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Abstract.  16 
Terrestrial ecosystems play a critical role in the global carbon cycle but have highly uncertain future dynamics.  17 
Ecosystem modelling that includes the scaling-up of underlying mechanistic ecological processes has the potential 18 
to improve the accuracy of future projections, while retaining key process-level detail. Over the past two decades, 19 
multiple modelling advances have been made to meet this challenge, including the Ecosystem Demography (ED) 20 
model and its derivatives including ED2 and FATES. Here, we present the global evaluation of the Ecosystem 21 
Demography model (ED v3.0), which likes its predecessors features the formal scaling of physiological processes of 22 
individual-based vegetation dynamics to ecosystem scales, together with integrated submodules of soil 23 
biogeochemistry and soil hydrology, while retaining explicit tracking of vegetation 3-D structure. This new model 24 
version builds on previous versions and provides the first global calibration and evaluation, global tracking of the 25 
effects of climate and land-use change on vegetation 3-D structure, new spin-up process and input datasets, as well 26 
as numerous other advances. Model evaluation was performed with respect to a set of important benchmarking 27 
datasets, and model estimates were within observational constraints for multiple key variables including: (i) global 28 
patterns of dominant plant functional types (broadleaf vs evergreen); (ii) spatial distribution, seasonal cycle, and 29 
interannual trends of global Gross Primary Production (GPP); (iii) global interannual variability of Net Biome 30 
Production (NBP); and (iv) global patterns of vertical structure including leaf area and canopy height. With this 31 
global model version, it is now possible to simulate vegetation dynamics from local to global scales and from 32 
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seconds to centuries, with a consistent mechanistic modelling framework amendable to data from multiple 33 
traditional and new remote sensing sources, including lidar. 34 

1 Introduction 35 

Terrestrial ecosystems and the associated carbon cycle are of critical importance in providing ecosystem services 36 
and regulating global climate. Plants store approximately 450-650 Pg C as biomass globally. They remove 37 
approximately 120 Pg C from the atmosphere each year through photosynthesis, and release a similar magnitude of 38 
carbon to the atmosphere through respiration (Beer et al., 2010; Ciais et al., 2014a). Human activities over past 39 
centuries have significantly impacted terrestrial ecosystems through biophysical and biogeochemical mechanisms 40 
(Cramer et al., 2001; Walther et al., 2002; Brovkin et al., 2004; Pielke Sr. et al., 2011). Quantification, attribution 41 
and future projections of the terrestrial carbon sink requires in-depth understanding of underlying ecological 42 
processes and their sophisticated responses and feedbacks to climate change, elevated CO2, and land use and land 43 
cover change (LULCC) across multiple biomes and spatial and temporal scales (Canadell et al., 2007; Erb et al., 44 
2013; Keenan and Williams, 2018). This demand for information has driven the emergence and development of 45 
dynamic global ecosystem models (DGVMs), which simplify the structure and functioning of global vegetation into 46 
several plant functional types and simulate vegetation distribution and associated biogeochemical and hydrological 47 
cycles with ecophysiological principles (Prentice et al., 2007; Prentice and Cowling, 2013). The first generation of 48 
DGVMs have been used successfully to address a variety of carbon cycle related questions and integrated into Earth 49 
System Models (ESMs) (Cramer et al., 2001; Sitch et al., 2008). Subsequent developments have improved the 50 
representation of vegetation demographic processes within ESMs, including the Ecosystem Demography model 51 
(ED) (Hurtt et al., 1998; Moorcroft et al., 2001), ED2 (Medvigy 2006; Medvigy et al., 2009; Longo et al., 2019a), 52 
CLM(ED) (Fisher et al., 2015; Lawrence et al., 2019; Massoud et al., 2019),  SEIB-DFVM DGVM (Spatially-53 
Explicit Individual-based Dynamic Global Vegetation Model) (Sato et al ., 2007), LPJ-GUESS (Lund-Postdam-Jena 54 
General Ecosystem Simulator) (Smith et al., 2001, 2014), and GFDL-LM3-PPA (Geophysical Fluid Dynamics 55 
Laboratory Land Model 3 with the Perfect Plasticity Approximation) (Weng et al., 2015), as summarized in Fisher 56 
et al., 2018). 57 
 58 
In addition to model development, model evaluation is an important process tofor assessing model uncertainties and 59 
also identifying processes that need particular improvements (Anav et al., 2013; Luo et al., 2012; Eyring et al., 60 
2019). Considerable effort has been spent on standardizing evaluation practices and developing a comprehensive 61 
benchmarking system (Abramowitz et al., 2012; Collier et al., 2018; Eyring et al., 2016; Kelly et al., 2013; 62 
Randerson et al., 2009). For example, a benchmarking system from the International Land Model Benchmarking 63 
(ILAMB) project has been increasingly used to evaluate ecosystem and climate models (Collier et al., 2018; 64 
Ghimire et al., 2016; Luo et al., 2012). In parallel, new observations are providing new opportunities to initialize and 65 
test models. Of particular relevance for ecosystem models is the advent of spaceborne lidar missions (i.e., GEDI and 66 
ICESat-2) (Dubayah et al., 2020a; Markus et al., 2017), which provide unprecedented global observations of forest 67 
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structure, including vertical distribution of leaf foliage. Building on this past work, and utilizing new observations, 68 
an updated and systematic evaluation of model performance on across multiple variables is now possible. 69 
 70 
Here, we present the global evaluation of Ecosystem Demography v3.0. The ED model was developed two decades 71 
ago using a formal scaling approach (Size- and Age-Structured approximation, SAS) to efficiently approximate the 72 
expected dynamics of individual based forest dynamics (Hurtt et al., 1998; Moorcroft et al., 2001). Since its 73 
emergence, the ED model has been continuously developed and applied at various regions and spatial scales, with 74 
land-use changes, and lidar observations (Hurtt et al., 2002, 2004). In the original paper, the model was implemented 75 
at the site scale and primarily evaluated for aboveground biomass accumulation during succession using 76 
chronosequence field data, and at the regional scale using 1-degree resolution data on potential biomass, soil carbon 77 
and net primary productivity (NPP) (Moorcroft et al., 2001). Most recently, ED was implemented at high spatial 78 
resolution (90 m) over a regional domain of the Northeastern United States and evaluated for aboveground biomass 79 
using wall-to-wall lidar-based estimates of contemporary biomass at that spatial resolution (Hurtt et al., 2019a; Ma 80 
et al., 2021). The evaluation included >30 million grid cell pairs, and >103 forest inventory field plots. This 81 
progression of development spans includes a range of model capabilities, spatial resolutions, and evaluation data, 82 
ranging spanning from coarse resolution potential vegetation, to high spatial resolution contemporary conditions at 83 
regional scales. However, development and evaluation of ED at the global scale for contemporary conditions has not 84 
yet been accomplished. In this study, ED v3.0 is evaluated at global scales for the first time. Multiple key variables 85 
are considered in the evaluation, including benchmark datasets on vegetation distribution, vegetation structure, and 86 
carbon and water fluxes. 87 

2 Methods 88 

ED v3.0 is built upon a series of previous model developments (Moorcroft et al., 2001; Hurtt et al., 2002; Albani et 89 
al., 2006; Fisk, 2015; Flanagan et al., 2019). To extend ED’s capabilities globally, several additional modifications 90 
were introduced to capture global vegetation distribution across biomes and related carbon stocks and fluxes. Below, 91 
a summary of the ED approach and recent modifications is provided. The full descriptions of each submodule can be 92 
found in the Supplement along with tables of parameter values. To conduct the model evaluation, a model 93 
experimental protocol including equilibrium and transient simulations was developed and relevant forcing data were 94 
identified from global existing datasets. Model simulations were then compared to benchmarking datasets. 95 

