
We thank the reviewer for his/her comments. Here they are reported (in bold) with our replies.

The authors presented a comprehensive evaluation of an updated and expanded

EMAC model. The implementation of explicit mechanisms and the gas-particle con-

densation module to the chemistry GCM can be very useful for studying organic

vapors and their chemistry in the atmosphere. The model evaluation was made on

OH, CO, some key VOCs, AOD and the chemical components of PM2.5. Significant

biases present in OVOC simulations, whilst the model performance for aerosol com-

position is similar to that of previous model configurations. The reasons that lead to

the model biases were explored but I feel there are still somewhat insufficient which

may be improved with more discussions. Overall I think this is a relevant, important

paper and recommend it to be accepted after addressing the following comments.

We thank the referee for the positive feedback.

(1) Line 81: Are those emissions reasonable compared with other global model

inputs or estimates? It is better to add a few sentences to discuss it. It looks like

the work did not apply regional emission inventories (e.g., NEI for US, EMEP for

Europe, MIX for East Asia or MEIC for China). Would this affect the simulations in

anthropogenic-influenced regions? In particular, for aerosol composition, I think the

regional inventories may matter significantly.

The emissions database used in this work has been extensively compared with other global emis-

sion databases by Crippa et al. (2018), and therefore it is not repeated here. It can be mentioned

that differences can be up to “ 43% for BC ” (Crippa et al., 2018). As we needed to have a global

emissions dataset, we adopted the one we considered most realistic at the time of the simulation,

although different global emissions dataset are possible within the EMAC model (see for example

Jöckel et al., 2016; Reifenberg et al., 2021). As mentioned by the referee, we did not apply any

regional emission inventories: as we were not focusing on specific locations, we preferred to adopt

a homogeneous global emission dataset rather than over-imposing regional emissions datasets. It

must, however, be stressed that the uncertainties in these global emissions are often similar to

the regional ones. For example Saikawa et al. (2017) compared 2 global and 3 regional emissions

dataset for China, showing that “large disagreements exist among the five inventories [. . . ]”. As a

comparison between different emissions datasets is outside the scope of this study, we will simply

refer to the work of Crippa et al. (2018) for the details.

(2) Section 3.2.5: I think the authors only used the EANET data for 2010. Please

specify.

Yes, we used the data for the year 2010. Thanks for pointing this out. We will correct this in

the revised version.

(3) Line 238-239: What kind of biogenic CO precursors?

An example would be methanol CH3OH, as presented by Rosanka et al. (2021b) and in

Sect.4.2.3 in our manuscript. Also CH3COCH3 (see Sect.4.2.4) is overestimated in these regions.

We will refer to these sections in the revised version of the manuscript.

(4) Line 280-281: How high? I am surprised that temperature difference can be

significant between the model parameters and the observations. If the overestimation
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is due to excess of biogenic VOCs, it is better to compare the surface concentrations

of isoprene etc. Some measurements are available in those tropical areas and the data

are published (e.g., from AMAZE-08).

The referee is correct. The bias in temperature is indeed very limited, as shown by Hage-

mann and Stacke (2015). Nevertheless, it must be stressed that even a small overestimation can

have a strong impact on the emissions. As shown by Guenther et al. (2006, Fig.4), the MEGAN

model shows a strong response of the emissions on changed temperature. Once plants are exposed

for several days to temperatures above 300 K, MEGAN predicts strong dependencies of isoprene

emissions on actual temperature, so that even a difference of a few degrees implies large emission

differences. Following the referee’s suggestion, we compared the simulated isoprene mixing ratios in

the Amazon rainforest with observations from the AMAZE-08 campaign (Martin et al., 2016) and

from the ATTO tower (Yáñez-Serrano et al., 2015). In comparison to the AMAZE-08 campaign,

the simulated isoprene measurements are overestimated by more than a factor of 3 (6.1 ± 1.2 ppb

simulated and 1.9 ± 1.4 ppb observed), while the overestimation factor for the ATTO tower is on

average approximately 1.6, being higher in February/March and lower in October/November.

(5) Consistent model underestimation present in mid- and high latitudes of North-

ern Hemisphere for CH3OH, CH3COCH3, HCOOH, CH3COOH, and PAN. The au-

thors made some explanations. For example, Biogenic or biomass burning VOCs

emissions might be too low during summertime in those regions. In-cloud chemistry

may happen. In what regions, such in-cloud chemistry can be a significant source (e.g.,

HCOOH)? This model bias is too consistent, which made me wonder how this is re-

lated to underrepresented emission inventories of VOCs in EDGAR (e.g., contributed

by outflow of polluted areas). If biomass burning is not well represented, what does

the model-satellite comparison look like for different seasons? Or if it is biogenic,

would the simulation become better in winter? I think the current discussion about

the potential bias is a bit too general.

