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Abstract. As modern reactive transport simulators evolve to accommodate the demands of a user community, researchers

need a platform for prototyping new biogeochemical processes, many of which are niche and specific to laboratory or field

experiments. The PFLOTRAN Reaction Sandbox leverages modern, object oriented Fortran in an attempt to provide such

an environment within an existing reactive transport simulator. This work describes the PFLOTRAN Reaction Sandbox con-

cept and implementation through several illustrative examples. Reaction Sandbox Biodegradation Hill customizes the existing5

microbially-mediated biodegradation reaction formulation within PFLOTRAN to better match empirical data. Reaction Sand-

box Simple provides an isolated environment for testing numerous preconfigured kinetic rate expressions and developing user

intuition. Reaction Sandbox Example serves as a template for creating new sandboxes within PFLOTRAN.

1 Introduction

Modern reactive transport simulators incorporate sophisticated networks of reactions to simulate complex biogeochemical10

processes within the Earth’s subsurface environment in support of scientific research in climate change, fate and transport of

contaminants, and water resources management (Steefel et al., 2005). As these simulators mature and evolve over time, they

can accumulate a large number of chemical reactions with a wide range of implementations. Many reactions are somewhat

common among reactive transport codes [e.g., aqueous complexation, mineral precipitation-dissolution, radioactive decay and

sorption (Steefel et al., 2015)], while others are niche, prototypical or problem dependent.15

There is a multitude of possible reactions to include within a simulator, and the approach to implementing these reactions

often varies among simulators. For instance, sorption processes includes absorption, adsorption and ion exchange. Surface

complexation is an adsorptive process that can be simulated using a constant capacitance, (diffuse) double layer, triple layer,

or non-electrostatic model (Bethke, 2007). Depending on the reaction timescales, surface complexation may be simulated

assuming local equilibrium or driven by a kinetic rate expression, and kinetic approaches may include single and multi-rate20

models, the latter utilizing a distribution of rate constants associated with size fractions of sediment material (Liu et al., 2008).

It is also common for researchers to develop one-off implementations of reactions when existing capabilities cannot replicate

biogeochemical phenomenon observed in field or laboratory experiments. For example, Tutolo et al. (2018) demonstrated that

the brucite silicification is a serpentinization rate-limiting reaction that is exponentially dependent upon aqueous silica activity.

Their brucite silicification reaction required the implementation of a custom rate law that was exponentially dependent upon the25

activity of aqueous silica. These one-off implementations quickly increase the diversity of reactions supported by a simulator.

1



As the number of reactions implemented within a simulator grows, and the reactions become increasingly diverse, adding new

reactions can challenge ongoing simulator development and maintenance, especially within an open source community where

code development is often crowdsourced.

Due to time and funding limitations, it is difficult for code developers to satisfy the needs of the user community by imple-30

menting all variants of a reactive process. Nor does it make sense when reactions are problem-specific and may never be used in

the future. Meanwhile, the end users who are requesting customization are often non-computational domain scientists with less

interest in or limited understanding of numerical methods, programming paradigms, code abstractions, and data layout. Their

focus is more on improving predictive accuracy through the refinement of reaction conceptual models, not code development.

This raises the question as to what steps can be taken in the design and implementation of a reactive transport simulator to35

facilitate code development and long-term maintenance while flattening the (often) steep learning curve for new developers.

The PFLOTRAN Reaction Sandbox is an attempt to provide such an environment within an existing reactive transport

simulator. The purpose of the Reaction Sandbox is to provide a means for testing alternative implementations for kinetically

formulated rate expressions or networks of these reactions in conjunction with the existing reactive transport capability within

PFLOTRAN. Within computer science, the term sandbox often refers to an environment for implementing and vetting new,40

untested algorithms in isolation. The purpose of a sandbox is to limit the impact on the remainder of the code.

The following sections document the implementation of the PFLOTRAN Reaction Sandbox and demonstrate its application

on several problem scenarios. Section 2 provides an overview of PFLOTRAN by presenting the governing equations for

reactive transport and the numerical methods employed to solve the resulting discrete nonlinear systems of equations. The

section also presents PFLOTRAN’s conventional reactive transport capability and discusses the code’s modular object oriented-45

design that facilitates the implementation of the Reaction Sandbox. Section 3 describes the foundational (Fortran) Reaction

Sandbox class upon which all Reaction Sandbox classes are coded and the high-level programming interface through which the

remainder of the code accesses sandbox reactions. Section 4 documents several example sandboxes from which a researcher

may derive their own implementation. Finally, Section 5 summarizes the approach.

2 Background50

PFLOTRAN is an massively parallel, reactive multiphase flow and transport simulator for modeling subsurface earth system

processes (Hammond et al., 2014). The code has been developed under open source GNU LGPL licensing since 2009 and

contains contributions from an international group of developers. PFLOTRAN is written in Fortran 2003/2008 which facilitates

object oriented design through the use of nested derived types, classes (extensible derived types with member procedures) and

procedure pointers. The code is designed as a nested hierarchy of objects. The top-level simulation object contains pointers to55

all process models, solvers and supporting data (state variables, parameters, etc.) needed to run a simulation.

PFLOTRAN simulates biogeochemical transport through its reactive transport process model. Supported biogeochemical

reaction capabilities include aqueous speciation with ion activity models, general Nth-order forward (and reversible) kinetic

reactions, microbially-mediated reactions, mineral precipitation-dissolution, radioactive decay and ingrowth and sorption (An-
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dre et al., 2021). These reactions are referred to as conventional reactive transport capability as the implementations are based60

on commonly accepted approaches that are well-documented in the literature.

