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Abstract. 16 

Understanding uncertainties and sensitivities of projected ecosystem dynamics under environmental change is of immense 17 

value for research and climate change policy. Here, we analyze sensitivities (change in model outputs per unit change in 18 

inputs) and uncertainties (changes in model outputs scaled to uncertainty in inputs) of vegetation dynamics under climate 19 

change projected by a state-of-the-art dynamic vegetation model (LPJ-GUESS 4.0) across European forests addressing the 20 

effect of both model parameters and environmental drivers. We find that projected forest carbon fluxes are most sensitive to 21 

photosynthesis-, water- and mortality-related parameters, while predictive uncertainties are dominantly induced by climatic 22 

drivers, and parameters related to water and mortality. The importance of climatic drivers for predictive uncertainty increases 23 

with increasing temperature and thus, from north to south across Europe, in line with the stress-gradient hypothesis, which 24 

proposes that environmental control dominates at the harsh end of an environmental gradient. In conclusion, our study 25 

highlights the importance of climatic drivers not only as contributors to predictive uncertainty in their own right, but also as 26 

modifiers of sensitivities and thus uncertainties in other ecosystem processes.    27 

1. Introduction 28 

Terrestrial ecosystem models have emerged in the last three decades as a central tool for decision making and basic research 29 

on vegetation ecosystems (Cramer et al., 2001; Fisher et al., 2018; IPCC, 2014; Smith et al., 2001; Snell et al., 2014). 30 
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Although different models usually agree in their essential projections for a given ecosystem, they often differ in essential 31 

details, for example regarding the future carbon uptake of forest ecosystems (Huntzinger et al., 2017; Krause et al., 2019). 32 

Among the reasons for such different results is the inherent uncertainty in climate scenarios (Saraiva et al., 2019), model 33 

structural uncertainty (Bugmann et al., 2019; Oberpriller et al., 2021; Prestele et al., 2016) as well as uncertainty about the 34 

model parametrization (Grimm, 2005), which in turn make models’ projections themselves uncertain (Dietze, 2017). When 35 

considering the impact of these uncertainties for directing research (Tomlin, 2013), but also to interpret and understand 36 

projections (Dietze et al., 2018), it is of immense value to know which factors drive these uncertainties. For example, the 37 

IPCC started in its Fifth Assessment Report to systematically analyze uncertainties and attribute them to model inputs 38 

(IPCC, 2014) similar to other predictive sciences (e.g. nuclear reactor safety (Chauliac et al., 2011), energy assessment for 39 

buildings (Tian et al., 2018) or policy analysis (Maxim and van der Sluijs, 2011)).  40 

 41 

The main tools to propagate uncertainties in model inputs (drivers, parameters, and model structure) to model outputs are 42 

sensitivity analysis (SA) and uncertainty analysis (UA) (Cariboni et al., 2007; Caswell, 2019; Saltelli, 2002; Saltelli et al., 43 

2008). The key difference between these two methods is that an UA accounts for the different magnitudes of uncertainty in 44 

the model inputs (e.g. parameters, typically determined via expert elicitations and previous studies (Matott et al., 2009)), 45 

while a SA is agnostic about the magnitudes of uncertainty in different inputs, and simply calculates the change in the output 46 

per unit or percentual change of the respective input (Jørgensen and Bendoricchio, 2001). This difference aside, both 47 

methods share the goal of identifying inputs with a high influence on model outputs, with the underlying idea that better 48 

constraining these will increase robustness and reliability of model projections (Balaman, 2019).  49 

 50 

Although the benefits for understanding model behavior and predictive uncertainties are obvious, relatively few SAs and 51 

UAs have been applied to complex ecosystem models and especially the widely used dynamic global vegetation models 52 

(DGVMs) that project terrestrial ecosystem responses to climate change or land management (see, e.g., Courbaud et al., 53 

2015; Cui et al., 2019; Huber et al., 2018; Reyer et al., 2016; S. Tian et al., 2014; Wang et al., 2013). A reason for this is 54 

arguably the complex structure of most DGVMs (Fer et al., 2018), which makes SAs and UAs computationally demanding 55 

and difficult to interpret, especially when following the current state-of-the-art of running global SAs and UAs that compute 56 

sensitivities and uncertainties based on the entire parameter space (Saltelli et al., 2008) rather than just locally around a 57 

reference parameter set. Additionally, several studies highlight also the sensitivity and uncertainty of DGVMs to climatic 58 

drivers (Barman et al., 2014; Wu et al., 2017, 2018), especially solar radiation (Barman et al., 2014; Wu et al., 2018), 59 

temperature (Barman et al., 2014) and precipitation (Wu et al., 2017), thereby investigating the effects of uncertainty in 60 

climatic change projections on model outcomes.  61 

 62 

In this study, we concentrate on a well-established and widely applied DGVM, the Lund-Potsdam-Jena General Ecosystem 63 

Simulator (LPJ-GUESS) (Gerten et al., 2004; Sitch et al., 2003; B. Smith et al., 2001). Three previous SAs or UAs for the 64 
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LPJ family identified the intrinsic quantum efficiency of CO2 uptake (alpha_C3) and the photosynthesis scaling parameter 65 

(from leaf to canopy) (alpha_a) (Jiang et al., 2012; Pappas et al., 2013; Zaehle et al., 2005) as the main contributors of 66 

sensitivity for net primary production (about 50-60% of the overall sensitivity). Additionally, LPJ-GUESS showed high 67 

sensitivity to tree structure-related (sapwood to heartwood turnover rate, longevity of trees, Pappas et al., 2013; Wramneby 68 

et al., 2008; Zaehle et al., 2005), establishment-related (maximum sapling establishment rate, minimum forest floor 69 

photosynthetically active radiation for tree establishment, Jiang et al., 2012; Wramneby et al., 2008; Zaehle et al., 2005), 70 

mortality-related (threshold for growth suppression mortality, Pappas et al., 2013) and water-related parameters (minimum 71 

canopy conductance not associated with photosynthesis, maximum daily transpiration ,Pappas et al., 2013; Zaehle et al., 72 

