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Abstract. Forecasting flood–landslide cascading disasters in flood- and landslide-prone regions is an important topic within 

the scientific community. Existing hydrological-geotechnical models mainly employ infinite or static 3D stability model and 

very few models have incorporated the 3D landslide model into a distributed hydrological model. In this work, we modified a 

3D landslide model to account for slope stability under various soil wetness states and then coupled it with the Coupled Routing 15 

and Excess STorage (CREST) distributed hydrology model, forming a new modelling system called iHydroSlide3D v1.0. The 

model features the feasibility of applying flexibly different simulating resolutions for hydrological and slope stability 

submodules by embedding a soil moisture downscaling method. For a large-scale application, we paralleled the code and 

elaborated several computational strategies. The model produces a relatively comprehensive and reliable diagnosis for flood-

landslide events, including (i) complete hydrological components (e.g., soil moisture and streamflow), (ii) a landslide 20 

susceptibility assessment (factor of safety and probability of occurrence), and (iii) a landslide hazard analysis (geometric 

properties of potential failures). We evaluated the plausibility of the model by testing it in a large and complex geographical 

area, the Yuehe River Basin, China, where we attempted to reproduce cascading flood–landslide events. The results are well 

verified at both hydrological and geotechnical levels. iHydroSlide3D v1.0 is therefore appropriately used as an innovative tool 

for assessing and predicting cascading flood–landslide events once the model is well calibrated. 25 

1 Introduction 

Landslides represent mass-movement processes in hilly and mountainous environments and pose significant threats to human 

lives and properties (Hong et al., 2006;He et al., 2016). Rainfall events characterized by short-duration but high-intensity 

precipitation can substantially change the soil state of unlithified soil mantle or regolith (Srivastava and Yeh, 1991;Iverson, 

2000;Baum et al., 2010), and thus affect hillslope stability and cause flash floods in channels. Forecasting flood–landslide 30 
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hazards and correspondingly evacuating people from hazardous zones in advance are widely regarded as a critical risk 

reduction strategy (Abraham et al., 2021). However, to date, it is still challenging to accurately and reasonably forecast the 

landslides due to the complex natural processes and the interweaving hydrological, geomorphic, and geotechnical mechanisms 

(Sidle and Bogaard, 2016;Guzzetti, 2021). 

Modelling of landslide susceptibility can be appropriately accomplished by adopting a variety of approaches, 35 

including statistical methods (Guzzetti et al., 2007;Segoni et al., 2018), physically-based models (Baum et al., 2010;He et al., 

2016;Zhang et al., 2016), and geotechnical approaches (van Westen et al., 2006) among others. Among them, the deterministic 

and physically-based models (PBMs) are popularly used for modelling the spatiotemporal susceptibility of landslides. Some 

of these approaches attempt to define a direct correlation between rainfall depth and slope stability under some simplified 

hypotheses (Montrasio and Valentino, 2008;Liao et al., 2010). These models are useful for regional landslide stability 40 

assessment but fail to reproduce cascading flood–landslide disasters in catchments. More recently, efforts have been devoted 

to coupling the sound hydrological models with more or less complex landslide models (Baum and Godt, 2010;Lepore et al., 

2013;He et al., 2016;Zhang et al., 2016;Aristizábal et al., 2016;Wang et al., 2020). Such hydrological-geotechnical models 

include physical representations of precipitation, evapotranspiration, infiltration with continuous soil moisture accounting, 

runoff routing, and the slope stability module. However, most of them rely on infinite slope stability models (i.e., one-45 

dimensional models), which are based on the assumption of planar shallow failures and fail to capture the complexity of 

landslide geometry in many landscapes where shallow- and deep-seated landslides inherently coexist (Zêzere et al., 

2005;Mergili et al., 2014b;Tran et al., 2018). To this end, three-dimensional slope stability models (3D models) are proposed 

to cope with more complex scenarios (Mergili et al., 2014a;Reid et al., 2015). 

Until now, as reviewed by Vandromme et al. (2020), the existing hazard software for the implementation of spatial 50 

PBMs mainly employs the one-dimensional (1D) or two-dimensional (2D) methods for slope stability calculation. The 3D 

approaches like Scoops3D (Reid et al., 2015) and r.slope.stability (Mergili et al., 2014a) are only practical for static conditions 

such as imposed water level and fully saturated soil state. Researchers have attempted to combine the hydrological part of the 

Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS, a well-known, publicly available software) 

model (Baum et al., 2010) with a 3D model and analyzed the hillslope stability on a regional scale (Tran et al., 2018;He et al., 55 

2021). As a matter of fact, to the best of our knowledge, there are still very few fully coupled hydrological-geotechnical models 

that are capable of performing in a large scale and producing 3D information of landslide disasters. The progress is hindered 

by complicated model structures and considerable computational loads. The latter is inevitable and is an inherent feature for 

PBMs when the applications are conducted at a large scale using the 3D models (Zieher et al., 2017). Another problem that 

will be involved is the selection of computational spatial resolution. Hydrological modelling with a coarse spatial resolution 60 

(e.g., 1 km resolution or coarser) but a large-scale coverage has been widely available with the increasing availability of 

meteorological and land surface data (Xue et al., 2013a;Chao et al., 2019;Chao et al., 2021). However, such a resolution is 

insufficient to capture the slope failures on hillslope scales, particularly for the landslide events that usually occur within an 

area of only tens or hundreds of squared meters (Chen et al., 2017). Moreover, it is not wise to unlimitedly refine the mesh 
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resolution of the hydrological model over a relatively large region. A strategy to tackle the differential needs for computational 65 

resolutions among the submodules is essential (Wang et al., 2020). 

A comprehensive assessment for landslide disasters is generally composed of three parts (Vandromme et al., 2020): 

a landslide inventory, a landslide susceptibility analysis (usually denotes factor of safety (𝐹𝑆) and probability of occurrence), 

and a landslide hazard analysis (i.e., magnitude that takes into account the area and volume of failure). Among them, the 

landslide hazard analysis is not very common as the ordinary 1D models cannot represent the geometric properties of landslides. 70 

Previous studies for this purpose are more inclined to use available landslide datasets (Guzzetti et al., 2009;Brunetti et al., 

2009;Klar et al., 2011) and advanced sensing and photogrammetric methods and techniques (e.g., aerial photograph 

interpretation, high-resolution imagery, and LiDAR interpretation) (Lacroix, 2016). However, in many cases, the landslide 

data are not well documented or insufficient data is unfavourable to support such analysis (e.g., only failure locations are 

recorded). Performing the landslide hazard analysis in such cases is necessary but difficult to implement. 75 

In this work, we developed an innovative physical-based integrated hydrological processes and 3D slope stability 

modelling framework, which is called the integrated Hydrological processes and 3-Dimensional landSlide prediction model 

(iHydroSlide3D v1.0), by coupling a distributed hydrological model with a newly-developed 3D geotechnical model. To 

alleviate the chronic contradiction of mesh resolutions required for hydrological and landslide simulations, we adopted the soil 

downscaling method to handle the soil moisture. The iHydroSlide3D v1.0 is built on a parallel computational design, allowing 80 

the code to run efficiently on a multi-core machine. The code was tested in a large and complex geographical area, the Yuehe 

River Basin of western China, where we attempted to reproduce cascading flood–landslide events. 

The paper is organized as follows. We first describe the basic theories of submodules and main features of the 

framework in Section 2. In addition, we also elaborate the strategies for model implementation in Section 2. In Section 3, we 

introduce a case study and associated materials required for model simulation and evaluation. Results are presented in Section 85 

4, which are mainly focused on the evolution processes of a historical storm trigerred cascading flood-landslide events. Finally, 

we discuss the results and summarize the conclusions in Section 5. 

2 The integrated hydrological-geotechnical model framework: iHydroSlide3D v1.0 

2.1 Overall structure 

iHydroSlide3D v1.0 is a physical-based modelling framework that accounts for both hydrological and geotechnical processes. 90 

The model mainly includes the following modules: (i) a distributed hydrological model based on the Coupled Routing and 

Excess Storage (CREST) model, (ii) a newly developed 3D landslide model, and (iii) a soil moisture downscaling method. 

The model can currently process two sets of data with different resolutions, allowing to simultaneously modelling hydrological 

and geotechnical processes with different spatial resolutions. iHydroSlide3D v1.0 is coded in MATLAB and is capable of 

running in a parallel manner, currently supported by the Linux and Windows operating systems. Detailed descriptions of the 95 

model are presented as follows. 
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2.2 Hydrological model: the Coupled Routing and Excess STorage Model 

A physical-based hydrological model, i.e., the Coupled Routing and Excess STorage (CREST) (Wang et al., 2011;Khan et al., 

2011;Shen et al., 2016;Xue et al., 2013b) is adopted to simulate hydrological processes that trigger the rainstorm-induced 

landslide events. The CREST model was first developed by University of Oklahoma (http://hydro.ou.edu) and NASA SERVIR 100 

Project Team (www.servir.net) and served for predictions of flash floods caused by rainfalls on its early-version stage (Wang 

et al., 2011). The model is further enhanced by considering the Multi-Radar Multi-Sensor (MRMS) forcing data and has been 

used for hydroclimatology studies such as extreme hydrological events (e.g., floods and droughts) (Zhang et al., 2015;Khan et 

al., 2011) and statistical and hydrological evaluation in ungauged basins (Xue et al., 2013a). The CREST is run in a distributed 

fashion via a cell-to-cell design concept, while the coupling between overland flow generation and routing scheme allows a 105 

realistic and detailed simulation of hydrological variables such as soil moisture, which plays a major role in determining the 

stability of a slope. More recently, several coupled hydrological-geotechnical models based on the CREST model such as 

CRESLIDE (He et al., 2016) and iCRESTRIGRS (Zhang et al., 2016) have emerged as the application evolves. These models, 

counting on the hydrological simulation of the CREST, have achieved their capability of back-calculation and/or prediction 

for rainfall-triggered landslides. As a consequence, CREST has been comprehensively and extensively evaluated regarding its 110 

hydrological simulation skill and its flexibility for coupling. A detailed description of the CREST can be found in Wang et al. 

