
Dear editor,

in this document we listed the comments (in bold), our replies and the changes applied to the

manuscript (in blue color). Beside the text changes, a new co-author has been added to the author

list (Matthias Kohl), and table 2 (now table 3) was corrected as a error was found in the calculation

algorithm.

Best regards,

Andrea Pozzer

referee #1

1. line 16: use ”secondary organic aerosols” instead of just ”aerosols”, because it is

already said that the aerosols discussed here are from VOCs.

We have applied the change.

2. line 37: Can the authors elaborate in the manuscript why explicit chemical

identities would be useful in atmospheric simulations here?

Explicit chemistry schemes allow a representation of Secondary Organic Aerosols formation

from VOCs without the use of lumped species and experimentally derived parameters (e.g., reac-

tion rates, aerosol yields). These tuning parameters can increase model uncertainties and result in

large differences between Atmospheric Chemistry models. In addition, empirical chemical schemes

are not mass conserving (e.g., for carbon) and the higher-generation reaction products are lumped

or ignored, even if, for instance, they play a pivotal role for OH recycling and ozone chemistry

(Taraborrelli et al., 2012), or are a major component of atmospheric brown carbon (Laskin et al.,

2015). In general, explicit identities of model species are essential for making further progress in

quantifying the atmospheric budget of Secondary Organic Aerosols. By relying on high-quality

(experimental and theoretical) data of the physico-chemical properties of precursors and inter-

mediates, an ever more realistic modelling of removal, ageing and formation pathways would be

possible.

In the revised text at line 37 we add the following lines: Instead, explicit chemistry

schemes allow a representation of Secondary Organic Aerosols formation from VOCs

without the use of lumped species and experimentally derived parameters (e.g., reac-

tion rates, aerosol yields). These tuning parameters can increase model uncertainties

and result in large differences between Atmospheric Chemistry models. In addition,

empirical chemical schemes are not mass conserving (e.g., for carbon) and the higher-

generation reaction products are lumped or ignored, even if, for instance, they play

a pivotal role for OH recycling and ozone chemistry (Taraborrelli et al., 2012), or

are a major component of atmospheric brown carbon (Laskin et al., 2015). In gen-

eral, explicit identities of model species are essential for making further progress in

quantifying the atmospheric budget of Secondary Organic Aerosols. By relying on

high-quality (experimental and theoretical) data of the physico-chemical properties

of precursors and intermediates, an ever more realistic modelling of removal, ageing

and formation pathways would be possible.

3. For the OA treatment (starting from line 103), has the MOM + ORACLE
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approach been tested against chamber SOA experiments of, for example, alpha-pinene,

to see if the model correctly captures SOA mass production in the experiments? This

reviewer trusts that the two submodels have been well tested in previous studies but

just wonders if this can be done for closure.

This is a very important aspect to look at in order to ensure an ever increasing realism of

our model as experimental capabilities and knowledge progress. Beside the global model, MOM

is normally run in the photochemical box model CAABA/MECCA (Sander et al., 2019), which

allows for multi-phase kinetics simulations with deliquescent aerosols and cloud droplets, and it

has been evaluated with chamber studies (e.g., Novelli et al., 2020). Nevertheless, the MOM +

ORACLE approach has so far not been evaluated against chamber experiments, but this is planned

for modelling the experiments routinely done at the SAPHIR and SAPHIR* chambers. However,

the MOM + ORACLE approach has been evaluated against observation with the mixed layer

model by Janssen et al. (2017).

Added in line 112: An earlier version of MOM has been compared against cham-

ber measurements (Nölscher et al., 2014) and improved by Novelli et al. (2020), while

ORACLE was derived empirically from chamber experiments (Donahue et al., 2011)

and has been evaluated against observations from a field campaign by Janssen et al.

(2017). Nevertheless, the MOM + ORACLE combination still has to be fully evalu-

ated.

4. For section 4.2.2, the authors do not seem to offer a potential explanation for

the underestimation. Can this be added to the text?