2005). Regarding uncertainties strong impact was found for photosynthesis related parameters (Jiang et al., 2012; Zaehle et 73 

al., 2005), but also for water-related (minimum canopy conductance not associated with photosynthesis, Zaehle et al., 2005) 74 

as well as structure-related parameters (tree leaf to sapwood area ratio, crown area to height function Jiang et al., 2012).  75 

 76 

Since the publication of these studies, however, the structure of the LPJ-GUESS model changed substantially. The most 77 

important changes are the inclusion of the nitrogen cycle (Smith et al., 2014) and new management modules (Lindeskog et 78 

al., 2021). Since these changes, no study has systematically examined how model sensitivities and uncertainties were 79 

affected by the new model structure. Moreover, previous SAs and UAs ignored management parameters, which, however, 80 

are expected to have large impacts on carbon pools and fluxes (Lindeskog et al., 2021).  81 

 82 

A further limitation of most previous studies for LPJ-GUESS and other models, is that they either analyzed sensitivities and 83 

uncertainties to parameter changes, or to changes in the environmental drivers, but not both. There is strong evidence, 84 

however, that the sensitivity of parameters will change if climatic drivers change (different climate scenarios and sites in 85 

Jiang et al., 2012; different elevations in Pappas et al., 2013; different sites in Wramneby et al., 2008). Moreover, it would be 86 

interesting to compare the relative importance of drivers and parameters for the predictive uncertainty of model simulations 87 

and how these change on an environmental gradient to assess if ecological principles also arise form model processes. Only 88 

Jiang et al. (2012) combined parameter and driver sensitivities but used fixed climate scenarios instead of a range of possible 89 

values for the driving variables, which, however, would be required for a probabilistic interpretation.  90 

 91 

Here, we analyzed sensitivities and uncertainties in LPJ-GUESS for 200 randomly distributed sites across European forests 92 

(see Appendix A1.1). To quantify the impacts of environmental change, we investigated variation of environmental drivers 93 

(precipitation, temperature, solar radiation, CO2, nitrogen deposition) simultaneously with parameters of the most important 94 

processes (photosynthesis, establishment, nitrogen, water cycle, mortality, disturbance/management and growth). To assess 95 

the impact of input uncertainties in environmental drivers, we performed the analysis for dynamic climate change from 96 

2001-2100 and steady climate from 2100-2200 for the most common tree species in Europe (Fagus sylvatica, Pinus 97 

sylvestris and Picea abies) individually and in mixed stands based on randomly sampled climate projections within the 98 
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boundaries of RCP2.6 and RCP8.5. Thereby, our key objectives were to understand the sensitivities and uncertainties of 99 

LPJ-GUESS due to environmental drivers and parameters. We were especially interested in 1) overall sensitivities and 100 

uncertainties across European forests, 2) uncertainties per environmental zone and 3) uncertainties on a temperature gradient. 101 

Moreover, we investigated, 4) if and how environmental conditions change the uncertainties of environmental processes and 102 

compared the resulting changes to empirical results. 103 

2. Methods and Material 104 

2.1. The LPJ-GUESS vegetation model 105 

LPJ-GUESS is a process-based ecosystem model simulating vegetation growth, vegetation dynamics and biogeography as 106 

well as biogeochemical (e.g. nitrogen and carbon) and water cycles (Lindeskog et al., 2013; Olin et al., 2015; Smith et al., 107 

2014).Ecosystem dynamic processes in the model include establishment, growth, mortality, and competition for light, space 108 

and soil resources. To simulate these processes, the model combines time steps on different scales from daily (e.g. 109 

phenological and photosynthesis processes) to yearly (e.g. allocation of net primary production to tree carbon components) 110 

basis. LPJ-GUESS includes forest gap dynamics succession of cohorts (even-aged and represented by same-size, averaged 111 

individuals) of different plant functional types (PFTs) or species. Each PFT/species has a unique parameter set. In this study, 112 

we use a re-parameterized version of Lindeskog et al. (2021) for spruce (Picea abies), pine (Pinus sylvestris) and beech 113 

(Fagus sylvatica) (see Appendix A1.2 for Pin. syl. and Pic. abi.). To account for the stochastic components of establishment, 114 

mortality and patch destroying disturbances, LPJ-GUESS simulates several replicate patches (25 for the simulation with the 115 

reference parametrization and 1 for each simulation in the SA and UA) representing “snapshots” of the grid-cell. In this 116 

model version, fire is based on the BLAZE model (Rabin et al., 2017).  117 

 118 

A first set of key parameters for establishment are the bioclimatic limits (i.e.  minimum growing degree days 119 

(gdd5min_est), minimum 20-year coldest month (tcmin_est), maximum 20-year coldest month (tcmax_est) and minimum 120 

forest photoactive radiation at forest floor (parff_min)), which build the environmental envelope for establishment. Given the 121 

bioclimatic limits are fulfilled, at regular intervals (here: 1 year) new PFTs are established given enough space, light, soil 122 

water and photoactive radiation at forest floor available for establishment (B. Smith et al., 2001). Moreover, each of our 123 

three investigated species has a maximum establishment rate (est_max) (B. Smith et al., 2001). 124 

 125 

Structure of trees in the model is mainly linked to the simulated growth of trees, which is triggered by allocating all NPP 126 

besides a reproduction debt of 10% (reprfrac) to tree components thereby satisfying mechanical (e.g. allometric eq. for the 127 

relationship between height and diameter with allometric parameters k_allom2, k_allom3 (e.g. Huang et al., 1992), the 128 

relationship between tree leaf to sapwood area (k_latosa) (e.g. Robichaud & Methven, 1992), the relationship between crown 129 

area and height (k_rp) (packing constraint, Zeide, 1993) , the maximum crown area (crownarea_max) and leaf longevity 130 
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(leaflong)) and functional balance as well as demographic constraints (Sitch et al., 2003). Each living tissue is assigned a 131 

turnover rate transferring litter or living sapwood into heartwood (turnover_sap) and a turnover rate for fine root 132 