(2011) and Xue et al. (2015). For better understanding the work of this study, it is still important to briefly review the principal 

theories of the CREST model here. 

The CREST is driven by precipitation and potential or actual evapotranspiration. The rainfall-runoff generation 

processes are computed at each cell, starting with accounting for its received precipitation at each time step (𝑃). After 𝑃 passes 115 

the canopy layer and deducts canopy interception, the excess precipitation (𝑃soil) then reaches the soil surface. A conceptual 

variable infiltration curve (VIC), originated from the Xinanjiang Model (Zhao, 1992) and later adopted by the VIC model 

(Liang et al., 1994), is used to further divide the 𝑃soil into excess rain (𝑅) and infiltration water (𝐼). The CREST assumes that 

each soil column is capable to store a maximum water depth, which is regarded as the infiltration capacity (𝑖) and varies over 

an area in the following relationship: 120 

𝑖 = 𝑖𝑚 [1 − (1 − 𝑎)
1
𝑏] , (1) 

where the 𝑖𝑚 is the maximum infiltration capacity of a cell and strongly depends on the soil properties; 𝑎 is a fraction number 

of a grid cell and 𝑏 is an empirical shape parameter. Under this assumption, the amount of water available for excess rain (𝑅) 

and infiltration (𝐼) can be further expressed as: 

𝐼 = {

𝑊m − 𝑊, 𝑖 + 𝑃soil ≥ 𝑖m                                             

(𝑊m − 𝑊) + 𝑊m ⋅ [1 −
𝑖 + 𝑃soil 

𝑖m

]
1+𝑏

, 𝑖 + 𝑃soil < 𝑖m

, (2) 125 

𝑅 = 𝑃soil − 𝐼, (3) 
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where 𝑊𝑚 denotes the maximum water capacity of a cell; 𝑊 represents the total mean water of the three soil layers. 𝑅 can be 

further partitioned into overland and subsurface flows by comparing 𝑃soil to the infiltration rate of the first layer (𝐾), which is 

closely related to the soil saturated hydraulic conductivity (𝐾sat). Then CREST adopts the multi-linear reservoir method to 

simulate the cell-to-cell routing of overland and subsurface runoff at each time step. The model can better take into account 130 

the interaction between the surface and subsurface flows by coupling the runoff-generation process and the routing scheme 

(Wang et al., 2011). 

2.3 3D stability model based on sliding surface 

The 3D slope-stability analysis model was originally derived to describe the characteristics of a potential failure (Hovland, 

1979). This model has no iteration procedure but computes the 𝐹𝑆 directly compared to the slope-stability models established 135 

based on Bishop (1955) and Janbu et al. (1956). Embedded in geographic information systems (GIS), the model composes a 

slope failure with column units, expressed as grid cells in GIS (software like 3DSlopeGIS) (Xie et al., 2003;Xie et al., 2004;Xie 

et al., 2006). More recently, progress has been made in a more sophisticated software r.slope.stability (Mergili et al., 

2014a;Mergili et al., 2014b) that have the capacity to perform on a regional scale via a parallel computational technique. More 

importantly, the 3D slope-stability model demonstrates to be effective on both shallow and deep landslides, thus better behaves 140 

as a robust geotechnical tool and has a potential for wide applications (Zieher et al., 2017;Palacio Cordoba et al., 2020). 

However, to implement on a large scale, the previous versions of the 3D stability model treat the hydrological 

component (e.g., transient soil moisture and water level) as static or imposed inputs, failing to consider the time-dependent 

hydrological processes (Mergili et al., 2014b;Mergili et al., 2014a). In this work, the model is extended to take into account 

spatiotemporal variations of water fluxes and storages on regular grids by introducing the hydrological module. Following an 145 

assumption of being ellipsoidal or truncated in shape, the potential slope failures are randomly generated over a whole study 

region. When applied in a regional assessment, the theory of the model can be mainly divided into the following two parts. 

 

Figure 1: Coordinate systems involved in an arbitrary ellipsoid. 

2.3.1 Coordinate transformation and geometric derivation 150 

Three levels of the coordinate system involved in this model are (i) GIS coordinate system (𝑥 , 𝑦 , 𝑧) over the whole study area 

(Fig. 1), (ii) Cartesian coordinate (𝑥 ′, 𝑦 ′, 𝑧 ′) of each potential failure, and (iii) ellipsoid coordinate system (𝑥 ″, 𝑦 ″, 𝑧 ″) along the 
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direction of the steepest slope in a single ellipsoid. The center of each ellipsoid (𝑥𝑐
 , 𝑦𝑐

 , 𝑧𝑐) is randomly generated within the 

study area, while the GIS coordinate system is simultaneously transformed to the Cartesian coordinate from a ground 

perspective (Mergili et al., 2014b): 155 

𝑥′ = (𝑥 − 𝑥c)cos𝛼 + (𝑦 − 𝑦c)sin𝛼, (4) 

𝑦′ = (𝑦 − 𝑦c)cos𝛼 − (𝑥 − 𝑥c)sin𝛼, (5) 

where 𝛼 is the main dip direction of the ellipsoid; 𝑥″ is easily derived as 𝑥′′ =
𝑥′

cos𝛽
 (𝛽 is the main inclination of the ellipsoid, 

see in Fig. 2); 𝑦″  is identical to the 𝑦′  axis; 𝑧′  is identical to the 𝑧  axis (Fig. 1). Then we need to filter the grid cells 

encompassed by this random ellipsoid, meeting the following condition: 160 

𝑥′

𝑎𝑒
2

+
𝑦′

𝑏𝑒
2

⩽ 1, (6) 

where 𝑎𝑒  and 𝑏𝑒  are half axes of the ellipsoid, following the 𝑥″  and 𝑦″  axes, respectively. These geometric lengths are 

randomly generated within user-defined ranges. To facilitate the derivation, we give a value of another half axes of the ellipsoid 

(𝑐𝑒) beforehand, which, in fact, is highly dependent on failure depth and should be reconsidered in following sections. Hence, 

with regard to an ideal ellipsoid, the above variables need to satisfy the basic equation of the ellipsoid: 165 

(𝑥′′ + Δ𝑥′′)2

𝑎e
2

+
𝑦′′2

𝑏e
2

+
Δ𝑥′2

𝑐e
2(tan 𝛽)2

= 1. (7) 

By solving the intermediate variable ∆𝑥′′, the 𝑧″ can be computed as: 

𝑧″ =
Δ𝑥′′

tan 𝛽
. (8) 

 

Figure 2: Typical longitudinal section of an ellipsoid used as slip surface in iHydroSlide3D v1.0: (a) overall features involved in a 170 
potential failure, and (b) forces acting at each column considering the groundwater effect.  

Finally, we transformed it back into the GIS coordinate system: 

𝑧slip = 𝑧c +
(𝑧′′ − 𝑥′ sin 𝛽)

cos 𝛽
, (9) 
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where 𝑧slip is the elevation of the considered cell in the ellipsoid. Hereto we get all coordinates once a random ellipsoid is 

generated. We further note that such procedure is required for each random ellipsoid (i.e., each random loop) and thus is time-175 

consuming particularly in a regional map system. The countermeasures will be introduced in the following sections. 

2.3.2 Basic hydrogeological mechanics 

This study adopted a conceptual parameter 𝑚 to better simulate the soil moisture of each considered column in a random 

ellipsoid (see in Fig. 2). The parameter originated from Montrasio and Valentino (2008) and were later represented in further 

applications (Liao et al., 2010;He et al., 2016). The parameter 𝑚 is a distributed value ranging from 0 to 1 and is controlled by 180 

hydrologic mechanisms (Fig. 2), which further impacts the matric suction and results in occurrences of landslides (Baum et 

al., 2010). More specifically, the apparent cohesion is strongly dependent on matric suction, which in turn is related to the 

degree of saturation of the soil column (𝑆𝑟) (Montrasio and Valentino, 2008): 

𝑐𝜓(𝑡) = 𝛿 ⋅ 𝑆𝑟 ⋅ (1 − 𝑆𝑟)𝜆 ⋅ (1 − 𝑚)𝛼 , (10) 

where 𝛿 is a soil-type parameter and mainly refers to the peak shear stress at a failure layer; 𝛼 and 𝜆 are numerical parameters 185 

to estimate the extreme points of the shear strength curve versus 𝑆𝑟  and versus the degree of saturation of the soil, respectively. 