2.1 Governing Equations

PFLOTRAN’s governing mass conservation equation for reactive transport of aqueous species j is

∂

∂t
(φsΨj) +∇ · (q−φsD∇)Ψj = Qj −

∑
r

νjrIr, (1)

with porosity φ, liquid saturation s, total aqueous component concentration Ψj , Darcy fluid flux q, diagonal hydrodynamic65

dispersion tensor D and source term Qj . νjr represents the stoichiometry of species j in kinetic reaction Ir. Following the

continuum formulation for reactive transport (Lichtner, 1985) and assuming local equilibrium (Rubin, 1983), the total aqueous

component concentration of species j is the sum of the free ion concentration cj and its stoichiometric contribution νji to each

secondary aqueous complex Xi,

Ψj = cj +
∑
i

νjiXi. (2)70

Aqueous complex Xi is calculated through mass action as

Xi =
Ki

γi

∏
j′

(
γj′cj′

)νj′i (3)

with equilibrium constant Ki, activity coefficients γi and γj′ , stoichiometry νj′i, and primary aqueous species free ion concen-

tration cj′ . The governing mass conservation equation for the jth primary immobile species Φ is

∂

∂t
(Φj) = −

∑
r

νjrIr. (4)75

Ignoring the advection, hydrodynamic dispersion and source terms and assuming constant porosity and saturation, the dis-

crete (finite volume) forms of Eqs. (1) and (4) are

φsV

∆t

(
Ψk+1
j −Ψk

j

)
. . . = . . . −V

∑
r

νjrIr (5)

and

V

∆t

(
Φk+1
j −Φkj

)
= −V

∑
r

νjrIr, (6)80

respectively. Units for these equations are [mole/second]. Rate expression Ir represents the primary species mass consumed or

produced by each kinetic reaction and has units of [mole/m3
bulk-second].

2.2 Numerical Solution Technique

PFLOTRAN employs the finite volume method for spatial discretization, backward Euler time integration and Newton’s

method for solving the resulting nonlinear system of equations. Newton’s method converges to a solution for the primary85
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species concentrations x by iteratively evaluating the residual function

f(xp) = 0 (7)

and Jacobian J , and solving the linear system

Jδx = −f(xp) (8)

for the concentration update δx90

xp+1 = xp + δx. (9)

p is iteration number.

The residual function f is evaluated by rearranging Eqs. (5) and (6) and setting them equal to zero. For example, the residual

for aqueous degree of freedom cn is

f(cpn) =
φsV

∆t

(
Ψk+1
n −Ψk

n

)
. . . +V

∑
r

νnrIr = 0, (10)95

while for immobile degree of freedom Φn, it is

f(Φpn) =
V

∆t

(
Φk+1
n −Φkn

)
+V

∑
r

νnrIr = 0. (11)

Since the focus of this research is chemical reaction, the advection, dispersion and source terms (represented by ellipses . . .)

are ignored. The Jacobian contains derivatives of the residual with respect to the primary unknowns, i.e.

Jn,m =
∂f(xpn)

∂xpm
. (12)100

Units for internal PFLOTRAN variables are documented in Table 1. These units must be considered in the development of

a Reaction Sandbox.

2.3 Object-Oriented Fortran

Modern programming paradigms facilitate the modularity, extensibility and overall longevity of a software product. A common

feature among most modern programming paradigms is support for object-oriented design, where objects contain the data105

structures and procedures necessary to provide functionality, and interfaces are set up for interaction between objects. One

major benefit of object oriented design is that when programmed correctly, modifications to an object’s data structures and

procedures have little to no impact on other portions of the code. This modularity greatly facilitates the initial development and

long-term maintenance of a code.

Modern Fortran facilitates object-oriented design through the use of derived types and classes. A Fortran derived type is a110

container that encapsulates other Fortran data types (e.g., logicals, integers, reals, other derived types, or pointers to data types).

A Fortran class is an extensible version of the derived type that supports inheritance of (type-bound) member variables and
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Table 1. Units for PFLOTRAN internal variables.

Variables Symbol Units

Porosity φ m3 pore / m3 bulk volume

Liquid saturation s m3 liquid / m3 pore

Volume V m3 bulk volume

Time t seconds

Aqueous free ion concentration c mole / kg water (or molality)

Total aqueous component concentration Ψ mole / L water (or molarity)

Immobile concentration Φ mole / m3 bulk volume

Stoichiometry ν -

Kinetic rate Ir mole / m3 bulk volume - second

Residual function f(xp) mole / second

Derivative of residual wrt free ion concentration ∂f(xp
n)

∂c
p
m

kg water / second

Derivative of residual wrt immobile concentration ∂f(xp
n)

∂Φ
p
m

m3 bulk volume / second

procedures. A child class, created by extending the parent derived type, inherits all parent class variables and procedures. New

member variables may be added to child classes and member procedures may be overridden. By default, a member procedure

receives the class object as the first entry in function or subroutine argument lists. (A class object is simply an instantiation of115

the class.) The procedure uses the object’s member variables and the remaining arguments to perform calculations. Chapman

(2018) describes Fortran classes in greater detail.

PFLOTRAN is designed as a nested hierarchy of dynamically allocated objects from the highest-level simulation object

down to low level, cell-centric auxiliary objects that store all state variables for each grid cell. Given a pointer to the top-level

simulation object, the developer has access to all underlying data structures or objects. This hierarchy engenders modularity120

and structure within the code. PFLOTRAN employs modern Fortran 2003/2008 where all objects are instantiations of Fortran

derived types or classes. It also leverages pointers to procedures and common procedure interfaces to allow users to choose

from a suite of constitutive relations, equations of state, flux algorithms, etc., in support of run time options. The modularity

afforded through object-oriented Fortran has greatly facilitated the incorporation of new algorithms within PFLOTRAN, as

will be shown through the implementation of the Reaction Sandbox.125

3 Reaction Sandbox Approach

The PFLOTRAN Reaction Sandbox provides a simplified interface for implementing new kinetically formulated reactions

