (Fig. 24). The region with the
highest simulated annual mean concentrations and strongest 30

spatial gradients is East Asia; however, it is sparsely covered
by monitoring stations reporting full coverage for the consid-
ered year 2010.
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Figure 22. Model results of mean vertical profile of sulfate aerosol for selected field campaigns in black, and the spatiotemporal standard
deviation is shown as a grey area. The observed mean values are depicted in solid red, with the bars representing the standard deviation of
the observations. The observed median is presented as dashed red line.

Figure 23. The same as Fig. 20 but for NO−3 .
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Figure 24. The same as Fig. 21 but for NO−3 .

4.6.3 Ammonium (NH+4 )

Considering the ratio of averaged monthly mean ammonium
concentrations, the model overestimates the observed con-
centrations but to a lower degree than for nitrate (Table 6).
This feature is also apparent in the fraction of simulated5

monthly mean values within a factor of 2 of the observa-
tions: 54.7 % for the network in East Asia and more than
60 % for Europe and North America. The magnitude of over-
estimation is similar for the three networks, ranging from
40 % to 50 %. RMSE values are close to the standard devia-10

tion of observations in all networks, again indicating a good
representation by the model. The largest concentrations oc-
cur during the winter months (Fig. 25). While the degree of
overestimation is similar for the different seasons in EMEP
and EANET, this does not hold for EPA: summer concentra-15

tions are systematically underestimated, whereas autumn to
spring concentrations are generally overestimated. The con-
centrations for winter and spring constitute most of the val-
ues that are outside the aforementioned factor of 2 threshold
regarding the observations for all considered regions. Both20

the observed north–south and east–west gradients of annual
mean concentrations are represented well for the EPA net-
work (Fig. 26), but the simulated gradient is less pronounced.

The north–south gradient of observations over Europe is
also captured by the model, although the number of stations25

is again comparably low. The simulated spatial patterns in
East Asia also arguably match the observations well.

4.6.4 Dust and sea spray

This section provides an overview for species frequently
found in dust and sea spray aerosol: sodium, calcium, magne-30

sium, potassium and chloride. As the ocean is a large source
of these water-soluble species, concentrations over the sea
and coastal areas are large, as opposed to lower concentra-
tions over the continents. Sodium, potassium, magnesium

and calcium can also be found in desert dust, for instance 35

in the Sahara, as reported by Reid et al. (2003) and Moreno
et al. (2006). However, most of the monitoring locations ex-
cept for those in coastal areas are sampling quite remote sites
far from the source regions, and thus they cannot be expected
to display the full range of concentrations. In the following 40

section, we present the results for sodium in more detail, fol-
lowed by a brief overview of the remaining species.

Sodium is represented well by the model, as averaged
monthly mean concentrations from model and observations
agree in general, particularly for EPA (Table 6). The mean 45

ratio M/O, however, shows an average overestimation by
a factor of at least 2. The observational standard deviation
(OSTD) for all regions is smaller than the RMSE, the lat-
ter being reduced compared to the results from a previous
study by Pozzer et al. (2012a). For EMEP, more than three 50

out of five simulated monthly mean values lie within a factor
of 2 of the observations and more than 53 % and 46 % for
EMEP and EANET, respectively, which is a substantial im-
provement compared to Pozzer et al. (2012a). The latter two
networks again offer only a small number of stations. Con- 55

sidering the average of monthly mean concentrations sepa-
rated by season, one can observe an underestimation of sum-
mer concentrations for all networks (Fig. 27).

As mentioned before, the regional distribution of stations
does not cover those regions with high concentrations. How- 60

ever, when including the information of all networks at once,
one can observe that continental stations exhibit low annual
mean concentrations, while high concentrations can for in-
stance be observed at stations close to the coast (i.e. Japan,
Florida, Denmark, Sweden), indicating that spatial features 65

of the global sodium distribution are qualitatively captured
(Fig. 28).

Potassium, magnesium and calcium ions share spatial fea-
tures with sodium in the model, exhibiting elevated values
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Figure 25. The same as Fig. 20 but for NH+4 .

Figure 26. The same as Fig. 21 but for NH+4 .

over the ocean, as well as over the Sahara and Gobi desert,
and reduced concentrations over other continental areas.

The number of stations in EANET is quite low for all sea
spray species, which, on the one hand, allows for a few out-
liers to dominate mean values and errors. On the other hand,5

EPA offers a large number of stations, yet the correspon-
dence between model and observations is also quite low for
sea spray and dust species. Average monthly mean concen-
trations for magnesium are represented well in the model,
which is caused by a large overestimation of concentrations10

in winter months balancing an underestimation of summer
concentrations (not shown).