2.1 Model 96 

The ED model is an individual based prognostic ecosystem model (Moorcroft et al., 2001). By integrating 97 
submodules of growth, mortality, hydrology, carbon cycle, and soil biogeochemistry, ED can track plant dynamics 98 
including growth, mortality, and reproduction. Along with plant dynamics, ED can track the carbon cycle, including 99 
carbon uptake by leaf photosynthesis, carbon allocation to biomass growth in leaves, roots and stems, carbon 100 
redistribution from plants to soil based on plant tissue turnover from dead plants due to mortality and disturbance, 101 
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carbon decomposition in various pools (metabolic litter pool, structural litter pool, soil slow pool, soil passive pool, 102 
wood product pool, harvested crop pool, etc) as well as carbon combustion from fire (Fig. 1 and Fig. 2). Over the 103 
last two decades, ED has been continuously developed and combined with lidar and land-use change data to predict 104 
ecosystem dynamics and associated water and carbon fluxes across spatial scales (e.g., site to regional and 105 
continental) and temporal scales (e.g., short-term seasonal to long-term decadal and century) (Hurtt et al., 2002, 106 
2004, 2010, 2016, Fisk et al., 2013, Flanagan et al., 2019). ED distinguishes itself from most other ecosystem 107 
models by explicitly tracking vegetation structure and scaling fine-scale physiological processes to large scale 108 
ecosystem dynamics (Hurtt et al., 1998, Moorcroft et al., 2001, Fisher et al., 2018). In ED, vegetation structure (e.g., 109 
height and diameter at breast height), and physiological processes (e.g., leaf photosynthesis and phenology) are 110 
modelled at the individual scale, where individual plants compete mechanically for light, water, and nutrients. 111 
During implementation, this horizontal heterogeneity is tracked through cohort and patch demography. Explicitly 112 
modelling vegetation height facilitates a potential connection to lidar data. The most advanced version of ED was 113 
used in this study and it has been recently calibrated and evaluated globally by various benchmarking datasets such 114 
as gross primary productivity (GPP), leaf area index (LAI), aboveground biomass (AGB), and net biome 115 
productivity (NBP) (Ma et al., 2021). 116 

2.1.1 Additional modifications 117 

Major modifications in ED v3.0 focus on four areas: plant functional type representation, leaf level physiology, 118 
hydrology, and wood products. These areas have been found to behave been identified as particularly important to 119 
for improvinge model performance globally. 120 
 121 
Plant functional types describe the characteristics of vegetation in different representative groups for modelling. In 122 
previous ED versions, various PFT combinations were implemented to represent vegetation in the respective regions 123 
where the model was implemented. In the original implementation of ED for Central and South America, four PFTs 124 
were represented (i.e., Early-successional broadleaf, Middle-successional broadleaf, Late-successional broadleaf and 125 
C4 grasses (Moorcroft et a., 2001). In a subsequent implementation over North America, two additional PFTs (i.e., 126 
Northern pines and Southern pines) were proposed in Albani et al., 2006. Here, these PFTs are included and further 127 
refined as seven major PFTs:,  namely early-successional broadleaf trees (EaSBT), middle-successional broadleaf 128 
trees (MiSBT), late-successional broadleaf trees (LaSBT), northern and southern pines (NSP), late-successional 129 
conifers (LaSC), C3 shrubs and grasses (C3ShG), and C4 shrubs and grasses (C4ShG) (Supplement S1). The 130 
broadleaf PFTs (i.e., EaSBT, MiSBT, and LaSBT) are distinguished between tropical and non-tropical subtypes. 131 
These PFTs primarily differ in their phenology, leaf physiological traits, allometry, mortality rate, and dispersal 132 
distance. As in previous versions of ED, the spatial distribution of PFTs is mechanistically determined by individual 133 
competition for light, water and nutrients. No quasi-equilibrium climate–vegetation relationships, or other 134 
assumptions or observations, are used to constrain the presence or absence of PFTs. 135 
 136 
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Leaf physiology determines short-term (i.e., < hourly) leaf-level carbon and water exchanges in response to 137 
environmental conditions (air temperature, shortwave radiation, air humidity, wind speed, and CO2 level). The 138 
representation of leaf level physiology in previous versions of ED (Moorcroft et a., 2001) was taken from IBIS 139 
(Foley et al., 1998), which in turn was based on prior work from Farquhar, Collatz, Ball and Berry and others 140 
(Farquhar and Sharkey 1982; Ball et al., 1987; Collatz et al., 1991, 1992). Here, ED’s representation of leaf level 141 
physiology is reformulated for C3 and C4 pathways (Farquhar et al., 1980; Von Caemmerer and Furbank, 1999) 142 
with added boundary layer conductance for diffusing water vapor and CO2 between ambient air and leaf surface, and 143 
parameterized with temperature dependence functions from other studies (Bernacchi et al., 2001; von Caemmerer et 144 
al., 2009; Kattge and Knorr, 2007; Massad et al., 2007; Von Caemmerer, 2000, Supplement S3). 145 
 146 
Hydrology controls the water available for vegetation. The hydrology submodule in ED tracks soil moisture 147 
dynamics between incoming water flow from precipitation and outgoing flow through percolation, runoff, and 148 
transpiration. Previous ED versions did not include evaporation from soil and canopy and also did not account for 149 
snow dynamics. Here, evaporation from soil and canopy is estimated based on the Penman-Monteith (P-M) equation 150 
(Monteith, 1965; Mu et al., 2011). In addition, a simple snow dynamics process is introduced to decrease water 151 
availability for plants when air temperature drops below the freezing point and increase it when air temperature rises 152 
above freezing point at a rate depending on air temperature. More details can be found in Supplement S9. 153 
 154 
Land use activities (e.g., deforestation and wood harvesting) remove vegetation carbon from ecosystems for various 155 
purposes. This carbon is traditionally tracked in wood product pools, with different lifetimes and temporal emissions 156 
to the atmosphere. The previous land use submodule in ED only tracked changes in vegetation and soil carbon 157 
during various land use activities but did not track subsequent decay process of product pools (Hurtt et al., 2002). In 158 
ED v3.0, three wood product pools are added to track the life cycles of harvested wood and associated decay 159 
processes (Supplement S11). Wood product pools gain carbon from land use activities such as wood harvesting or 160 
deforestation, and lose carbon through decay and emissions to the atmosphere. The loading of these product pools, 161 
and their decay rates, are based on a prior study (Hansis et al., 2015). 162 

