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Abstract. Forecasting flood–landslide cascading disasters in flood- and landslide-prone regions is an important topic within 

the scientific community. Existing hydrological-geotechnical models mainly employ infinite or static 3D stability model and 

very few models have incorporated the 3D landslide model into a distributed hydrological model. In this work, we modified a 

3D landslide model to account for slope stability under various soil wetness states and then coupled it with the Coupled Routing 15 

and Excess STorage (CREST) distributed hydrology model, forming a new modelling system called iHydroSlide3D v1.0. The 

model features the feasibility of applying flexibly different simulating resolutions for hydrological and slope stability 

submodules by embedding a soil moisture downscaling method Through embedding a soil moisture downscaling method, this 

model is able to model hydrological and slope stability submodules even at different resolutions. For a large-scale application, 

we paralleled the code and elaborated several computational strategies. The model produces a relatively comprehensive and 20 

reliable diagnosis for flood-landslide events, including (i) complete hydrological components (e.g., soil moisture and 

streamflow), (ii) a landslide susceptibility assessment (factor of safety and probability of occurrence), and (iii) a landslide 

hazard analysis (geometric properties of potential failures). We evaluated the plausibility of the model by testing it in a large 

and complex geographical area, the Yuehe River Basin, China, where we attempted to reproduce cascading flood–landslide 

events. The results are well verified at both hydrological and geotechnical levels. iHydroSlide3D v1.0 is therefore appropriately 25 

used as an innovative tool for assessing and predicting cascading flood–landslide events once the model is well calibrated. 

1 Introduction 

Landslides represent mass-movement processes in hilly and mountainous environments and pose significant threats to human 

lives and properties (Hong et al., 2006;He et al., 2016). Rainfall events characterized by short-duration but high-intensity 

precipitation can substantially change the soil state of unlithified soil mantle or regolith (Srivastava and Yeh, 1991;Iverson, 30 
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2000;Baum et al., 2010), and thus affect hillslope stability and cause flash floods in channels. Forecasting flood–landslide 

hazards and correspondingly evacuating people from hazardous zones in advance are widely regarded as a critical risk 

reduction strategy (Abraham et al., 2021). However, to date, it is still challenging to accurately and reasonably forecast the 

landslides due to the complex natural processes and the interweaving hydrological, geomorphic, and geotechnical mechanisms 

(Sidle and Bogaard, 2016;Guzzetti, 2021). 35 

Modelling of landslide susceptibility can be appropriately accomplished by adopting a variety of approaches, 

including statistical methods (Guzzetti et al., 2007;Segoni et al., 2018), physically-based models (Baum et al., 2010;He et al., 

2016;Zhang et al., 2016), and geotechnical approaches (van Westen et al., 2006) among others. Among them, the deterministic 

and physically-based models (PBMs) are popularly used for modelling the spatiotemporal susceptibility of landslides. Some 

of these approaches attempt to define a direct correlation between rainfall depth and slope stability under some simplified 40 

hypotheses (Montrasio and Valentino, 2008;Liao et al., 2010). These models are useful for regional landslide stability 

assessment but fail to reproduce cascading flood–landslide disasters in catchments. More recently, efforts have been devoted 

to coupling the sound hydrological models with more or less complex landslide models (Baum and Godt, 2010;Lepore et al., 

2013;He et al., 2016;Zhang et al., 2016;Aristizábal et al., 2016;Wang et al., 2020). Literatures hashave shown the contributions 

of hydrological-geotechnical models to real-world applications, such as improvements of disaster preparedness and hazard 45 

management in North Carolina, US (Zhang et al., 2016) and long-term vulnerability estimates in Shaanxi Province, China 

(Wang et al., 2020), to name a few. These models include physical representations of precipitation, evapotranspiration, 

infiltration with continuous soil moisture accounting, runoff routing, and the slope stability module. However, most of them 

rely on infinite slope stability models (i.e., one-dimensional models), which are based on the assumption of planar shallow 

failures and fail to capture the complexity of landslide geometry in many landscapes where shallow- and deep-seated landslides 50 

inherently coexist (Zêzere et al., 2005;Mergili et al., 2014b;Tran et al., 2018). To this end, three-dimensional slope stability 

models (3D models) are proposed to cope with more complex scenarios (Mergili et al., 2014a;Reid et al., 2015). 