Then the total cohesion (𝐶′) is computed as follow: 

𝐶′ = 𝑐′ + 𝑐𝜓(𝑡), (11) 

where 𝑐′ is effective cohesion depending on soil type and is treated as a constant value associated with each grid cell. The 

failures may take place in both partially and fully saturated scenarios (Lu and Likos, 2006;Lu and Godt, 2013); the latter should 190 

take the seepage force (𝑆) into account (Collins and Znidarcic, 2004). Considering the inter-slice forces in this model, the 

seepage force is computed according to the hydraulic gradient, reflecting a more general situation in the hillslope (King, 

1989;Mergili et al., 2014b). Note that the seepage force is only considered in soil columns satisfying 𝑚 > 0. Besides, the grid 

cell that has a low elevation is excluded from the considered ellipsoid by comparing  𝑧slip and 𝑧𝑐: 

𝐷𝑐 = 𝑧𝑐 − 𝑧slip. (12) 195 

For the soil column satisfying both of the conditions: 𝑚 > 0 and  𝐷𝑐 > 0, the seepage force can be approximated by 

the slope (𝛽𝑤) and aspect (𝛼𝑤) of the groundwater table (Fig. 2), acting in the direction of the hydraulic gradient (Mergili et 

al., 2014b;Mergili et al., 2014a): 

𝑆 = 𝛾w ⋅ 𝑑𝑥 ⋅ 𝑑𝑦 ⋅ 𝑚𝐻 ⋅ sin𝛽𝑤 , (13) 

where 𝛾w is the specific weight of water; 𝑑𝑥 and 𝑑𝑦 are the cell size, depending on the resolution of input data. To further 200 

transfer the seepage force from hydraulic gradient to sliding direction, 𝑆 is first divided into horizontal (𝑆h) and vertical (𝑆v) 

components (Fig. 2): 

𝑆h = 𝑆cos𝛽w  and 𝑆v = 𝑆sin𝛽w. (14) 

𝑆v is irrelevant to the direction, while 𝑆h needs to be further projected according to the dip direction of grid column (𝛼c) and 

the main inclination direction of the slip surface given by: 205 
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𝑆ch = 𝑆hcos(𝛼w
 − 𝛼c) and 𝑆mh = 𝑆hcos(𝛼w

 − 𝛼). (15) 

Conforming to the orthogonality rule, the projected seepage force (𝑆c, 𝑆m) and their vertical angle (𝛽Sc
, 𝛽Sm

) can be 

expressed as: 

𝑆c = √𝑆v
2 + 𝑆ch

2 ; 𝑆m = √𝑆v
2 + 𝑆mh

2

cos 𝛽Sc =
𝑆ch

𝑆c

;  𝛽Sm =
𝑆mh

𝑆m

. (16) 

The final expression of the seepage force acting on each grid column can be written as normal and slope-parallel components: 210 

𝑁s = 𝑆c sin(𝛽Sc − 𝛽c) ;  𝑇s = 𝑆m cos(𝛽Sm − 𝛽m) . (17) 

The soil weight (𝐺′), considering the variant degree of saturation and under the condition of 𝐷𝑐 > 0, is derived as: 

𝐺′ = 𝑑𝑥 ⋅ 𝑑𝑦 ⋅ [𝛾𝑑
 𝐷𝑐

 + 𝛾𝑤
 ⋅ 𝑚 𝐻 ⋅ (𝑛 − 1) + 𝛾𝑤

 (𝐷𝑐
 − 𝑚 𝐻) 𝑛 𝑆𝑟], (18) 

where 𝛾𝑑 is the unit weight of the dry soil; 𝑛 and 𝑆𝑟  represent the porosity and soil saturation degree, respectively. Based on 

the limited equilibrium condition, the model assesses the critical scenarios by calculating the 𝐹𝑆, which can be mechanically 215 

subject to the stabilizing and destabilizing actions. Summarizing the derivations above, the extended version of the 3D slope-

stability equation can be written as follow: 

𝐹𝑆 =
∑ [(𝐶′ + 𝛿 ⋅ 𝑆𝑟 ⋅ (1 − 𝑆𝑟)𝜆 ⋅ (1 − 𝑚)𝛼) ⋅ 𝐴 + (𝐺′cos 𝛽c + 𝑁𝑠)tan 𝜑]

𝑐
cos 𝛽m

∑ (𝐺′ sin 𝛽m + 𝑇𝑠) cos 𝛽m𝑐

, (19) 

where 𝜑 is the friction angle; 𝛽c and 𝛽m  denote the dip and apparent dip of the slip surface at a considered soil column, 

respectively; 𝐴 is the slip surface area of each column and can be computed as: 220 

𝐴 = 𝑑𝑥 ⋅ 𝑑𝑦
√1 − (sin 𝛽𝑥𝑧)2(sin 𝛽𝑦𝑧)

2

cos 𝛽𝑥𝑧 cos 𝛽𝑦𝑧

, (20)
 

where 𝛽𝑥𝑧 and 𝛽𝑦𝑧 are apparent dips of x- and y-axis, respectively. The relationships between the apparent dips and main 

sliding direction assigned to each soil column can be expressed as (Xie et al., 2003): 

tan 𝛽m = tan 𝛽c|cos(𝛼c − 𝛼)|

tan 𝛽xz = tan 𝛽c sin 𝛼c

tan 𝛽yz = tan 𝛽c cos 𝛼c

. (21) 

The model diagnoses whether the landslide is stable or not by comparing the value of 𝐹𝑆 with a critical value that 225 

usually set to 1. At the same time, for each random ellipsoid, the volume and area of a failure can be approximated by: 

𝑉𝐿 = ∑𝐷𝑐 ⋅ 𝑑𝑥 ⋅ 𝑑𝑦, (22) 

𝐴𝐿 = ∑𝑑𝑥 ⋅ 𝑑𝑦. (23) 

 

It is worth noting that the model can serve in a stand-alone manner by directly imposing soil moisture and groundwater 230 

table. However, in a more practical sense, the landslide model is coupled with the hydrological model. 
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2.4 Soil moisture downscaling method 

A near-conservative downscaling method of soil moisture (Droesen, 2016;Wang et al., 2020) is adopted here to link different-

resolution-based submodules in the iHydroSlide3D v1.0, i.e., the relatively coarse-resolution hydrological model and the fine-

resolution 3D slope-stability model. The method relates the soil moisture with the topographic wetness index (TWI) by 235 

proposing a conversion parameter, the wetness coefficient (𝐾w). Readers may refer to Wang et al. (2020) for more detailed 

descriptions. This method helps the hydrological module produce soil moisture with a higher resolution that can be seamlessly 

utilized by the landslide module. The method has demonstrated its effectiveness (Wang et al., 2020) and is necessary for a 

hydrogeological-type model to balance the tedious computational tasks and accuracy. 

2.5 Coupling strategy and model implementation 240 

 

Figure 3: Flow chart illustrating the work process of the iHydroSlide3D v1.0 model. 

The iHydroSlide3D v1.0 mainly consists of three sub-modules: (i) hydrological model CREST, (ii) soil moisture downscaling 

method, and (iii) 3D landslide-stability model (Fig. 3). The CREST undertakes the complete computational tasks of hydrologic 

processes, including interception by vegetation, water infiltration, runoff generation, cell-to-cell routing, and re-infiltration on 245 

each grid cell in the course of excess surface runoff moving from upstream to downstream, of which the infiltration and re-

infiltration play the most important role on the coupled hydrology-slope stability processes. The landslide model inherits the 

hydrological variables from the hydrological model and acts as a slope-stability monitor. The complete simulation cycle is 
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seamlessly facilitated by the downscaling module. To elucidate the implementation of the iHydroSlide3D v1.0 model, we 

present the logical framework in Fig. 3 and summarize the detailed coupling strategy in the following aspects: 250 

1. Instead of directly linking the soil moisture with rainfall intensity, the model takes the water loss into account due 

to the interception and evapotranspiration. The hydrological module helps to better simulate antecedent conditions such as soil 

moisture and cumulative infiltration. As a consequence, the parameter 𝑚 is updated as a spatiotemporal variable (𝑚𝑡) (He et 

al., 2016): 

𝑚𝑡 =
𝑊𝑡

𝑛𝐷𝑡(1 − 𝑆𝑟)
, (24) 255 

where 𝑊𝑡 is the mean water amount of the three soil layers on a given grid cell. 𝑆𝑟  can be computed as: 

𝑆𝑟 =
𝑊𝑡

𝑊𝑚

. (25) 

𝐷𝑡  is the landslide’s initiation depth for various soil states and is largely impacted by soil heterogeneity and hydraulic properties 

(Lu and Godt, 2008). Therefore, 𝐷𝑡  is determined by infiltration processes at time 𝑡 (He et al., 2016): 

𝐷𝑡 = √
2𝐾𝑠𝐻𝑐𝑡

𝜃𝑛 − 𝜃0

, (26) 260 

where 𝐾𝑠 is saturated hydraulic conductivity; 𝐻𝑐  is capillary pressure; 𝜃𝑛 is volumetric water content of the saturated soil; 𝜃0 

is initial water content of the soil. Note that the 𝑚𝑡, 𝑆𝑟 , and 𝐷𝑡  are gridded values. 

2. We prepare two sets of data with different resolutions: a relatively coarser hydrological resolution and a finer 

landslide resolution. Once the soil moisture is calculated for all coarser grid cells, the soil moisture downscaling module is 

activated to calculate a new soil moisture map in a finer resolution to fit the spatial resolution of the landslide model 265 

(𝑆𝑀Hydro → 𝑆𝑀Land). 

3. In each simulation time step, the model generates a large number of ellipsoidal tested landslides with random 

geometric center and ellipsoid length and width. The latter is constrained by the range of maximum and minimum values, 

which are determined from field investigation and regarded as the input parameters. Each random ellipsoid adopts maximum 

soil depth as another geometric length (𝑐𝑒) among the encompassed cells (𝐷𝑡 = max{𝐷𝑐𝑒𝑙𝑙1
 , 𝐷𝑐𝑒𝑙𝑙2

 , 𝐷𝑐𝑒𝑙𝑙3
 , ⋯ }). The coordinate 270 

transformation and related geometric derivation are then tackled according to Sect. 2.3.1. Next, each tested landslide slip 

surface corresponds to a 𝐹𝑆 value, based on the mechanical analysis described in Sect. 2.3.2. 