It is indeed difficult to assess a potential explanation for the strong and homogeneous underes-

timation. Due to their lower solubility, these tracers are only removed by reactions with OH, NO3,

and O3, with the first being at least two orders of magnitude faster than the other. There are

therefore strong indications that the reaction with OH of these tracers are too fast. Analogously

to Pozzer et al. (2006), we again point to a revision of such reaction rates. Furthermore, beside

possibly too fast decomposition of these tracers, a substantial lack of emissions could be present,

for instance from natural sources as shown by J.-L. Li et al. (2021).

This text has been added in line 355: As alkenes are mostly removed by reaction

with OH, there are strong indications that these reactions are too fast, in addition, a

substantial lack of emissions could be present, even from natural sources as suggested

by (J.-L. Li et al., 2021).

5. In the outlook section, the authors discuss potential improvements to the model.

Since SOA lifecycle in the atmosphere can also be affected by aerosol phase state,

heterogeneous reaction with oxidant, etc., which are still highly uncertain, could the

authors include these processes in the discussion as well, and talk about how they can

be captured in the MOM+ORACLE framework?

The referee pointed out correctly some further issues that could be implemented in the future.

Some of them have already been studied or implemented in the EMAC model, although not

explicitly described or used here.

Initial work on the state of the secondary organic aerosols with the ORACLE model has already

been performed by Shiraiwa et al. (2017), although more work is needed to estimate its impact

on the global secondary organic aerosol budget. The MOM+ORACLE framework calculates the

phase partitioning of organic compounds by assuming a bulk equilibrium. However, the phase
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state of the organic aerosol can affect the mixing time of the condensed organic compounds within

the aerosol. In general, equilibrium partitioning to the particle phase is a reasonable assumption

if the aerosol is liquid, however, if the phase state is solid, non-equilibrium partitioning should be

considered. The MOM+ORACLE framework does not consider any kinetic limitations in the bulk.

Shiraiwa et al. (2017) suggests that kinetic limitations in the bulk may not significantly affect SOA

partitioning in the boundary layer, justifying the use of equilibrium partitioning in this part of the

atmosphere.

Finally, MOM comprises an explicit gas-phase VOC oxidation scheme but does not include any

heterogeneous reactions. However, the MOM+ORACLE framework can be used as a basis to link

ORACLE with an aqueous phase mechanism which is planned for a future study.

The following text has been added to the conclusions (line 757): Finally, the

MOM+ORACLE framework calculates the phase partitioning of organic compounds

by assuming a bulk equilibrium, without any kinetic limitation. However, the phase

state of the organic aerosol can affect the mixing time of the condensed organic com-

pounds within the aerosol. In general, equilibrium partitioning to the particle phase

is a reasonable assumption if the aerosol is liquid, however, if the phase state is solid,

non-equilibrium partitioning should be considered. Shiraiwa et al. (2017) suggests

that kinetic limitations in the bulk may not significantly affect SOA partitioning in

the boundary layer, justifying the use of equilibrium partitioning in this part of the

atmosphere, but kinetic limitations should be implemented and investigated for the

free and upper troposphere.

referee #2

1. No comparisons are made to previous model versions. The authors have made

no arguments for which conditions such a complex mechanism is needed. This work

ought to show what difference, and particularly improvement, is achieved with this

complex chemistry scheme over standard, more reduced schemes.

We thank the reviewer for pointing this out. We indeed have discussed this issue in the

manuscript (line 46-54) : “A comparison for VOCs with the MIM chemical mechanism [...] that

was used previously [...] is not shown here as in such mechanism (i) most of organics are either

lumped [...] or missing; [...] (ii) primary species common to MIM and MOM would be influenced

only by the different sinks (mainly OH), and a detailed description of OH budget is presented here;

(iii) the model bias with respect to secondary species, e.g. oxygenated VOCs, has been linked to a

mis-representation or lack thereof of processes like in-cloud chemistry.” Therefore we believe that

most of the comparison would not yield any additional information. It must be also stressed that

we do not claim that this chemical mechanism is better than those previously used; rather the

MOM mechanism is more complete, which allows studies which are not possible with simplified

chemistry. In the few cases of specific trace gases (e.g. ozone or formaldehyde), which are present

in both, MIM and MOM,a comparison could indeed be useful. This, however, would require a

different model set-up, specifically aimed at such a comparison, and therefore is beyond the scope

of this manuscript.