(turnover_root). Investment into above and belowground growth is influenced by the resource stress as individuals are 133 

competing for light, space, nitrogen and water. Competition for light is determined by the photosynthetic response and light 134 

extinction in the canopy. Competition for space (self-thinning) is represented in the model via allometric equations between 135 

crown area and stem diameter (Sitch et al., 2003). Competition for nitrogen and water is determined by tree individual 136 

demand for and soil availability of nitrogen and water and the PFT-specific root profile. Competition between species will 137 

favor certain life-history strategies in particular situations, for example shade-tolerant (e.g. Fagus sylvatica and Picea abies) 138 

or intermediate-shade tolerant (e.g. Pinus sylvestris) growth responses, and dynamically changing root-to-shoot ratios.  139 

 140 

Tree mortality (natural or via harvest) in the model responds to growth efficiency (ratio of annual NPP to leaf area) 141 

being too low over a 5-year period e.g. due to light competition, maximum longevity of a PFT, changes in environmental 142 

conditions (e.g. tolerance to drought (drought_tolerance) changes water uptake) exceeding the species suitable range. Light 143 

competition, is modeled using the foliage projective cover (FPC), defined as the area of ground by foliage directly above it, 144 

using Beer’s Law (B. Smith et al., 2011). The resulting shading mortality is distributed proportional to species’ FPC growth 145 

in the respective year due to their biomass increase. Background mortality is modeled inversely proportional to the growth 146 

efficiency (with a given species-specific threshold (greff_min), e.g. Waring (1983)). Moreover, negative NPP of a species 147 

kills all individuals of the respective population. Mortality probability increases with decreasing difference to the maximum 148 

longevity reaching one at the maximum longevity (longevity). Mortality has also a stochastic component. Natural 149 

disturbances are implemented in the model as process-based wildfires (with a given fire resistance for each species 150 

(fireresist)) and as patch-destroying disturbances with the same yearly occurrence probability for all patches (distinterval). 151 

Additional mortality arises from forest management activities, determined by thinning intensity (percentage of all trees cut, 152 

thinning_intensity) and cutting intervals (cut_interval) which can be set for each species individually. 153 

 154 

Nitrogen input is implemented in the model through nitrogen deposition (prescribed) and biological nitrogen fixation. The 155 

latter is simulated empirically as a linear function with intercept (nfix_a) and slope (nfix_b) of the five-year averaged actual 156 

evapotranspiration (Cleveland et al., 1999). The resulting amount of nitrogen accumulates in the ecosystem equally over the 157 

year and directly adds to the available mineral soil nitrogen pool. When nitrogen is in living tissue a fraction (nrelocfrac) is 158 

re-translocated before leaf- and root shedding.  159 

 160 

Photosynthesis is modeled as a function of absorbed photosynthetically radiation, temperature (optimum temperature range 161 

for photosynthesis determined by pstemp_low and pstemp_high, Larcher, 1983), intercellular CO2 (e.g. non-water stressed 162 

ratio of intercellular to ambient CO2 (lambda_max)), and canopy conductance thereby considering a species-specific 163 

respiration coefficient (respcoeff) (B. Smith et al., 2001) and nitrogen availability. The photosynthesis scheme is a modified 164 
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version of the Farquhar photosynthesis model, but instead of prescribed values for the Rubisco capacity it is optimized for 165 

maximum net CO2 assimilation at the canopy level (Smith et al., 2014).  166 

 167 

Water availability for plants is based on precipitation and snowmelt in the two-layer soil hydrology submodule. Vegetation 168 

transpiration and evaporation (with a maximum evapotranspiration rate (emax)) from bare ground and leaves reduce water 169 

availability as well as runoff from saturated soil. Water vapor exchange by the vegetation canopy is calculated on a daily 170 

basis within the photosynthesis scheme (e.g. minimum canopy conductance not associated with photosynthesis (gmin)). The 171 

water supply and transpirative demand are calculated on a daily basis and converted into a drought-stress coefficient. Given 172 

this coefficient the investment in roots at the costs of leaves is calculated. 173 

2.2. Simulation setup  174 

We selected 200 study sites (see Appendix A1.1) spatially and environmentally stratified over Europe by applying random 175 

stratified sampling with longitudinal and latitudinal coordinates as well as mean precipitation, solar radiation and 176 

temperature as categories. We agreed on 200 sites as a compromise between the high computational demand of running LPJ-177 

GUESS multiple times for all sites and a good spatial as well as environmental coverage of Europe. For these sites, we 178 

performed simulations with the most common species in Europe (Fagus sylvatica, Pinus sylvestris und Picea abies) as 179 

monospecific and mixed stands.  180 

 181 

The simulation period was from 1861 to 2199. To start the simulations with equilibrium C pools and fluxes, we spun up LPJ-182 

GUESS vegetation and soil carbon and nitrogen pools to pre-industrial equilibrium by recycling the 1861 to 1900 climate 183 

and data for atmospheric CO2 concentration from Meinshausen et al. (2011). For the transient and future simulation runs, we 184 

used the bias-corrected monthly IPSL-CM5 Earth System Model CMIP5 (Dufresne et al., 2013). From this data set we 185 

extracted temperature, precipitation, number of wet days per month, and incoming solar radiation from 1861 to 2099 for 186 

RCP4.5 as base scenario and RCP2.6/RCP8.5 as lower/upper boundaries for the climate ranges (see below). In addition to 187 

these data monthly nitrogen deposition was extracted from Lamarque et al. (2013). All these driving data had a spatial 188 

resolution of 0.5°x 0.5° We recycled detrended data from 2090-2099 for all environmental drivers except CO2 and nitrogen 189 

deposition and used these as potential stable climates for the 2100-2199 period.   190 