(rate expressions) within PFLOTRAN that are tailored to specific user needs. The term Ir on the right side of Eqs. (1) and (4)

represents these kinetic reactions in the governing equations. The Reaction Sandbox isolates one-off or application-specific

reactions from the remainder of the PFLOTRAN code base and facilitates code development and long-term maintenance. For130

the domain scientist desiring to implement a new reaction, the Reaction Sandbox reduces complexity by exposing only the
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limited set of variables that are necessary to calculate rate expressions. Thus, the researcher is better shielded from the intricate

details of code development. For kinetic reactions that have the potential for wider acceptance, the Reaction Sandbox provides

a venue for vetting reactions in isolation prior to adoption within the main code base. This section describes the Reaction

Sandbox concept and defines the underlying data structures and user interface.135

3.1 Concept

Figure 1 illustrates the hierarchical structure of (hypothetical) Reaction Sandboxes within PFLOTRAN where reaction classes

are derived as descendants of the Reaction Sandbox Base Class. Each Reaction Sandbox class is implemented as a separate

Reaction Sandbox Base Class

Reaction Sandbox 2.1 Class Reaction Sandbox 2.2 Class

Reaction Sandbox 1 Class Reaction Sandbox 2 Class Reaction Sandbox 3 Class Reaction Sandbox … Class

Figure 1. Schematic of a hypothetical Reaction Sandbox class hierarchy.

module within the PFLOTRAN source code. The end-user specifies the reaction sandboxes to be employed within the PFLO-

TRAN input file, and a linked list of sandbox reactions is constructed during simulation initialization. Figure 2 illustrates a

Reaction Sandbox

Reaction Sandbox 2.1 Object

Reaction Sandbox 3 Object

Figure 2. Schematic of a linked list of Reaction Sandboxes composed of two reaction objects instantiated from the class hierarchy shown in

Fig. 1.

140

representative linked list of sandboxes composed of two reaction objects from Fig. 1. The outer Reaction Sandbox module

loops over the linked list to perform all operations (e.g., setup, evaluation, destruction, etc.) as illustrated later in Code Block 2.

Linked lists improve flexibility for the code developer as reactions may be inserted or appended in any order. Newly developed

reaction classes are added to the source code as daughter classes in new modules, and instantiated objects are added to the list

during simulation initialization.145
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3.2 Implementation

The Reaction Sandbox is founded upon two files within the PFLOTRAN source code: reaction_sandbox_base.F90

and reaction_sandbox.F90.

3.2.1 reaction_sandbox_base.F90

reaction_sandbox_base.F90 defines the base (or parent) Fortran class reaction_sandbox_base_type that150

the developer extends to create new (child) Reaction Sandbox classes. Code Block 1 illustrates the member variables and

procedures within the reaction_sandbox_base_type class.

Code Block 1. Class reaction_sandbox_base_type in reaction_sandbox_base.F90.

type, abstract, public :: reaction_sandbox_base_type

class(reaction_sandbox_base_type), pointer :: next155

contains

procedure, public :: ReadInput => BaseReadInput

procedure, public :: Setup => BaseSetup

procedure, public :: Evaluate => BaseEvaluate

procedure, public :: UpdateKineticState => BaseUpdateKineticState160

procedure, public :: AuxiliaryPlotVariables => BaseAuxiliaryPlotVariables

procedure, public :: Destroy => BaseDestroy

end type reaction_sandbox_base_type

This class contains a single member variable next, a pointer to the next class of the same reaction_sandbox_base_type165

type that enables the creation of an abstract linked list of Reaction Sandbox objects. The class also contains empty mem-

ber procedures with prescribed subroutine interfaces (or argument lists) that the developer overrides in child classes. With

the exception of BaseEvaluate, these procedures are empty and return immediately if not overridden by the child class.

BaseEvaluate must be extended, and error messaging is incorporated within BaseEvaluate to ensure correct imple-

mentation. The other member procedures are optional and do not require implementation in the child classes. Appendix A170

documents the BaseXXX member procedure interfaces.

3.2.2 reaction_sandbox.F90

reaction_sandbox.F90 serves as the main driver interface for the Reaction Sandbox, providing subroutines that man-

age the creation, reading, setup, execution and destruction of all Reaction Sandbox objects. For example, the subroutine

RSandboxRead instantiates Reaction Sandbox objects based on the keywords parsed from the REACTION_SANDBOX block175

in the input file. RSandboxEvaluate calculates reaction rates by traversing the linked list of Reaction Sandboxes evaluating

individual rates as shown in Code Block 2 (subroutine argument lists have been omitted for simplicity).
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Code Block 2. Abbreviated version of subroutine RSandboxEvaluate in reaction_sandbox.F90.

subroutine RSandboxEvaluate(...)

...180

class(reaction_sandbox_base_type), pointer :: cur_reaction

cur_reaction => rxn_sandbox_list

do

if (.not.associated(cur_reaction)) exit185

call cur_reaction%Evaluate(...)

cur_reaction => cur_reaction%next

enddo

end subroutine RSandboxEvaluate190

With the exception of RSandboxRead, all member procedures are executed from within a linked list loop similar to that

shown in Code Block 2. Thus, subroutines within reaction_sandbox.F90 serve as interfaces to the linked lists of Reac-

tion Sandbox objects, and all information is exchanged through these routines. The outer RSandboxXXX subroutines defined

in reaction_sandbox.F90 may be called from other PFLOTRAN modules (e.g. see the call to RSandboxEvaluate195

within subroutine RReaction within reaction.F90), but member procedures within the Reaction Sandbox classes may

not be called (to preserve data encapsulation).

The following section describes several example Reaction Sandboxes. These examples are implemented within the PFLO-

TRAN source code and may serve as templates for future sandboxes.