No changes have been applied to the manuscript, as the information is already

contained in the text (lines 46-54)
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2. The VOC measurements used for evaluation of the model are really not ad-

equate and numerous additional observations could have been used to evaluate the

VOCs. The Emmons compilation of aircraft observations only includes data through

2000, and the quality and quantity of in-situ (aircraft) measurements of VOCs have

increased dramatically since then. For example, the ATom missions provide global

coverage of the compounds presented here (HCs, CH3CHO, CH3COCH3, etc.). Nu-

merous other aircraft campaigns led by NASA, NOAA and NSF in the U.S. provide

measurements over polluted regions (e.g., INTEX-NA, DISCOVER-AQ, SEAC4RS,

SENEX, KORUS-AQ, FIREX-AQ, etc., etc.). These datasets are all freely available

and in standard, similar formats which making them fairly easy to use, though it

does require a bit more effort than taking the single profiles provided by the Emmons

climatology.

We believe that an evaluation of a global model of such complexity, as the one presented in this

study, should show the capability of the model to represent background/climatological conditions,

rather than polluted/episodic ones. For this reason we adopted the so called ”Emmons database”,

as each profile is based on multiple flights in the same regions, mostly for background conditions. As

mentioned in the manuscript (line 138), we consider the used aircraft campaigns as representative

for the period and the regions, i.e., equivalent to an observational-based climatology, although we

acknowledge its limitations by using additional satellite observations. In addition, as these data

have been used in many other evaluations, we can compare our results with previous studies.

A comparison with single flight measurements would give us a more ”episodic” comparison, and

should be accompanied with detailed process studies, as done before with this mechanism (e. g.

Lelieveld et al., 2018; Tadic et al., 2021; Wang et al., 2020). Therefore, we restrain from using the

campaign data suggested by the referee in such a general evaluation as the one presented here, as

we would miss an overall overview.

Nevertheless, we believe that the Atmospheric Tomography Mission (ATom campaign), does fit

perfectly our needs, being over background regions, for different seasons, and with an extensive set

of observed trace gases, and we thank the referee for pointing that out. [. . . , see replied to referee

#2 in the open discussion]

In lines 141-147 we clarified what we consider to be an evaluation of a model

of such complexity as EMAC. Furthermore, the comparison with the ATom(s) field

campaigns has been added, with additions in many part of the manuscript:

• The description of the campaign is now in Sect.3.1.1, line 149-165,

• Fig.2 with the ATom(s) campaign flight paths and the regions defined for the

comparison,

• Tab.2 with the statistics of the observations-model results comparison based on

the AToms database,

• Additional general remarks from the comparison in line 270-279,

• Fig.3 scatter plots for CH3OOH and HCHO,

• Additional text in line 318-319, for the comparison with alkanes,

• Additional comparison (line 365 and Fig.9) for methanol,
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• Additional investigation of North Hemisphere model underestimation for ace-

tone, against ATom observations (lines 289-294 and Fig.10),

• Comparison with HCOOH in lines 416-422,

• confirmation of previous results for PAN in line 455.

The IASI retrievals are used extensively, but much more should be included about

their accuracy and the results of published validation results. Perhaps they have much

greater uncertainty at high latitudes, or remote regions - this should be discussed here.