 191 

2.3. Selection of parameters and drivers and their ranges   192 

The a priori selection of the most influential parameters that can be specified in the parameter file and their ranges (following 193 

the SHELF expert elicitation protocol, see Gosling, 2018) was based on our expert knowledge and literature review. The 194 

resulting eleven parameters common for all species and 22 species-specific parameters (see Table 1) were grouped to the 195 

specific processes they contribute most to (Table 1, Grouping).  196 
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 197 

From the environmental drivers of the model, we selected incoming solar radiation, temperature, precipitation, atmospheric 198 

CO2 and nitrogen deposition for our analysis. To obtain uncertainties for temperature, precipitation and solar radiation, we 199 

calculated the mean deviations of RCP8.5/RCP2.6 to our base scenario RCP4.5 plus/minus one standard deviation as 200 

maximal/minimal per site. As the CO2 data is global and not site-specific, we calculated ranges from the global data set 201 

(RCP2.6 as minimum, RCP8.5 as maximum) averaged over time and plus/minus a standard deviation. For nitrogen 202 

deposition, we used RCP6.0 as maximum and RCP2.6 as minimum with the same procedure as for the other drivers.   203 

 204 

2.5. Sensitivity analysis and uncertainty analysis 205 

LPJ-GUESS predicts a substantial number of output variables, which could all be examined regarding their sensitivities and 206 

uncertainties. Here, we concentrated on carbon outputs (gross primary production GPP, total standing biomass TSB and 207 

net biome productivity NBP), because of forests’ role for carbon cycling, their large contribution to the land carbon sink 208 

(Pugh et al., 2019) and the economic importance of tree growth for forest owners.  209 

 210 

Sensitivities and uncertainties were calculated by Monte-Carlo sampling from the assumed multivariate parameter and 211 

climate uncertainty. For the monospecific / mixed simulations, we drew 10.000 respectively 50.000 parameter and climate 212 

combinations randomly from the prespecified uncertainty ranges, and ran the model based on these combinations for each of 213 

the 200 sites. Note, that for mixed simulations, we individually drew parameter combinations for each species. In total, this 214 

means that 200 x (50.000 + 3 x 10.000) = 16 million LPJ-GUESS simulations were run.  215 

 216 

We quantified sensitivity and uncertainty indices by running multiple linear regressions with the model output as response, 217 

and parameters and drivers as well as their second order interactions as predictors. The estimated effects from the regression 218 

can be interpreted as sensitivities, as the effect of a unit change of the driver on the response (model output) is estimated. By 219 

scaling the predictors to the range [-0.5, 0.5], we obtained the corresponding uncertainties. To check whether we missed non-220 

linear effects, we additionally applied a random forest and extracted the variable importance (following Augustynczik et al., 221 

2017, see Appendix A1.2.). To calculate mean sensitivities/uncertainties for each species, we averaged site-specific 222 

sensitivities over all sites with an average annual biomass production greater than 2 tC/ha. We have chosen this threshold 223 

because smaller values indicate that the environment is not suitable for the species. For the mixed stands, we first averaged 224 

the three species-specific sensitivities/uncertainties per site and then averaged over all sites. Mean percentual sensitivities 225 

were calculated by dividing by the mean model output, while mean uncertainty contributions were calculated by dividing by 226 

the entire uncertainty budget. Thereby positive values mean that the respective output increases with increasing parameter 227 

values, while negative values mean that it decreases.  228 
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 229 

It is important to note that uncertainties and sensitivities have different interpretations, and which of these two are more 230 

relevant strongly depends on the purpose. The calculated percental sensitivities can be interpreted as percentage change in 231 

the corresponding output, when changing a parameter value 1% in the prespecified range. For scenario-analysis, e.g. 232 

comparing different cut intervals of forests, sensitivities provide a direct estimate of the model response, e.g. how much 233 

biomass changes when the cut interval is changed. For a comparison of different model forecasts, uncertainties are usually 234 

more relevant. If a reduction of uncertainty via a model-data comparison is the purpose, both measures are important, as 235 

parameters with high sensitivities can contribute more or less predictive uncertainty, depending on their input uncertainty.  236 

3. Results 237 

3.1. Mean sensitivities over Europe 238 

Regardless of the output variable, LPJ-GUESS was most sensitive to photosynthesis-related parameters (respcoeff, 239 

lambda_max), parameters controlling the wood turnover (turnover_sap) and tree allometry (k_rp), water-related parameters 240 

(emax), mortality-related parameters (greffmin) and environmental drivers (temperature, CO2 and solar radiation) (Fig. 1). 241 

When looking at differences in the strength of sensitivities for different outputs, TSB was most sensitive to the respiration 242 

coefficient (respcoeff), the growth suppression mortality threshold (greff_min) and solar radiation while NBP projections 243 

showed negative sensitivity to wood turnover rates (turnover_sap) and longevity and positive sensitivity to temperature, CO2 244 

and the ratio of intercellular to ambient CO2 (lambda_max). GPP was negatively sensitive to the respiration coefficient 245 

(respcoeff), growth suppression mortality threshold (greffmin), tree allometry (k_rp) and temperature and positive to CO2, 246 

solar radiation and the maximum transpiration rate (emax). Note also that NBP had higher percentual sensitivities than GPP 247 

and TSB.  248 

 249 

Mixed stands were less sensitive to changes in parameters than mono-specific stands (Fig. 1). For monospecific simulations, 250 

species were broadly similar in their sensitivities, although Fag. syl. was more strongly affected by bioclimatic limits and 251 

Pin. syl. showed higher sensitivity to environmental drivers (temperature and solar radiation) than the other species.  252 