2.2 Model initialization and overview of experiments 163 

Global spin-up of ED initialized ecosystems to contemporary conditions by taking into account climate change, 164 
rising CO2, and land use change. The global spin-up was comprised of two separate runs at 0.5° spatial resolution. 165 
The first run, called the “equilibrium simulation”, ran ED from initial conditions to equilibrium. This run was 166 
performed for 1000 years by which time PFT composition and carbon pools of vegetation and soil reached a 167 
dynamic equilibrium. The second run, called “transient simulation”, restarted from the end of the equilibrium 168 
simulation and simulated for 1166 years, corresponding to the period A.D. 851 – A.D. 2016, with varying CO2 169 
levels, land-use change, and climate variability. Both runs were driven with meteorological forcing from NASA 170 
Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2) (Gelaro et al., 2017) and 171 
surface CO2 concentration from NOAA CarbonTracker Database, version 2016 (NOAA CT2016) (Peters et al., 172 
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2007, with updates documented at http://carbontracker.noaa.gov). Additionally, the transient simulation run utilized 173 
prescribed burned area from the Global Fire Emissions Database, version 4 (GFED4) (Randerson et al., 2015) and 174 
forced land-use change from Land Use Harmonization, version 2 (LUH2) (Hurtt et al., 2019b, 2020). Details of 175 
these simulations are provided below. 176 
 177 
The equilibrium simulation was started from bare ground where the soil and vegetation carbon pools were set at 178 
zero, and all PFTs were initialized with equal seedling density for all patches and all grid cells over the globe. This 179 
run was driven for 1000 years with MERRA2 climatology of 1981-1990 and NOAA CT2016 average surface CO2 180 
between 2001-2014 (with spatial variation and global average rescaled to 280 ppm). No climatic envelope or 181 
potential biome maps were used to constrain PFT spatial distribution; competition determined final PFT 182 
distributions, vegetation structure, and carbon stocks. The land-use change module was disabled in this run of 183 
simulation. 184 
 185 
The transient simulation was restarted from equilibrium conditions. The land-use change submodule was activated, 186 
and all land-use transition types from LUH2 were incorporated into the simulation at annual time steps. These 187 
transitions included changes in agriculture and forest extent, shifting cultivation, and wood harvesting, among 188 
others. MERRA2, NOAA CT2016 and GFED were used throughout the simulation with varying temporal settings 189 
depending on data availability. Specifically, for MERRA2, a climatology between 1981-1990 was used until 1981, 190 
and annual meteorology was used subsequently. For NOAA CT2016, an average surface CO2 concentration between 191 
2001-2014, which varies spatially and grows over time, was used until 2000, while annual NOAA CT2016 surface 192 
CO2 concentrations were used subsequently. For GFED4 burned area, an average between 1996-2016 was used until 193 
1996, after which annual burned area was used. 194 

2.3 Forcing data 195 

Meteorological variables utilized from MERRA2 include surface air temperature (TLML), surface specific humidity 196 
(QLML), precipitation (PRECTOTCORR), incident shortwave radiation (SWGDN), surface wind speed (SPEED), 197 
and multi-layer soil temperature (TSOIL1-TSOIL3). Original estimates of surface air temperature, surface specific 198 
humidity, incident shortwave radiation, and surface wind speed were averaged from daily hourly to monthly hourly 199 
for each year between 1981 to 2016. The resulting annual monthly average of diurnal meteorological variables were 200 
used to drive the leaf physiology submodule in ED. Hourly surface air temperature, precipitation, and soil 201 
temperature were also aggregated to monthly averages for each year between 1981 to 2016, and then used to drive 202 
the soil hydrology, phenology, evapotranspiration, and biogeochemical modules in ED. 203 
 204 
Surface CO2 concentration was extracted from the lowest vertical level of NOAA CT2016 CO2 mole fraction which 205 
is temporally and spatially varying. The original datasets were first linearly interpolated from 3°x2° (longitude x 206 
latitude) to 0.5°x0.5° and from 3-hour to hourly, and then averaged to monthly hourly estimates for each grid cell 207 
and each year between 2001 and 2014, resulting in surface CO2 concentration maps with 4032 timesteps (14 years, 208 
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24 hours, 12 months) for each 0.5°x0.5° grid. The surface CO2 concentration maps were used to drive the transient 209 
simulation from 850 to 2000, retaining average spatial variation between 2001 and 2014 and applying a scaling 210 
factor to force the global annual average CO2 concentration to remain at 280 ppm before 1850, then grow linearly to 211 
310 ppm in 1950 and to 375 ppm in 2000. This increasing trend in global average matches observed CO2 growth 212 
rates from Keeling (2008). 213 
 214 
LUC forcing was derived from the LUH2 (version v2h) for years 850-2015 (Hurtt et al., 2019b, 2020). The original 215 
land use state and land use transitions were aggregated from a spatial resolution of 0.25°x0.25° to 0.5°x0.5° for each 216 
year between 850 and 2015. Subtypes of land use states and associated transitions were grouped into the major land 217 
use types of the model’s predecessor version (LUH1). Specifically, sub crop types of C3 annual crops (c3ann), C3 218 
perennial crops (c3per), C4 annual crops (c4ann), C4 perennial crops (c4per) and C3 nitrogen-fixing crops (c3nfx) 219 
were all merged as cropland. Forested primary land (primf) and non-forested primary land (primn) were merged as 220 
primary land; forested secondary land (secdf) and non-forested secondary land were merged as secondary land; and 221 
managed pasture (pastr) and rangeland were merged as pasture. Note that all types of land use transitions and gross 222 
transition rate were used in ED’s land use module. 223 
 224 
Soil properties, including depth, hydraulic conductivity, and residual and saturated volumetric water content are 225 
important for determining plant water availability. These soil properties were taken from Montzka et al. 2017. 226 
Additional details can be found in the supplement (S9, hydrology submodule). 227 

2.4 Model evaluation 228 

A benchmarking package of data (Table 1) was collected to evaluate ED performance. Eight critical variables, 229 
proven to be important for terrestrial biogeochemical cycles (Spafford and MacDougall 2021),  were assessed in 230 
four categories including: PFT distribution, carbon stocks in vegetation and soil, carbon and water fluxes, and 231 
vegetation structures in terms of canopy height and vertical LAI. Evaluation was carried out at different spatial (grid, 232 
latitudinal, and biome) and temporal scales (climatological, seasonal, and interannual). For each variable, a widely 233 
used dataset was used for reference, and in some cases, these span different years. An important feature of our 234 
method was to adjust the simulation years from ED to match each benchmarking dataset. 235 

2.4.1 Vegetation distribution 236 

The satellite-based land cover product, ESA CCI, was used to examine the distribution of three modelled PFTs, 237 
grass, broadleaf trees, and needleleaf trees (ESA 2017). Many satellite-based land cover datasets differ largely from 238 
ED in PFT definition. For example, no successional PFTs exist in ESA CCI land cover types. Thus, the native PFTs 239 
in ED and ESA CCI both have to be aggregated to broader categories such as broadleaf PFTs, needleleaf PFTs, and 240 
grass PFTs. To do this, the 22 native land cover classes of ESA CCI were first reclassified to ‘broadleaf evergreen 241 
tree’, ‘broadleaf deciduous tree’, ‘needleleaf evergreen tree’, ‘needleleaf deciduous tree’, ‘natural grass’ and 242 
‘manned grass’ using a cross-walk table (Poulter et al., 2015). They were then further merged by phenology type 243 
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and aggregated to 0.5°, resulting in PFT fraction maps of broadleaf PFTs, needleleaf PFTs, and grass and shrub 244 
PFTs. ED PFTs of EaSBT, MiSBT and LaSBT were merged as broadleaf PFTs, NSP and LaSC were merged as 245 
needleleaf PFTs, and C3ShG and C4ShG were merged as grass and shrub PFTs. 246 