Random and systematic components affect the uncertainties of the VOC measurements from

IASI. Every IASI product comes with its own estimate of the random uncertainty associated with

an individual retrieved column (see, e.g., Franco et al., 2018). For a non-background abundance of

the considered species, the relative uncertainty on an individually retrieved column ranges typically

between 20% and 50%, with the highest uncertainties found for the low columns. This single-pixel

uncertainty increases for lower and background columns as the lower abundance of the target

species approaches the IASI detection threshold. Nevertheless, these random uncertainties become

negligible for the column averages calculated here for the comparisons with EMAC, because of

the total number of measurements used per model grid cell. Indeed, after data filtering, 17 IASI

measurements per day on average fall into each model grid box close to the Equator, i.e., more

than 6,000 over the year 2010. Owing to the satellite polar orbits, this number increases with

latitude and with the higher spatial sampling of IASI.

With respect to the systematic uncertainties, comparisons with independent measurements were

performed to identify any potential bias in the IASI VOC columns. For the species that are also

retrieved from ground-based FTIR measurements, namely CH3OH, HCOOH and PAN, column

comparisons at various latitudes and environments were performed (Franco et al., 2020; Mahieu

et al., 2021). Since no column measurements of acetone and acetic acid are currently available,

the IASI data were compared to independent columns derived from tropospheric aircraft profiles

taken from various campaigns, complemented in the lower stratosphere by model data (Franco

et al., 2019, 2020). These comparisons confirmed the absence of any large systematic biases of the

IASI data, and that there is no noticeable latitudinal impact on the discrepancies. However, an

underestimation (locally up to 30%) of the highest columns over tropical source regions (e.g., the

Amazon Basin) during the dry season has been identified for all the species, except for PAN. Such

underestimation of the elevated VOC columns affects the nadir-viewing sounders in general. For

instance, it has also been observed in an extensive comparison of the TROPOMI formaldehyde

product with over 20 FTIR measurement sites (Vigouroux et al., 2020).

Despite the underestimation of the highest columns locally, in the context of our study, the

accuracy of the IASI products is relatively stable and sufficient to provide a global evaluation

of the EMAC performance, considering the large uncertainties that still affect the emissions and

atmospheric modelling of these VOCs.

In the manuscript, we have updated the section 3.3.3 dedicated to the IASI mea-

surements as follows: The uncertainties on the individual retrieved column can be

large, but are considerably reduced by averaging numerous observations in space and

time, as done in this study by comparing annual averages on the model grid. A full

description of the ANNI framework, the characterization of the VOC products, and

comparisons of the satellite data with independent measurements can be found in

Franco et al. (2019, 2020, 2018) and Mahieu et al. (2021), and references therein. In
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these studies, comparisons with ground-based column measurements of VOCs, as well

as with columns derived from aircraft profiles, indicate no large systematic biases of

the IASI data and no dependence on the latitude, although an underestimation (lo-

cally up to 30%) of the highest columns over tropical source regions (e.g., the Amazon

Basin) has been identified for all the IASI VOC products, except PAN. The accuracy

of the IASI measurements is therefore sufficient to provide a global evaluation of the

EMAC performance, considering the large uncertainties that still affect the emissions

and atmospheric modelling of the VOCs. For both, IASI and the model, daily gridded

averages were constructed at the spatial resolution of the model grid. To have similar

temporal coverage over the year between model and satellite observations, the EMAC

daily averages were masked when the corresponding IASA data were missing for the

same day and location.

referee #3

(1) Line 81: Are those emissions reasonable compared with other global model in-

puts or estimates? It is better to add a few sentences to discuss it. It looks like

the work did not apply regional emission inventories (e.g., NEI for US, EMEP for

Europe, MIX for East Asia or MEIC for China). Would this affect the simulations in

anthropogenic-influenced regions? In particular, for aerosol composition, I think the

regional inventories may matter significantly.