Chloride concentrations are widely overestimated with re-
spect to all three networks. The exceptionally high ratio M/O
for EMEP is caused by two outliers with M/O> 1000 due15

to very low observed concentrations. Without these factors,
M/O is better, with a value of 13.08.

4.6.5 Organic aerosols (OA)

Figure 30 shows the comparison of model-calculated OA
concentrations with measurements from the EMEP observa- 20

tional network over Europe, the IMPROVE network over ru-
ral North American locations, and short-term measurement
data collected over East Asia as summarized by Jo et al.
(2013). As we only used measurements taken in the year
2010, a low number of observations are present for East 25

Asia, and the comparison must be taken cautiously for this
region. The comparison statistics are presented in Table 6.
The model captures the monthly average concentrations of
OA relatively well over these highly populated regions of
the Northern Hemisphere. This is rather encouraging given 30

the expected uncertainties of the emission inventory and the
complex chemistry involved in simulating the secondary or-
ganic aerosol formation. It is worth emphasizing that the
model considers the formation of SOA solely from the ho-
mogeneous gas-phase photochemical oxidation of its precur- 35

sors. Therefore, the omission of other SOA formation path-
ways (e.g. from aqueous-phase and heterogeneous reactions)
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Figure 27. The same as Fig. 20 but for Na+.

Figure 28. The same as Fig. 21 but for Na+.

can add to the model bias. This is mostly evident during
winter (e.g. over Europe), when the relative importance of
these processes on SOA formation increases due to the lower
photochemical activity and the limited conversion of gas-
phase organic precursors to SOA. In addition, recent stud-5

ies have provided strong evidence that the uptake of water-
soluble gas-phase oxidation products (even small carbonyls
like formaldehyde and acetic acid) can be the main driver of
SOA pollution during haze events over East Asia (Gkatzelis
et al., 2021). Given the coarse resolution of the model and10

its inability to simulate these SOA formation pathways, the
observed total OA concentrations are expected to be system-
atically underestimated by the model over East and South
Asia. Nevertheless, model results are in general in reason-
able agreement with observations, with the exception of the15

strong underestimation over Beijing and Shijiazhuang, which
brings the M/O to very low value (i.e. 0.51). As pointed out
by Miao et al. (2021) and Zhao et al. (2016), the emission in-
ventories for semivolatile and intermediate-volatility organic
compounds are insufficient and lead to the majority of the20

model biases in simulating OA in these regions that are in-
fluenced significantly by anthropogenic emissions.

Over Europe, the model also underestimates OA, with
M/O of 0.83 (see Table 6). The model performs worst dur-
ing winter. Tsimpidi et al. (2016) have identified the lack of 25

biomass burning emissions as the main source of this dis-
crepancy over Europe. Kodros et al. (2020) and Paglione
et al. (2020) have more recently shown evidence that biomass
burning also contributes significantly to SOA formation dur-
ing winter following its oxidation by the NO3 radical in the 30

dark. Over North America, the model overestimates OA over
rural areas, with a M/O equal to 1.73. However, as shown
in Fig. 29, part of this discrepancy is explained by the low
values of OA over the US national parks.

Despite the agreement of the surface OA concentrations 35

between model results and observations, the OA are strongly
underestimated in the free troposphere. In Fig. 31, the model
is compared with 12 field campaign measurements (Heald
et al., 2011). Our results show similar agreement to those
obtained by Heald et al. (2011), with the simulated values 40

being below the observed values.
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Figure 29. The same as Fig. 20 but for OA.

Figure 30. The same as Fig. 21 but for OA.

5 Conclusions

We have presented an evaluation of EMAC with a com-
prehensive degradation scheme for organics (MOM) in the
MECCA chemistry submodel combined with an explicit esti-
mation of the organic tracers’ condensation on aerosols with5

a VBS approach (ORACLE submodel). We have compared
the model results with a large number of in situ and satellite-
based remote sensing observations. The evaluation focuses
on carbon monoxide (CO), simple organics and aerosols,
which are the samples most influenced by the new scheme.10