2.4.2 Carbon fluxes 247 

Evaluation of carbon fluxes focused on Gross Primary P Production (GPP) and Net Biome PProduction (NBP). 248 
Modelled GPP was evaluated with respect to spatial pattern, seasonality, and interannual variability using two 249 
satellite data-driven GPP datasets, FLUXCOM (Jung et al., 2020) and FluxSat (Joiner et al., 2018), and the satellite-250 
retrieved sun-induced chlorophyll fluorescence (CSIF) dataset (Zhang et al., 2018). The FLUXCOM and FluxSat 251 
datasets are derived from a data-driven approach that combines carbon fluxes measurements from FLUXNET and 252 
satellite observations from MODIS. Major differences between FLUXCOM and FluxSat include the use of 253 
meteorological forcing and the specific approach used. FLUXCOM used meteorological forcing and a machine 254 
learning approach, while FluxSat used a simplified light-use efficiency model that does not rely upon meteorological 255 
forcing. FluxSat also used satellite-based sun-induced chlorophyll fluorescence (SIF) to delineate highly productive 256 
regions. Satellite measurements of SIF have recently been suggested as a promising proxy of terrestrial GPP, 257 
exhibiting high sensitivity to plant photosynthetic activities (Lee et al., 2013; Guanter et al., 2014; Yang et al., 258 
2015). In this study, we chose the CSIF dataset for its improved spatiotemporal continuity. CSIF is generated by 259 
fusing Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF and MODIS reflectance data using a machine learning 260 
approach. FLUXCOM, FluxSat, and CSIF were all resampled to monthly estimates at 0.5x0.5 spatial resolution 261 
before the evaluation. 262 
 263 
Modelled net biome productivity (NBP) was compared against multiple sources including estimates from process-264 
based models, atmospheric inversions, and the 2020 global carbon budget (GCB2020) (Friedlingstein et al., 2020). 265 
For process-based models, 17 DGVMs reported in the GCB2020 were used to calculate the respective net land sink 266 
by differencing land uptake and land use emissions estimates (i.e., SLAND - ELUC). For atmospheric inversions, three 267 
systems are used, namely CarbonTracker Europe (CTE) (van der Laan-Luijkx et al., 2017), Jena CarboScope 268 
(version s81oc) (Rödenbeck et al., 2008) and the Copernicus Atmosphere Monitoring Service (CAMS) (Chevallier 269 
et al., 2005). The three inversions all derive surface carbon fluxes using atmospheric CO2 measurements, prior 270 
constraints on fluxes, and an uncertainty and atmospheric transport model, but vary with respect to the specific data, 271 
prior constraints, and transport models used (Peylin et al., 2013). In the GCB2020, the residual terrestrial sink was 272 
used, which was calculated as total emissions from fossil fuel and land use change minus the atmospheric CO2 273 
growth rate and ocean sink (i.e., EFF + ELUC – GATM – SOCEAN). 274 

2.4.3 Carbon stocks 275 

Modelled carbon pools were evaluated with regards to vegetation aboveground biomass (AGB) and soil carbon. The 276 
reference AGB data included estimates from Santoro et al. (2018) and Spawn et al. (2020). These two AGB datasets 277 
provide high spatial resolution (e.g., 100 m to 1000 m) wall-to-wall global estimates of the year 2010, but differ in 278 
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their methodologies. Specifically, AGB from Santoro et al. (2018) was produced by combining spaceborne synthetic 279 
aperture radar (SAR) (ALOS PLASAR, Envisat ASAR), Landsat-7, and Lidar observations from Ice, Cloud, and 280 
land Elevation Satellite (ICESat). AGB from Spawn et al. (2020) includes biomass of forests and also other woody 281 
non-forest plants. Reference soil carbon was from the Harmonized World Soil Database (HWSD) (Wieder et al., 282 
2014), including soil carbon for topsoil (0 to 30 cm) and subsoil (30 to 100 cm). 283 

2.4.4 Water fluxes 284 

Modeled ET was evaluated against the FLUXCOM dataset (Jung et al., 2019) which used meteorological forcing, 285 
remote sensing data, and a machine learning approach to scale up the measurements from FLUXNET eddy 286 
covariance towers to the global scale. This dataset provides gridded estimates at resolution of 0.0833° for the period 287 
of 1981-2014. The FLUXCOM dataset was resampled to monthly estimates at 0.5x0.5 spatial resolution before 288 
evaluation. 289 

2.4.4 5 Vegetation structure 290 

Evaluation of modelled forest structure focused on total and vertical distribution of leaf area index (LAI) and tree 291 
canopy height. Two reference LAI products, namely MODIS MCD15A3H (Myneni et al., 2015) and GEOV2 LAI 292 
(Verger et al., 2014), are were used for evaluating total LAI in terms of spatial distribution, seasonality, and 293 
interannual variability. The MODIS and GEOV2 LAI datasets were both derived from passive optical observations 294 
with empirical-based inversion methods which relate leaf area with optical canopy reflectance or vegetation indices; 295 
however, these two products vary with source of optical observations and choices for inversion methods. Reference 296 
vertical LAI was from the Global Ecosystem Dynamics Investigation (GEDI) L2B products, which retrieves leaf 297 
vertical distribution from lidar waveform return (Dubayah et al., 2020b). Reference canopy height data were based 298 
on direct forest structure observations from GEDI L2A (Dubayah et al., 2020c) and the ICESat-2 ATL08 products 299 
(Neuenschwander et al., 2020). Mean canopy height was generated at 0.5° spatial resolution from the relative height 300 
98th percentile (RH98) of all GEDI L2A footprints and canopy top height (h_canopy) of and all ICESat-2 ATL08 301 
segments of good quality. 302 

3 Results 303 

ED results were evaluated across four primary categories: PFT distribution, vegetation and soil carbon pools, carbon 304 
and water fluxes, and vegetation structure. Evaluation included comparing modelled global quantities, and their 305 
associated spatial and temporal patterns, to the benchmarking datasets. 306 

3.1 Evaluation of PFT distribution 307 

Global total area of broadleaf PFTs, needleleaf PFTs and grass and shrub PFTs were estimated by ED to be 24.30, 308 
8.93 and 24.63 million km2, respectively. These results compare to ESA CCI data which estimate the same 309 
respective global PFT areas at 20.13, 10.65 and 41.49 million km2. The global spatial distribution and corresponding 310 
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zonal distribution of broadleaf PFTs, needleleaf PFTs and grass and shrub PFTs are shown in Fig. 3. In this 311 
comparison, the major patterns of ED estimated PFT distribution were similar to the observed distribution of PFTs. 312 
ED estimated needleleaf PFTs were dominate at high latitudes, broadleaf PFTs dominated in the tropics, and grass 313 
and shrub PFTs were widespread globally. ED also predicted the observed coexistence of broadleaf and needleleaf 314 
PFTs in southern China and eastern US. However, beyond these major patterns, ED estimates differed in some 315 
specific regions. For example, ED predicted the existence of needleleaf PFTs along the Andes Mountains in South 316 
America and in southern Australia. While this pattern was not evident in the ESA CCI data, there are other studies 317 
based on ground observations that support it (Farjon and Filer, 2013). ED also estimated relatively more broadleaf 318 
PFTs in eastern Europe and southern China, less fewer broadleaf PFTs in Africa savanna, less needleleaf PFTs in 319 
east Siberia, and less grass and shrub PFTs both in Africa savanna and northern China. Analogous results can also 320 
be seen zonally, where major patterns of PFTs are broadly similar to observed but with some specific differences. In 321 
terms of zonal distribution per PFT, the smallest discrepancies between ED and ESA CCI appear in broadleaf PFTs, 322 
followed by needleleaf PFTs, and grass and shrub PFTs. Spatial distribution maps for each of seven PFTs from ED 323 
can be found in Fig. S1. 324 