Indeed the model bias is very large for those species at high latitude . We agree with the referee

that the anthropogenic emissions could be underestimated, but this would unlikely explain such a

homogeneous underestimation. As example, Jacob et al. (2002) showed that anthropogenic emis-

sions would roughly contribute only to 25% of the total CH3COCH3 budget. The underestimation

in our model at high latitude is roughly of 50%, i.e. larger than the total anthropogenic contribu-

tion. Furthermore, if anthropogenic emissions would be the main source of error, we would find a

constant underestimation also near source regions, which is, again, not the case for CH3COCH3.

On contrary, for CH3OH, the anthropogenic emissions can easily be distinguished in the model

results, both, in North America and in South Asia (see Fig.6), and they are clearly higher than

the satellite observations suggest.

In Fig. 1, the total column from EMAC and IASI data are compared for latitudes between 30◦

and 65◦N. As the patterns of the comparison between the different VOCs and the model results

are different, we can suggest also different reasons for the underestimation. While for the acids

HCOOH and CH3COOH a clear major source is missing (see for example Franco et al., 2021), for

PAN and CH3COCH3 the observed seasonality is not reproduced, suggesting a more fundamental

problem in the numerical simulation of such tracers. It must be stressed that at high latitudes in

winter, the poor observational conditions reduce significantly the spectral signal recorded by IASI

and hampers meaningful retrievals of the VOCs (see Franco et al., 2018). Hence, the temporal and

spatial coverage of the satellite measurements is limited at these latitudes, and the results must
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Figure 1: Daily and spatially averaged VOC columns from IASI and EMAC between 30◦ and 65◦N
throughout the year 2010. Data were considered only when both IASI and model results were
simultaneously available.

be taken with caution. Finally, as the biomass burning period is also in phase with large biogenic

emissions (due to high temperature and solar radiation), it is difficult to draw a general conclusion

here.

In summary, due to their different budget, a more detailed analysis is necessary to understand

the reason of the discrepancies between model results and observations for the mentioned trace

gases, which is well beyond the scope of this study. This work should, however, present the weak-

ness in representing such gases, so that future work could use this study as a starting point.

(6) Line 389-390: What are those concentrations? The magnitudes seem not

matching with annual mean surface concentrations of OH.

We are indebted to the Reviewer for spotting this typo (units factor exponent should read ”5”

instead of ”15”) which occurred during the typesetting of the manuscript. Indeed, typical average

tropospheric concentrations of are in the order of 105–106 molecules cm−3.

(7) Section 4.3: What about the model performance of surface OH in different

regions? This would affect VOC chemistry and SOA formation significantly. Surface

OH concentrations can be quite high in polluted areas (e.g., in China). A recent

paper pointed the model underestimation of OH because of the lack of HONO source

[Miao et al., 2021]. Would that be a problem in the updated model presented here?

Here we intend to show that the model is reproducing OH similar to that in previous simula-

tions with EMAC. A detailed study on OH and its reactivity on a global scale from this model

results is planned in the near future. It has been also shown that the model HOx budget agrees

well when compared to observation in the free troposphere (Tadic et al., 2021). Nevertheless, we
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agree with the referee that a comparison in polluted regions at the surface could be problematic,

also because of the apparent missing HONO source (see for example Elshorbany et al. (2014) for

the approach mimicking HONO sources in EMAC, not adopted in this study). We, however, refer

to the answer to referee#2: in an evaluation, of a global model of such complexity as the one

presented here, the background conditions should be evaluated at first, showing that the model is

able to reproduce such conditions. More specific studies on polluted areas should be conducted

with dedicated simulation(s) and with more focused analyses.

(8) Section 4.5: Is the model performance lower in winter than in summer? Resi-

dential coal burning in China seems to be a big source of PM2.5 associated with large

uncertainty in the inventory. Would that affect the comparison in Asia?

Sadly this cannot be investigated with the dataset of Hammer et al. (2020), as these data are

provided as annual average (albeit at high spatial resolution). On the other side, we believe the

referee to be completely right: as shown by Pozzer et al. (2012, 2017), and more recently by Miao

et al. (2020), BC and OC are very important for the PM2.5 budget in East and South Asia. We

think that the large uncertainties associated with such emissions do strongly affect our results in

these regions.

(9) Line 470-473: What do the model values in higher vertical layers compare with

the observations?

We have compared SO2−
4 concentrations with observations from aircraft campaigns, as com-

piled by Heald et al. (2011), similarly to Fig. 26 of the manuscript. The results are presented in

Fig.2. As mentioned in the manuscript, the stations present at high altitude were not representa-

tive because of the difficulties in reproducing the correct orography by a model of such resolution.

Nevertheless, the simulated sulfate concentrations agree well with the aircraft observations in the

free and lower troposphere, with an underestimation in a few cases (see Fig. 2, ITCT-2K4, ADI-

ENT or IMPEX campaigns), but always within the measurement standard deviations.