 253 

 254 

3.2. Mean uncertainties over Europe 255 

Looking at uncertainties, we found that environmental drivers contributed most of all processes/drivers to the predictive 256 

uncertainty (Fig 2), regardless of the considered model output. For TSB projections, CO2, solar radiation and temperature 257 

contributed substantial uncertainty (Fig. 2a). Additionally, large uncertainty contributions arose from growth suppression 258 

mortality thresholds (greffmin) and the respiration coefficient (lambda_max). Uncertainty in NBP projections was 259 
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substantially affected by model parameters (longevity, tcmax_est, turnover_sap, greffmin and emax), additionally to the high 260 

contributions of temperature and CO2 (Fig. 2b). For GPP projections, solar radiation and CO2 contributed most to climate 261 

induced uncertainty, while greffmin and emax contributed most to parameter induced uncertainty (Fig. 2c). Notably, also 262 

nitrogen-fixation induced uncertainty was substantial for TSB and GPP. 263 

 264 

By analyzing uncertainty contributions on a species level, a more diverse picture emerged. Fag. syl. was more affected by 265 

temperature and less by solar radiation than the other species. Additionally, we found that uncertainty contributions of 266 

environmental drivers were substantially higher for mixed than for mono-specific stands.  267 

  268 

3.3. Geographic variation in uncertainties across Europe 269 

To project the uncertainties into the European environmental space, we filtered stands according to environmental zones, 270 

then calculated mean uncertainties per environmental zone and aggregated these per process. 271 

 272 

The broad pattern of TSB uncertainty contributions for all tree monospecific and mixed stands remains similar in all 273 

environmental zones. On average about 45% of the uncertainty was due to environmental drivers, 15% due to mortality-, 274 

14% due to photosynthesis-, 12% due to structure-, 7% due to water- and 7% due to nitrogen-related parameters (Fig. 3).  275 

 276 

For the individual environmental zones, however, there were subtle differences. In the Mediterranean mountain (MDN) and 277 

Pannonian (PAN) zone environmental driver induced uncertainty was higher than on average especially for monospecific 278 

stands (Fig. 3). In the Boreal (BOR), Atlantic central (ATC), and Atlantic north (ATN) zone, tree structure- related 279 

uncertainty increased compared to the average pattern (Fig. 3). In the Atlantic central (ATC) and Atlantic north (ATN) zones 280 

nitrogen related uncertainty increased for all species and stands (Fig. 3). 281 

 282 

 283 

To examine this spatial pattern further, we investigated the change of uncertainties across a temperature gradient. To this 284 

end, we aggregated the uncertainties per site and process/driver and then fitted a linear regression with the process/driver as 285 

predictor and the aggregated uncertainties as dependent variables. 286 

 287 

For TSB, we found that increasing mean annual temperature increased the uncertainty contributions of environmental 288 

drivers, water- and establishment-parameters, while the uncertainty due to nitrogen- and tree structure- related parameters 289 

decreased (Fig. 4a). Thereby, the uncertainty contributions of environmental drivers (≈0.4%/°C) increased the most and 290 

uncertainty contributions of nitrogen fixation decreased most (≈ -0.5%/°C). Mortality and photosynthesis stayed 291 

approximately constant on the gradient (Fig. 4b).  292 
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 293 

Looking in more detail at the climatic drivers, temperature (≈+0.75%/°C) as well as CO2 (≈ +0.2%/°C) and precipitation (≈ 294 

+0.25%/°C) induced uncertainty increased with mean annual temperature, while the uncertainty contribution of solar 295 

radiation (≈ -0.75%/°C), decreased with mean annual temperature (Fig. 4c). Nitrogen deposition and pH induced uncertainty 296 

contributions stayed approximately constant on a mean annual temperature gradient.  297 

 298 

 299 

The above geographical and correlative observations of changing uncertainties across Europe receive further support when 300 

looking at the interactions between uncertainties of different drivers/parameters in the full dataset of simulated values (Fig. 301 

5). Interaction indices were calculated by averaging the interactions found in the linear regression over all sites and species 302 

(Fig. 5b). Moreover, to investigate the overall influence on other processes we summed the individual interaction indices of 303 

each parameter (Fig. 5a).  304 

 305 

We found that environmental drivers (temperature, solar radiation, CO2 and precipitation) had the highest sum of interactions 306 

for TSB (Fig. 5a). Moreover, the respiration coefficient (respcoeff), the growth suppression mortality threshold (greffmin), 307 

longevity, the sapwood to heartwood turnover rate (turnover_sap) and maximum evaporation rate (emax) had a similar sum 308 

of interactions (Fig. 5a). Strong interaction effects occurred mostly with environmental drivers (Fig. 5b). A main part of 309 

these interactions was between the different environmental drivers themselves (solar radiation- CO2 and solar radiation- 310 

CO2). Additionally, we found interactions of parameters and environmental drivers (temperature-turnover_sap, temperature-311 

greffmin and temperature-respcoeff (Fig. 5b)) and moderate parameter-parameter interactions (longevity- greffmin, respcoeff 312 

– longevity (Fig. 5b)). Similar patterns were present for the other two carbon outputs (see Appendix A1.4.). 313 

 314 

4. Discussion 315 

In this study, we analyzed sensitivities and uncertainties of the LPJ-GUESS vegetation model due to climatic driver and 316 

parameter variations across European forests. We found that the model is most sensitive to relative (percentage) changes in 317 

photosynthesis-related parameters, structure-related parameters controlling the wood turnover and tree allometry, water-318 

related parameters, mortality-related parameters and environmental drivers (Fig.1), irrespective of the considered output 319 

variable. When considering the different uncertainties (i.e. the entire plausible range) in these parameters and climate, we 320 

found that environmental drivers and parameters controlling evapotranspiration and background mortality contribute most to 321 

predictive uncertainty (Fig. 2). By investigating changes of uncertainties for TSB across Europe, we found that predictive 322 

uncertainty in northern regions was more strongly influenced by model parameters controlling structure and nitrogen 323 

fixation, while in southern regions environmental drivers contributed more uncertainty (Fig. 3). When correlated against a 324 
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temperature gradient, uncertainty contributions to TSB increased for environmental drivers and decreased for tree structure 325 

and nitrogen-related parameters (Fig. 4). Interactions between the uncertainty contributions were mainly between different 326 

drivers or between model parameters and drivers, whereas only a few parameter-parameter interactions were present (Fig. 5), 327 

suggesting that climatic conditions moderate the effect of parameter-induced uncertainties, and not the other way around.  328 