The emissions database used in this work has been extensively compared with other global

emission databases by Crippa et al. (2018), and therefore it is not repeated here. It can be

mentioned that differences can be up to “ 43% for BC ” (Crippa et al., 2018). As we needed to

have a global emissions dataset, we adopted the one we considered most realistic at the time of

the simulation, although different global emissions dataset are possible within the EMAC model

(see for example Jöckel et al., 2016; Reifenberg et al., 2021). As mentioned by the referee, we

did not apply any regional emission inventories: as we were not focusing on specific locations,

we preferred to adopt a homogeneous global emission dataset rather than over-imposing regional

emissions datasets. It must, however, be stressed that the uncertainties in these global emissions

are often similar to the regional ones. For example Saikawa et al. (2017) compared 2 global and

3 regional emissions dataset for China, showing that “large disagreements exist among the five

inventories [. . . ]”. As a comparison between different emissions datasets is outside the scope of

this study, we will simply refer to the work of Crippa et al. (2018) for the details.

This text has been added to line 77 when describing the anthropogenic emissions:

[. . . ] and has been compared to other global emission databases by (Crippa et al.,

2018).

(2) Section 3.2.5: I think the authors only used the EANET data for 2010. Please

specify.

Yes, we used the data for the year 2010. Thanks for pointing this out. We will correct this in

the revised version.

This has been amended in line 210

(3) Line 238-239: What kind of biogenic CO precursors?
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An example would be methanol CH3OH, as presented by Rosanka et al. (2021b) and in

Sect.4.2.3 in our manuscript. Also CH3COCH3 (see Sect.4.2.4) is overestimated in these regions.

We will refer to these sections in the revised version of the manuscript.

We added to line 301 the following text: (see Rosanka et al., 2021a,b), as also

shown in Sect.4.2.3 and Sect.4.2.4.

(4) Line 280-281: How high? I am surprised that temperature difference can be

significant between the model parameters and the observations. If the overestimation

is due to excess of biogenic VOCs, it is better to compare the surface concentrations

of isoprene etc. Some measurements are available in those tropical areas and the data

are published (e.g., from AMAZE-08).

The referee is correct. The bias in temperature is indeed very limited, as shown by Hagemann

and Stacke (2015). Nevertheless, it must be stressed that even a small overestimation can have a

strong impact on the emissions. As shown by Guenther et al. (2006, Fig.4), the MEGAN model

shows a strong response of the emissions on changed temperature. Once plants are exposed for

several days to temperatures above 300 K, MEGAN predicts strong dependencies of isoprene

emissions on actual temperature, so that even a difference of a few degrees implies large emission

differences. Following the referee’s suggestion, we compared the simulated isoprene mixing ratios in

the Amazon rainforest with observations from the AMAZE-08 campaign (Martin et al., 2016) and

from the ATTO tower (Yáñez-Serrano et al., 2015). In comparison to the AMAZE-08 campaign,

the simulated isoprene measurements are overestimated by more than a factor of 3 (6.1 ± 1.2 ppb

simulated and 1.9 ± 1.4 ppb observed), while the overestimation factor for the ATTO tower is on

average approximately 1.6, being higher in February/March and lower in October/November.

In line 348-353, the following lines have been added: [. . . ] due to its high tem-

perature sensitivity (Guenther et al., 2006). This is confirmed by a comparison of

the simulated isoprene mixing ratios in the Amazon rainforest with observations from

the AMAZE-08 campaign (Martin et al., 2016) and from the ATTO tower (Yáñez-

Serrano et al., 2015). In comparison to the AMAZE-08 campaign, the simulated

isoprene measurements are overestimated by more than a factor of 3 (6.1 ± 1.2 ppb

simulated and 1.9 ± 1.4 ppb observed), while the overestimation factor for the ATTO

tower is on average approximately 1.6, being higher in February/March and lower in

October/November.