(10) Line 487-488: Nitrate overestimation seems a general problem in chemical

transport models. A main reason could be the inappropriate deposition parameters

[Miao et al., 2020; Zhai et al., 2021]. But more pronounced bias in winter than in

summer is inconsistent with the other studies.

Indeed, the referee is correct that a more pronounced bias in winter is inconsistent with other

studies, and this was acknowledged in the manuscript (see lines 482-484). Due to the intricate

chemistry involved in the aerosols budget, we prefer not to draw any conclusions or hypothesis for

the behaviour of the simulated nitrate.

(11) Section 4.6.5: It would be good to make some connections for model biases

on species. For example, how would the significant biases for the oxygenated organics

discussed in the paper affect the OA simulations? So does OH as I mentioned in 7.

Following the referee’s previous comments, it is clear that the possible underestimation of OH

over polluted regions will results in an underestimation of Organic Aerosols (OA) in the same re-

gion. This is visible in Fig. 25 of the manuscript, where the few locations in highly polluted regions

over east Asia are strongly underestimated. Nevertheless, it is hardly possible to comment on what

effect could have the underestimation of the oxygenated organics mentioned in the paper to the

OA. First of all, the discussed trace gases are too light to contribute significantly to OA directly,
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Figure 2: Model results of mean vertical profile of sulfate for selected field campaigns in black, and
spatio-temporal standard deviation as grey area. The observed mean values are depicted in solid
red, with the bars representing the standard deviation of the observations. The observed median
is presented as red dashed line.

even for products of their oxidation chain. Although some of these might contribute to OA mass

through aqueous phase chemistry, this process is not (yet) included in the model. Secondly, no

OA observations are present for the regions of underestimation, so it cannot be confirmed that the

simulated OA deviates from the observations in these regions. Any discussion on this point would
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be extremely speculative and we prefer to avoid it.

(12) Line 553- 562: The observations in Asia used here for aerosol composition are

quite limited. Studies have suggested the emission inventories for semivolatile and

intermediate volatility organic compounds are insufficient and lead to the majority

of the model biases in simulating OA [Miao et al., 2021; Zhao et al., 2016] in regions

that are influenced significantly by anthropogenic emissions. In Europe, residential

wood burning also contributes a lot to the primary OA in winter. Would that be a

possible bias? For the rural areas, fragmentation of OA is not included in the model,

which may contribute to the overestimation over North America. OA includes both

primary OA and SOA. It might be more clear if the two cases are separated discussed.

We thank the reviewer for pointing out these potential sources of discrepancy between our model

and observations. In contrast to other observational networks (e.g., EMEP, IMPROVE), EANET

does not perform measurements of OA. Therefore, the observations presented here are based on

individual field campaigns, which usually last for approximately one month, and not from a network

of observational sites that routinely collect samples throughout the year. Therefore, given that the

model simulation lasts for only one year, the number of observations used are limited compared to

other components (e.g., sulfates from EANET) or other regions (e.g., OA from EMEP in Europe

or from IMPROVE in USA). This is emphasized now in the revised text.

ORACLE simulates the contribution of SVOC and IVOC emissions from fuel combustion and

biomass burning to OA formation, including additional IVOC emissions that were not accounted

for by the traditional emission inventories. However, we do agree with the reviewer that the

SVOC/IVOC emission factors used are highly uncertain and can add to the model bias.

Residential wood burning has been identified as the main source of discrepancy in model bias

over Europe during winter (Tsimpidi et al., 2016). This is already mentioned in the text (i.e., as

biomass burning). In the revised text, this is clarified by replacing the ”biomass burning emissions”

in line 557 with ”biomass combustion emissions from residential heating”.

The effect of fragmentation is included in the aging scheme of ORACLE. The oxidation of

organic compounds can result in products with different volatilities due to functionalization (re-

ducing the volatility) or fragmentation (increasing the volatility). To minimize the computational

cost, ORACLE uses a simple photochemical aging scheme that efficiently simulates the net effects

of fragmentation and functionalization of the organic compounds. However, even the conservative

aging scheme of ORACLE assumes that the net volatility transformations point to only one direc-

tion (functionalization) which can lead to increasingly higher OA concentrations in lower-volatility

bins. This may result in an overestimation of OA at long aging timescales downwind of the source

regions. This overestimation is partially offset by the use of MOM for simulating explicitly the

degradation of the traditional VOCs.

Our manuscript focuses primarily on the evaluation of the model performance for the tropo-

spheric gas phase composition and secondarily on the general properties of the aerosol composition.

We believe that an in-depth analysis of the simulated organic aerosol composition along with AMS

factor analysis data can provide valuable insights on the benefits of the proposed modeling ap-

proach and we have left this analysis for a planned future study.

Technical remarks [...]

All the technical remarks will be taken into account in the revised version of the manuscript
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