3.2 Evaluation of AGB and soil carbon 325 

ED estimates of AGB were compared to corresponding benchmark data. ED estimated global total aboveground 326 
vegetation carbon (including forest and non-forest) at 298 Pg C in 2010. This compares to 283 Pg C and 297 Pg C 327 
estimated by Spawn et al. (2020) and Santoro et al. (2018). ED’s estimate of the spatial pattern of AGB was also 328 
comparable to that of both two benchmark datasets, with the highest biomass densities found across the tropics (i.e., 329 
the Amazon rainforest, the Congo river basin, and southeast Asia) with declining biomass densities northward 330 
towards the temperate and boreal regions. For example, similar to observations, average estimated AGB density was 331 
~15 kg C/m2 in the tropics and less than 2.5 kg C/m2 across temperate and boreal regions (Fig. 4d). In addition, the 332 
AGB transition along the African forests-savanna zone was represented by ED, albeit with lower values in the 333 
savanna. Major discrepancies between ED and benchmarking data appear in southern China, southeast Asia and 334 
southeast Brazil. 335 
 336 
ED estimates of soil carbon were compared to benchmark data on soil carbon. ED estimated total global soil carbon 337 
at 671 Pg C in 2000, which was within the range of CMIP5 ESMs (510 - 3040 Pg C) (Todd-Brown et al., 2013), but 338 
lower than the HWSD estimate of 1201 Pg C. Comparing total stocks at the biome level (Fig. 5d) showed that ED 339 
generally reproduced soil carbon variation across biomes, but notably underestimated carbon in boreal forest/taiga, 340 
deserts and xeric shrublands, tropical and subtropical grasslands, savannas and shrubland. The soil carbon map from 341 
ED revealed different spatial patterns compared to HWSD, with relatively less spatial heterogeneity and fewer 342 
regions with densities above 30 kg C/m2. 343 
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3.3 Evaluation of GPP, NBP and ET 344 

Globally, the ED estimate of average annual GPP was 134 Pg C yr-1 between 2001-2016, which compares to 120 Pg 345 
C yr-1 from FLUXCOM and 136 Pg C yr-1 from FluxSat over the same period. The spatial pattern of GPP from ED 346 
was also compared to benchmark values at the grid and latitudinal scales (Fig. 6). Similar to observations, areas of 347 
highest productivity occur in the tropics, followed by the temperate and boreal regions. For the tropics, ED was ~0.5 348 
kg C/m2/yr higher than FLUXCOME, and ~0.2 kg/C/m2 higher than FluxSat, but lower than both over the Africa 349 
Savanna. Additionally, ED was relatively higher in southern China and Brazil than either benchmark dataset. A 350 
notably increasing annual trend in total global GPP can be seen in both ED and FluxSat estimates between 2001-351 
2016 as well as from globally averaged CSIF (Fig. 7). ED also reproduced GPP interannual variability from FluxSat, 352 
FLUXCOM and CSIF, dipping in the years 2005, 2012 and 2015, and peaking in 2006, 2011 and 2014. Regarding 353 
latitudinal seasonality at the biome scale (Fig. 8), ED captured GPP timing for most latitudinal zones, including 60° 354 
- 90°N, 45° - 60°N, 15° - 30°N and 60° - 30°S. Major differences appear in 30° - 45°N, where ED shows a decreases 355 
from July-September, and in 15°S - 0°, where ED shows delayed monthly timing of lowest annual GPP values. 356 
 357 
Globally, the ED estimate of average annual NBP between 1981 and 2016 was 1.99 Pg C/yr, which can be 358 
compared to 1.21-1.80 Pg C/yr from atmospheric inversions, 1.11 Pg C/yr from DGVMs, and 1.31 Pg C/yr from the 359 
GCB2020 residual terrestrial sink. ED estimates were also compared to benchmark datasets on global changes over 360 
time (Fig. 9). Similar to the references, ED estimated an increasing trend with substantial interannual variation 361 
during the 1981-2015 period. This variation included reductions in El Niño years (such as 1983, 1998 and 2015) and 362 
increases in La Niña years (such as 1989, 2001-2002 and 2011). An exception is 1991-1992, where ED and DGVMs 363 
were both lower than atmospheric inversions. This period includes the Mt. Pinatubo eruption, the effect of which is 364 
not included in the shortwave radiation forcing of GCB2020 DGVMs or ED (Mercado et al., 2009; Friedlingstein et 365 
al., 2020). During the period 2007-2016, ED produced a continued increasing trend over the 2007-2016 period as 366 
reflected in the mean of atmospheric inversions, but not the mean of DGVMs. Specifically, ED estimated NBP 367 
averaged 2.34 Pg C/yr from 2007-2016, which as within the range of the atmospheric inversions estimates (1.77 - 368 
2.64 Pg C/yr) and DGVMs estimates (0.58 - 2.82 Pg C/yr), but higher than either the mean of DGVMs (1.40 Pg 369 
C/yr) or the GCB2020 residual terrestrial sink (1.81 Pg C/yr). Despite the similarities in global trends, the latitudinal 370 
comparison between ED and atmospheric inversions indicated contrasting attribution of the global sink (Fig. 10). In 371 
comparison to the atmospheric inversions, ED predicted a stronger sink in tropics and relatively weaker sink in the 372 
Northern Hemisphere. Such a pattern was highlighted in the global carbon budget (Friedlingstein et al., 2020), 373 
where process-based models and the atmospheric inversions generally show less agreement on the spatial pattern of 374 
the carbon sink in these two regions. There is recognized uncertainty about the underlying actual pattern due in part 375 
to the in-situ network, which is spatially biased towards the mid-latitudes (i.e., more observational sites) relative to 376 
the tropics (i.e., fewer observational sites) (Ciais et al., 2014b). 377 
 378 
Globally, the ED estimate of global mean annual ET between 1981 and 2014 was 393.46 mm/yr, which can be 379 
compared to 582.10 mm/yr from FLUXCOM. ED estimates of ET were also compared to gridded FLUXCOM data 380 
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and by latitude (Fig. 11). Similar to the reference dataset, ED estimated the highest rates across the tropics with 381 
decreases towards high latitudes. This pattern generally followed the spatial distribution of precipitation. ED estimates 382 
were close to FLUXCOM over the tropics (i.e., 1500 mm/yr) as well as latitudes above 60°N and below 35°S (i.e., 383 
below 500 mm/yr), but notably underestimated average annual ET in other latitudes. ED estimates were generally 384 
smaller than FLUXCOME in dry regions such as southern Africa and interior Australia. 385 