4. Attributable to random strategy in the model architecture, any tested landslide will be possibly overlapped by 

another one, resulting in the confusing values of 𝐹𝑆 for each considered grid cell. In other words, each grid cell has a chance 

to be stable or unstable. For instance, as illustrated in Fig. 4, grid cell #a is estimated to be unstable in a tested landslide #3 but 275 

stable in the tested landslides #4 and #5. In this work, we assign the minimum value of 𝐹𝑆 (𝐹𝑆min , Fig. 4b) and failure 

probability (𝑃𝐹, Fig. 4a) to each grid cell (Mergili et al., 2014b): 

𝐹𝑆𝑡 = min{𝐹𝑆𝐿1
, 𝐹𝑆𝐿2

, 𝐹𝑆𝐿3
, ⋯ }, (27) 

https://doi.org/10.5194/gmd-2021-283
Preprint. Discussion started: 2 September 2021
c© Author(s) 2021. CC BY 4.0 License.



11 

 

𝑃𝐹𝑡 =
∑𝑃𝐹𝐹𝑆<1

∑𝑃𝐹𝐹𝑆<1 + ∑𝑃𝐹𝐹𝑆>1

. (28) 

The model counts all possible values of 𝐹𝑆 and, based on a sufficiently large number of ellipsoids and possible ellipsoid 280 

dimensions, determine the final values of 𝐹𝑆 and 𝑃𝐹  for each considered grid cell. Similarly, each grid cell belongs to a 

maximum value of volume and area of a failure:  

𝑉𝐿𝑚𝑎𝑥 = max{𝑉𝐿1
, 𝑉𝐿2

, 𝑉𝐿3
, ⋯ }, (29) 

𝐴𝐿𝑚𝑎𝑥 = max{𝐴𝐿1
, 𝐴𝐿2

, 𝐴𝐿3
, ⋯ }. (30) 

The records of these values are only effective in the current simulation moment and will be reset as the simulation time moves 285 

forward. As the hydrological process evolves, the model is able to dynamically assess the slope stability and treats the slope-

stability assessment indices as variables. 

 

Figure 4: Cell-to-cell routing scheme and potential landslides generated across the grid in the iHydroSlide3D v1.0 model: (a) and (b) 

illustrate the definitions of 𝑷𝑭 and 𝑭𝑺 within the framework, respectively. 290 

We believe that the above variables will reach the computational convergence provided the number of tested ellipsoid 

is sufficient enough. As a requirement, the “density” of ellipsoids is recommended to reflect the total number over the study  

area (Mergili et al., 2014b): 

𝑑s = 𝑛
𝐴p

𝐴s

= 𝑛
𝜋(𝑎𝑒|max + 𝑎𝑒|min)(𝑏𝑒|𝑚𝑎𝑥 + 𝑏𝑒|𝑚𝑖𝑛)𝑐t

16𝐴s

, (31) 

where 𝑛 is the chosen total number of tested landslide; 𝐴p is average vertical projection of area of a single tested landslide; 𝐴s 295 

is the extent of the study area; 𝑎𝑒|max, 𝑎𝑒|min, 𝑏𝑒|max, and 𝑏𝑒|min are the upper and lower limits for randomization of ellipsoid 

length and width; 𝑐tis a dimensionless correction factor and is set to the average cosine of the slope (Mergili et al., 2014a). 

Note that the 𝑑s is strongly related to constraints of the random length and width and resolution of the digital elevation model, 

for which should be tested and set to an appropriate value before meaningful application. We also acknowledge that the model 

outcomes the worst-case situation (𝐹𝑆min, 𝑉max, and 𝐴max), however, along with the probability of the failure (𝑃𝐹). 300 
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2.6 Auxiliary computational strategy 

There are two main computational bottlenecks in the model, which causes a large computational burden: (i) the operation of 

coordination transformation described in Sect. 2.3.1 is required for each random ellipsoid and, even in a single simulation time, 

will be executed 𝑛 times (see in Eq. 31); (ii) the 3D slope stability model is inherently complicated and is also repeatedly 

calculated for 𝑛 times, leading to tedious computational tasks. To cope with the above computation-intensive problems, the 305 

following strategies are adopted in this work: 

1. We use the smallest and variable "moving window" to just encompass a single ellipsoid being tested. Each ellipsoid 

can correspond to a small coordinate matrix, in which the coordination transform occurs, to avoid computing the entire study 

area. 

2. iHydroSlide3D v1.0 is built upon a parallel computing framework and has a capacity of running on multicore 310 

processors or computer clusters. The model also provides the option to call the local maximum or a user-defined number of 

cores up to the limit of the hardware. The model divides the study area into user-defined number of tiles and each of them is 

processed independently in parallel. All computing tasks need to be queued until there are free computing cores. The slope-

stability information is computed and counted for each tile and is stored in the computer memory. At the end of each simulation 

time step, the model combines all tiles and recalculates the overlapping part of the margin of each "moving window", and then 315 

outputs the final results. The model clears the computer memory after the procedure and repeats the above operations in the 

next simulation period. 

2.7 Model validation 

iHydroSlide3D v1.0 can be mainly evaluated on the hydrological and landslide event levels (Fig. 3). Streamflow observations 

from the local gauge stations are utilized for validation of the modeled discharge. The statistical metrics such as Nash–Sutcliffe 320 

coefficient of efficiency (NSCE), Pearson correlation coefficient (CC), and relative bias are computed to measure the model 

performance. Furthermore, more than a single gauge station is necessary when the very large scale or multiple basins are 

involved. We also expect that the hydrologic process can be further calibrated by soil moisture data if the measurements are 

available, since soil moisture is more related to slope stability and thus is recommended (Lepore et al., 2013). To validate the 

model’s predicative capability for landslides, in situ measurements (e.g., 𝐿, W, V, and 𝐴 of failures) will be ideal data for model 325 

validation and refinement. Such data not only serve for evaluation but also provide more hints for the constraint of random 

procedure and model preparation. However, in most cases, only point-like landslides are available for assessing the 

performance of initiation location prediction. Two existing synthetic indices %𝐿𝑅𝑐𝑙𝑎𝑠𝑠 (Park et al., 2013;Tran et al., 2018) and 

Receiver Operating Characteristic (ROC) curve (Fawcett, 2006) are used for measure the model performance. Lack of the 

specific time for all landslide occurrences, we evaluated the model performance in the worst case of the hydrological conditions. 330 

In another word, we would consider a successful prediction if the recorded landslide sites were estimated as failures during 

the complete rainfall event.  
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2.8 Model inputs and outputs 

The input data includes precipitation and evapotranspiration, digital elevation models (DEM), and soil texture and land cover 

maps, while the observed river streamflow and the inventory of landslide events are used to calibrate and validate the model. 335 

Additional topographic information such as slope angle and direction, which are also needed for the landslide model, are 

directly derived from the DEM data. Several hydrological parameters like 𝑊𝑚  should be carefully prepared before the 

simulation and will be displayed in the following section. The output variables include all typical hydrological components 

(e.g., overland runoff, soil moisture, and infiltration information) and landslide assessments (𝐹𝑆, 𝑃𝐹, 𝑉𝐿 , and 𝐴𝐿). Note that 

model output is controlled by a user-defined "GlobalControlFile" and the components are thus selected based on the interest 340 

of the user. The model calls for two sets of topographic data (see in Sect. 2.5) and all gridded data are either downscaled or 

aggregated to an objective spatial resolution to ensure the forcing and auxiliary data matching with each other. iHydroSlide3D 

v1.0 currently supports several different options for file formats (ASCII, TIFF, and TXT) and map projections, of which the 

Geographic Tagged Image File Format (GeoTIFF) is preferred for its distinct advantage of containing native compression 

capabilities, making the file sizes smaller. 345 

3 Materials and model setup 

We test the iHydroSlide3D v1.0 code in the Yuehe River Basin, Shaanxi Province, China (Fig. 5). The basin has an elevation 

between 270 to 2700 m a.s.l. and covers a total area of 1100 km2. The terrain in this basin is characterized by steep hills, 

gullies, and valleys, while its flood season is usually accompanied by heavy and frequent rainfall. As a result, this basin is 

highly susceptible to slope instability and sliding (Zhang et al., 2019;Wang et al., 2020). In this area, 54 slope failure locations 350 

were reported during a rainstorm from July 3th to 4th in 2012 (have no more specific time record). In addition, the discharge 

of the flash flood was also observed at the outlet of the basin. 

Hourly precipitation data were provided by China Meteorological Administration (CMA) based on the observations 

of gauge stations and were interpolated into a spatial resolution of 3 arc sec (~ 90 m). The potential evapotranspiration (PET) 

data were derived from Global Land Data Assimilation System (GLDAS). The 3-h, 0.25° PET data were first downscaled to 355 

a resolution of 3'' using bilinear interpolation and further downscaled to an hourly scale using linear interpolation. Two different 

resolutions of DEM (90 m and 12.5 m) from the NASA Shuttle Radar Topography Mission (SRTM) Version 3.0 (SRTM3) 

DEM and Advanced Land Observing Satellite (ALOS) DEM are used for hydrological and landslide modelling (introduced in 

Sect. 2.5), respectively. The flow direction (FDR) and flow accumulation maps (FAC) are necessary for hydrological 

simulation and can be derived from the DEM map. The slope angle map is optional for hydrological modelling but required 360 

for landslide modelling, which can be directly computed through a built-in slope angle calculation function in iHydroSlide3D 

v1.0. The TWI data were derived using the ESRI ArcGIS and its ArcHydro toolbox. The land cover data were derived from 

the 30m GlobeLand30-2010 data (Chen et al., 2015). Soil texture was classified into the 12 United States Department of 
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Agriculture (USDA) soil texture types from the Harmonized World Soil Database (HWSD v1.2) (Wieder et al., 2014) based 

on a lookup table (Table 1) shared by both hydrological and landslide modules. 365 

The parameters used for this model are largely related to a priori map of soil information and have been generated 

by Wang et al. (2020) and Zhang et al. (2016). 𝑊𝑚 corresponds to available water capacity between field capacity and wilting 

point (Table 1) and is distributed according to both topography and soil texture (Yao et al., 2012;Wang et al., 2020). Saturated 

hydraulic conductivity (𝑘𝑠) strongly depends on the soil type and is determined through the pedotransfer look-up table (Table 

1). Impervious surface area (ISA) can obviously affect the hydrological process such as infiltration and runoff generation and 370 

is calculated for each grid cell by considering the fractions of artificial surface and wetland in land cover map. For the landslide 

module, the constraints of the random landslides are regarded as priori parameters depending on the inventory. The total tiles 

divided from the entire area, along with the landslide density and user-defined number of cores, are summarized as related to 

parallel computational parameters. All about the basic materials and parameters are briefly listed in Tables 2 and 3. 