(5) Consistent model underestimation present in mid- and high latitudes of North-

ern Hemisphere for CH3OH, CH3COCH3, HCOOH, CH3COOH, and PAN. The au-

thors made some explanations. For example, Biogenic or biomass burning VOCs

emissions might be too low during summertime in those regions. In-cloud chemistry

may happen. In what regions, such in-cloud chemistry can be a significant source (e.g.,

HCOOH)? This model bias is too consistent, which made me wonder how this is re-

lated to underrepresented emission inventories of VOCs in EDGAR (e.g., contributed

by outflow of polluted areas). If biomass burning is not well represented, what does

the model-satellite comparison look like for different seasons? Or if it is biogenic,

would the simulation become better in winter? I think the current discussion about

the potential bias is a bit too general.

Indeed the model bias is very large for those species at high latitude . We agree with the referee

that the anthropogenic emissions could be underestimated, but this would unlikely explain such a
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homogeneous underestimation. As example, Jacob et al. (2002) showed that anthropogenic emis-

sions would roughly contribute only to 25% of the total CH3COCH3 budget. The underestimation

in our model at high latitude is roughly of 50%, i.e. larger than the total anthropogenic contribu-

tion. Furthermore, if anthropogenic emissions would be the main source of error, we would find a

constant underestimation also near source regions, which is, again, not the case for CH3COCH3.

On contrary, for CH3OH, the anthropogenic emissions can easily be distinguished in the model

results, both, in North America and in South Asia (see Fig.6), and they are clearly higher than

the satellite observations suggest.

[. . . ] In summary, due to their different budget, a more detailed analysis is necessary to under-

stand the reason of the discrepancies between model results and observations for the mentioned

trace gases, which is well beyond the scope of this study. This work should, however, present the

weakness in representing such gases, so that future work could use this study as a starting point.

No changes have been applied here, as more detailed analysis is required to obtain

meaningful and scientifically sound conclusions

(6) Line 389-390: What are those concentrations? The magnitudes seem not

matching with annual mean surface concentrations of OH.

We are indebted to the Reviewer for spotting this typo (units factor exponent should read ”5”

instead of ”15”) which occurred during the typesetting of the manuscript. Indeed, typical average

tropospheric concentrations of OH are in the order of 105–106 molecules cm−3.

The units have been changed from 1015 to 105.

(7) Section 4.3: What about the model performance of surface OH in different

regions? This would affect VOC chemistry and SOA formation significantly. Surface

OH concentrations can be quite high in polluted areas (e.g., in China). A recent

paper pointed the model underestimation of OH because of the lack of HONO source

[Miao et al., 2021]. Would that be a problem in the updated model presented here?

Here we intend to show that the model is reproducing OH similar to that in previous simulations

with EMAC. A detailed study on OH and its reactivity on a global scale from this model results

is planned in the near future. It has been also shown that the model HOx budget agrees well

when compared to observation in the free troposphere (Tadic et al., 2021). Nevertheless, we agree

with the referee that a comparison in polluted regions at the surface could be problematic, also

because of the apparent missing HONO source (see for example Elshorbany et al. (2014) for the

approach mimicking HONO sources in EMAC, not adopted in this study). We, however, refer

to the answer to referee#2: in an evaluation, of a global model of such complexity as the one

presented here, the background conditions should be evaluated at first, showing that the model is

able to reproduce such conditions. More specific studies on polluted areas should be conducted

with dedicated simulation(s) and with more focused analyses.

No changes were made for this point.

(8) Section 4.5: Is the model performance lower in winter than in summer? Resi-

dential coal burning in China seems to be a big source of PM2.5 associated with large

uncertainty in the inventory. Would that affect the comparison in Asia?

Sadly this cannot be investigated with the dataset of Hammer et al. (2020), as these data are

provided as annual average (albeit at high spatial resolution). On the other side, we believe the

referee to be completely right: as shown by Pozzer et al. (2012, 2017), and more recently by Miao
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et al. (2020), BC and OC are very important for the PM2.5 budget in East and South Asia. We

think that the large uncertainties associated with such emissions do strongly affect our results in

these regions.

In lines 525-2527, we aknowledge the importance of BC and OC emissions for PM2.5

over East and South Asia, as well as their large uncertainties that could affect our

results.

(9) Line 470-473: What do the model values in higher vertical layers compare with

the observations?