4 Example Reaction Sandboxes200

This section illustrates the implementation of a few Reaction Sandboxes within PFLOTRAN. Reaction Sandbox Biodegra-

dation Hill and Reaction Sandbox Flexible Biodegradation Hill were developed to demonstrate the implementation of a

microbially-mediated biodegradation reaction. Reaction Sandbox Simple provides a set of preconfigured reactions that may be

uncommented, compiled and run to better understand kinetic rate expressions. Reaction Sandbox Example implements a first-

order decay reaction. The comments within reaction_sandbox_example.F90 detail the steps necessary to implement205

a new Reaction Sandbox class.

8



4.1 Biodegradation

4.1.1 Biodegradation Conceptual Model

Consider a microbially-mediated biodegradation reaction with biomass growth and decay over time. The reaction could be

expressed as210

Aaq + 0.25Baq→ 0.33Caq +Daq, (R1)

with electron donor Aaq and acceptor Baq and products Caq and Daq [M]. The reaction is mediated by the immobile biomass

speciesXim [mole biomass/m3 bulk] and inhibited above aCaq concentration of 10−4. The reaction rate Ir [mole/m3 bulk/sec]

can be calculated using Michaelis-Menten kinetics as

Ir = kmaxXim
Aaq

KAaq +Aaq
× Baq
KBaq +Baq

×
ICaq

ICaq +Caq
(13)215

with maximum specific utilization rate constant kmax [mole/sec-mole biomass], half saturation constants KAaq
and KBaq

[M],

and inhibitor concentration ICaq
[M]. The rate of biomass growth and decay can be modeled as

dX

dt
= yieldXimIr − kdecayX (14)

with yield yieldXim [mole biomass/mole] and decay rate constant kdecay [1/sec]. These rate expressions are implemented as mi-

crobial and biomass decay reactions within PFLOTRAN and enabled through the MICROBIAL_REACTION and IMMOBILE_DECAY_REACTION220

keywords in the CHEMISTRY block of the input file.

Figure 3 shows PFLOTRAN simulation results for an example batch experiment run over seven days employing the reactions

in Eqs. (13) and (14), reaction parameters in Table 2, stoichiometries in Reaction (R1), and initial conditions in Table 3. Results

plotted in the figure may be replicated through the following commands:

cd $PFLOTRAN_DIR/regression_tests/default/reaction_sandbox225

$PFLOTRAN_DIR/src/pflotran/pflotran -input_prefix biodegradation

python biodegradation_vs_data.py biodegradation-obs-0.pft

The plot shows the time evolution of aqueous and immobile species concentrations as the week-long simulaton runs with

a maximum time step size of one hour. The results demonstrate that electron donor Aaq is the limiting substrate, as the

concentations for acceptor Baq and the reaction products Caq and Daq plateau when Aaq is nearly depleted at approximately230

four days. Biomass concentration increases through 2.25 days at which time the first-order decay rate exceeds the growth rate,

and the population begins to fade. Superimposed on the figure are hypothetical experimental results for species Aaq (shown as

circles) that deviate from the (blue) simulated curve in the log scale plot. In this example, Eq. (13) is somewhat inaccurate in

predicting the tailing behavior of species Aaq at late times.
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Figure 3. Time evolution of aqueous and immobile biomass species in a week-long batch biodegradation experiment.

Table 2. Microbially-mediated reaction parameters for the batch biodegradation experiment. n only applies to the reaction incorporating the

Hill function (i.e. Eq. (15)). M signifies molarity or mole per liter of water.

Parameter Value Units

kmax 9.e-2 mole/mole biomass-sec

KAaq 2.e-4 M

KBaq 1.25e-5 M

ICaq 2.5e-4 M

yieldXim 1.e-4 mole biomass/mole

kdecay 1.e-6 1/sec

n 1.2 -

Table 3. Initial concentrations for the batch biodegradation experiment.

Species Concentration Units

Aaq 1.e-3 M

Baq 5.e-4 M

Caq 1.e-10 M

Daq 1.e-10 M

Xim 1.e-4 mole/m3 bulk volume

The discrepancy inAaq concentration can be resolved by employing a Hill function (Hill, 1910) within the monod expression235

for Aaq . Here, the Aaq concentration and corresponding half saturation constant are raised to the power n.

Ir = kmaxXim

Anaq
Kn
Aaq

+Anaq
× Baq
KBaq

+Baq
×

ICaq

ICaq
+Caq

(15)
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However, the Hill function is not an option in PFLOTRAN; the code must be altered to accommodate this new feature. To

further complicate matters, the researcher cannot modify the existing Monod expression within PFLOTRAN, since in doing

so, the Hill function would be applied to both the Aaq and Baq Monod expressions. One possible solution is to implement240

Eq. (15) as a new reaction, and the Reaction Sandbox is designed to facilitate this process.

4.1.2 Reaction Sandbox Biodegradation Hill

Reaction Sandbox Biodegradation Hill implements the enhanced biodegradation reaction that incorporates the Hill function in

Eq. (15) and the biomass growth and decay reaction in Eq. (14). The reactions are encoded in reaction_sandbox_biohill.F90.

The reaction_sandbox_biohill_type class is presented in Code Block 3 where integer IDs for each species are245

stored as class variables and the Setup and Evaluate procedures are redirected to local BioHillXXX implementations.

Code Block 3. Class reaction_sandbox_biohill_type in reaction_sandbox_biohill.F90.

type, public, &

extends(reaction_sandbox_base_type) :: reaction_sandbox_biohill_type

! Aqueous species250

PetscInt :: species_Aaq_id

PetscInt :: species_Baq_id

PetscInt :: species_Caq_id

PetscInt :: species_Daq_id

! Immobile species (e.g. biomass)255

PetscInt :: species_Xim_id

contains

procedure, public :: Setup => BioHillSetup

procedure, public :: Evaluate => BioHillEvaluate

end type reaction_sandbox_biohill_type260

Code Block 4 illustrates the assignment of species IDs in an abbreviated version of BioHillSetup, based on keywords for

aqueous species Aaq, Baq, Caq, and Daq and immobile species Xim specified in the input file. BioHillEvaluate utilizes

these IDs to access species concentrations and entries in the residual vector.

