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Abstract 15 

Understanding uncertainties and sensitivities of projected ecosystem dynamics under environmental change is of immense 16 

value for research and climate change policy. Here, we analyze sensitivities (change in model outputs per unit change in 17 

inputs) and uncertainties (changes in model outputs scaled to uncertainty in inputs) of vegetation dynamics under climate 18 

change, projected by a state-of-the-art dynamic vegetation model (LPJ-GUESS v4.0) across European forests (the species 19 

Picea abies, Fagus sylvatica and Pinus sylvestris), considering uncertainties of both model parameters and environmental 20 

drivers. We find that projected forest carbon fluxes are most sensitive to photosynthesis-, water- and mortality-related 21 

parameters, while predictive uncertainties are dominantly induced by environmental drivers and parameters related to water 22 

and mortality. The importance of environmental drivers for predictive uncertainty increases with increasing temperature. 23 

Moreover, most of the interactions of model inputs (environmental drivers and parameters) are between environmental 24 

drivers themselves or between parameters and environmental drivers. In conclusion, our study highlights the importance of 25 

environmental drivers not only as contributors to predictive uncertainty in their own right, but also as modifiers of 26 

sensitivities and thus uncertainties in other ecosystem processes. Reducing uncertainty in mortality related processes and 27 

accounting for environmental influence on processes should therefore be a focus in further model development. 28 



2 
 

1. Introduction 29 

Terrestrial ecosystem models have emerged in the last three decades as a central tool for decision making and basic research 30 

on vegetation ecosystems (Cramer et al., 2001; Fisher et al., 2018; IPCC, 2014; Smith et al., 2001; Snell et al., 2014). 31 

Projections from different vegetation models, however, often disagree on important details, for example regarding the 32 

observable past (Bastos et al., 2020) or the future carbon uptake of forest ecosystems (Huntzinger et al., 2017; Krause et al., 33 

2019). Among the possible reasons for such differences is the uncertainty in climate scenarios (Saraiva et al., 2019), model 34 

structural uncertainty (Bugmann et al., 2019; Oberpriller et al., 2021; Prestele et al., 2016), initial condition uncertainty 35 

(Dietze, 2017b) as well as uncertainty about the model parametrization (Grimm, 2005), which in turn make models’ 36 

projections themselves uncertain (Dietze, 2017a). It is widely appreciated that understanding which exact factors drive these 37 

uncertainties is of immense value for directing research (Tomlin, 2013), but also to interpret and understand projections 38 

(Dietze et al., 2018). For example, the IPCC started in its Fifth Assessment Report to systematically analyze uncertainties 39 

and attribute them to model inputs (IPCC, 2014) similar to other predictive sciences (e.g. nuclear reactor safety (Chauliac et 40 

al., 2011), energy assessment for buildings (Tian et al., 2018) or policy analysis (Maxim and van der Sluijs, 2011)).  41 

 42 

The two main tools to understand how uncertainties in model inputs (drivers, parameters, and model structure) affect model 43 

outputs are sensitivity analysis (SA) and uncertainty analysis (UA) (Cariboni et al., 2007; Caswell, 2019; Saltelli, 2002; 44 

Saltelli et al., 2008). The key difference between these two methods is that in an UA, the central starting point is the 45 

quantification of uncertainty in the model inputs (e.g. parameters, typically determined via expert elicitations and previous 46 

studies (Matott et al., 2009)). This uncertainty is then propagated to the model outputs, and back-attributed to the different 47 

inputs. An SA, on the other hand, calculates how the model output changes per unit or percentual change of the respective 48 

input (Jørgensen and Bendoricchio, 2001). This calculation is primarily independent of the inputs’ uncertainties, although 49 

local SAs can be affected by the reference point and global SAs by the range over which the sensitivity is calculated. 50 

Overall, however, both methods share the goal of identifying inputs with a high influence on model outputs, with the 51 

underlying idea that better constraining these will increase robustness and reliability of model projections (Balaman, 2019).  52 

 53 

 54 

Although the benefits for understanding model behavior and predictive uncertainties are obvious, relatively few SAs and 55 

UAs have been applied to complex ecosystem models and especially the widely used dynamic global vegetation models 56 

(DGVMs) that project terrestrial ecosystem responses to climate change or land management (see, e.g., Courbaud et al., 57 

2015; Cui et al., 2019; Huber et al., 2018; Reyer et al., 2016; S. Tian et al., 2014; Wang et al., 2013). A reason for this is 58 

arguably the complex structure of most DGVMs (Fer et al., 2018), which makes SAs and UAs computationally demanding 59 

and difficult to interpret, especially when performing state-of-the-art global SAs and UAs that compute sensitivities and 60 

uncertainties across the entire parameter space (Saltelli et al., 2008) rather than just locally around a reference parameter set 61 
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(see e.g., Hamby, 1994). Moreover, several studies highlight that sensitivities and uncertainties of DGVMs also exist with 62 

respect to environmental drivers (Barman et al., 2014; Wu et al., 2017, 2018), especially solar radiation (Barman et al., 2014; 63 

Wu et al., 2018), temperature (Barman et al., 2014) and precipitation (Wu et al., 2017), and it is reasonable to expect that 64 

there can be interactions between parameter and environmental sensitivities, meaning that certain parameters are more 65 

sensitive in some environments than in others. It therefore seems important to investigate parametric sensitivities in 66 

conjunction with their environmental sensitivities in one combined analysis.  67 

 68 

In this study, we concentrate on a well-established and widely applied DGVM, the Lund-Potsdam-Jena General Ecosystem 69 

Simulator (LPJ-GUESS) (Gerten et al., 2004; Sitch et al., 2003; B. Smith et al., 2001). Three previous SAs or UAs for the 70 

LPJ family identified the intrinsic quantum efficiency of CO2 uptake (alpha_C3) and the photosynthesis scaling parameter 71 

(from leaf to canopy) (alpha_a) as the main contributors of sensitivity for net primary production (NPP) (about 50-60% of 72 

the overall sensitivity, Zaehle et al., 2005; Pappas et al., 2013) or foliage projective cover (Jiang et al., 2012). Additionally, 73 

these previous studies show that LPJ-GUESS projections of NPP and vegetation carbon pools showed high sensitivity to tree 74 

structure-related (sapwood to heartwood turnover rate, longevity of trees, Pappas et al., 2013; Wramneby et al., 2008; Zaehle 75 

et al., 2005), establishment-related (maximum sapling establishment rate, minimum forest floor photosynthetically active 76 

radiation for tree establishment, Jiang et al., 2012; Wramneby et al., 2008; Zaehle et al., 2005), mortality-related (threshold 77 

for growth suppression mortality, Pappas et al., 2013) and water-related parameters (minimum canopy conductance not 78 

associated with photosynthesis, maximum daily transpiration, Pappas et al., 2013; Zaehle et al., 2005). Regarding 79 

uncertainties, strong impacts on LPJ-GUESS projections of NPP and vegetation carbon pools (FPC for Jiang et al., 2012) 80 

were found for photosynthesis related parameters (Jiang et al., 2012; Zaehle et al., 2005), but also for water-related 81 