 329 

Our finding that average sensitivities of carbon-related outputs across European forests were highest for photosynthesis-330 

related parameters amplifies the evidence of earlier studies (Pappas et al., 2013; Zaehle et al., 2005). In addition, the finding 331 

about high sensitivity of LPJ-GUESS to parameters controlling tree structure and especially carbon turnover (turnover_sap) 332 

(Fig. 1) is in line with results reported for a previous version of LPJ-GUESS (Pappas et al., 2013) and its important role for 333 

carbon allocation in trees (Herrero de Aza et al., 2011). The finding that carbon-related projections are very sensitive to 334 

mortality-related parameters (greffmin) is also supported by previous studies on the sensitivity of vegetation models and 335 

underlines the importance of improving mortality submodules for generating precise forecasts of vegetation dynamics 336 

(Bugmann et al., 2019; Hardiman et al., 2011). High sensitivities to water-related parameters were not found in previous 337 

studies (Pappas et al., 2013), but are ecologically plausible. Moreover, sensitivities in mixed stands were lower than in 338 

mono-specific stands for NBP and GPP (Fig. 1) (in line Wramneby et al., 2008). The reason for that imbalance may be that 339 

other species can dampen and even benefit from non-optimal life-history strategies of an individual species. Another reason 340 

might be, that for mixed simulations we sampled parameters for each species individually, which reduces the influence of 341 

each parameter on stand-level carbon projections. 342 

 343 

We found that uncertainty contributions of environmental drivers were comparable to the uncertainty contributions of all 344 

parameters together (but see Petter et al., 2020). From the parameters especially water-, nitrogen- and mortality-related 345 

parameters contributed a substantial amount of uncertainty. While the uncertainty contributions from mortality parameters 346 

were already highlighted by earlier studies (Bugmann et al., 2019), the high contributions of the nitrogen fixation to the 347 

predictive uncertainty of TSB and GPP (Fig. 2 a,c) are novel, though not surprising, as nitrogen is an important factor for the 348 

productivity of most temperate and boreal ecosystems (Vitousek and Howarth, 1991). The main reason why few earlier 349 

studies report those uncertainties is that vegetation models have only recently begun to integrate nitrogen cycling and 350 

limitation (e.g. B. Smith et al., 2014).  351 

 352 

Environmental drivers contributed most uncertainty among the different groups of parameters/drivers (Figs. 2, 3, 4, 5). 353 

Especially high contributions arose from temperature (negative effect for TSB, GPP positive for NBP), CO2 (positive effect 354 

for all variables) and solar radiation (positive effect for all variables). These results are supported by the earlier studies on the 355 

effect of climatic drivers in DGVMs (Barman et al., 2014; Wu et al., 2017, 2018). The positive effect of CO2 is explained by 356 

the CO2 fertilization effect (Keenan et al., 2011) and increased water-use efficiency. For the negative effect of temperature, 357 

this may arise from decreased photosynthetic efficiency and increased respiration rates with higher temperatures (Gustafson 358 
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et al., 2018, confirmed by the negative relationship between temperature and the respiration coefficient). This effect, 359 

however, differed in magnitude between tree species (Fig. 2). While for Pic. abi. and Pin. syl. there was a strong effect, Fag. 360 

syl. was less affected, which is a sign of its higher resistance to increasing temperatures (Buras and Menzel, 2019).  361 

 362 

The results for the different vegetation zones (Fig. 3) and the environmental gradient analysis (Fig. 4) indicated that 363 

environmental context changes the sensitivity of processes and the observation that most interactions occurred with 364 

environmental drivers (Fig. 5) confirms this. These findings stress that environmental conditions affect the physiology of 365 

organisms directly and thus indirectly the fitness and biotic interactions (e.g. Seebacher & Franklin, 2012; Tylianakis et al., 366 

2008). The fact that uncertainty contributions analyzed by a random forest are similar to linear regression results but assign 367 

higher importance to environmental drivers suggests that environmental contributions are particularly nonlinear or show 368 

higher order interactions (see Appendix A1.3). 369 

 370 

We also encountered agreement with different ecological principles and hypotheses in our results. First, we find several 371 

indicators that limiting factors change across environmental conditions. For example, nitrogen-induced uncertainty decreases 372 

with increasing temperatures (Fig. 4). Second, our results about changing uncertainty contributions on an environmental 373 

gradient also support the stress-gradient hypothesis (Maestre et al., 2009). This hypothesis states that in stressful 374 

environments positive interactions should occur more often than in benign environments and is highly supported by 375 

empirical studies (Callaway, 2007). The decrease of uncertainty contributions of structure- related parameters on the 376 

temperature gradient (Fig. 4) shows first evidence that the processes in an ecosystem model themselves mirror the 377 

hypothesis. Lastly, decreased sensitivity of mixed stands (Fig. 1) corresponds to higher resilience of mixed forests (Bauhus 378 

et al., 2017). All these findings suggest that ecological principles are emerging from lower-level processes (Levin, 1992) and 379 

that the processes reflecting these ecological principles are already modeled in DGVMs. 380 

 381 

We caution that our results regarding the role of different factors for predictive uncertainties (but not sensitivities) depend on 382 

the a priori defined uncertainty range of the contributing factors (see Wallach & Genard, 1998). For the drivers, we used 383 

RCP scenarios; however, these were not created as probabilistic min / max ranges. For the model parameters, we had to rely 384 

on expert guesses. Here, we reduced subjectivity by following the SHELF expert elicitation protocol (Gosling, 2018). A 385 

certain ambiguity also arises from the definition of the indicators: here, we calculated sensitivities and uncertainties by 386 

capturing only linear components and second-order interactions, and we may therefore miss highly non-linear (and in 387 

particular hump-shaped) responses in LPJ-GUESS. However, our comparison to uncertainties calculated with random forest 388 

variable importance, a method that would also capture nonlinearities, did not reveal any qualitative differences in the ranking 389 

of parameter importance (Appendix A1.3). Overall, while we acknowledge that a certain amount of subjectivity exists in the 390 

choice of input uncertainty and calculation of indices, we believe that our results are quantitatively robust to those choices.  391 