Code Block 4. Subroutine BioHillSetup in reaction_sandbox_biohill.F90.265
subroutine BioHillSetup(this,reaction,option)

...

! Aqueous species

word = 'Aaq'

this%species_Aaq_id = &270

GetPrimarySpeciesIDFromName(word,reaction,option)
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...

! Immobile species

word = 'Xim'

this%species_Xim_id = &275

GetImmobileSpeciesIDFromName(word,reaction%immobile,option)

end subroutine BioHillSetup

Code Block 5 presents an abbreviated version of the implementation of BioHillEvaluate where the naming convention280

for local variables corresponds closely to reaction parameters and state variables defined in Eqs. (14) and (15). Note that in the

calculation of rate I_r, the concentration of Aaq and half saturation constant K_Aaq are raised to the power n.

Code Block 5. Subroutine BioHillEvaluate in reaction_sandbox_biohill.F90.

subroutine BioHillEvaluate(this,Residual,Jacobian,compute_derivative, &

rt_auxvar,global_auxvar,material_auxvar, &285

reaction,option)

...

k_max = 9.d-2

k_decay = 1.d-6

K_Aaq = 2.d-4290

K_Baq = 1.25d-5

I_Caq = 2.5d-4

yield = 1.d-4

n = 1.2d0295

stoichA = -1.d0

stoichB = -0.25d0

stoichC = 0.33d0

stoichD = 1.d0300

I_r = k_max * Xim * Aaq**n / (K_Aaq**n + Aaq**n) * &

Baq / (K_Baq + Baq) * &

I_Caq / (I_Caq + Caq)

305

I = I_r * volume
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RateA = stoichA * I

...

RateX = yield * I - k_decay * Xim * volume

...310

end subroutine BioHillEvaluate

Figure 4 illustrates a more accurate simulation result for the batch reaction experiment where the Hill function exponent n

is set to 1.2. It is clear that the addition of the Hill function improves the model’s ability to capture the tailing of species Aaq at

low concentrations.
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Figure 4. Improved match to the batch experiment results for species Aaq after incorporating the Hill function in Eq. (15). Compare with

the log-scale plot (without the Hill function) in Fig. 3.

315

Results plotted in Fig. 4 may be replicated through the following commands:

cd $PFLOTRAN_DIR/regression_tests/default/reaction_sandbox

$PFLOTRAN_DIR/src/pflotran/pflotran -input_prefix biodegradation_hill

python biodegradation_vs_data.py biodegradation_hill-obs-0.pft

The implementation of the enhanced biodegration reaction in Reaction Sandbox Biodegradation Hill is somewhat rigid. All320

reaction parameters (rate constants, half saturation constants, stoichiometries, etc.) are hardcoded within the source code as

shown in Code Block 5 and may not be changed without code modifications. However, the implementation may be generalized,

and this is demonstrated in Reaction Sandbox Flexible Biodegradation Hill.

13



4.1.3 Reaction Sandbox Flexible Biodegradation Hill

Reaction Sandbox Flexible Biodegradation Hill employs the same biodegradation, growth and decays reactions as Reac-325

tion Sandbox Biodegradation Hill with the added flexibility of specifying reaction parameters at run time through the in-

put file, eliminating the need to re-compile PFLOTRAN every time a parameter changes. The new class is implemented in

reaction_sandbox_flexbiohill.F90. The reaction_sandbox_flexbiohill_type class extends reaction_sandbox_biohill_type

as presented in Code Block 6. The child class inherits the species integer IDs from the parent and adds member variables for

storing all reaction parameters and a logical flag for specifying the units of half saturation constants K_Aaq and K_Baq and330

inhibitor concentration I_Caq (molality versus molarity). The dynamic stoich array enables the use of do loops in the

Evaluate routine. The class redirects the ReadInput, Setup, Evaluate and Destroy procedures to local implemen-

tations, though only the implementation of FlexBioHillEvaluate will be described below.

Code Block 6. reaction_sandbox_flexbiohill_type in reaction_sandbox_flexbiohill.F90.

type, public, &335

extends(reaction_sandbox_biohill_type) :: reaction_sandbox_flexbiohill_type

PetscReal :: k_max

PetscReal :: K_Aaq_n

PetscReal :: K_Baq

PetscReal :: I_Caq340

PetscReal :: yield

PetscReal :: k_decay

PetscReal :: n

PetscBool :: molarity_units

PetscReal, pointer :: stoich(:)345

contains

procedure, public :: ReadInput => FlexBioHillReadInput

procedure, public :: Setup => FlexBioHillSetup

procedure, public :: Evaluate => FlexBioHillEvaluate

procedure, public :: Destroy => FlexBioHillDestroy350

end type reaction_sandbox_flexbiohill_type

The FlexBioHillEvaluate routine shown in Code Block 7 is more succinct than BioHillEvaluate (Code Block 5).

Reaction parameters are no longer hardwired, but read from the input file in FlexBioHillReadInput and stored as

class member variables. The use of the class member stoich array within the do loops eliminates the need to hardwire the355

Residual array indexing and reduces the number of lines of code. In addition, FlexBioHillEvaluate demonstrates

the ability to choose between molality versus molarity for aqueous concentrations and half saturation constants, a useful option
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since laboratory data is often available in either format. There is also support for calculating analytical derivatives (for the

Jacobian), which can be programmed much more concisely with the stoich array and do loops (not shown).

Code Block 7. Subroutine FlexBioHillEvaluate in reaction_sandbox_flexbiohill.F90.360
subroutine FlexBioHillEvaluate(this,Residual,Jacobian,compute_derivative, &

rt_auxvar,global_auxvar,material_auxvar, &

reaction,option)

...