(minimum canopy conductance not associated with photosynthesis, Zaehle et al., 2005) as well as structure-related 82 

parameters (tree leaf to sapwood area ratio, crown area to height function Jiang et al., 2012), whereas soil hydrology 83 

parameters were not identified as very sensitive in earlier studies (Pappas et al., 2013).  84 

 85 

Since the publication of these studies, however, the structure of the LPJ-GUESS model changed substantially. The most 86 

important changes are the inclusion of the nitrogen cycle (Smith et al., 2014) and new management modules (Lindeskog et 87 

al., 2021). Since these changes, no study has systematically examined how model sensitivities and uncertainties were 88 

affected by the new model structure. Moreover, previous SAs and UAs ignored management parameters, which, however, 89 

are expected to have large impacts on carbon pools and fluxes (Lindeskog et al., 2021).  90 

 91 

A further limitation of most previous studies for LPJ-GUESS and other models (e.g. Mäkelä et al., 2020) is that they either 92 

analyzed sensitivities and uncertainties to parameter changes, or to changes in the environmental drivers, but not both. As 93 

discussed earlier, however, there are good reasons to expect that the sensitivity of parameters will change if environmental 94 

drivers change. Given that previous sensitivity analyses used different choices for these boundary conditions (different 95 
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sensitivities for the climate scenarios and sites in Jiang et al., 2012; for different elevations in Pappas et al., 2013; different 96 

sites in Wramneby et al., 2008), this not only limits the comparability between studies, but also questions the generality of 97 

the results for all climatic conditions. Only Jiang et al. (2012) combined parameter and driver sensitivities, but used for the 98 

latter only a number of fixed climate scenarios instead of a range of possible values, which prohibits a systematic joint 99 

analysis. Moreover, it would be interesting to compare the relative importance of drivers and parameters for the predictive 100 

uncertainty of model simulations and how these change between environmental zones (here we use the classification of 101 

Metzger et al., 2005) and thus on an environmental gradient. When sensitivities or uncertainties of parameters belonging to a 102 

specific process increase on an environmental gradient, this indicates that the process itself becomes more important on the 103 

gradient (Saltelli, 2002). By comparing such changes to existing ecological hypotheses, we can test if model sensitivities and 104 

thus process descriptions are in line with ecological expectations. 105 

 106 

To answer these questions, we analyzed sensitivities and uncertainties in LPJ-GUESS for 200 randomly distributed sites 107 

across Europe (see Appendix A1.1). We address the issue of interactions between environmental and parametric sensitivities 108 

by simultaneously investigating uncertainty in environmental drivers (precipitation, temperature, solar radiation, CO2, 109 

nitrogen deposition) with parametric uncertainty in the most important processes (photosynthesis, establishment, nitrogen, 110 

water cycle, mortality, disturbance/management, and growth) for dynamic climate change from 2001-2100 and steady 111 

climate from 2100-2200. We simulated the most abundant tree species in Europe (Fagus sylvatica, Pinus sylvestris and 112 

Picea abies) individually and in mixed stands, as these species are suffering from climate change (e.g. Buras et al., 2018; 113 

Walentowski et al., 2017) and could benefit from mixed stands (e.g. Pretzsch et al., 2015). To test climate change impacts, 114 

we randomly sampled climate projections within the boundaries of RCP2.6 and RCP8.5. Thereby, our key objectives were to 115 

understand the sensitivities and uncertainties of LPJ-GUESS due to environmental drivers and parameters. We were 116 

especially interested in 1) overall sensitivities and uncertainties across European forests, 2) uncertainties per environmental 117 

zone and 3) uncertainties on a temperature gradient. Moreover, we investigated, 4) if and how environmental conditions 118 

change the uncertainties of environmental processes. 119 

2. Methods and Material 120 

2.1. The LPJ-GUESS vegetation model 121 

LPJ-GUESS is a process-based ecosystem model that simulates vegetation growth, vegetation dynamics and biogeography 122 

as well as biogeochemical (e.g. nitrogen and carbon) and water cycles (Lindeskog et al., 2013; Olin et al., 2015; Smith et al., 123 

2014). Ecosystem dynamic processes in the model include establishment, growth, mortality, and competition for light, space 124 

and soil resources. To simulate these processes, the model combines time steps on different scales from daily (e.g. 125 

phenological and photosynthesis processes) to yearly (e.g. allocation of net primary production to tree carbon components) 126 
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basis. LPJ-GUESS includes forest gap dynamics succession of cohorts (each represented by an average individual) of 127 

different plant functional types (PFTs) or species. Each PFT/species has a unique parameter set.  128 

 129 

In this study, we use a model version that was slightly modified from Lindeskog et al. (2021), which is based on the LPJ-130 

GUESS 4.0 version, with a re-parameterization for spruce (Picea abies), pine (Pinus sylvestris) and beech (Fagus sylvatica) 131 

(see Appendix A1.2 for Pin. syl. and Pic. abi.). To account for the stochastic components of establishment, mortality and 132 

patch destroying disturbances, LPJ-GUESS simulates several replicate patches (25 for the simulation with the reference 133 

parametrization and 1 for each simulation in the SA and UA) representing “snapshots” of the grid-cell. In this model version, 134 

fire is based on the BLAZE model (Rabin et al., 2017). Thereby annually burned area is generated based on fire weather and 135 

fuel continuity and distributed to monthly intervals based on climatology (Giglio et al., 2010). Tree mortality is then 136 

estimated by computing firelines based on weather and converted into height-dependent survival probabilities (see Haverd et 137 

al., 2014) depending on empirical biome specific parameters. 138 

 139 

A first set of key parameters from our expert elicitation (see below) for establishment are the bioclimatic limits (i.e. 140 

minimum growing degree days (gdd5min_est), minimum 20-year coldest month (tcmin_est), maximum 20-year coldest 141 

month (tcmax_est) and minimum forest photoactive radiation at forest floor (parff_min)), which build the environmental 142 

envelope for establishment. Given the bioclimatic limits are fulfilled, at regular intervals new PFTs are established (here: 1 143 

year) given enough space, light, soil water and photoactive radiation at forest floor is available for establishment (B. Smith et 144 

al., 2001). Moreover, each of our three investigated species has a maximum establishment rate (est_max) (B. Smith et al., 145 

2001). 146 

 147 

Structure of trees in the model is mainly linked to the simulated growth of trees, which is triggered by allocating all net 148 

primary production (NPP) besides a reproduction debt of 10% (reprfrac) to tree components thereby satisfying mechanical 149 

balance (e.g. allometric eq. for the relationship between height and diameter with allometric parameters (k_allom2, 150 

k_allom3) (e.g. Huang et al., 1992), the relationship between tree leaf to sapwood area (k_latosa) (e.g. Robichaud & 151 

Methven, 1992), the relationship between crown area and height (k_rp) (packing constraint, Zeide, 1993), the maximum 152 

crown area (crownarea_max) and leaf longevity (leaflong)) and functional balance as well as demographic constraints (Sitch 153 

et al., 2003). Each living tissue is assigned a turnover rate transferring sapwood into heartwood (turnover_sap) and leaves 154 