 392 
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Moreover, we acknowledge that LPJ-GUESS is known to be sensitive to the scaling parameters alpha_a and alpha_C3 393 

(Pappas et al., 2013; Zaehle et al., 2005), which we have omitted from our analysis. These parameters, however, are not 394 

accessible in the parameter input file but hard coded and therefore a normal user does not interact with them. Thus, such 395 

parameters do arguably belong more to the model structure than to input parameters. When including such structural 396 

components in the analysis, we should also analyze sensitivity to the functional form or even to entire modules. It is, 397 

however, known that vegetation models are often more sensitive to functional forms than to parameters (e.g. Bugmann et al., 398 

2019). To make the analysis comparable and useful for the normal LPJ-GUESS user, we restricted ourselves to more 399 

frequently changed parameters. 400 

5. Conclusions 401 

Our findings about the relative importance of different uncertainty contributions to carbon stocks and fluxes highlight which 402 

processes really matter for carbon projections with LPJ-GUESS. Moreover, we stress that environmental context changes 403 

uncertainty contributions of other processes and thereby find first indicators that several ecological principles (e.g. the 404 

gradient-stress hypothesis) are emerging from process descriptions. These findings improve our understanding of forest 405 

ecosystem models, enable pathways for future ecosystem model development and thus builds a basis for more realistic 406 

projections. In the future, parametric uncertainties could be reduced by model-data fusion (e.g. Trotsiuk et al., 2020) of LPJ-407 

GUESS, concentrating on the parameters contributing most uncertainty in each geographic region (Fig. 3). Reducing 408 

uncertainties in the drivers is more difficult. To some extent, environmental drivers are themselves influenced by the 409 

vegetation (Strengers et al., 2010), so model-data fusion on a fully coupled model including feedback loops between 410 

vegetation and climate, as well as a general improvement of climate models, could reduce driver uncertainty to some degree. 411 

Effectively, however, much of the uncertainty in this section arises from potential greenhouse gas emission trajectories, for 412 

which a probabilistic assignment is difficult due to their dependency on human decision-making.   413 

 414 

Appendix A 415 

 416 

A1.1 Site selection  417 

We sampled 200 sites geographically and environmentally stratified over Europe and thereby avoided sites near the sea. The 418 

corresponding sites with the average temperature (Fig. A1) covers the most important climates, vegetation zones and 419 

countries of Europe.  420 
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A1.2. Re-parametrization for better fit to observed data   421 

There are several technical and methodological reasons requiring a re-parametrization of LPJ-GUESS for our study. First, 422 

most of European forests are managed and species are planted far outside of their natural distribution. Second, the 423 

introduction of the nitrogen cycle (Smith et al., 2014) changed the model structure and thus parameters require an 424 

adjustment. Third, the productivity of trees in managed forests did not fit to the reported inventory data. To account for all 425 

these issues, we adjusted the parametrization of (Hickler et al., 2012)to allow species growing according to their actual (i.e., 426 

caused by forest management) distribution instead of their natural distribution. 427 

 428 

 429 

Especially Picea abies and Pinus sylvestris are planted far outside their natural distribution (Figure S2). In particular we 430 

adjusted bioclimatic limits, drought tolerances, longevity, leaf turnover, disturbance intervals and allometry for these species. 431 

A1.3. Random forest results  432 

To check the consistency of the results obtained via linear regressions, we compare them to variable importance of random 433 

forest. The variable importance measures additionally non-linear effects and thus, should be able to deal with non-linear 434 

models like DGVMs. We calculated the variable importance the same way as we did for the linear regression by fitting a 435 

random forest with all parameters against the sum of differences between model outputs with default values and model 436 

outputs with sampled parameters. As our parameters were sampled from a uniform distribution with no correlation between 437 

the individual parameters, random forest variable importance can be compared to linear regression results.  438 

 439 

The ranking is very similar to the ranking of the parameters and environmental drivers obtained via linear regression (Fig. 440 

A3). There is, however, a difference in the magnitude of the uncertainty induced by drivers, which is higher compared to 441 

linear regression (Fig A3). The higher uncertainty due to drivers is thus a nonlinear effect and stresses our conclusion that 442 

environmental conditions change the uncertainty contributions of other parameters.  443 

 444 

A1.4. Interactions of GPP and total standing biomass  445 

Interactions of gross primary production (Fig. A4a,b) and net biome production (Fig. A4c,d) are similar to the interactions of 446 

total standing biomass. These interactions are mostly between environmental drivers and environmental drivers or between 447 

environmental drivers and parameters (Fig. A4). Some strong interactions are between parameters and parameters, however, 448 

in such interactions there are always parameters included having strong interactions with environmental drivers (Fig. A4).  449 

 450 
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High sums of strong interactions arise from temperature, precipitation, solar radiation, greffmin, emax and respcoeff (Fig. 451 

A4a,b).  452 

 453 

 454 

Code and Data Availability  455 

Code to perform the sensitivity and uncertainty analysis can be found on github 456 

(https://github.com/JohannesOberpriller/SensitivityAnalysisLPJ).   457 

Results from the LPJ-GUESS runs are available under https://zenodo.org/record/4670295#.YKIkI-tCRqs.  458 
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Tables 700 

Table 1: The model inputs investigated in the sensitivity analysis can be group in a) common parameters b) species-specific 701 
parameters and c) drivers. The ranges for the parameters have been determined from experts and literature, default parameter 702 
values that changed from Hickler et al. (2012) due to the reparameterization are explained in Appendix A1.2  .* denotes an 703 
averaging over sites.  704 
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Figures 706 