I_r = this%k_max * Xim * Aaq**this%n / (this%K_Aaq_n + Aaq**this%n) * &365

Baq / (this%K_Baq + Baq) * &

this%I_Caq / (this%I_Caq + Caq)

I = I_r * volume

...

do icomp = 1, reaction%ncomp370

Residual(icomp) = Residual(icomp) - this%stoich(icomp) * I

enddo

...

Residual(Xim_offset) = Residual(Xim_offset) + this%k_decay * Xim * volume

...375

end subroutine FlexBioHillEvaluate

Flexible Biodegradation Hill produces results identical to Biodegradation Hill when given identical initial conditions and

Biodegradation Hill’s reaction parameters. These results may be compared by running the script compare_biodegradation_results.py

after completing both simulations, i.e.380

cd $PFLOTRAN_DIR/regression_tests/default/reaction_sandbox

$PFLOTRAN_DIR/src/pflotran/pflotran -input_prefix biodegradation_hill

$PFLOTRAN_DIR/src/pflotran/pflotran -input_prefix flexible_biodegradation_hill

python compare_biodegradation_results.py

4.2 Reaction Sandbox Simple385

Reaction Sandbox Simple provides a framework for evaluating reactive transport in 1D using common kinetic rate expressions

with a preconfigured set of six aqueous and two immobile species (Aaq , Baq , Caq , Daq , Eaq , Faq , Xim, Yim). The conceptual

model consists of a 100 meter, liquid-saturated column with a Dirichlet boundary condition at the inlet (x=0m) and a zero-

gradient boundary condition at the outlet (x=100m). Grid spacing is set to 1 m resolution. The prescribed Darcy velocity is 1

m/y with a pore water velocity of 4 m/y (porosity = 0.25). Throughout the simulation, solutes enter at the inlet and react within390

the domain. Simulation results are stored in two formats: (1) snapshots of the entire domain at select times and (2) continuous
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observation at a mid-column observation point (x=49.5 m). Table 4 summarizes simulation parameters, while Table 5 describes

the initial and boundary concentrations.

Table 4. Reaction Sandbox Simple conceptual model.

Parameter Value

Column length 100 m

Cross-sectional area 1 m2

Grid resolution 1 m

Prescribed Darcy velocity 1 m/y

Pore water velocity 4 m/y

Porosity 0.25

Tortuosity 1.0

Water density 1000 kg/m3

Aqueous diffusion coefficient 10−9 m2

Observation point location 49.5 m

Initial timestep size 1 h

Maximum timestep size 0.25 y

Final simulation time 25 y

Observation output frequency Every timestep

Snapshot file output times 0, 6.25, 12.5, 18.75, 25 y

Table 5. Initial and boundary concentrations in the Reaction Sandbox Simple input file.

Species Initial Concentration Boundary Concentration Units

Aaq 1.e-10 1.e-3 M

Baq 1.e-10 1.e-3 M

Caq 1.e-10 1.e-10 M

Daq 1.e-10 1.e-10 M

Eaq 1.e-10 1.e-10 M

Faq 1.e-10 1.e-10 M

Xim 1.e-4 N/A mole/m3 bulk volume

Yim 1.e-10 N/A mole/m3 bulk volume

The implementation of the reaction_sandbox_simple_type class is nearly identical to that of reaction_sandbox_biohill_type

in Code Block 3 with the addition of member variables species_Eaq_id, species_Faq_id and species_Yim_id.395

Member procedure SimpleSetup links these integer IDs to their respective names from the input file. The user may evaluate

reactions in this sandbox with the following steps:
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1. Uncomment a rate expression block within subroutine SimpleEvaluate.

cd $PFLOTRAN_DIR/src/pflotran

[emacs,gedit,nano,vi] reaction_sandbox_simple.F90400

Remove “!uncomment:” prefixes from lines within chosen rate expression in subroutine SimpleEvaluate.

Save the file.

2. Compile the PFLOTRAN executable.

make pflotran

3. Navigate to $PFLOTRAN_DIR/regression_tests/default/reaction_sandbox405

cd $PFLOTRAN_DIR/regression_tests/default/reaction_sandbox

4. Change the x-direction grid resolution in reaction_sandbox_simple.in to 100.

[emacs,gedit,nano,vi] reaction_sandbox_simple.in

NXYZ 10 1 1 → NXYZ 100 1 1

Save the file.410

5. Run the simulation.

$PFLOTRAN_DIR/src/pflotran/pflotran -input_prefix reaction_sandbox_simple

6. Plot the results with reaction_sandbox_simple.py.

python reaction_sandbox_simple.py

Code Block 8 illustrates a commented rate expression block for calculating the first order decay of species Aaq to daughter415

product Caq.

Code Block 8. Commented first-order rate expression block in SimpleEvaluate within reaction_sandbox_simple.F90.

subroutine SimpleEvaluate(...)

...

! first-order (A -> C)420

!uncomment: k = 1.d-9 ! [1/sec]

!uncomment: stoichA = -1.d0

!uncomment: stoichC = 1.d0

!uncomment: Rate = k * Aaq * L_water ! [mol/sec]

!uncomment: RateA = stoichA * Rate425
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!uncomment: RateC = stoichC * Rate

...

end subroutine SimpleEvaluate

The user deletes all “!uncomment:” prefixes in the codeblock as shown in Code Block 9, compiles PFLOTRAN, navigates430

to the reaction_sandbox folder, and runs the code.

Code Block 9. Uncommented first-order rate expression block in SimpleEvaluate within reaction_sandbox_simple.F90.

subroutine SimpleEvaluate(...)

...