3.4 Evaluation of canopy height and LAI vertical profile 386 

Evaluation of vegetation structure estimates focused on leaf area and canopy height. Fig. 12 presents the spatial 387 
distribution of growing season LAI from ED, GEOV2, and MODIS. Growing season LAI is chosen for comparison 388 
because winter snow in the northern region (e.g., boreal forests) might affect LAI retrieval and cause uncertainties in 389 
remote sensing estimates (Murray-Tortarolo et al., 2013). There was good agreement in spatial pattern between ED 390 
and reference LAIs (Fig. 12d), showing peaks in the tropics and boreal region (near 50°N), and relatively low 391 
estimates across temperate regions. In the tropics, ED estimated an average LAI of 6.0 m2/m2, which was similar to 392 
GEOV2 but higher than MODIS. However, ED produced higher LAI in temperate and boreal regions than both 393 
reference datasets, specifically in southern China and Brazil. Despite these differences there was a general 394 
agreement in the greening trend between 1999 and 2016 (as shown in Fig. 13). The linear fitted LAI trend was 0.058 395 
m2/m2 per decade for ED, 0.090 m2/m2 for GEOV2, and 0.046 m2/m2 for MODIS. LAI seasonality was also 396 
compared across latitudinal bands in Fig. 14. Similar to references, ED captured peak season in latitudinal bands 60° 397 
- 90°N, 45° - 60°N, and 60° - 30°S, but shows less agreement with the references in the tropics (0° - 15°N and 15S° 398 
- 0°). In addition, ED LAI in winter is larger than either reference LAI; at latitudes above 45°N, and between 30°N 399 
and 45°N, ED LAI is higher for all seasons. Similarly, higher LAI also appears in 60°S - 30°S, across southern 400 
China and Brazil. 401 
 402 
The estimated vertical profile of LAI from ED was compared to GEDI both spatially and by latitude 403 
bandlatitudinally. Spatially, ED and GEDI L2B had a similar spatial pattern with most vegetated regions having 404 
concentrated LAI under 10m, and only tropical forests, part of southern China and the US having substantial LAI 405 
above 30m (Fig. 15). Comparisons of LAI profiles by latitude band indicate close agreement in each zone, and with 406 
all regions having the highest values of LAI closest to the ground (0-5 m and 5-10 m) and decreasing with canopy 407 
height (Fig. 16). Discrepancies can be seen at the 0 - 5 m and 10 - 15m LAI interval along at most latitudinal bands 408 
of 30° - 15°S and 45° - 30°S, where ED tends to be higher 0-5m, and lower in the 10-15m bin. 409 
 410 
Tree canopy height estimates from ED were compared with satellite lidar observations from GEDI and ICESat-2 411 
(Fig. 17). Like the reference datasets, ED produced a spatial pattern with taller trees in tropical rainforests, southern 412 
China and the eastern US. The canopy height gradient from forests to savannas in South America (northwest to 413 
southeast) and in Africa (central to north and south) were also generally captured by ED. Latitudinal comparison 414 
shows ED estimated average height is above 30 m in tropics and is ~10m in temperate regions. The general 415 
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differences between ED and reference datasets are less than 10 m across all latitudes. However, ED tree height in 416 
southern China and Brazil was higher than the references, and lower than references across African savanna. 417 