CO is correctly reproduced compared with station measure-
ments, with the correct north–south gradient. Nevertheless,
once the model results are compared with the satellite ob-
servations from MOPITT, an overestimation of CO over the
Amazon basin is apparent, especially in autumn, possibly due15

to an overestimation of the biomass burning emissions simu-
lated by the model. For alkanes the comparison shows a good
agreement, although an oceanic source for the butanes is
missing. In contrast, the model underestimates alkenes, espe-
cially C3H6, which shows large differences compared to the20

observations. Model results of oxygenated species show an
indifferent picture when compared to observations depend-
ing on the tracer: while methanol is well reproduced, simu-
lated acetone shows large spatial discrepancies compared to
the remotely sensed observations. For the latter, the model in 25

fact misses strong emissions over the boreal forests, while it
instead predicts too high total columns over tropical forests
(i.e. Amazonia and central Africa). Formic and acetic acid
show similar agreement to the observations, with the main
tropical sources being well reproduced, albeit with a strong 30

underestimation elsewhere.
The aerosols at the surface are reproduced well by the

model with respect to both composition and total amount.
The annually averaged simulated AODs show a very good
agreement with the AERONET station observations, but they 35

show some deficiencies in the representation of the short-
term variability. The agreement of the fine particulate mass
(PM2.5) near the surface is also quite good, with most of the
simulated values within a factor of 2 of the observations. The
evaluation of the aerosol chemical composition shows a high 40

level of agreement for near-surface sulfate and more devia-
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Figure 31. The same as Fig. 22 but for organic aerosol.

tion for NH+4 and nitrate, which are both overestimated by
the model (especially the latter), even though the observa-
tions are characterized with a high level of uncertainty. The
mechanically produced primary aerosol species (dust and sea
salt) show a reasonable agreement with the observations with5

some substantial overestimation of the simulated chloride
concentrations indicating an acid displacement process that
is too weak over the continents.

Finally, the comparison of OA shows a good agreement
with station observations, while the vertical distribution of10

the simulated values are largely underestimated when com-
pared with aircraft measurements, which is analogous to
other global atmospheric chemistry models of similar com-
plexity, although significant improvement in this direction
has recently been published (Pai et al., 2020).15

6 Outlook

The presented model evaluation is useful for identifying ar-
eas for further model improvements. A few possible direc-
tions are discussed below.

Emissions have always been a critical point for simulating 20

tropospheric chemistry. It has already been shown in many
studies that even anthropogenic emissions of alkanes need
to be improved as they are severely underestimated in many
inventories (e.g. Emmons et al., 2015; Tilmes et al., 2016),
mostly due to erroneous speciation of the total VOC emis- 25

sions (Dalsøren et al., 2018)
Residential wood burning and/or biofuel use (e.g. for heat-

ing) that often contribute significantly to both POA and SOA
formation over urban areas are strongly underestimated in
the emission inventories (Tsimpidi et al., 2016; Denier Van 30

Der Gon et al., 2015). In addition, global models lack OA
emissions from residential and commercial cooking activi-
ties that can be an important source of OA (Mohr et al., 2012;
Sun et al., 2011; Ge et al., 2012; Hayes et al., 2013). Underes-
timation of cold-start vehicle emissions (Weilenmann et al., 35
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2009) can also lead to significant underestimation of OA for-
mation from the transport sector (e.g. during wintertime).

As seen in this study, the model results underestimate se-
lected VOCs in boreal regions. The thawing of permafrost
is potentially an additional emission source of organic com-5

pounds at high latitudes in the Northern Hemisphere (Li
et al., 2020) that has not been considered yet. However, an es-
timate with global datasets is still missing. Furthermore, the
emission of VOCs from biomass burning is likely strongly
underestimated. In fact, overwintering fires in boreal forest10

(Scholten et al., 2021), which smoulder through the non-
fire season, are normally not detected by satellite observa-
tions and are therefore missing in our used emissions dataset.
Moreover, peat fires are not easily detected from space but
are characterized by larger emission factors for many VOCs.15

They are important for simulating air composition during
peat fires in Indonesia (Rosanka et al., 2021a) and likely crit-
ical for resolving the model biases at high latitudes, where
most of peatland is located and could be further released
by permafrost thawing. Ramo et al. (2021) also found that20

small undetected fires enhance the estimated amount of emit-
ted carbon from biomass burning in sub-Saharan Africa by
31 %–101 %. Finally, soil temperature and soil wetness play
an important role in the estimation of the online emissions of
biogenic VOCs, and it is therefore important to have a cor-25

rect simulation of the surface properties by the underlying
climate model.