(turnover_leaf) and fine roots (turnover_root) to litter. Investment into above and belowground growth is influenced by the 155 

resource stress as individuals are competing for light, space, nitrogen and water. Competition for light is determined by the 156 

photosynthetic response and light extinction in the canopy. Competition for space (self-thinning) is represented in the model 157 

via allometric equations between crown area and stem diameter (Sitch et al., 2003). Competition for nitrogen and water is 158 

determined by tree individual demand for nitrogen and water and soil availability of nitrogen and water and the PFT-specific 159 

root profile. Competition between species will favor certain life-history strategies in particular situations, for example shade-160 
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tolerant (e.g. Fagus sylvatica and Picea abies) or intermediate-shade tolerant (e.g. Pinus sylvestris) growth responses, and 161 

dynamically changing root-to-shoot ratios.  162 

 163 

Tree mortality (natural or via harvest) in the model responds to growth efficiency (ratio of annual NPP to leaf area) being 164 

too low over a 5-year period, e.g. due to light competition, maximum longevity of a PFT or changes in environmental 165 

conditions (e.g. tolerance to drought (drought_tolerance) changes water uptake) exceeding the species suitable range. Light 166 

competition is modeled using the foliage projective cover (FPC), defined as the area of ground by foliage directly above it, 167 

using Beer’s Law (B. Smith et al., 2011). The resulting shading mortality is distributed proportional to species’ FPC growth 168 

in the respective year due to their biomass increase. Mortality is modeled inversely proportional to the growth efficiency 169 

(with a given species-specific threshold (greff_min), e.g. Waring (1983)). Moreover, negative NPP of a species kills all 170 

individuals of the respective cohort. Background mortality probability increases with tree age, reaching one at the maximum 171 

longevity (longevity). Mortality has also a stochastic component. Natural disturbances are implemented in the model as 172 

process-based wildfires (with a given fire resistance for each species (fireresist)) and as patch-destroying disturbances (e.g. 173 

windthrow and landslides) with the same yearly occurrence probability for all patches (inverse of distinterval). Additional 174 

mortality arises from forest management activities, determined by thinning intensity (percentage of all trees cut, 175 

thinning_intensity) and cutting intervals (cut_interval), which can be set for each species individually. For a more detailed 176 

description of the management module and the additional management parameters see Lindeskog et al. (2021). 177 

 178 

Nitrogen input is implemented in the model through nitrogen deposition (prescribed) and biological nitrogen fixation. The 179 

latter is simulated empirically as a linear function with intercept (nfix_a) and slope (nfix_b) of the five-year averaged actual 180 

evapotranspiration (Cleveland et al., 1999). The resulting amount of nitrogen accumulates in the ecosystem equally over the 181 

year and directly adds to the available mineral soil nitrogen pool. When nitrogen is in living tissue, a fraction (nrelocfrac) is 182 

re-translocated before leaf- and root shedding.  183 

 184 

Photosynthesis is modeled as a function of absorbed photosynthetically active radiation, temperature (optimum temperature 185 

range for photosynthesis determined by pstemp_low and pstemp_high, Larcher, 1983), intercellular CO2 (i.e. non-water 186 

stressed ratio of intercellular to ambient CO2 (lambda_max)), and canopy conductance thereby considering a species-specific 187 

respiration coefficient (respcoeff) (B. Smith et al., 2001) and nitrogen availability. The photosynthesis scheme is a modified 188 

version of the Farquhar photosynthesis model, but instead of prescribed values for the Rubisco capacity it is optimized for 189 

maximum net CO2 assimilation at the canopy level (Smith et al., 2014).  190 

 191 

Water availability for plants is based on precipitation and snowmelt in the two-layer soil hydrology submodule (for details 192 

see Hickler et al., 2004; Smith et al., 2001). Vegetation transpiration and evaporation (with a maximum evapotranspiration 193 

rate (emax)) from bare ground and leaves reduce water availability as well as runoff from saturated soil (Sitch et al., 2003). 194 
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Water vapor exchange by the vegetation canopy is calculated on a daily basis within the photosynthesis scheme (e.g. 195 

minimum canopy conductance not associated with photosynthesis (gmin)). The water supply and transpirative demand are 196 

calculated on a daily basis and converted into a drought-stress coefficient. Given this coefficient, the investment in roots at 197 

the costs of leaves is calculated. 198 

2.2. Simulation setup  199 

We selected 200 study sites (see Appendix A1.1) spatially and environmentally stratified over Europe by applying random 200 

stratified sampling (using the R package splitstackshape Mahto, 2019) with longitudinal and latitudinal coordinates as well 201 

as mean precipitation, solar radiation and temperature as categories based on IPSL-CM5 Earth System Model CMIP5 202 

(Dufresne et al., 2013) climate data. We chose 200 sites as a compromise between the high computational demand of 203 

running LPJ-GUESS multiple times for all sites and a good spatial as well as environmental coverage of Europe. For these 204 

sites, we performed simulations for each of the three most common species in Europe (Fagus sylvatica, Pinus sylvestris and 205 

Picea abies) as monospecific stands and additionally all three species together as mixed stands. 206 

 207 

The simulation period was from 1861 to 2199. To start the simulations with equilibrium C pools and fluxes, we spun up LPJ-208 

GUESS vegetation and soil carbon and nitrogen pools to pre-industrial equilibrium by recycling the 1861 to 1900 climate, 209 

the 1861 CO2 concentration (Meinshausen et al., 2011) and nitrogen deposition. For the transient and future simulation runs, 210 

we used the bias-corrected monthly IPSL-CM5 Earth System Model CMIP5 (Dufresne et al., 2013). From this data set, we 211 

extracted temperature, precipitation, number of wet days per month, and incoming solar radiation from 1861 to 2099 for 212 

RCP4.5 as base scenario and RCP2.6/RCP8.5 as lower/upper boundaries for the climate ranges (see below). In addition to 213 

these data, monthly nitrogen deposition was extracted from Lamarque et al. (2013) and soil texture data from Batjes (2005). 214 

All these driving data had a spatial resolution of 0.5°x 0.5°. We recycled detrended data from 2090-2099 for all 215 

environmental drivers except CO2 and nitrogen deposition and used these as potential stable climates for the 2100-2199 216 

period.   217 

 218 

2.3. Selection of parameters and drivers and their ranges   219 

The a priori selection of the most influential parameters that can be specified in the parameter file and their ranges was based 220 

on our expert knowledge (following the SHELF expert elicitation protocol, see Gosling, 2018) and a literature review. The 221 

resulting eleven (= 33%) parameters common for all species and 22 (= 20%) species-specific parameters (see Table 1) were 222 

grouped to the specific processes they contribute most to (Table 1, Grouping).  223 

 224 

From the environmental drivers of the model, we selected incoming solar radiation, temperature, precipitation, atmospheric 225 