4 Discussion and Conclusions 418 

Previous studies have developed benchmarking packages and designed model intercomparison activities to evaluate 419 
model performance (Abramowitz et al., 2012; Collier et al., 2018; Eyring et al., 2016; Ghimire et al., 2016; Kelly et 420 
al., 2013; Luo et al., 2012; Randerson et al., 2009; Sitch et al., 2008). Like those studies, we evaluated ED model 421 
results using many key datasets and variables. The work here has utilized a particularly wide range of variables, 422 
utilizedincluding the latest versions of key forcing data on climate and land-use, and added a new focus on 423 
vegetation structure. 424 
 425 
In this study, we developed a new global version of the Ecosystem Demography model and evaluated it against 426 
benchmark datasets for a wide range of important variables spanning carbon stocks, carbon and water fluxes, 427 
vegetation distribution, and vegetation structure. Historically, different models have been developed separately in 428 
areas of biogeochemistry, biogeography, and biophysics, and in some cases important patterns have been set through 429 
observations or other prior constraints (Bonan, 1994; Dickinson, 1993; Haxeltine and Prentice, 1996; Hurtt et al., 430 
1998, Lieth, 1975; Neilson, 1995; Parton, 1996; Potter et al., 1993; Prentice et al., 1992; Raich et al., 1991; Sellers et 431 
al., 1986). The ability of this model to reliably simulate such a wide range of phenomena globally in a single 432 
mechanistic and consistent framework represents an important interdisciplinary synthesis, a functional modelling 433 
advance, and to our knowledge is unprecedented. 434 
ED v3.0 includes modifications in four major areas (i.e., PFT representation, leaf level physiology, hydrology, and 435 
wood products) to improve model performance at the global scale. These modifications have several qualitative 436 
benefits. The refinement of PFTs provides a more complete representation of global vegetation functional types 437 
spanning from deciduous to evergreen, from broadleaf to needleleaf, from C3 to C4, from softwood to hardwood. 438 
Updated temperature dependence functions in the leaf physiology submodule provides improved calibration and 439 
validation with independent field studies. The hydrology submodule now includes characterization of evaporation 440 
and snow which were missing in previous regional versions. The land-use submodule now includes a wood product 441 
pool which facilitates tracking of the magnitude and timing of vegetation carbon loss and emissions due to 442 
deforestation and wood harvesting. These modifications also led to improved quantitative performance against a 443 
range of important benchmarks. 444 
 445 
ED estimation of carbon stocks and fluxes compared favourably to benchmarking datasets across a range of spatial 446 
and temporal scales, from grid cell to global , and from seasonal to decadal. Similar to benchmarking datasets, ED 447 
reproduced latitudinal gradients of GPP and AGB, a positive trend in global total GPP, global total AGB and GPP 448 
within reference ranges, and interannual variation of NBP in response to El Niño and La Niña events. Producing 449 
such patterns of both global carbon fluxes and stocks is challenging, as it requires models to have the ability to 450 
mechanistically scaleing up physiological processes from the leaf to ecosystem scales. It also requires models to 451 
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accurately characterize responses of ecosystem demographic processes to climate change, soil conditions, and land 452 
use activities. As a part of a new generation of DGVMs attempting to meet these challenges, ED leverages advances 453 
in detailedadvances in understanding of ecosystem-physiology (e.g., Ball–Berry stomatal conductance model and 454 
Farquhar photosynthesis model) (Ball et al., 1987; Farquhar 1980), soil biogeochemistry (e.g., CENTURY soil 455 
model) (Parton 1996), and processes of disturbance and recovery (e.g., LUH1/LUH2 modelling of land-use 456 
transition through time) (Hurtt et al., 2011, 2020). This study is the first, to our knowledge, to combine ecosystem 457 
demography and land use history to simulate global carbon dynamics and compare to a wide range of benchmarks. 458 
 459 
In addition to carbon stocks and fluxes, ED simultaneously estimated the spatial distribution of the seven major 460 
PFTs globally. ED reproduced dominance of broadleaf PFT in tropics and needleleaf PFT in high latitudes, which is 461 
similar to benchmarking data. The ability to estimate these patterns mechanistically required the ability to 462 
characterize functional plant traits and trade-offs of vegetation as well as the processes and timescales of 463 
competition for light, water, and other resources. Numerous studies have made previous advances which contributed 464 
to the progress in this study. For example, plant traits have been observed and compiled crossing across a wide range 465 
of species and geographical domains (Reich 1997 et al., 1997; Kattge et a., 2011, 2020). Individual based/gap 466 
models have been developed to track the life cycle of each individual tree and competition between individuals on at 467 
the plot and site levels (Botkin et al., 1972; Shugart and West 1977; Shugart et al., 2018; Pacala et al., 1996). 468 
Meanwhile, the SAS scaling approach was previously developed to efficiently scale up the individual scale to 469 
ecosystem dynamics at regional and continental scales (Hurtt et al., 1998; Moorcroft et al., 2001). 470 
 471 
ED estimation of vegetation structure was also evaluated against benchmark data, in this case, novel observations 472 
using from lidar remote sensing data. Impressively, ED mechanistically and independently produced latitudinal 473 
mean height and LAI profiles similar to benchmarking datasets on vegetation structure. This progress is perhaps the 474 
most novel achievement because progress on this topic was previously limited due to lack of global observations of 475 
vegetation structure. Importantly, the ED model is natively height-structured, in that all trees have explicit height. 476 
Originally, this feature was included to enable simulation of individual-based competition for light. This feature 477 
however also offers the potential for direct connection to lidar observations on vegetation structure for the purpose 478 
of model validation and/or initialization. Numerous studies have been completed at local and regional scales by 479 
initializing the ED model with airborne lidar data, demonstrating the power of lidar technique in improving 480 
characterization of contemporary ecosystems conditions (Hurtt et al., 2004, 2010, 2016, 2019a and Ma et al., 2021). 481 
The advent of GEDI (Dubayah et al., 2020a) and ICESat-2 (Markus et al., 2017) has now expanded the potential for 482 
model evaluation and initialization to global scales. 483 
 484 
Despite all of these advances, no model is perfect. There there are several important examples of differences 485 
between ED estimates and reference values that present important challenges for the future. Two Four examples are 486 
important to consider further. First, ED estimates of AGB/GPP exceeded reference values in some regions, most 487 
notably southern China, southeast Asia and southeast Brazil. Correspondingly, ED also tended to overestimate tree 488 
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height in these same regions. The discrepancies share a similar spatial pattern and are likely interrelated. One 489 
hypothesis is that this overestimation may result at least in part from the land-use forcing. The LUH2 has been 490 
shown to underestimate harvesting area on primary forest in southern China, and Southeast Asia for the period after 491 
1950, and also underestimates total cropland area in Brazil (Chini et al., 2021). LUH2 is being continuously updated 492 
and improved through the its contribution to the Global Carbon Budget project (Chini et al., 2021). Second, while 493 
relative patterns for soil carbon showed close agreement at the biome level for the majority of biomes, the absolute 494 
magnitude of soil carbon was much lower than reference for several biomes and thus globally. Before over-495 
interpreting these differences, it should be noted that there are substantial uncertainties with current empirical soil 496 
carbon maps in terms of both global totals and spatial distribution (Todd-Brown et al., 2013). Model errors in soil 497 
carbon may arise from poor representations of biophysical conditions, inaccurate parameterization, or lack of other 498 
important drivers. Soil carbon representation in ED, like that of many other DGVMs/ESMs, is highly simplified and 499 
the relatively low soil carbon is consistent with a relatively short residence time of soil carbon (about 11.4 years), 500 
which was close to the lower bound of other CMIP6 ESMs (Ito et al., 2020). Third, ED estimates of ET were lower 501 
than reference across all latitudes. One reason for this difference could be the parameterization of Penman-Monteith 502 
equations in the Hydrology submodule, as the value of aerodynamic resistance used in this study was higher than 503 
reported in Mu et al 2011. A second potential cause could be the scaling of evapotranspiration (Bonan et al 2021), 504 
which combines cohort scale transpiration with patch scale evaporation and currently omits vertical variation of 505 
evaporation. Finally, the seasonality of GPP and LAI in tropics differed from reference datasets. The pattern and 506 
timing of seasonality in the tropics is scientifically challenging to understand and has been the subject of several 507 
recent studies (Morton et al., 2014; Saleska et al., 2016; Tang et al., 2017). In ED, similar to other DGVMs/ESMs, 508 
soil water availability is assumed as the primary driver of tropical phenology. Such mechanisms lead to reduced LAI 509 
and GPP over dry seasons, which contrast to observations (Restrepo-Coupe et al., 2016). and strongly driven by 510 
NPP and soil temperature, but these two drivers have been shown to only explain a small amount of spatial variation 511 
in the HWSD map (Todd-Brown et al., 2013). The underestimation in the boreal forest/Taiga biome in particular is 512 
likely due to a combination of these factors. Ongoing research through the NASA Arctic-Boreal Vulnerability 513 
Experiment (ABoVE) program and the Next-Generation Ecosystem Experiments (NGEE Arctic) program will likely 514 
improve both the data and model parameterization in this critical region. 515 
 516 
In this study, we developed a new global version of the Ecosystem Demography model and evaluated it against 517 
benchmark datasets for a wide range of important variables spanning carbon stocks, carbon and water fluxes, 518 
vegetation distribution, and vegetation structure. Historically, different models have been developed separately in 519 
areas of biogeochemistry, biogeography, and biophysics, and in some cases important patterns have been 520 
establishedset through observations or other prior constraints (Bonan, 1994; Dickinson, 1993; Haxeltine and 521 
Prentice, 1996; Hurtt et al., 1998, Lieth, 1975; Neilson, 1995; Parton, 1996; Potter et al., 1993; Prentice et al., 1992; 522 
Raich et al., 1991; Sellers et al., 1986). The ability of this model to reliably simulate such a wide range of 523 
phenomena globally in a single mechanistic and consistent framework represents an important interdisciplinary 524 
synthesis, a functional modelling advance, and to our knowledge is unprecedented.  525 
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Previous studies have developed benchmarking packages and designed model intercomparison activities to evaluate 526 
model performance (Abramowitz et al., 2012; Collier et al., 2018; Eyring et al., 2016; Ghimire et al., 2016; Kelly et 527 
al., 2013; Luo et al., 2012; Randerson et al., 2009; Sitch et al., 2008). Like those studies, we evaluated ED model 528 
results using many key datasets and variables. The work here has utilized a particularly wide range of variables, 529 
utilized the latest versions of key forcing data on climate and land-use, and added a new focus on vegetation 530 
structure. 531 
 532 
Future work will focus on addressing the limitations discussed above and making direct connections with lidar forest 533 
structure observations from GEDI and ICESat-2 to improve demographic processes, and the quantification and 534 
attribution of the terrestrial carbon cycle. Meanwhile, the global development and evaluation of ED demonstrates the 535 
model’s ability to characterize essential aspects of terrestrial vegetation dynamics and the carbon cycle for a range of 536 
important applications. This model has recently been integrated with NASA’s Goddard Earth Observing System, 537 
Version 5 (GEOS-5) to forecast seasonal biosphere-atmosphere CO2 fluxes in 2015-16 El Niño (Ott et al., 2018), 538 
and used in NASA’s Carbon Monitoring System as the tool for high spatial resolution (e.g., 90 m) regional forest 539 
carbon modelling and monitoring (Hurtt et al., 2019a; Ma et al., 2021), and leveraged , and also by NASA’s Global 540 
Ecosystem Dynamics Investigation mission for quantification of land carbon sequestration potential (Dubayah et al., 541 
2020a; Ma et al., 2020). Results from these studies will likely be of importance to for a range of science 542 
applications, and also be used to inform and prioritize future model advances. Meanwhile, the increasing number of 543 
remote sensing missions and related data sets, advances in computation, and growing stakeholder interests in carbon 544 
and climate, as evidenced by the UN Paris Climate Agreement, bode well for future advances. 545 
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Figures and Tables 928 
 929 
Table 1. Summary of benchmarking datasets used for evaluation of ED model. 930 
 931 

Variable Source Description Reference 

Vegetation distribution 

PFT  ESA CCI Global gridded, 300-m, 2015 ESA (2017) 
Carbon stocks 

AGB Santoro et al. (2018) Global gridded, 100-m, 2010 Santoro et al. (2018) 
Spawn et al. (2020) Global gridded, 300-m, 2010 Spawn et al. (2020) 

Soil carbon HWSD Gridded, 0.05 degree, 2000 Wieder et al. (2014) 

Carbon and water fluxes 

GPP 

FLUXCOM (RS+METEO, 
CRUJIA and ERA5) 

Global gridded, 0.0833-degree, 1979-2017 
monthly Jung et al. (2020) 