We run the model on the High-Performance (HP) cluster with 1 manage node and 8 computational nodes (Intel(R) 375 

Xeon(R) CPU E5-2660 v4 @2.00GHz). Each node operates a CentOS with 28 cores and 64GB RAM and reaches a total of 

56 threads based on the hyper-threading technology. 

 

Figure 5: Locations of the Yuehe River Basin with its elevation and the reported landslide events. 

 380 

Table 1: Lookup table of key parameters for different soil types used in this study (refer to Wang et al. (2020) and Zhang et al. 

(2016)). 

USDA 

Soil Type 

Soil 

Cohesion 

(kPa) 

Saturated 

Hydraulic 

Conductivity (m/s) 

Porosity Friction 

Angle 

(degree) 

Soil Dry 

Unit Weight 

(kN/m3) 

Field 

Capacity 

(m3/m3) 

Wilting 

Point 

(m3/m3) 

Silty clay 30 1.06 × 10−6 0.49 18.5 18 0.36 0.21 

Clay 40 1.31 × 10−6 0.47 16.5 19.5 0.36 0.21 
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Silty clay 

loam 

50 1.44 × 10−6 0.48 16.5 14 0.34 0.19 

Clay loam 35 2.72 × 10−6 0.46 20 14 0.34 0.21 

Silt 9 2.05 × 10−6 0.52 26.5 16.5 0.32 0.165 

Silt loam 9 2.50 × 10−6 0.46 24 14 0.3 0.15 

Sandy 

clay 

24.5 4.31 × 10−6 0.41 22.5 18.5 0.31 0.23 

Loam 10 4.53 × 10−6 0.43 22.5 13 0.26 0.12 

Sandy 

clay loam 

29 6.59 × 10−6 0.39 20 15 0.33 0.175 

Sandy 

loam 

6 1.02 × 10−5 0.4 32 15 0.23 0.1 

Loamy 

sand 

7.5 1.78 × 10−5 0.42 28.5 20.5 0.14 0.06 

Sand 5 2.44 × 10−5 0.43 40 21 0.12 0.04 

 

Table 2: Description of basic input data used in iHydroSlide3D v1.0. 

Model input Description Value/resolution Data source 

Rain Precipitation data (mm) Downscaled to hourly and of 

3'' resolution 

China Meteorological Administration 

(CMA) based on gauge stations 

Pet Potential ET data (mm) Downscaled to hourly and of 

3'' resolution 

Global Land Data Assimilation 

System (GLDAS) 

DEM Digital elevation model 90 m and 12.5 m for 

hydrological and landslide 

modelling, respectively 

SRTM3 DEM (NASA v2.1) and 

ALOS DEM (Alaska Satellite 

Facility) 

FDR Flow direction 90 m resolution Derived from the DEM data using the 

ESRI ArcGIS ArcHydro toolbox 

FAC Flow accumulation 90 m resolution Derived from the DEM data using the 

ESRI ArcGISArcHydro toolbox 

LANDCOVER Land surface cover Aggregated to 90 m resolution GlobeLand30-2010 (Chen et al., 

2015) 

SOIL Soil texture map USDA soil code from 1 to 12 

with 90 m resolution 

Harmonized World Soil Database 

(HWSD v1.2, (Wieder et al., 2014)) 
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and the Natural Resources 

Conservation Service (NRCS) of the 

US Department of Agriculture 

TWI Topographic wetness 

index needed in soil 

moisture downscaling 

module 

Derived using ESRI ArcGIS 

and the ArcHydro toolbox 

based on the slope and the 

upstream contributing area; 

Both 90 m and 12.5 m 

resolution are necessary 

NA 

 385 

Table 3: Description of model parameters used in iHydroSlide3D v1.0. 

Parameters Description Value/resolution Source 

TimeStep Time step of the simulation (s) Defined by user NA 

ISA Percentage impervious area (%) Computed based on land cover map NA 

Ksat Saturated hydraulic conductivity 

(mmh-1) 

Derived from soil texture map NA 

WM Available water capacity (mm) Computed from topography and 

soil texture 

Wang et al. (2020) 

b Exponent of the infiltration curve Determined by soil texture Flamig et al. (2020) 

Ncores Number of parallel computational 

cores 

Defined by user and limited by 

hardware 

NA 

Landslide

Density 

Density of the random ellipsoid 

over the area 

Defined in Eq. (31) and chosen as a 

appropriate after testing 

Refer to Mergili et al. 

(2014a) 

TotalTile Number of divisions of study area Defined by user and should refer to 

Ncores 

NA 

MAXae The maximum length of a random 

ellipsoid (m) 

200  Landslide inventory 

MINae The minimum length of a random 

ellipsoid (m) 

50 Landslide inventory 

MAXbe The maximum width of a random 

ellipsoid (m) 

150 Landslide inventory 

MINbe The minimum width of a random 

ellipsoid (m) 

50 Landslide inventory 
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4 Results 

4.1 Evaluation of the soil moisture downscaling method 

We first evaluated the impacts and effectiveness of the soil moisture downscaling method, which provides more detailed soil 

water information (groundwater) for landslide modelling, and may directly impact the stability assessments. Compared to the 390 

infinite landslide model (Wang et al., 2020), the 3D model can fully consider the grid cells encompassed by an assumed 

landslide boundary (elliptical outline, see in Fig. 6). The cells were chosen from the 90-m resolution datasets with different 

antecedent soil water amount, of which the single value was converted to a range among over the 7 × 7 map with a 12.5-m 

spatial resolution (Fig. 6). The long axis (𝑎𝑒) of the tested ellipse reaches the diagonal of the square as far as possible to 

encompass more soil columns, and the potential depth of a failure is set to 2 m. The downscaled soil moisture values are 395 

irregularly distributed (Fig. 6) because they are contributed by several factors with local slope angle as the major one (Wang 

et al., 2020). As a consequence, the factor of safety was computed to a different value when using the single or composed soil 

moisture values for an assumed landslide (Table 4). In these four test sites, the risks are computed as the worse case situations. 

However, in reality, such effects will be more uncertain due to the fact that the location and geometry of a landslide and 

associated hydrological conditions are all variable during the modelling. We argue that this downscaling method is necessary 400 

when we perform the iHydroSlide3D v1.0 in a cross-scale manner. 

 

Figure 6: Soil moisture downscaling results from a coarser resolution (90 m) to a finer resolution (12.5 m). (a)~(d) are four grid cells 

selected from the 90-m resolution map. The ellipse is the assumed landslide boundary and encompasses the grid cells with the 12.5 

m resolution. 405 

Table 4: Impacts of soil moisture downscaling on the potential slope failures in terms of the computed FS value. 

Test 

cases 

Original soil moisture 

(𝑚3/𝑚3) 

Downscaled soil moisture 

(𝑚3/𝑚3) 

Original FS FS from downscaled 

soil moisture 

1 71.9% 66.3%~83.6% 1.65 1.97 

2 77.5% 71.2%~84.5% 1.45 1.81 

3 71.6% 62.6%~86.2% 1.96 2.35 

4 75.3% 68.3%~87.3% 1.46 1.78 
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4.2 Testing landslide density 

The model requires an appropriate user-defined landslide density that is highly related to model computation efficiency. This 

value is determined to satisfy the convergence of the results over the study area and, meanwhile, an acceptable level of the 

running time. Similar work has been done in the previous research (Mergili et al., 2014b) and, equally important, here we 410 

further study the relationship between the tile size and random ellipsoid density required. We carried out the convergence tests 

for three different sizes of a divided tile: 20 × 20, 50 × 50, and 100 × 100 (number of grid cells). For each scenario, we 

increased the 𝑑s (see in Eq. (31)) value and compared the spatial pattern with the previous 𝑑s step. Two computational targets, 

the cumulative changed area over the entire region (∑changed pixels area) and cumulative changed 𝐹𝑆 multiplied by area 

(△ FSR × area), were used to evaluate the quantity of the convergence results (Mergili et al., 2014b). The total changed pixels 415 

area is easier to satisfy the convergence condition, i.e. all pixels have been assigned relatively invariant value of 𝐹𝑆, while 

another target is strongly affected by the area of the tile (Fig. 7). In general, all the scenarios have similar convergence processes 

in term of ∑changed pixels area (around the 500 in Fig. 7). △ FSR × area is more difficult to converge with the increase of 

the total area because this cumulative value is closely related the total number of the cells. We note that there exists no 

theoretical value of landslide density due to the fact that the generation of the potential landslide is totally random. Strictly 420 

speaking, 𝑑𝑠 = ∞ will be an optimum value; however, there will always be a trade-off between the quality and efficiency of 

the calculation. Further, the increase for overall quality of the prediction cannot be found with a larger adopted density when 

the ∑changed pixels area has converged, which in turn, can significantly increase the computational burden (Mergili et al., 

2014a). Besides, the density is mainly determined by constraints for the randomization of ellipsoid dimensions, for which the 

value would be set based on necessary tests if the model is applied to a new area. For the application in this study area, we 425 

consider 𝑑𝑠 = 500 a sufficiently reasonable approximation. 
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Figure 7: Landslide density tests for tiles with (a) 20 × 20, (b) 50 × 50, and (c) 100 × 100 grid cells. The total areas for the three 

scenarios are also presented. Two targets are computed during an interval of △ 𝒅𝐬 = 𝟏.  