CO2 and nitrogen deposition for our analysis. To obtain uncertainties for temperature, precipitation and solar radiation, we 226 
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calculated the mean deviations of RCP8.5/RCP2.6 to our base scenario RCP4.5 plus/minus one standard deviation as 227 

maximal/minimal per site. As the CO2 data is global and not site-specific, we calculated ranges from the global data set 228 

(RCP2.6 as minimum, RCP8.5 as maximum) averaged over time and plus/minus a standard deviation. For nitrogen 229 

deposition, we used RCP6.0 as maximum and RCP2.6 as minimum with the same procedure as for the other drivers.   230 

 231 

2.5. Sensitivity analysis and uncertainty analysis 232 

LPJ-GUESS predicts a substantial number of output variables, which could all be examined regarding their sensitivities and 233 

uncertainties. Here, we concentrate on carbon outputs (gross primary production GPP, total standing biomass TSB and 234 

net biome productivity NBP), because of forests’ role for carbon cycling (Bonan, 2008), their large contribution to the land 235 

carbon sink (Pugh et al., 2019) and the economic importance of tree growth for forest owners (Pearce, 2001).  236 

 237 

Sensitivities and uncertainties were calculated by Monte-Carlo sampling from the assumed multivariate parameter and 238 

climate uncertainty. For the monospecific / mixed simulations, we drew respectively 10.000 / 50.000 parameter and climate 239 

combinations randomly from the prespecified uncertainty ranges, and ran the model based on these combinations for each of 240 

the 200 sites. Note, that for mixed simulations, for each simulation we individually drew parameter combinations for each 241 

species, i.e. the same parameter could be different for different species. In total, this means that 200 x (50.000 + 3 x 10.000) 242 

= 16 million LPJ-GUESS simulations were run.  243 

 244 

We quantified sensitivity and uncertainty indices by running multiple linear regressions with the model output averaged over 245 

time as response, and parameters and drivers as well as their second order interactions as predictors. With 200 sites, each 246 

having three monospecific and one mixed stands setup, we overall ran 200x (3 +1) = 800 linear regressions. This analysis 247 

corresponds to a global SA/UA in the context of regression analysis and has been applied to other system models (e.g. Sobie, 248 

2009). The estimated effects from the regression can be interpreted as sensitivities, as the effect of a unit change of the driver 249 

on the response (model output) is estimated. By scaling the predictors to the range [-0.5, 0.5], we obtained the corresponding 250 

uncertainties. To check whether we missed non-linear effects, we additionally applied a random forest and extracted the 251 

variable importance (following Augustynczik et al., 2017, see Appendix A1.3.). To calculate mean sensitivities/uncertainties 252 

for each species, we averaged site-specific sensitivities over all sites with an average annual biomass production greater than 253 

2 tC/ha. We have chosen this threshold because smaller values indicate that the environment is not suitable for the species, 254 

however, for each site at least one species was able to establish. For the mixed stands, we first averaged the three species-255 

specific sensitivities/uncertainties per site and then averaged over all sites. Mean percentual sensitivities were calculated by 256 

dividing by the mean model output, while mean uncertainty contributions were calculated by dividing by the entire 257 
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uncertainty budget. Thereby, positive values mean that the respective output increases with increasing parameter values, 258 

while negative values mean that it decreases.  259 

 260 

It is important to note that uncertainties and sensitivities have different interpretations, and which of these two is more 261 

relevant strongly depends on the purpose. The calculated percental sensitivities can be interpreted as percentage change in 262 

the corresponding output, when changing a parameter value 1% in the prespecified range. The calculated uncertainties per 263 

parameter/driver can be interpreted as relative proportion of the overall uncertainty budget coming from environmental 264 

drivers and parameters. For scenario-analysis, e.g. comparing different cut intervals of forests, sensitivities provide a direct 265 

estimate of the model response, e.g. how much biomass changes when the cut interval is changed. For a comparison of 266 

different model forecasts, uncertainties are usually more relevant. If a reduction of uncertainty via a model-data comparison 267 

is the purpose, both measures are important, as parameters with high sensitivities can contribute more or less predictive 268 

uncertainty, depending on their input uncertainty.  269 

3. Results 270 

3.1. Mean sensitivities over Europe 271 

Regardless of the output variable, LPJ-GUESS was most sensitive to photosynthesis-related parameters (respcoeff, 272 

lambda_max), parameters controlling the wood turnover (turnover_sap) and tree allometry (k_rp), water-related parameters 273 

(emax), mortality-related parameters (greffmin) and environmental drivers (temperature, CO2 and solar radiation) (Fig. 1). 274 

When looking at differences in the strength of sensitivities for different outputs, TSB was most sensitive to the respiration 275 

coefficient (respcoeff), the growth suppression mortality threshold (greff_min) and solar radiation while NBP projections 276 

showed negative sensitivity to wood turnover rates (turnover_sap) and longevity and positive sensitivity to temperature, CO2 277 

and the ratio of intercellular to ambient CO2 (lambda_max). GPP was negatively sensitive to the respiration coefficient 278 

(respcoeff), growth suppression mortality threshold (greffmin), tree allometry (k_rp) and temperature and positive to CO2, 279 

solar radiation and the maximum transpiration rate (emax). Establishment and nitrogen showed the smallest sensitivities for 280 

all three carbon-related projections (Fig.1). Note also that NBP had higher percentual sensitivities than GPP and TSB.  281 

 282 

Mixed stands were less sensitive to changes in parameters than mono-specific stands (Fig. 1). For monospecific simulations, 283 

species sometimes showed different magnitudes and even directions of sensitivities, especially Fag. syl. was more strongly 284 

affected by bioclimatic limits and Pin. syl. showed higher sensitivity to environmental drivers (temperature and solar 285 

radiation) than the other species. Moreover, TSB and GPP are negatively sensitive to temperature except for Fag. syl. For 286 

NBP, the direction of sensitivities changes between species for the non-water-stressed ratio of intercellular to ambient CO2 287 

(lambdamax), the respiration coefficient (respcoeff), the root turnover (turnoverroot), an allometric constant (krp) and the 288 

maximum evapotranspiration rate (emax).  289 
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 290 

 291 

3.2. Mean uncertainties over Europe 292 

Looking at uncertainties, we found that environmental drivers contributed most of all processes/drivers to the predictive 293 

uncertainty (Fig 2), regardless of the considered model output. For TSB projections, CO2, solar radiation and temperature 294 

contributed substantial uncertainty (Fig. 2a). Additionally, large uncertainty contributions arose from growth suppression 295 

mortality thresholds (greffmin) and the respiration coefficient (lambda_max). Uncertainty in NBP projections was 296 

substantially affected by model parameters (longevity (Mortality process), tcmax_est (Establishment process), turnover_sap 297 

(Tree structure process), greffmin (Mortality process) and emax (Water process)), additionally to the high contributions of 298 

temperature and CO2 (Fig. 2b). For GPP projections, solar radiation and CO2 contributed most to climate induced 299 

uncertainty, while the threshold for growth suppression mortality (greffmin) and maximum evaporation rate (emax) 300 

contributed most to parameter induced uncertainty (Fig. 2c). Notably, also nitrogen-fixation induced uncertainty was 301 

substantial (7-9%) for TSB and GPP. Most tree structure related parameters except the sapwood to heartwood turnover rate 302 