 707 

Fig.1: Relative sensitivities (percent output change per percent parameter change) of the individual parameters and environmental 708 
drivers regarding a) total standing biomass, b) net biome productivity and c) gross primary production. Sensitivities were not 709 
substantially different between Fag. syl. (green squares), Pic. abi. (blue circles) and Pin. syl. (red triangles), but parameter 710 
sensitivities were stronger for mono-specific stands than mixed stands (purple asterisks). The height of the bar reflects the mean 711 
over mono and mixed stands. Positive values for points and bars indicate a positive and negative values a negative relationship 712 
with the corresponding output.  713 

 714 
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 715 

Fig. 2: Uncertainty contributions in percent of the individual parameters and environmental drivers regarding a) total standing 716 
biomass, b) net biome productivity and c) gross primary production showed no strong differences between Fag. syl. (green 717 
squares), Pic. abi. (blue circles) and Pin. syl. (red triangles) and were stronger for mono-specific stands than mixed stands (purple 718 
asterisks). The height of the bars reflects the mean over mono and mixed stands. Positive values for points and bars indicate a 719 
positive and negative values a negative relationship with the corresponding output. 720 
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 721 

Fig. 3: The aggregated relative uncertainties of total standing biomass per environmental zone (with more than five sites) show a 722 
higher importance of drivers in the south than in the north.  The environmental zones are from Metzger et al. (2005): ALN–Alpine 723 
North; ALS – Alpine South; ANA - Anatolian; ATC – Atlantic Central; ATN– Atlantic North; BOR–Boreal; CON–Continental; 724 
LUS – Lusitanian; MDM – Mediterranean Mountains; MDN – Mediterranean North; MDS – Mediterranean South; NEM – 725 
Nemoral; PAN – Pannonian.  726 

 727 
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 728 

Fig. 4: The uncertainty contributions to total standing biomass projections of parameters and environmental drivers change across 729 
a mean annual temperature gradient across Europe from north to south. With increasing temperature, the importance of drivers 730 
and establishment became higher for total standing biomass, while the uncertainty contributions from nitrogen and structure 731 
declined (4a). The uncertainty contributions due to temperature increased on the temperature gradient and the contributions from 732 
solar radiation decreased (4c). 733 
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 734 

Fig. 5: The induced uncertainty of environmental drivers, mortality- and photosynthesis-related parameters changed the most 735 
depending on other parameters (Fig. 5a). Strong individual interactions between parameters and environmental drivers in 736 
monospecific projections of total standing biomass were rare (Fig. 5b). If strong interactions occurred, these were mainly between 737 
two environmental drivers or environmental drivers and parameters and only rarely between two parameters (Fig. 5b). 738 

 739 

 740 

 741 
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Tables Appendix A 743 

Table A1: Differences in parametrization of Hickler et al. 2012 and our study for the investigated species (Fag. syl., 744 

Pic. Abi. and Pin. Syl) 745 

 746 

 747 

 748 

Parameters Fag_syl Pic_abi Pin_syl 

  
Hickler et al. 

2012 Our study 
Hickler et al. 

2012 Our study 
Hickler et 
al. 2012 

Our 
study 

drought_tolerance  0.3 0.3 0.43 0.48 0.25 0.25 
fireresist 0.1 0.1 0.1 0.1 0.2 0.4 
leaflong 0.5 0.5 4 7 2 4 
turnover_leaf 1 1 0.33  0.1429 0.5 0.25 
turnover_sap 0.085 0.085 0.05 0.065 0.065 0.085 
est_max 0.05 0.1 0.05 0.1 0.2 0.2 
alphar 3 10 2 4 6 10 
parff_min 1.250.000 1.000.000 1.250.000 1.000.000 2.500.000 2.500.000 
tcmin_surv (minimum 
20-year coldest month 
mean temperature for 
survival) -3.5 -7.5 -30 -30 -30 -30 
tcmin_est (min. 20-year 
coldest month mean 
temperature for 
establishment) -3.5 -6.5 -29 -29 -30 -29 
tcmax_est (max. 20-year 
coldest month 
temperature for 
establishment) 6 7 -1.5 3 -1 5.5 
twmin_est (minimum 
warmest month mean 
temperature for 
establishment) 5 -1000 5 -1000 5 8 
k_chillb 600 600 100 100 100 100 
sla 43? 43.08 11? 11.52 8? 8.56 
k_allom2 40 60 40 60 40 60 
wooddens 200 293 200  185 200 211 
longevity 500 400 500 300 500 500 
ga (aerodynamic 
conductance) 0.04 0.04 0.14 0.14 0.14 0.14 
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gdd5min_est 1500 1300 600 350 500 500 
 749 

 750 

Figures Appendix A 751 

 752 
Fig. A1:  Our 200 sampled sites geographically and environmentally stratified over Europe cover the most important countries, 753 
climate and temperature zones.  754 
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Parameterization as in Hickler et al. (2012) 

a) Picea abies 

  

Re-parametrization to fit to actual distribution  

b) Picea abies 

 

 

c) Pinus sylvestris  

 

      

d) Pinus sylvestris 

 

 

Fig. A2: Simulated (black points), observed (blue) and natural distributions (green) of the adjusted parametrization (b, d) 755 
compared to applying the parametrization from Hickler et al., 2012 (a, c) for Picea abies and Pinus sylvestris. EUFO = 756 
EUFROGEN, 2008 and 2013, Mauri =(Mauri et al., 2017), Caudullo =(Caudullo, 2017). The simulations were run from 1600 to 757 
2010 without management and without competition between species. The plotted biomasses were averages over the last 20 years.  758 
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 759 

Fig. A3: Results of the random forest uncertainty contributions. The uncertainties due to environmental drivers are higher than 760 
the uncertainties due parameters compared to linear regression, but the ranking of parameters is similar to linear regression 761 
results.  762 
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Fig. A4: Interactions of uncertainty contributions of GPP and total standing biomass are similar to net biome productivity with 764 
most interactions arising from environmental drivers.  765 

 766 

https://doi.org/10.5194/gmd-2021-287
Preprint. Discussion started: 15 September 2021
c© Author(s) 2021. CC BY 4.0 License.