4.3 Characteristics of rainfall and flood events 430 

Provided the essential parameters and datasets are appropriately prepared for iHydroSlide3D v1.0, we choose June 20, 00:00 

to July 15, 00:00 as the simulation period, which is defined by two factors: (i) the period must include the main rainstorm 

triggering the flood and slope failures; and (ii) the period should be longer than the observation period to exclude the effect of 

initial conditions (Zhang et al., 2016;Wang et al., 2020). As illustrated in Fig. 8, the rainstorm started around July 4, 00:00 and 

reached the peak rate (exceeded 25 mm/h) within 5 hours, and lasted for about a day across the region. The peak discharge 435 

was observed a few hours after the peak-rainfall moment, reaching a value close to 1000 m3/s. The comparison between the 

modeled and observed discharge shows a generally good agreement with Bias=37.9%, NSEC=0.77, and CC=0.93, respectively 

(Fig. 8). The slightly large bias implies there is likely some uncertainty in routing or flow concentration processes depicted by 

the hydrological module in iHydroSlide3D v1.0. Moreover, the model behaves sensitive to the rainfall data (before July 4, 

02:00 and after July 7, 14:00). As a result, uncertainty in the rainfall data may contribute to the bias in the simulated stream 440 

flow. Nevertheless, the above results indicate that the iHydroSlide3D v1.0 is generally capable of simulating the flood events 

and runoff processes when the model is calibrated. 
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Figure 8: Basin-average rainfall rates and modeled hydrographs against the observed streamflow. 

4.4 Evolution of landslide risk responding to hydrological process 445 

4.4.1 Soil moisture and factor of safety 

The evolutions of the soil moisture and landslide susceptibility are illustrated in Fig. 9. There is a small part of this region 

being predicted as unstable areas (Fig. 9a) in the beginning of the storm and can be explained by (i) the effect of antecedent 

rainfall or initial hydrological conditions, and (ii) some grid cells that have steep slopes and are extremely unstable (Arnone et 

al., 2011;Aristizábal et al., 2016). These grid cells, generally located on very steep slopes, are more easily calculated as unstable 450 

areas in terms of 𝐹𝑆 value according to Eq. (19), which may bring some overestimation in the iHydroSlide3D v1.0. However, 

we have attempted to avoid such weakness by using wetting front concept with regard to slope failure depth (Eq. (26)), which 

is subject to hydrologic infiltration process and remains very small at the early stage of the rainfall event. As a result, a very 

small portion is estimated (Fig. 9a). The soil moisture drastically increases when the rainstorm starts, particularly for the 

computational elements (streaks in Fig. 9a and b) belonging to main routing channels of the drainage network. Based on the 455 

cell-to-cell flow routing rule, at the early stage of the storm, these cells have more chances to experience re-infiltration of 

excess surface runoff from upstream cells. As a consequence, they are more likely to reach a saturated condition. This 

phenomenon emphasizes the contribution of topography to the evolution of soil moisture at the early stage of a rainstorm, 

when the saturated hydraulic conductivity is relatively similar. In accordance with the soil moisture, more conditional unstable 

grid cells are predicted compared to the spatial pattern before rainfall starts. Soil moisture and landslide risk still continue to 460 

increase 3 hours later and after the rainstorm reaches its peak; as a result, most of the study area is fully saturated and unstable 

cells are substantially increased (Fig. 9c). Different from the early stage, the excess portion of rainfall cannot effectively be 

absorbed by soil anymore but contributes to runoff instead, leading to the flood along the river channel (Fig. 8). No significant 

difference can be observed between Fig. 9c and d, as the water amount of the rainfall has exceeded the infiltration demand and 

water capacity. 465 
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Figure 9: Spatiotemporal evolutions of the soil wetness (i.e., degree of saturation) and factor of safety. (a)~(d) are four moments that 

span the complete rainfall event.  

4.4.2 Probability of failure 

The model estimates the probability of failure for each grid cell due to the random operation of potential landslide generation 470 

(Sect. 2.7), although soil properties and hydrological conditions are deterministic. The original unstable areas were further re-

classified to a different degree of probability (Fig. 10). We specifically divided the risk zones in terms of the 𝑃𝐹  values 

referring to the available classification (Lizárraga and Buscarnera, 2020;Vandromme et al., 2020): low (0 < 𝑃𝐹 < 5%), 

moderate (5% < 𝑃𝐹 < 30%), high (30% < 𝑃𝐹 < 60%), and very high (𝑃𝐹 > 60%). As shown in Fig. 10a, most of the 

unconditional unstable areas fell in zones of low and moderate susceptibility whilst the others were estimated as the risks of 475 

high or very high. The former grid cells (e.g., inset 2 in Fig. 10), affected by the cell with a steep slope, might be computed as 

unstable because iHydroSlide3D v1.0 assesses the slope stability using the 3D landslide model (Eq. (19)) and then outputs the 

minimum 𝐹𝑆 after random tests. In this work, relying on the 𝑃𝐹 classification, we can infer there are only a few steep grid 

cells (includes themselves) near the grid cells with small values of 𝑃𝐹, at least they are attenuated by the flat terrain. On the 

other side, for the grid cells with large 𝑃𝐹 values (e.g., inset 1 in Fig. 10, zones of high or very high), the local topography is 480 

more likely to be continuous steep slopes that can be repeatedly calculated as unstable and thus cause larger 𝑃𝐹 values (Eq. 

28). However, very few landslides are observed in the areas with steep slopes (Fig. 9 and 10). These areas may be covered by 

no or very thin colluvium or regolith; under this circumstance, soil depth tends to be negatively related to slope angle according 

to field survey or available soil thickness models (Ho et al., 2012;Lanni et al., 2012;Alvioli and Baum, 2016;Tran et al., 2018). 

In this way, hazards like rockfall or avalanche are more expected instead of rainfall-induced landslides for these areas with 485 

extremely steep slope angles. Spatiotemporal evolution of the 𝑃𝐹 value shows that the probabilistic approach is capable of not 

only identifying the stable or unstable areas but also monitoring the unstable area in a more reliable and informative way. 
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Compared to the binary assessment (stable & unstable), this method can help to better understand the relationship of landslide 

risk with local topography and dynamic hydrological conditions. 

iHydroSlide3D v1.0 depicted the evolutions of unstable area and all risk zones (in percent of the whole region) 490 

introduced above over the computational time (curves in Fig. 11). These two areas are controlled by the patterns of 𝐹𝑆 and 

𝑃𝐹, respectively. Overall, the unstable area holds its leading position during the complete rainstorm. More specifically, 𝐹𝑆 

values respond more dramatically to the rainfall event than 𝑃𝐹 values, which makes the unstable area increase more rapidly at 

the peak stage of the rainfall. This is not surprising because changing the value of 𝑃𝐹 should obey stricter rules (Eqs. (27) and 

(28)) and experience repeatedly random tests. Among the various classes of the probability, the percent area and sensitivity to 495 

rainfall decrease with increasing 𝑃𝐹-class value (see in Fig. 11). At the early stage, the unconditional unstable area is computed 

less than 5%, followed by percent area according to the 𝑃𝐹 values, particularly for 𝑃𝐹 > 60% (close to zero, precisely 0.12%). 

At the end of the rainfall (the soil is nearly fully saturated and the curves are steady), the percent area with 𝑃𝐹 > 5% is about 

10% less than the total unstable area, followed by the other zones of risk. A slight increase is observed for 𝑃𝐹 > 60% (zone 

of very high) and most of them are contributed by unconditional unstable, which is immune to hydrological process (Aristizábal 500 

et al., 2016). The rest of the curves lie between them. The spatiotemporal classification of the landslide probability, as well as 

the traditional binary state of slope stability, are meaningful for landslide risk delineation and monitoring the area with a 

specific failure probability of interest. 

 

Figure 10: Spatiotemporal evolutions of the landslide occurrence probability. (a)~(d) are four moments that span the complete 505 
rainfall event. 
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Figure 11: Evolution of percent area computed as unstable or various failure probabilities as the rainfall continues. 

4.5 Spatial performance of model 

We evaluated the spatial performance of the iHydroSlide3D v1.0 during the study period as presented in Table 5. We also 510 

compare our model with the previous coupled model CRESLIDE, of which the infinite slope stability is adopted (Fig. 12). 

Results show that 33 out of 54 landslides were successfully predicted, falling into the area with 𝐹𝑆 < 1 and 𝑃𝐹 > 1. For the 

zones of landslide risk, most of the failures (reaches 53.7%) are observed in low and moderate risk zones, whilst the remainder 

are in the zones with high and very high risks. The value of  %𝐿𝑅𝑐𝑙𝑎𝑠𝑠 index is evaluated as 82.91% when using factor of 

safety for prediction, and the same index reaches 94.05% when we add up the values for all four risk zones. To be less 515 

conservative, the %𝐿𝑅𝑐𝑙𝑎𝑠𝑠 index for 𝑃𝐹 prediction can be 82.79%, which is close to the value by 𝐹𝑆 prediction, if we only 

consider the landslide risk from low to high. This result can be explained by the number of landslides per unit area, i.e., the 

binary approach would cover more extensive areas to contain the landslide locations. By adopting the probabilistic approach 

to identify classified risk zones, we can focus on the area of interest and make more targeted and efficient predictions. 