(turnoversap) and the fraction of NPP allocated to reproduction (repfrac) contributed only small uncertainties (Fig. 2). 303 

Uncertainty contributions analyzed by a random forest are similar to linear regression results (see Appendix 1.3.). 304 

 305 

By analyzing uncertainty contributions on a species level, a more diverse picture emerged. Fag. syl. was more affected by 306 

temperature and less by solar radiation than the other species. Additionally, we found that uncertainty contributions of 307 

environmental drivers were substantially higher for mixed than for mono-specific stands.  308 

  309 

3.3. Geographic variation in uncertainties of TSB across Europe 310 

To project the uncertainties of TSB (for GPP and NBP see Appendix 1.4.) into the European environmental space, we 311 

filtered stands according to environmental zones, then calculated mean uncertainties per environmental zone and aggregated 312 

these per process. 313 

 314 

The broad pattern of TSB uncertainty contributions for all three monospecific and mixed stands remains similar in all 315 

environmental zones. On average across all environmental zones, stands and species about 45% of the uncertainty was due to 316 

environmental drivers, 15% due to mortality-, 14% due to photosynthesis-, 12% due to structure-, 7% due to water- and 7% 317 

due to nitrogen-related parameters (Fig. 3).  318 

 319 

For the individual environmental zones, however, there were subtle differences. In the Mediterranean mountain (MDN) and 320 

Pannonian (PAN) zone, environmental driver induced uncertainty was higher than on average especially for monospecific 321 



11 
 

stands (Fig. 3). In the Boreal (BOR), Atlantic central (ATC), and Atlantic north (ATN) zone, tree structure- related 322 

uncertainty increased compared to the average pattern (Fig. 3). In the Atlantic central (ATC) and Atlantic north (ATN) zones 323 

nitrogen related uncertainty increased for all species and stands (Fig. 3). 324 

 325 

To examine this spatial pattern further, we investigated the change of uncertainties across a temperature gradient. To this 326 

end, we aggregated the uncertainties per site and process/driver and then fitted a linear regression with the process/driver as 327 

predictor and the aggregated uncertainties as dependent variables. 328 

 329 

For TSB, we found that increasing mean annual temperature increased the uncertainty contributions of environmental 330 

drivers, water- and establishment-parameters, while the uncertainty due to nitrogen- and tree structure- related parameters 331 

decreased (Fig. 4a). Thereby, the uncertainty contributions of environmental drivers (≈0.4%/°C) increased the most 332 

(measured in percentage points per °C) and uncertainty contributions of nitrogen fixation decreased most (≈ -0.5%/°C). 333 

Mortality and photosynthesis stayed approximately constant on the gradient (Fig. 4b).  334 

 335 

Looking in more detail at the environmental drivers, temperature (≈+0.75%/°C) as well as CO2 (≈ +0.2%/°C) and 336 

precipitation (≈ +0.25%/°C) induced uncertainty increased with mean annual temperature, while the uncertainty contribution 337 

of solar radiation (≈ -0.75%/°C) decreased with mean annual temperature (Fig. 4c). Nitrogen deposition induced uncertainty 338 

contributions stayed approximately constant on a mean annual temperature gradient.  339 

 340 

The above geographical and correlative observations of changing uncertainties across Europe receive further support when 341 

looking at the interactions between uncertainties of different drivers/parameters (Fig. 5). Interaction indices were calculated 342 

by averaging the interactions found in the linear regression over all sites and species (Fig. 5b). Moreover, to investigate the 343 

overall influence on other parameters or drivers we summed the absolute individual interaction indices of each parameter 344 

with each other (Fig. 5a).  345 

 346 

We found that environmental drivers (temperature, solar radiation, CO2 and precipitation) had the highest sum of interactions 347 

for TSB (Fig. 5a). Moreover, the respiration coefficient (respcoeff), the growth suppression mortality threshold (greffmin), 348 

longevity, the sapwood to heartwood turnover rate (turnover_sap) and maximum evaporation rate (emax) had a lower, but 349 

still high sum of interactions (Fig. 5a). Establishment and nitrogen related parameters had only a few weak interactions (Fig. 350 

5). Strong interaction effects occurred mostly with environmental drivers (Fig. 5b). A main part of these interactions was 351 

between the different environmental drivers themselves (solar radiation - CO2 and solar radiation - temperature). 352 

Additionally, we found interactions of parameters and environmental drivers (temperature-sapwood to hardwood turnover 353 

(turnover_sap), temperature – threshold for growth suppression mortality (greffmin) and temperature-respiration coefficient 354 

(respcoeff) (Fig. 5b)) and moderate parameter-parameter interactions (longevity (Mortality process) - greffmin (Mortality 355 
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process), respcoeff (Water process) – longevity (Mortality process) (Fig. 5b)). Similar patterns were present for the other two 356 

carbon outputs (see Appendix A1.4.). 357 

4. Discussion 358 

In this study, we analyzed sensitivities and uncertainties of the LPJ-GUESS vegetation model due to environmental driver 359 

and parameter variations across European forests. We found that the model is most sensitive to relative (percentage) changes 360 

in photosynthesis-related parameters, structure-related parameters controlling the wood turnover and tree allometry, water-361 

related parameters, mortality-related parameters, and environmental drivers (Fig.1), irrespective of the considered output 362 

variable. When considering the different uncertainties (i.e. the entire plausible range) in these parameters and the 363 

environmental inputs, we found that environmental drivers and parameters controlling evapotranspiration, background 364 

mortality and nitrogen cycling contribute most to predictive uncertainty (Fig. 2). When correlated against a temperature 365 

gradient and thus geographically from north to south, uncertainty contributions to TSB increased for environmental drivers 366 

and decreased for tree structure and nitrogen-related parameters (Fig. 3, 4). Interactions between the uncertainty 367 

contributions were mainly between different drivers or between model parameters and drivers, whereas only a few 368 

parameter-parameter interactions were present (Fig. 5). 369 

 370 

Our finding that average sensitivities of carbon-related projections across European forests were highest for photosynthesis-371 

related parameters amplifies the evidence from earlier studies (Pappas et al., 2013; Zaehle et al., 2005), although we have 372 

used different parameter ranges. In addition, the finding about high sensitivity of LPJ-GUESS to parameters controlling tree 373 

structure and especially carbon turnover (turnover_sap) (Fig. 1) is in line with results reported for a previous version of LPJ-374 

GUESS (Pappas et al., 2013) and its important role for carbon allocation in trees found in empirical studies (e.g. Herrero de 375 

Aza et al., 2011). The finding that carbon-related projections are very sensitive to mortality-related parameters (greffmin) is 376 

also supported by previous studies on the sensitivity of vegetation models and underlines the importance of improving 377 

mortality submodules for generating precise projections of vegetation dynamics (Bugmann et al., 2019; Hardiman et al., 378 

2011). Moreover, sensitivities in mixed stands were lower than in mono-specific stands for NBP and GPP (Fig. 1) (in line 379 