! first-order (A -> C)435

k = 1.d-9 ! [1/sec]

stoichA = -1.d0

stoichC = 1.d0

Rate = k * Aaq * L_water ! [mol/sec]

RateA = stoichA * Rate440

RateC = stoichC * Rate

...

end subroutine SimpleEvaluate

Figure 5 illustrates the simulation results. Plotted to the left is concentration breakthrough at the observation point, and to
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Figure 5. Results from Reaction Sandbox Simple with the first-order A → C rate expression uncommented.

18



445

the right is a snapshot of concentration profiles at 12.5 years. Species Aaq clearly decays into Caq while the other species are

transported without reaction. The user may evaluate the other rate expressions in the subroutine with the same approach.

4.3 Reaction Sandbox Example

PFLOTRAN’s reaction_sandbox_example.F90 serves as a template for implementing new Reaction Sandboxes. The

sandbox implements the first-order decay of Aaq without daughter products, and the developer modifies the templated source450

code to incorporate new reactions. Comments within the source code enumerate steps for implementing new reactions begin-

ning with the renaming of subroutines and variables and ending with the implementation of subroutine ExampleDestroy at

the bottom of the file. In between, source code is modified to implement the new reaction(s).

Code Block 10 illustrates the first two steps embedded within comments in the source code near the top of the file.

Code Block 10. Source code with embedded comments from the top of reaction_sandbox_example.F90.455
module Reaction_Sandbox_Example_class

#include "petsc/finclude/petscsys.h"

use petscsys

460

! 1. Change all references to "Example" as desired to rename the module and

! subroutines within the module.

use Reaction_Sandbox_Base_class

465

use Global_Aux_module

use Reactive_Transport_Aux_module

use PFLOTRAN_Constants_module

470

implicit none

private

! 2. Add module variables here. Note that one must use the PETSc data types475

! PetscInt, PetscReal, PetscBool to declare variables of type integer

! float/real*8, and logical respectively. E.g.,

!
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! PetscReal, parameter :: formula_weight_of_water = 18.01534d0

...480

Comments within ExampleEvaluate provide a detailed description of the subroutine’s arguments and local variables, in-

cluding members of the reaction and reactive transport auxiliary variable classes (i.e., reaction_rt_type and reactive_transport_auxvar_type,

respectively) which may be used in rate expression calculations. The units of all variables and the Residual and Jacobian

arrays are also provided. Code Block 11 shows several of these detailed comment blocks.485

Code Block 11. Representative comments from subroutine ExampleEvaluate.

...

! rt_auxvar - Object holding chemistry information (e.g., concentrations,

! activity coefficients, mineral volume fractions, etc.). See

! reactive_transport_aux.F90.490

!

! Useful variables:

! rt_auxvar%total(:,iphase) - total component concentrations

! [mol/L water] for phase

! rt_auxvar%pri_molal(:) - free ion concentrations [mol/kg water]495

! rt_auxvar%pri_act_coef(:) - activity coefficients for primary species

! rt_auxvar%aqueous%dtotal(:,iphase) - derivative of total component

! concentration with respect to free ion [kg water/L water]

...

! 10. Add code for the Residual evaluation.500

! Units of the Residual must be in moles/second.

! 1.d3 converts m^3 water -> L water

L_water = material_auxvar%porosity*global_auxvar%sat(iphase)* &

material_auxvar%volume*1.d3505

! Always "subtract" the contribution from the Residual.

Residual(this%species_id) = Residual(this%species_id) - &

(-1.d0) * & ! negative stoichiometry

this%rate_constant * & ! 1/sec

L_water * & ! L water510

rt_auxvar%total(this%species_id,iphase) ! mol/L water

...
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Once refactoring is complete, the developer must modify the corresponding class and subroutine names within reaction_sandbox.F90

to match those in the newly refactored reaction_sandbox_example.F90. The source code may then be compiled515

without changing the reaction_sandbox_example.F90 filename. Should this filename be revised, the developer must

update the corresonding filenames within the pflotran_object_files.txt and pflotran_dependencies.txt

files referenced by the makefile.

The best approach to compiling the code is to perform a make clean to remove all previously built modules and object

files and the pflotran executable, and then, make pflotran to compile the code. reaction_sandbox_example.in,520

located in $PFLOTRAN_DIR/regression_tests/default/reaction_sandbox, provides a representative input

deck for this example. Note that the card EXAMPLE in the REACTION_SANDBOX block of this input file must be updated to

match the corresponding keyword added to reaction_sandbox.F90.

5 Conclusions

Customization of biogeochemical reaction networks is often necessary in the development of reactive transport simulators525

employed to simulate problem-specific scenarios in the real world. For researchers in the natural sciences, who may be more

focused on biology, chemistry and/or physics than computational science, modifying these codes to incorporate new scientific

processes can be challenging. The PFLOTRAN Reaction Sandbox may help remedy this issue.

The Reaction Sandbox provides a modular environment for prototyping new kinetic rate expressions that do not exist within

PFLOTRAN. Within the Reaction Sandbox, novel reaction networks can evolve and mature over time; natural selection can530

run its course. Once vetted, these reactions may be incorporated more efficiently elsewhere within the permanent code base.

This work demonstrates the implementation of reactions within the Reaction Sandbox. Several new Reaction Sandbox

classes are conceptualized and implemented based on existing rate expressions within PFLOTRAN for microbially-mediated

biodegradation to improve the code’s ability to match hypothetical empirical data and provide greater flexibility from the end

user perspective. Reaction Sandbox Simple is presented as a means of prototyping numerous common kinetic rate expressions535

within a preconfigured column experiment context. Reaction Sandbox Example provides a template for implementing new

reactions within PFLOTRAN.