The ROC analysis demonstrates that the iHydroSlide3D v1.0 generally has a higher hit rate and lower false positive 520 

rate relative to the CRESLIDE model that is coupled with the infinite landslide model. The Area Under the ROC Curve (AUC) 

values for them are 0.77 and 0.72, respectively, suggesting that iHydroSlide3D v1.0 outperforms CRESLIDE in this case study. 

As mentioned in Sect. 2.3.2, the most significant difference between the two models is the assumption of landslide geometry. 

The 3D model takes the neighbouring cells into account and thus provides a comprehensive 𝐹𝑆 value (Eq. (19)), while the 

infinite models abruptly solve the limit equilibrium equation on a solo raster cell and are strongly conditioned by the local 525 

topography (Mergili et al., 2014b). This explains why the infinite-type models have a tendency to provide more conservative 

results (i.e., lower stability or worst situation) (Xie et al., 2006;Tran et al., 2018;Mergili et al., 2014b;Chakraborty and 

Goswami, 2016;He et al., 2021), indicated by higher false positive rates (e.g., 0.32 for CRESLIDE versus 0.20 for 

iHydroSlide3D when the threshold equals 1) in this study. 

 530 
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Table 5: Comparison of 𝑳𝑹𝒄𝒍𝒂𝒔𝒔 and %𝑳𝑹𝒄𝒍𝒂𝒔𝒔 obtained from FS and PF values. The unstable areas are further divided into 

several risk zones with regard to their PF values. 

FS class Number of 

events (𝑎) 

Ratio to total events 

(c =
𝑎

𝑏
) 

% predicted area 

(d =
𝑐𝑒𝑙𝑙𝑐𝑙𝑎𝑠𝑠

𝑐𝑒𝑙𝑙𝑡𝑜𝑡𝑎𝑙

) 

𝐿𝑅𝑐𝑙𝑎𝑠𝑠 

(e =
𝑐

𝑑
) 

 %𝐿𝑅𝑐𝑙𝑎𝑠𝑠 

(= 𝑒/𝑓) 

FS < 1 33 61.11 24.46 2.50 82.91 

FS > 1 21 38.89 75.54 0.51 17.09 

Total events  54 (𝑏) 100 100 3.01 (𝑓) 100 

𝑃𝐹 = 0 (Null) 21 38.89 75.54 0.51 5.95 

0 < 𝑃𝐹 < 5% (Low) 13 24.07 9.04 2.66 30.76 

5% < 𝑃𝐹 < 30% (Moderate)  16 29.63 9.6 3.09 35.66 

30% < 𝑃𝐹 < 60% (High)  3 5.56 3.92 1.42 16.37 

𝑃𝐹 > 60% (Very high) 1 1.85 1.9 0.97 11.26 

Total events 54 100 100 8.66 100 

 

 535 

Figure 12: ROC plot comparing slope-stability results from the CRESLIDE and iHydroSlide3D v1.0 models. The points on curves 

correspond to 𝑭𝑺 = 𝟏 for both models. The AUC values are also shown in the plot. 

4.6 Landslide hazard analysis 

The iHydroSlide3D v1.0 is capable of computing the extent (i.e., the area 𝐴𝐿 and volume 𝑉𝐿) of potential landslides, which is 

essential for landslide hazard assessment. Compared to the visual techniques (e.g., aerial photograph interpretation and high-540 

resolution imagery) or in-situ investigation, the model estimates the 𝐴𝐿 and 𝑉𝐿 in a physics-based manner and strongly depends 

on the restrictions of random ellipsoids. In this way, 𝐴𝐿 is simply determined by the number of encompassed raster cells, while 
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𝑉𝐿 is computed by the soil columns and the failure depth associated with hydrological infiltration (Eq. 26). Therefore, there 

exist common phenomena that the values of 𝑉𝐿 are more variable than that of the 𝐴𝐿, i.e., one unique 𝐴𝐿 may correspond to 

multiple 𝑉𝐿. Further, the adjacent cells may share the same value of 𝐴𝐿 and 𝑉𝐿 because they are possible to fall into the same 545 

potential landslide. In this work, we recorded and presented the max value of the 𝐴𝐿 and 𝑉𝐿 as the worst scenario across the 

unstable area (see in Fig. 13) after the sufficient random tests. Results show that most of the areas range from 4 × 104m2 to 

5 × 104m2, while the volumes are more variable with a maximum value of around 1.1 million m3. The relatively large value 

of 𝑉𝐿 may be resulted from (i) a relatively large 𝐴𝐿 that contains more soil columns or (ii) deep-seated landslides involved. It 

is worth noting that the areas with extremely large values of 𝑉𝐿 (Fig. 13b) are roughly overlapped by the areas with relatively 550 

large 𝑃𝐹 (Fig. 10d). This can be explained by that, in our pursuit of the minimum of the 𝐹𝑆, a relatively thick failure depth 

was adopted in these areas, which caused an overprediction for landslide areas (Ho et al., 2012). Although the maximum 

magnitudes (𝐴𝐿 and 𝑉𝐿) of landslide hazards provide more conservative assessments, we expect that they are acceptable in 

slope engineering assessment (Tran et al., 2018). 

Due to lack of historical documents for real 𝐴𝐿 and 𝑉𝐿 in this field, we evaluate the landslide hazard results by fitting 555 

the relationships of the 𝐴𝐿 and 𝑉𝐿 and comparing them with the existing relationships reported in previous literature. As the 

nature of these two geometrical properties introduced above, we did not collect all the values for each pixel. Here we prepared 

the fitted source into six data sets according to the combinations of 𝐴𝐿 and 𝑉𝐿 (source data in Table 6). All possible 𝑉𝐿 values 

referred to the cases with 𝑃𝐹𝑚𝑖𝑛 and 𝑃𝐹𝑚𝑎𝑥, and four risk zones. We further fitted these six sets by power law and counted the 

R-square number (see in Table 6). Moreover, as a comparison, we collected four available relationships from previous literature 560 

computed using field measurements in their study (Table 6, ID 7 to 10). We then plotted them by substituting the 𝐴𝐿 values in 

this work (See in Fig. 14). Obviously, relatively less data is plotted in Fig. 14a and b, which, as we have pointed above, shows 

all possible areas for potential landslides without duplicate value. The values of 𝑉𝐿  estimated with 𝑃𝐹𝑚𝑎𝑥  (Fig. 14b) are 

relatively larger than that with 𝑃𝐹𝑚𝑖𝑛  (Fig. 14a) because the deeper slip depth tends to obtain a smaller 𝐹𝑆, which in turn 

inevitably results in a larger volume of a failure. The fitted curves are close to the available equations in terms of trend, among 565 

which the Abele (1974) model overestimated the 𝑉𝐿 in cases with ID 1 and 2. The efficiency of the fitted equations is generally 

good in terms of 𝑅2, reaching 0.992. However, such a power model has low efficiency for cases of ID 3 to 6 with low 𝑅2 and 

abnormally wide confidence intervals. Although these cases adopt the unique combinations of 𝐴𝐿 and 𝑉𝐿, it is still very likely 

to accept the samples with identical 𝐴𝐿 and consequently get more dots in 𝐴𝐿~𝑉𝐿 graph (Fig. 14c, d, e, and f), which further 

pose hinders to fit them as functions (i.e., a binary relation between two sets that associates every element of the first set to 570 

exactly one element of the second set). In other words, they are regarded as sampling error when the power model is considered. 

We acknowledge that, in this work, we can only provide relatively ideal geometrical information (with regular and limited 

characteristics) in a mathematical manner, which is determined by cell size and random procedure. Even so, we appropriately 

consider the power models in the cases of ID 1 and 2 where unique values of 𝐴𝐿  are applied. We further note that such 

relationships are not only limited to the maximum and minimum 𝑃𝐹 value but also any value of interest on the users' side. For 575 
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those applications limited by field measurements, the method proposed here is expected to roughly assess the magnitude of 

landslide hazards. 

 

Figure 13: Spatial patterns of the max values of (a) 𝑨𝑳 and (b) 𝑽𝑳 for model-predicted landslides. 