Wramneby et al., 2008). The reason for that imbalance may be that other species can dampen and even benefit from non-380 

optimal life-history strategies of an individual species (Loehle, 2000). Another reason might be, that for mixed simulations 381 

we sampled parameters for each species individually, which reduces the influence of each parameter on stand-level carbon 382 

projections. 383 

 384 

We found that uncertainty contributions of environmental drivers were comparable to the uncertainty contributions of all 385 

parameters together (Figs. 2-5, see also Snell et al., 2018 for the FLMs model, but see Petter et al., 2020, who found that 386 

most uncertainty is induced by the choice of the forest model). Especially high uncertainty contributions arose from 387 
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temperature (negative effect for TSB, GPP positive for NBP), CO2 (positive effect for all variables) and solar radiation 388 

(positive effect for all variables). These results are supported by the earlier studies on the effect of environmental drivers in 389 

DGVMs (Barman et al., 2014; Wu et al., 2017, 2018). The positive effect of CO2 could be explained by increased water-use 390 

efficiency and the CO2 fertilization effect (also found for other DGVMs Keenan et al., 2011; Galbraith et al., 2010), which in 391 

LPJ-GUESS is an emerging property of the formulation of photosynthesis and respiration (see Hickler et al., 2008). 392 

However, empirical studies do not find such an effect (Körner, 2006), which could be linked to the fact that LPJ-GUESS 393 

does not model phosphor cycling which could be the limiting nutrient (for a DVGM study see Fleischer et al., 2019).  We 394 

speculate that the negative effect of temperature (also found for multiple DGVMs, see Galbraith et al., 2010) arises from 395 

decreased photosynthetic efficiency and increased respiration rates with higher temperatures (see the empirical study of 396 

Gustafson et al., 2018, here confirmed by the negative relationship between temperature and the respiration coefficient). This 397 

effect, however, differed in magnitude and direction between tree species (Fig. 2) - while there was a strong effect for Pic. 398 

abi. and Pin. syl., Fag. syl. was less affected, which could be a sign of its higher resistance to increasing drought (Buras and 399 

Menzel, 2019; Tegel et al., 2014; but see Charru et al., 2010). From the parameters, especially water-, nitrogen- and 400 

mortality-related parameters contributed a substantial amount of uncertainty. The uncertainty contributions from mortality 401 

parameters (Bugmann et al., 2019, for a variety of DGVMs) and water (Pappas et al., 2013, with different parameter ranges 402 

for LPJ-GUESS) were already highlighted by earlier studies.  403 

 404 

4.1. Geographical and environmental patterns in sensitivities and uncertainties   405 

 406 

Several of our results suggest that environmental context influences the sensitivity of LPJ-GUESS model parameters. First, 407 

we found changing uncertainties across different vegetation zones (Fig. 3) and on an environmental gradient (Fig. 4) and that 408 

most interactions occurred with environmental drivers (Fig. 5). Moreover, uncertainty contributions analyzed by a random 409 

forest were similar to the linear regression results, but assign higher importance to environmental drivers (see Appendix 410 

A1.3). All these findings indicate that environmental context can change the importance of different processes in the model, 411 

which is in line with the biological expectation that the environment affects the physiology of organisms directly and thus 412 

indirectly the fitness and biotic interactions (e.g. Seebacher & Franklin, 2012; Tylianakis et al., 2008), and that 413 

environmental responses can be particularly nonlinear (e.g. Burkett et al., 2005) or show higher order interactions.  414 

 415 

Interestingly, our results of decreased uncertainty contributions of structure- related parameters and increased contributions 416 

of environmental drivers on the temperature gradient (Fig. 4) also seem in line with the stress-gradient hypothesis (Maestre 417 

et al., 2009), an empirically-observed pattern which states that in stressful environments, positive interactions should occur 418 

more often than in benign environments (e.g. Callaway, 2007). For the ecosystem that we consider, we interpret increasing 419 

temperature as increasing stress (e.g. Ruiz-Pérez and Vico, 2020), and structure as the best indicator for competitive 420 

interactions as the structure dictates resource allocation (e.g. bigger crown, but identical stem diameter leads to more 421 
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photosynthesis; more sapwood to heartwood turnover requires less NPP). With this interpretation, one would conclude that 422 

under increasing stress, the importance of competition-related parameters decreases in the model, as expected from the 423 

stress-gradient hypothesis. We acknowledge that a fair amount of interpretation is needed to arrive at this conclusion, and we 424 

do not claim that this result lends evidence to the empirical discussion about the generality of the stress-gradient hypothesis, 425 

but we find it noteworthy that such a large-scale pattern emerges in the model from lower-level processes, without having 426 

been imposed (see also Levin, 1992). 427 

 428 

4.2. Associated uncertainties of previous changes in model structure and implications for future model development 429 

 430 

The management and the nitrogen cycling module are the most recent improvements of the LPJ-GUESS model (Smith et al., 431 

2014; Lindeskog et al., 2021). Compared to previous sensitivity and uncertainty analysis, the high contributions of the 432 

nitrogen fixation to the predictive uncertainty of TSB and GPP (Fig. 2 a,c) are novel, though not surprising, as nitrogen is an 433 

important factor for the productivity of most temperate and boreal ecosystems (Vitousek and Howarth, 1991). The main 434 

reason why few earlier studies report those uncertainties is that vegetation models have only recently begun to integrate 435 

nitrogen cycling and limitation (e.g. B. Smith et al., 2014). The management module showed only small uncertainties, which 436 

could be due to the narrow parameter ranges for the cut interval and thinning intensity reflecting typical forest owners’ 437 

choices. As forest owners usually try to maximize their profits (Johansson, 1986; but see Brazee and Amacher, 2000) and 438 

thus biomass production, low sensitivities of the management module are not surprising. A more suitable and important test 439 

case and application of the management module would be a historical reconstruction of foliage projective cover data or 440 

similar outputs of the LPJ-GUESS model. 441 

 442 

Our study helps to guide the model application, discussion of uncertainties and model development of LPJ-GUESS and other 443 

DGVMs. First, future model applications and model comparisons should focus on mortality as this process contributes high 444 

uncertainties for carbon-related projections (see Fig. 1-3, see also Fisher et al., 2018). Thereby, it should be investigated if 445 

these uncertainties stem from the intra-specific variability of the parameters itself (Bolnick et al., 2011), parameters are just 446 

not identifiable (see Marsili-Libelli et al., 2014), or if a model data comparison could reduce uncertainties in the parameters 447 

(e.g. Hartig et al., 2011; Dietze, 2017b). Using time series inventory data might help as it is informative for constraining 448 

mortality modules (Cailleret et al., 2020). Second, small sensitivities of establishment related parameters are surprising as we 449 

know that not all three investigated species can effortlessly establish across all of Europe, e.g. Fag. syl. can only establish on 450 

locations with no extreme drought and heat and no extreme winter frosts (Bolte et al., 2007). Thus, either we missed 451 

important parameters of this module, or the parametrization of the model needs to be updated. Third, when introducing new 452 

processes or coupling with other models (e.g. Forrest et al., 2020) calculating interactions helps to get a first impression 453 

where these new processes influence other model processes and potentially detect missing links. Moreover, future model 454 