We have compared SO2−
4 concentrations with observations from aircraft campaigns, as com-

piled by Heald et al. (2011), similarly to Fig. 26 of the manuscript. [. . . ]. As mentioned in the

manuscript, the stations present at high altitude were not representative because of the difficulties

in reproducing the correct orography by a model of such resolution. Nevertheless, the simulated

sulfate concentrations agree well with the aircraft observations in the free and lower troposphere,

with an underestimation in a few cases ([. . . ], ITCT-2K4, ADIENT or IMPEX campaigns), but

always within the measurement standard deviations.

We have added a new figure (Fig.22) with comparison of sulfate in the tropo-

sphere. In addition, the text was augmented in line 565-570 with the following text:

We therefore compared SO2−
4 concentrations with observations from aircraft cam-

paigns, as compiled by Heald et al. (2011). The results are presented in Fig.31. The

simulated sulfate concentrations agree well with the aircraft observations in the free

and lower troposphere, with an underestimation in a few cases (see Fig.31, ITCT-

2K4, ADIENT or IMPEX campaigns), but always within the measurement standard

deviations, confirming that the vertical profile of sulfate is generally well reproduced

in the lower troposphere.

(10) Line 487-488: Nitrate overestimation seems a general problem in chemical

transport models. A main reason could be the inappropriate deposition parameters

[Miao et al., 2020; Zhai et al., 2021]. But more pronounced bias in winter than in

summer is inconsistent with the other studies.

Indeed, the referee is correct that a more pronounced bias in winter is inconsistent with other

studies, and this was acknowledged in the manuscript (see lines 482-484). Due to the intricate

chemistry involved in the aerosols budget, we prefer not to draw any conclusions or hypothesis for

the behaviour of the simulated nitrate.

No changes applied for this point.

(11) Section 4.6.5: It would be good to make some connections for model biases

on species. For example, how would the significant biases for the oxygenated organics

discussed in the paper affect the OA simulations? So does OH as I mentioned in 7.

Following the referee’s previous comments, it is clear that the possible underestimation of OH

over polluted regions will results in an underestimation of Organic Aerosols (OA) in the same

region. This is visible in Fig. 25 of the manuscript, where the few locations in highly polluted

regions over east Asia are strongly underestimated. Nevertheless, it is hardly possible to comment

on what effect could have the underestimation of the oxygenated organics mentioned in the paper

to the OA. First of all, the discussed trace gases are too light to contribute significantly to OA

directly, even for products of their oxidation chain. Although some of these might contribute to OA
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mass through aqueous phase chemistry, this process is not (yet) included in the model. Secondly,

no OA observations are present for the regions of underestimation, so it cannot be confirmed that

the simulated OA deviates from the observations in these regions. Any discussion on this point

would be extremely speculative and we prefer to avoid it.

No changes applied for this point.

(12) Line 553- 562: The observations in Asia used here for aerosol composition are

quite limited. Studies have suggested the emission inventories for semivolatile and

intermediate volatility organic compounds are insufficient and lead to the majority

of the model biases in simulating OA [Miao et al., 2021; Zhao et al., 2016] in regions

that are influenced significantly by anthropogenic emissions. In Europe, residential

wood burning also contributes a lot to the primary OA in winter. Would that be a

possible bias? For the rural areas, fragmentation of OA is not included in the model,

which may contribute to the overestimation over North America. OA includes both

primary OA and SOA. It might be more clear if the two cases are separated discussed.

We thank the reviewer for pointing out these potential sources of discrepancy between our model

and observations. In contrast to other observational networks (e.g., EMEP, IMPROVE), EANET

does not perform measurements of OA. Therefore, the observations presented here are based on

individual field campaigns, which usually last for approximately one month, and not from a network

of observational sites that routinely collect samples throughout the year. Therefore, given that the

model simulation lasts for only one year, the number of observations used are limited compared to

other components (e.g., sulfates from EANET) or other regions (e.g., OA from EMEP in Europe

or from IMPROVE in USA). This is emphasized now in the revised text.