Table 6: Relationships linking maximum landslide area 𝑨𝑳 to landslide volume 𝑽𝑳. 580 

ID Equation 𝐴𝐿𝑚𝑖𝑛(m2) 𝐴𝐿𝑚𝑎𝑥(m2) Source data used to fit 𝑅2 

1 𝑉𝐿 = 285.5 × 𝐴𝐿
0.687 5.47 × 103 9 × 104 Unique 𝐴𝐿 and 𝑉𝐿 with 𝑃𝐹𝑚𝑖𝑛  0.992 

2 𝑉𝐿 = 146.4 × 𝐴𝐿
0.766 5.47 × 103 9 × 104 Unique 𝐴𝐿 and 𝑉𝐿 with 𝑃𝐹max 0.992 

3 𝑉𝐿 = 26.727 × 𝐴𝐿
1.061 5.47 × 103 9 × 104 Unique combination of 𝐴𝐿  and 𝑉𝐿 

in the zone of low 

0.599 

4 𝑉𝐿 = 80.29 × 𝐴𝐿
0.842 7.19 × 103 8.83 × 104 Unique combination of 𝐴𝐿  and 𝑉𝐿 

in the zone of moderate 

0.184 

5 𝑉𝐿 = 513.4 × 𝐴𝐿
0.684 6.25 × 103 8.83 × 104 Unique combination of 𝐴𝐿  and 𝑉𝐿 

in the zone of high 

0.13 

6 𝑉𝐿 = 154.1 × 𝐴𝐿
0.806 6.25 × 103 8.58 × 104 Unique combination of 𝐴𝐿  and 𝑉𝐿 

in the zone of very high 

0.221 

7 𝑉𝐿 = 0.074 × 𝐴𝐿
1.450 2 × 100 1 × 109 Guzzetti et al. (2009)  

8 𝑉𝐿 = 0.39 × 𝐴𝐿
1.31 1 × 101 3 × 103 Imaizumi and Sidle (2007)  

9 𝑉𝐿 = 0.242 × 𝐴𝐿
1.307 2 × 105 6 × 107 Abele (1974)  

10 𝑉𝐿 = 12.273 × 𝐴𝐿
1.047 3 × 105 3.9 × 1010 Haflidason et al. (2005)  

Column 1 lists the equation number. Column 2 shows the fitted equations in this work (ID 1 to 6) and available equations (ID  

7 to 10) selected from previous literature. Columns 2 and 3 list the ranges of 𝐴𝐿 applied for equations; the data for ID 1 to 6 is  

https://doi.org/10.5194/gmd-2021-283
Preprint. Discussion started: 2 September 2021
c© Author(s) 2021. CC BY 4.0 License.



27 

 

from this work; data for ID 7 to 10 is from literature. Column 4 gives the data source. Column 5 lists the commonly statistical  

measure R-squared (𝑅2). 

 585 

Figure 14: Six sets of source data (ID 1 to 6 in Table 6) are plotted and fitted in this work. All available equations (ID 7 to 10 in Table 

6) are plotted by substituting the 𝑨𝑳 values in this work. Red zone shows 95% confidence intervals. 

5 Discussion and conclusions 

We have modified the 3D landslide model to make it applicable for more general situations (i. e., all possible soil moisture 

state). To this end, we incorporated the distributed hydrological model CREST to undertake the computational task of 590 

hydrological components, forming a new coupled hydrological-geotechnical model called iHydroSlide3D v1.0. The model is 

capable of assessing the spatiotemporal landslide susceptibility (𝐹𝑆 and 𝑃𝐹), performing hazard analysis (geometric properties 

of landslides, 𝐴𝐿  and 𝑉𝐿 ), and predicting flash floods driven by rainfall processes. Considering differential needs for 

computational resolutions by the hydrological and landslide modules, we embedded the soil downscaling method to seamlessly 

execute the code within such a sophisticated framework containing two resolutions datasets. For the purpose that the code is 595 

practicably performed in the case of large scale and, meanwhile, the computational time is at an acceptable level, we program 

the code in a parallel manner and run it on a multi-core machine. We then tested and evaluated the model in a region suffering 

recorded rainstorm and slope failures. 

Prior information on parameters is necessary for this model and need to be handled with the utmost care. As a matter 

of fact, most of the parameters are determined by available datasets and field records, while few of them are calibrated manually 600 

based on computational experimental tests. In particular, we want to point out that landslide density could significantly affect 

the output results and, even worse, a small value may yield meaningless results and unwanted consequences. Thus, the 

landslide density is necessary to be regularly tested when the code is applied for a new region. However, we would 

preliminarily recommend 𝑑𝑠 = 500 for a rough assessment as it has been tested in detail in this study and a study by Mergili 
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et al. (2014a). We conclude that the converged density value tends to be irrelevant to the tile area once the constraints of the 605 

landslide’s shape are determined. We also argue that the soil downscaling method is necessary when we run the hydrological 

and landslide modules at different resolutions, because the uneven soil moisture patterns exactly impact the slope stability 

assessment. In particular, the 3D stability model should sufficiently consider the spatial distribution of soil moisture within an 

objective slip surface. This is a typical difference when we adopt the downscaling method comparing to the infinite stability 

model (Wang et al., 2020). 610 

In this work, we have prepared the observed river streamflow from the gauge and the point-like landslide locations. 

Although we have gotten a generally good agreement with the observations in terms of discharge and similar efforts have been 

done in previous studies (He et al., 2016;Zhang et al., 2016;Wang et al., 2020), the results cannot directly prove that the soil 

moisture is accurately estimated, which is truly associated with slope stability, per se. Other soil moisture data through site 

measurement (Lepore et al., 2013) or satellite (Zhuo et al., 2019a;Zhuo et al., 2019b) can be used to further validate the model 615 

performance. However, field measurements are usually not available and even many boreholes can only cover some of the 

many grid cells in a large-scale region (Marin et al., 2021), making the representativeness of ground observations questionable. 

The observation from the satellite is useful for soil moisture in shallow depth, hindering the application for landslide predictions 

at a deep depth (Zhuo et al., 2019a). Therefore, we consider the soil moisture as an intermediate hydrological component, of 

which the spatial pattern is simulated at each time step. 620 

The model advantageously provides a spatiotemporal perspective for the evolution of hydrological processes, as well 

as the landslide assessments and hazards. Together with the random operation, the model can simultaneously assign the 

unstable grid cells with factor of safety and failure probability. We expect such a combination of landslide assessment analysis 

is effective and more targeted. Moreover, temporal monitoring of the process evolution is useful for dynamic management of 

unstable areas subject to rainfall events. The overall performance of the model is generally satisfactory based on the statistical 625 

metrics of both hydrological (Bias, NSEC, CC) and landslide aspects (%𝐿𝑅𝑐𝑙𝑎𝑠𝑠 , 𝑅𝑂𝐶 − 𝐴𝑈𝐶). We further recommend that 

the %𝐿𝑅𝑐𝑙𝑎𝑠𝑠 index can be appropriately used to evaluate the landslides within various zones of risk determined by 𝑃𝐹 ranges. 

Note that we did not distinguish the unconditional stable and unstable grid cells beforehand, although they can inherently occur 

in the landslide models built upon the limit equilibrium principle (Aristizábal et al., 2016). However, iHydroSlide3D v1.0 

defined the failure depth by adopting the wetting front concept that is subject to the infiltration process. The model, therefore, 630 

can better target the rainfall event and reasonably handles the hydrologic initial conditions. In addition, the results also indicate 

that the 3D landslide model can ameliorate the overprediction problem, known to be present in the infinite landslide models. 

In the present work, we produced the geometric properties of potential landslides; however, the verification of results 

is still limited by the available measured data (e.g. landslide scars used in Arnone et al. (2011)). Instead, we evaluated them 

with the fitted power-law equations, which, together with the available relationships in previous studies, are used as statistical 635 

tools for analysis of regional landslide magnitude. As a matter of fact, we haven’t unveiled the fundamental geotechnical 

mechanics of landslide in terms of 3D geometry of the sliding surface, which need be solved through field investigation. The 
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work we have done here is similar to that of Marchesini et al. (2009) based on the limit equilibrium method and iteration. What 

makes progress is that we perform the model in a large region and obtained more detailed results. 

Another limitation is the geotechnical parameters extracted from the available datasets. Determining their values in 640 

this way cannot consider geotechnical uncertainty due to inherent temporal and spatial variability of terrain materials (Hicks 

and Spencer, 2010;Griffiths et al., 2011;Mergili et al., 2014a). One way to overcome the problem is adopting the Monte Carlo 

approach, of which the examples can be found in literature (Raia et al., 2014;Mergili et al., 2014a;Vandromme et al., 2020). 

Such embedded probabilistic method, no doubt, will considerably bring additional computational burden. In addition, we 

associate the failure depth with the infiltration process in this work, neglecting the spatial distribution of soil thickness in a 645 

terrain, which shall be a subject of future studies by supplying different soil-thickness assumptions. 

 In summary, a new hydrological-geotechnical model, iHydroSlide3D v1.0, coupling a distributed hydrological model 

(CREST) and a three-dimensional slope stability model (3D landslide model), was described and tested in this study. The 

model is capable of simulating the spatiotemporal evolutions of hydrological components and landslide susceptibility and 

hazard. In order to coordinate the different resolution of datasets required for hydrological and landslide modules, the soil 650 

downscaling module is embedded to ensure that the code can be seamlessly executed. For efficiency, we program the code 

within a parallel framework and, together with the auxiliary efforts, make it possible to run in a large region. The model 

comprehensively presented the consequences of rainfall-triggered landslides at the watershed scale. With the evaluations from 

both hydrological and landslide aspects, we highlight the performance of iHydroSlide3D v1.0 on back-analysis and the 

potential for predicting cascading flood–landslide disasters. The produced zones of risk and landslide geometric properties are 655 

valuable for disaster prevention and risk management. The modelling system presented in this work is also designed as a 

framework and has the potential to adopt other hydrological or land surface model (LSM) schemes and landslide models as 

alternatives. Moreover, iHydroSlide3D v1.0 can be further improved by optimizing geotechnical parameters and adopting 

other soil-thickness assumptions. 
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Code and data availability. The source code to iHydroSlide3D v1.0 is available on GitHub at https://github.com/GuodingCh

en/iHydroSlide3D_v1.0/tree/v1.0  and on Zenodo at https://zenodo.org/record/4577536 with a DOI of http://doi.org/10.5281/

zenodo.4577536. The data of results displayed in this paper are provided, along with the plot code, on GitHub at https://githu

b.com/GuodingChen/Data-Plot_code/tree/Data&plot_code and on Zenodo at https://zenodo.org/record/4559938 with a DOI 

of http://doi.org/10.5281/zenodo.4559938. 665 
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