15 
 

applications can interpret their results with regard to the sensitivities in different factors (Saltelli et al., 2019) and discuss 455 

uncertainties and the causing factors, when used in policy advice (Laberge, 2013). 456 

 457 

4.3. Limitations 458 

 459 

We caution that our results regarding the importance of different factors for predictive uncertainties (but not sensitivities) 460 

depend on the a priori defined uncertainty range of the contributing factors (see Wallach & Genard, 1998), as well as on 461 

several other technical choices in our study. For determining uncertainty ranges of the drivers, we used RCP scenarios; 462 

however, these were not created as probabilistic min / max ranges. For the model parameters, we relied on expert guesses, 463 

reducing subjectivity as far as possible by following the SHELF expert elicitation protocol (Gosling, 2018). Future studies 464 

could include more experts and their opinion on parameter distributions to reduce variability in this protocol. As the model is 465 

sensitive to parameters and environmental drivers, and because these influence each other, we treated them in a combined 466 

sensitivity and uncertainty analysis (Saltelli et al., 2019), however, when interpreting it should be kept in mind that the one 467 

group relates to uncertainties in the model, while the other is external, so the two are conceptually very different (see also 468 

Dietze, 2017b). A certain ambiguity also arises from the definition of the indicators: here, we calculated sensitivities and 469 

uncertainties by capturing only linear components and second-order interactions, and we may therefore miss highly non-470 

linear (and in particular hump-shaped) responses in LPJ-GUESS (Roux et al., 2021). However, our comparison to 471 

uncertainties calculated with random forest variable importance, a method that would also capture nonlinearities, did not 472 

reveal any qualitative differences in the ranking of parameter importance (Appendix A1.3). Overall, while we acknowledge 473 

that a certain amount of subjectivity exists in the choice of input uncertainty and calculation of indices, we believe that our 474 

results are quantitatively robust to those choices.  475 

 476 

Moreover, we acknowledge that LPJ-GUESS is known to be sensitive to the scaling parameters alpha_a and alpha_C3 477 

(Pappas et al., 2013; Zaehle et al., 2005), which we have omitted from our analysis. These parameters, however, are not 478 

accessible in the parameter input file. Instead, they are hard coded in the model’s source code and therefore a normal user 479 

would not change them. We argue that these parameters should thus be counted towards the more general and here neglected 480 

contribution of structural uncertainty (i.e. the uncertainty regarding the functional form of processes or even to entire 481 

modules) to the joint model uncertainty. Several previous studies suggest that the sensitivity of vegetation models to 482 

structural changes can be large, often larger than to parameters (e.g. Bugmann et al., 2019), and it would certainly be useful 483 

(although very complicated) to explore these uncertainties together with the here considered factors in a joint analysis. In the 484 

present study, however, we considered only the parameters that would be accessible to normal LPJ-GUESS users, and 485 

neglect structural uncertainty that could be explored by changing the source code. 486 

 487 
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5. Conclusions 488 

Our findings highlight the relative importance of parametric uncertainties in different processes and their interactions with 489 

uncertainties in environmental drivers for carbon projections with LPJ-GUESS. Our results demonstrate that environmental 490 

context changes uncertainty contributions of other processes across the European environmental gradient. The pattern of 491 

decreasing importance of competition towards the warmer areas is in line with the stress-gradient hypothesis, which posits 492 

that the importance of competition decreases with increasing environmental stress. Our findings improve our understanding 493 

of forest ecosystem models, enable pathways for future ecosystem model development and thus builds a basis for more 494 

realistic projections. In the future, parametric uncertainties could be reduced by model-data fusion (e.g. Trotsiuk et al., 2020) 495 

of LPJ-GUESS, concentrating on the parameters contributing most uncertainty in each geographic region (Fig. 3). Reducing 496 

uncertainties in the drivers is more difficult. To some extent, environmental drivers are themselves influenced by the 497 

vegetation (Strengers et al., 2010), so model-data fusion on a fully coupled model including feedback loops between 498 

vegetation and climate, as well as a general improvement of climate models, could reduce driver uncertainty to some degree. 499 

Effectively, however, much of the uncertainty in this section arises from potential greenhouse gas emission trajectories, for 500 

which a probabilistic assignment is difficult due to their dependency on human decision-making.   501 

 502 

Appendix A 503 

 504 

A1.1 Site selection  505 

We sampled 200 sites geographically and environmentally stratified over Europe and thereby avoided sites near the sea. The 506 

corresponding sites with the average temperature (Fig. A1) covers most of European climates and vegetation zones.  507 

A1.2. Re-parametrization for better fit to observed data   508 

There are several technical and methodological reasons requiring a re-parametrization of LPJ-GUESS for our study. First, 509 

most of European forests are managed and species are planted far outside of their natural distribution. Second, the 510 

introduction of the nitrogen cycle (Smith et al., 2014) changed the model structure and thus parameters require an 511 

adjustment. Third, the productivity of trees in managed forests did not fit to the reported inventory data (Fig. A2). To 512 

account for all these issues, we adjusted the parametrization of (Hickler et al., 2012) to allow species growing according to 513 

their actual (i.e., caused by forest management) distribution instead of their natural distribution. 514 

 515 

 516 
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Especially Picea abies and Pinus sylvestris are planted far outside their natural distribution (Figure S2). In particular we 517 

adjusted bioclimatic limits, drought tolerances, longevity, leaf turnover, disturbance intervals and allometry for these species. 518 

A1.3. Random forest results  519 

To check the consistency of the results obtained via linear regressions, we compare them to variable importance of random 520 

forest. The variable importance measures additionally non-linear effects and thus, should be able to deal with non-linear 521 

models like DGVMs. We calculated the variable importance the same way as we did for the linear regression by fitting a 522 

random forest with all parameters against the sum of differences between model outputs with default values and model 523 

outputs with sampled parameters. As our parameters were sampled from a uniform distribution with no correlation between 524 

the individual parameters, random forest variable importance can be compared to linear regression results.  525 

 526 

The ranking is very similar to the ranking of the parameters and environmental drivers obtained via linear regression (Fig. 527 

A3). There is, however, a difference in the magnitude of the uncertainty induced by drivers, which is higher compared to 528 

linear regression (Fig A3). The higher uncertainty due to drivers is thus a nonlinear effect and stresses our conclusion that 529 

environmental conditions change the uncertainty contributions of other parameters.  530 

 531 

A1.4. Interactions of GPP and NBP 532 

Interactions of gross primary production (Fig. A4 a,b) and net biome production (Fig. A4c,d) are similar to the interactions 533 

of total standing biomass. These interactions are mostly between environmental drivers and environmental drivers or 534 

between environmental drivers and parameters (Fig. A4). Some strong interactions are between parameters and parameters, 535 

however, in such interactions there are always parameters included having strong interactions with environmental drivers 536 

(Fig. A4).  537 

 538 

High sums of strong interactions arise from temperature, precipitation, solar radiation, greffmin, emax and respcoeff (Fig. 539 