ORACLE simulates the contribution of SVOC and IVOC emissions from fuel combustion and

biomass burning to OA formation, including additional IVOC emissions that were not accounted

for by the traditional emission inventories. However, we do agree with the reviewer that the

SVOC/IVOC emission factors used are highly uncertain and can add to the model bias.

Residential wood burning has been identified as the main source of discrepancy in model bias

over Europe during winter (A. P. Tsimpidi et al., 2016). This is already mentioned in the text

(i.e., as biomass burning). In the revised text, this is clarified by replacing the ”biomass burning

emissions” in line 557 with ”biomass combustion emissions from residential heating”.

The effect of fragmentation is included in the aging scheme of ORACLE. The oxidation of

organic compounds can result in products with different volatilities due to functionalization (re-

ducing the volatility) or fragmentation (increasing the volatility). To minimize the computational

cost, ORACLE uses a simple photochemical aging scheme that efficiently simulates the net effects

of fragmentation and functionalization of the organic compounds. However, even the conservative

aging scheme of ORACLE assumes that the net volatility transformations point to only one direc-

tion (functionalization) which can lead to increasingly higher OA concentrations in lower-volatility

bins. This may result in an overestimation of OA at long aging timescales downwind of the source

regions. This overestimation is partially offset by the use of MOM for simulating explicitly the

degradation of the traditional VOCs.

Our manuscript focuses primarily on the evaluation of the model performance for the tropo-

spheric gas phase composition and secondarily on the general properties of the aerosol composition.

We believe that an in-depth analysis of the simulated organic aerosol composition along with AMS

factor analysis data can provide valuable insights on the benefits of the proposed modeling approach

and we have left this analysis for a planned future study.
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In line 655-657, the following lines have been added: As pointed out by Miao et al.

(2021) and B. Zhao et al. (2016), the emission inventories for semivolatile and inter-

mediate volatility organic compounds are insufficient and lead to the majority of the

model biases in simulating OA in these regions that are influenced significantly by

anthropogenic emissions.

Technical remarks [...]

All the technical remarks were be taken into account in the revised version of the

manuscript, with the exception of Fig.16, which was not changed.
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Schumann, J. Williams, J. Curtius, H. Harder, H. Schlager, J. Lelieveld, and A. Pozzer (2021).

“Impact of reduced emissions on direct and indirect aerosol radiative forcing during COVID–19

lockdown in Europe”. In: Atmospheric Chemistry and Physics Discussions 2021, pp. 1–23. doi:

10.5194/acp-2021-1005.

Rosanka, S., B. Franco, L. Clarisse, P.-F. Coheur, A. Pozzer, A. Wahner, and D. Taraborrelli

(2021a). “The impact of organic pollutants from Indonesian peatland fires on the tropospheric

and lower stratospheric composition”. In: Atmospheric Chemistry and Physics 21.14, pp. 11257–

11288. doi: 10.5194/acp-21-11257-2021.

Rosanka, S., R. Sander, B. Franco, C. Wespes, A. Wahner, and D. Taraborrelli (2021b). “Oxidation

of low-molecular-weight organic compounds in cloud droplets: global impact on tropospheric

oxidants”. In: Atmospheric Chemistry and Physics 21.12, pp. 9909–9930. doi: 10.5194/acp-

21-9909-2021.

Saikawa, E., H. Kim, M. Zhong, A. Avramov, Y. Zhao, G. Janssens-Maenhout, J.-i. Kurokawa,

Z. Klimont, F. Wagner, V. Naik, et al. (2017). “Comparison of emissions inventories of anthro-

pogenic air pollutants and greenhouse gases in China”. In: Atmospheric Chemistry and Physics

17.10, pp. 6393–6421.

Sander, R., A. Baumgaertner, D. Cabrera-Perez, F. Frank, S. Gromov, J.-U. Grooß, H. Harder,
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