FluxSat Global gridded, 0.05-degree, 2001-2018 
monthly Joiner et al. (2018) 

NBP 

CAMS (v17r1) Global gridded, 1.875x3.75-degree, 1979-
2017 monthly Chevallier et al. (2005) 

Jena CarbonScope 
(s81oc_v2020) 

Global gridded, 2.5x2.0 degree, 1981-2016 
daily Rödenbeck et al. (2008) 

CarbonTracker Europe 
(CTE) 

Global gridded, 1x1 degree, 2000-2016 
monthly 

van der Laan-Luijkx et al. 
(2017) 

GCB2020 DGVMs  Global total, 1959-2019 yearly Friedlingstein et al. (2020) 
GCB2020 Residual sink Global total, 1959-2019 yearly Friedlingstein et al. (2020) 

ET FLUXCOM (RS+METEO, 
CRUNCEP and GSWP3) 

Global gridded, 0.0833-degree, 1981-2014 
monthly Jung et al. (2020) 

Vegetation structure 

Tree height 
GEDI L2A (v001v002) 51°N ~ 51°S, 20-m footprint, 2019-2020 Dubayah et al. (2020c) 
ICESat-2 ATL08 
(v003v005) 51°N ~ 51°S, 100-m footprint, 2018-2020 Neuenschwander et al. (2020) 

LAI MODIS MCD15A3H (v006) Global gridded, 500-m, 2003-2016 4-day Myneni et al. (2015) 
GEOV2 Global gridded, 1/3-km, 1999-2016 10-day Verger et al. (2014) 

Vertical LAI GEDI L2B (v001v002) 51°N ~ 51°S, 20-m footprint, 2019-2020 Dubayah et al. (2020b) 
 932 
 933 
 934 
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Figure 1. Diagram of vegetation representation scheme in ED model. Globe consists of land grids with fixed spatial 

resolution. A grid consists of patches with different ages from last disturbance and land use types, and patch areas 

dynamically change over time as a result of disturbance and land use changes. A patch consists of consists with 

different plant functional types and sizes. Plants in a cohort are depicted by properties including individual density, 

canopy height, diameter at breast (DBH), and biomass in leaf, sapwood, structural tissue and fine roots, and all these 

properties are simulated as a result of interaction with environment and other cohorts. Note that not all properties are 

shown here. 
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Figure 2. Schematic diagram of processes represented in ED model. Dynamics at cohort level consists of carbon-

related flow (green arrow), water-related flow (blue arrow) and nitrogen-related (orange arrow). Carbon dynamics 

include carbon assimilation by photosynthesis, carbon allocation for plant growth in height/DBH, reproduction and 

respiration, carbon translocation between plants and soil through tissue turnover as litterfall and dead plants due to 

mortality, and carbon decomposition and respiration in soil carbon pools. Water dynamics include water inputs from 

precipitation and infiltration into soil, uptake by vegetation and evaporation and transpiration of soil and canopy. 

Nitrogen dynamics includes nitrogen uptake from soil pools, translocation from vegetation to soil through litterfall 

and dead plants, and mineralization and immobilization in soil. Note that not all processes that ED characterize are 

depicted here. Dynamics at patch level consist of consequences from a variety of disturbance events both natural and 

anthropogenic. Patch dynamics include disturbance-driven patch heterogenization in age and areas, forest succession, 

wood harvesting, deforestation for cropland and pasture expansion, and forest recovery and reforestation from 

abandoned cropland, harvested forest and pasture.
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Figure 3. Spatial distribution of broadleaf PFTs, needleleaf and PFTs and grass and shrub PFTs in 2015 from ED (a), 

(c) and (e), and from ESA CCI (b), (d) and (f). Corresponding latitudinal total area is compared in (g) and (h).  
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Figure 4. AGB in 2010 from ED (a), Spawn et al., (2020) (b), and Santoro et al., (2018) (c), with latitudinal average 

AGB compared in (d). 
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Figure 5. Soil carbon density in 2000 from ED (a) and HWSD (b). Latitudinal average density and total stocks per 

biome are compared in (c) and (d), respectively. In the legend of (d), BF is Boreal Forests/Taiga, DXS is Deserts and 

Xeric Shrublands, FGS is Flooded Grasslands and Savannas, MFWS is Mediterranean Forests, Woodlands, and Scrub, 

MGS is Montane Grasslands and Shrublands, TBMF is Temperate Broadleaf and Mixed Forests, TCF is Temperate 

Coniferous Forests, TGSS is Temperate Grasslands, Savannas, and Shrublands, TSCF is Tropical and Subtropical 

Coniferous Forests, TSDBF is Tropical and Subtropical Dry Broadleaf Forests, TSMBF is Tropical and Subtropical 

Moist Broadleaf Forests, TSGSS is Tropical and subtropical grasslands, savannas, and shrublands, and T is Tundra. 
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Figure 6. Average annual GPP between 2001 and 2016 from ED (a), FLUXCOM (b), FluxSat (c) and CSIF (d). 

Comparison of latitudinal average GPP is shown in (e). 
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Figure 7. Time-series of global annual total GPP from ED, FLUXCOM, and FluxSat, and global annual average CSIF.  

Their interannual anomaly is shown in the inset. 
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Figure 8. Average seasonal cycle (2001-2016) of GPP from ED, FLUXCOM, FluxSat, and CSIF by latitudinal band. 
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Figure 9. Global annual NBP between 1981 and 2016 from ED (black line), DGVMs from the GCB2020 (ensemble 

average shown in blue line with ±1σ spread shown in blue shading), the ensemble of atmospheric inversions (ensemble 

average shown in pink line with  ±1σ spread shown in pink shading), and the terrestrial residual sink of the GCB2020 

(green line). Positive values indicate net carbon uptake from land. Background shading represents the bi-monthly 

Multivariate El Niño/Southern Oscillation (ENSO) index, where red indicates El Niño and blue indicates La Niña. 
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Figure 10. Annual NBP between 1981 and 2016 from ED and ensemble of atmospheric inversions for the Northern 

Hemisphere (>30°N) (a), tropics (30°N - 30°S) (b) and the Southern Hemisphere (<30°S) (c). Black line is ED, and 

the pink line and pink shading are the inversion ensemble average and ±1σ spread of atmospheric inversions, 

respectively. 

  



 37 

 

Figure 11. Average annual ET between 1981 and 2016 from ED (a) and FLUXCOM (b) with corresponding latitudinal 

average comparison (c). 
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Figure 12. Average LAI during the growing season between 2003 and 2016 from ED (a), GEOV2 (b), and MODIS 

(c). Corresponding latitudinal averages are compared in (e). Growing season is defined as the months during which 

the average air temperature of MERRA2 is above 0°C. 
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Figure 13. Interannual global average growing season LAI from ED, MODIS and GEOV2. The anomaly is calculated 

by subtracting annual LAI by multi-year average. 
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Figure 14. Seasonal LAI by latitudinal band from ED, MODIS and GEOV2. 
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Figure 15. Vertical LAI from ED (left column) and GEDI L2B (right column) at height (0-10m) in (a) and (b), 10-

20m in (c) and (d), 20-30m in (e) and (f), and above 30m in (g) and (h), respectively. 
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Figure 16. Relative fraction of vertical LAI by latitudinal band between ED and GEDI L2B. 
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Figure 17. Canopy height from ED (a), GEDI L2A (b), and ICESat-2 ATL08 (c). Latitudinal averages are compared 

in (d). ESA CCI data grids with tree fractions below 5% are masked. 