Furthermore, dry deposition is a relevant process also af-
fecting VOCs in the lower troposphere (Khan et al., 2015).
The inclusion of the additional uptake at the plant cuticle30

leads to a better representation (Karl et al., 2004; Müller
et al., 2018; Emmerichs et al., 2021) and would likely re-
duce the overestimation of species like acetaldehyde in the
tropics, as shown here. In the Amazon rainforest, the miss-
ing storage capacity of soil water leading to too high temper-35

atures (Hagemann and Stacke, 2015) additionally causes an
underestimation of dry deposition (Emmerichs et al., 2021),
while temperature-dependent processes like VOC emissions
are overestimated.

Another source of uncertainty is related to the scavenging40

efficiency of gas-phase OA precursors. The water solubility
of these oxidized organic vapours is largely unknown and
is typically considered uniform for all organic compounds
in modelling studies even though they become increasingly
more hydrophilic during their atmospheric lifetime (Hodzic45

et al., 2014; Tsimpidi et al., 2017)TS4 .
The extension of MOM for the oxidation of additional

VOCs has the potential to reduce the negative model biases
for some oxygenated volatile organic compounds (OVOCs)
and enhance the predicted OA levels. For instance, with an50

emission strength of more than 40 Tgyr−1, anthropogenic
C5 and higher hydrocarbons can be a significant source of
OVOCs like acetaldehyde and acetone (Pozzer et al., 2010).
Further improvements are expected from an extended rep-
resentation of the emission and oxidation of known biogenic55

VOCs with more than five carbon atoms. Moreover, the emis-
sions of aromatic compounds from biogenic sources could be
as large as 40 Tgyr−1 (Misztal et al., 2015). So far only small
emissions of toluene are considered, and a more comprehen-
sive representation of biogenic aromatics would likely lead 60

to further improvements.
The formation of SOA in most models relies on the re-

action of its gas-phase precursors with reactive atmospheric
radicals (e.g. OH, O3, NO3), and their chemical ageing is
usually considered by the further photo-oxidation of the 65

semivolatile products solely in the gas phase. However, SOA
is also subject to oxidation in the aqueous phase through
superficial and bulk interactions with gas-phase oxidants
(George and Abbatt, 2010). Therefore, fundamental pro-
cesses of SOA formation in the aqueous phase (e.g. from 70

isoprene epoxydiols (Nguyen et al., 2009) and glyoxal (Fu
et al., 2008)) are typically missing from the conventionally
used parameterizations. In addition, the uptake of small car-
bonyls (e.g. aldehydes and acids) to the aqueous phase and
their subsequent oxidation and oligomerization has been re- 75

cently linked to significant increases of SOA mass during
pollution events (Gkatzelis et al., 2021)TS5 .

Recently, MOM has been coupled to the detailed Jülich
Aqueous-phase Mechanism of Organic Chemistry (JAMOC,
Rosanka et al., 2021c) for cloud droplets. An explicit treat- 80

ment of multiphase chemistry of OVOC has already been
used for assessing the global role of clouds as a sink of ozone
(Rosanka et al., 2021b). By comparing EMAC’s prediction
of total methanol columns to IASI satellite retrievals (com-
parable to Sect. 4.2.3 and Fig. 8), they find that EMAC’s ten- 85

dency to overestimate methanol is partially reduced by the
additional cloud sink. This suggests that the missing repre-
sentation of in-cloud OVOC chemistry introduces a signifi-
cant bias in the present study, and therefore a more detailed
multiphase chemistry should be included for future studies. 90

Furthermore, JAMOC is limited to the oxidation of OVOCs
containing up to four carbon atoms (Rosanka et al., 2021c),
and an expansion to larger species (i.e. containing more than
four carbon atoms) is thus desirable, in order to improve the
representation of these OVOCs in EMAC when using MOM. 95

Based on the results of Franco et al. (2021), more detailed
in-cloud chemistry could improve the representation of acids
(such as acetic and formic acid), which is clearly underesti-
mated here, where cloud chemistry is important.

Finally, the MOM+ORACLE framework calculates the 100

phase partitioning of organic compounds by assuming a
bulk equilibrium without any kinetic limitation. However, the
phase state of the organic aerosol can affect the mixing time
of the condensed organic compounds within the aerosol. In
general, equilibrium partitioning to the particle phase is a rea- 105

sonable assumption if the aerosol is liquid; however, if the
phase state is solid, non-equilibrium partitioning should be
considered. Shiraiwa et al. (2017) suggests that kinetic limi-
tations in the bulk may not significantly affect SOA partition-
ing in the boundary layer, justifying the use of equilibrium 110
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partitioning in this part of the atmosphere, but kinetic limi-
tations should be implemented and investigated for the free
and upper troposphere.
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