A4a,b).  540 

Code and Data Availability  541 

LPJ-GUESS development is managed and the code maintained in a permanent repository at Lund University, Sweden. 542 

Source code is made available on request. The model version presented in this paper is identified by the permanent revision 543 

number r10207 in the code repository. There is no DOI associated with the code. Code to perform the sensitivity and 544 
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uncertainty analysis can be found on zenodo under https://zenodo.org/record/5873672#.YebgTmAxnYU. Results from the 545 
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 886 

 887 

Tables 888 

Table 1: The model inputs investigated in the sensitivity analysis can be grouped in a) common parameters b) species-specific 889 
parameters and c) drivers. The ranges for the parameters have been determined from experts and literature, default parameter 890 
values that changed from Hickler et al. (2012) due to the reparameterization are explained in Appendix A1.2  .* denotes an 891 
averaging over sites.  892 
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Figures 894 

 895 

Fig.1: Relative sensitivities (percent output change per percent parameter change) of the individual parameters and environmental 896 
drivers regarding a) total standing biomass, b) net biome productivity and c) gross primary production. Sensitivities were not 897 
substantially different between Fag. syl. (green squares), Pic. abi. (blue circles) and Pin. syl. (red triangles), but parameter 898 
sensitivities were stronger for mono-specific stands than mixed stands (purple asterisks). The height of the bar reflects the mean 899 
over mono and mixed stands. Positive values for points and bars indicate a positive and negative values a negative relationship 900 
with the corresponding output.  901 

 902 
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 903 

Fig. 2: Uncertainty contributions in percent of the individual parameters and environmental drivers regarding a) total standing 904 
biomass, b) net biome productivity and c) gross primary production showed no strong differences between Fag. syl. (green 905 
squares), Pic. abi. (blue circles) and Pin. syl. (red triangles) and were stronger for mono-specific stands than mixed stands (purple 906 
asterisks). The height of the bars reflects the mean over mono and mixed stands. Positive values for points and bars indicate a 907 
positive and negative values a negative relationship with the corresponding output. 908 
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 909 

Fig. 3: The aggregated relative uncertainties of total standing biomass per environmental zone (with more than five sites) show a 910 
higher importance of drivers in the south than in the north.  The environmental zones are from Metzger et al. (2005): ALN–Alpine 911 
North; ALS – Alpine South; ANA - Anatolian; ATC – Atlantic Central; ATN– Atlantic North; BOR–Boreal; CON–Continental; 912 
LUS – Lusitanian; MDM – Mediterranean Mountains; MDN – Mediterranean North; MDS – Mediterranean South; NEM – 913 
Nemoral; PAN – Pannonian. In the radar plots of each environmental zone, the color and percentage value of the process label 914 
indicates which simulation setup (monospecific with corresponding species or mixed) has contributed most uncertainty and how 915 
much.  916 

 917 
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 918 

Fig. 4: The uncertainty contributions to total standing biomass projections of parameters and environmental drivers change across 919 
a mean annual temperature gradient across Europe from north to south (with p-values and R2 for the processes/drivers). With 920 
increasing temperature, the importance of drivers and establishment became higher for total standing biomass, while the 921 
uncertainty contributions from nitrogen and structure declined (4a). The uncertainty contributions due to temperature increased 922 
on the temperature gradient and the contributions from solar radiation decreased (4c). 923 

 924 
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Fig. 5: The induced uncertainty of environmental drivers, mortality- and photosynthesis-related parameters changed the most 925 
depending on other parameters (Fig. 5a). Strong individual interactions between parameters and environmental drivers in 926 
monospecific projections of total standing biomass were rare (Fig. 5b). If strong interactions occurred, these were mainly between 927 
two environmental drivers or environmental drivers and parameters and only rarely between two parameters (Fig. 5b). 928 

 929 

Tables Appendix A 930 

Table A1: Differences in parametrization of Hickler et al. 2012 and our study for the investigated species (Fag. syl., 931 

Pic. Abi. and Pin. Syl) 932 

 933 

 934 

 935 

Parameters Fag_syl Pic_abi Pin_syl 

  
Hickler et al. 

2012 Our study 
Hickler et al. 

2012 Our study 
Hickler et 
al. 2012 

Our 
study 

drought_tolerance  0.3 0.3 0.43 0.48 0.25 0.25 
fireresist 0.1 0.1 0.1 0.1 0.2 0.4 
leaflong 0.5 0.5 4 7 2 4 
turnover_leaf 1 1 0.33  0.1429 0.5 0.25 
turnover_sap 0.085 0.085 0.05 0.065 0.065 0.085 
est_max 0.05 0.1 0.05 0.1 0.2 0.2 
alphar 3 10 2 4 6 10 
parff_min 1.250.000 1.000.000 1.250.000 1.000.000 2.500.000 2.500.000 
tcmin_surv (minimum 
20-year coldest month 
mean temperature for 
survival) -3.5 -7.5 -30 -30 -30 -30 
tcmin_est (min. 20-year 
coldest month mean 
temperature for 
establishment) -3.5 -6.5 -29 -29 -30 -29 
tcmax_est (max. 20-year 
coldest month 
temperature for 
establishment) 6 7 -1.5 3 -1 5.5 
twmin_est (minimum 
warmest month mean 
temperature for 
establishment) 5 -1000 5 -1000 5 8 
k_chillb 600 600 100 100 100 100 
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sla 43? 43.08 11 11.52 8 8.56 
k_allom2 40 60 40 60 40 60 
wooddens 200 293 200  185 200 211 
longevity 500 400 500 300 500 500 
ga (aerodynamic 
conductance) 0.04 0.04 0.14 0.14 0.14 0.14 
gdd5min_est 1500 1300 600 350 500 500 
 936 

 937 

Figures Appendix A 938 

 939 
Fig. A1:  Our 200 sampled sites geographically and environmentally stratified over Europe cover the most important countries, 940 
climate and temperature zones.  941 
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Parameterization as in Hickler et al. (2012) 

a) Picea abies 

  

Re-parametrization to fit to actual distribution  

b) Picea abies 

 

 

c) Pinus sylvestris  

 

      

d) Pinus sylvestris 

 

 

Fig. A2: Simulated (black points), observed (blue) and natural distributions (green) of the adjusted parametrization (b, d) 942 
compared to applying the parametrization from Hickler et al., 2012 (a, c) for Picea abies and Pinus sylvestris. EUFO = 943 
EUFROGEN, 2008 and 2013, Mauri =(Mauri et al., 2017), Caudullo =(Caudullo, 2017). The simulations were run from 1600 to 944 
2010 without management and without competition between species. The plotted biomasses were averages over the last 20 years.  945 
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 946 

Fig. A3: Results of the random forest uncertainty contributions. The uncertainties due to environmental drivers are higher than 947 
the uncertainties due parameters compared to linear regression, but the ranking of parameters is similar to linear regression 948 
results.  949 
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Fig. A4: Interactions of uncertainty contributions of GPP and total standing biomass are similar to net biome productivity with 951 
most interactions arising from environmental drivers.  952 
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