Code availability. The source code, input files and results presented in this manuscript are based on PFLOTRAN v4.0. A snapshot of this

release is available at https://zenodo.org/record/5826289. The corresponding version of PETSc is v3.16.2 and was configured on Ubuntu

18.04 with GCC 7.5 using the following config script: ./configure -CFLAGS='-O3' -CXXFLAGS='-O3' -FFLAGS='-O3'540

-with-debugging=no -download-mpich=yes -download-hdf5=yes -download-hdf5-fortran-bindings=yes -download-fblaslapack=yes

-download-metis=yes -download-parmetis=yes.
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Appendix A: Reaction Sandbox Member Procedure Interfaces

This section documents Fortran class reaction_sandbox_base_type member procedure interfaces not covered in Sec-

tion 3.2.1 (see reaction_sandbox_base.F90).545

A1 ReadInput => BaseReadInput

ReadInput provides a customizable interface for reading parameters associated with the reaction sandbox from a block in

the input file. The input block is opened by a unique keyword associated with the child Reaction Sandbox class.

Code Block 12. BaseReadInput argument list.

subroutine BaseReadInput(this,input,option)550

...

class(reaction_sandbox_base_type) :: this

type(input_type), pointer :: input

type(option_type) :: option555

this : reaction_sandbox_base_type object

input : object storing the input file object pointer and line buffers

option : object storing run time options including process rank and an error messaging buffer

A2 Setup => BaseSetup

Setup initializes the Reaction Sandbox class by allocating dynamic memory, mapping species IDs, assigning stoichiometries560

and rate constants, etc. The degree to which Reaction Sandbox class settings are customizable at run time is up to the developer

and their creativity in implementing ReadInput and Setup.

Code Block 13. BaseSetup argument list.

subroutine BaseSetup(this,reaction,option)

...565

class(reaction_sandbox_base_type) :: this

class(reaction_rt_type) :: reaction

type(option_type) :: option

this : reaction_sandbox_base_type object570

reaction : object storing chemical species and general reaction information

option : object storing run time options including process rank and an error messaging buffer
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A3 Evaluate => BaseEvaluate

Evaluate calculates kinetic rates for all reactions in the Reaction Sandbox class and adds the (kinetic rate) contributions to

the Residual and Jacobian arrays. This is the only subroutine that must be extended in child Reaction Sandbox classes.575

Code Block 14. BaseEvaluate argument list.

subroutine BaseEvaluate(this,Residual,Jacobian,compute_derivative, &

rt_auxvar,global_auxvar,material_auxvar, &

reaction,option)

...580

class(reaction_sandbox_base_type) :: this

class(reaction_rt_type) :: reaction

! the following arrays must be declared after reaction

PetscReal :: Residual(reaction%ncomp)

PetscReal :: Jacobian(reaction%ncomp,reaction%ncomp)585

PetscBool :: compute_derivative

type(reactive_transport_auxvar_type) :: rt_auxvar

type(global_auxvar_type) :: global_auxvar

class(material_auxvar_type) :: material_auxvar

type(option_type) :: option590

this : reaction_sandbox_base_type object

Residual : 1D array of double precision numbers holding contributions to the residual equations at each grid cell

Jacobian : 2D array of double precision numbers holding contributions to the Jacobian matrix at each grid cell

compute_derivative : flag toggling on the calculation of analytical derivatives for the Jacobian matrix when true595

rt_auxvar : object storing reactive transport state variables (e.g., concentrations, rates, etc.) at each grid cell

global_auxvar : object storing flow state variables (e.g., density, saturation, etc.) at each grid cell

material_auxvar : object storing material and cell properties (e.g., porosity, volume, etc.) at each grid cell

reaction : object storing chemical species and general reaction information

option : object storing run time options including process rank and an error messaging buffer600
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A4 UpdateKineticState => BaseUpdateKineticState

UpdateKineticState updates state variables associated with the Reaction Sandbox class that are stored in rt_auxvar

and updated at the end of a time step based on rates calculated in the Reaction Sandbox (e.g., for mass balance calculations,

updates to mineral volume fractions, etc.).

Code Block 15. BaseUpdateKineticState argument list.605
subroutine BaseUpdateKineticState(this,rt_auxvar,global_auxvar, &

material_auxvar,reaction,option)

...

class(reaction_sandbox_base_type) :: this

type(reactive_transport_auxvar_type) :: rt_auxvar610

type(global_auxvar_type) :: global_auxvar

class(material_auxvar_type) :: material_auxvar

class(reaction_rt_type) :: reaction

type(option_type) :: option615

this : reaction_sandbox_base_type object

rt_auxvar : object storing reactive transport state variables (e.g., concentrations, rates, etc.) at each grid cell

global_auxvar : object storing flow state variables (e.g., density, saturation, etc.) at each grid cell

material_auxvar : object storing material and cell properties (e.g., porosity, volume, etc.) at each grid cell

reaction : object storing chemical species and general reaction information620

option : object storing run time options including process rank and an error messaging buffer

A5 AuxiliaryPlotVariables => BaseAuxiliaryPlotVariables

AuxiliaryPlotVariables appends Reaction Sandbox-specific state variables stored in rt_auxvar to the list of output

variables to be printed to observation and snapshot files.

Code Block 16. BaseAuxiliaryPlotVariables argument list.625
subroutine BaseAuxiliaryPlotVariables(this,list,reaction,option)

...

class(reaction_sandbox_base_type) :: this

type(output_variable_list_type), pointer :: list

class(reaction_rt_type) :: reaction630

type(option_type) :: option
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this : reaction_sandbox_base_type object

list : output_variable_list_type object storing a linked list of sandbox-specific output_variable_type

objects635

reaction : object storing chemical species and general reaction information

option : object storing run time options including process rank and an error messaging buffer

A6 Destroy => BaseDestroy

Destroy deallocates all dynamic memory in the Reaction Sandbox class at the end of a simulation.

Code Block 17. BaseDestroy argument list.640
subroutine BaseDestroy(this)

...

class(reaction_sandbox_base_type) :: this

this : reaction_sandbox_base_type object645
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