Until now, as reviewed by Vandromme et al. (2020), the existing hazard software for the implementation of spatial 

PBMs mainly employs the one-dimensional (1D) or two-dimensional (2D) methods for slope stability calculation. The 3D 

approaches like Scoops3D (Reid et al., 2015) and r.slope.stability (Mergili et al., 2014a) are only practical for static conditions 55 

such as imposed water level and fully saturated soil state. Researchers have attempted to combine the hydrological part of the 

Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS, a well-known, publicly available software) 

model (Baum et al., 2010) with a 3D model and analyzed the hillslope stability on a regional scale (Tran et al., 2018;He et al., 

2021). As a matter of fact, to the best of our knowledge, there are still very few fully coupled hydrological-geotechnical models 

that are capable of performing in a large scale and producing 3D information of landslide disasters To date, there are still very 60 

few fully coupled hydrological-geotechnical models capable of performing at large scales and producing 3D information of 

landslide disasters. The progress is hindered by complicated model structures and considerable computational loads. The latter 

is inevitable and is an inherent feature for PBMs when the applications are conducted at a large scale using the 3D models 

(Zieher et al., 2017). Another problem is the selection of Another problem that will be involved is the selection of 



3 
 

computational spatial resolutions. Hydrological modelling with a coarse spatial resolution (e.g., 1 km resolution or coarser) 65 

but a large-scale coverage has been widely available with the increasing availability of meteorological and land surface data 

(Xue et al., 2013a;Chao et al., 2019;Chao et al., 2021). However, such a resolution is insufficient to capture the slope failures 

on hillslope scales, particularly for the landslide events that usually occur within an area of only tens or hundreds of square 

meters squared meters (Chen et al., 2017). Moreover, it is not wise to unlimitedly refine the mesh resolution of the hydrological 

model over a relatively large region. A strategy to tackle the differential needs for computational resolutions among the 70 

submodules is essential (Wang et al., 2020). 

A comprehensive assessment for landslide disasters is generally composed of three parts (Vandromme et al., 2020): 

a landslide inventory, a landslide susceptibility analysis (usually denotes factor of safety (𝐹𝑆) and probability of occurrence), 

and a landslide hazard analysis (i.e., magnitude that takes into account the area and volume of failure). Among them, the 

landslide hazard analysis is not very common as the ordinary 1D models cannot represent the geometric properties of landslides. 75 

Previous studies for this purpose are more inclined to use available landslide datasets (Guzzetti et al., 2009;Brunetti et al., 

2009;Klar et al., 2011) and advanced sensing and photogrammetric methods and techniques (e.g., aerial photograph 

interpretation, high-resolution imagery, and LiDAR interpretation) (Lacroix, 2016). However, in many cases, the landslide 

data are not well documented or insufficient data is unfavourable to support such analysis (e.g., only failure locations are 

recorded). Performing the landslide hazard analysis in such cases is necessary but difficult to implement. 80 

In this work, we developed an innovative physically-based integrated hydrological processes and 3D slope stability 

modelling framework, which is called the integrated Hydrological processes and 3-Dimensional landSlide prediction model 

(iHydroSlide3D v1.0), by coupling a distributed hydrological model with a newly-developed 3D geotechnical model. To 

alleviate the chronic contradiction of mesh resolutions required for hydrological and landslide simulations, we adopted the soil 

downscaling method to handle the soil moisture. The iHydroSlide3D v1.0 is built on a parallel computational design, allowing 85 

the code to run efficiently on a multi-core machine. The code was tested in a large and complex geographical area, the Yuehe 

River Basin of western China, where we attempted to reproduce cascading flood–landslide events. 

The paper is organized as follows. We first describe the basic theories of submodules and main features of the 

framework in Section 2. In addition, we also elaborate the strategies for model implementation in Section 2. In Section 3, we 

introduce a case study and associated materials required for model simulation and evaluation. Results are presented in Section 90 

4, which are mainly focused on the evolution processes of a historical storm triggered cascading flood-landslide events. Finally, 

we discuss the results and summarize the conclusions in Section 5. 

2 The integrated hydrological-geotechnical model framework: iHydroSlide3D v1.0 

2.1 Overall structure 

iHydroSlide3D v1.0 is a physically-based modelling framework that accounts for both hydrological and geotechnical processes. 95 

The model mainly includes the following modules: (i) a distributed hydrological model based on the Coupled Routing and 
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Excess Storage (CREST) model, (ii) a newly developed 3D landslide model, and (iii) a soil moisture downscaling method. 

The model can currently process two sets of data with different resolutions, allowing to simultaneously modellingmodel 

hydrological and geotechnical processes with different spatial resolutions. iHydroSlide3D v1.0 is coded in MATLAB and is 

capable of running in a parallel manner, currently supported by the Linux and Windows operating systems. Detailed 100 

descriptions of the model are presented as follows. 

2.2 Hydrological model: the Coupled Routing and Excess STorage Model 

A physically-based hydrological model, i.e., the Coupled Routing and Excess STorage (CREST) (Wang et al., 2011;Khan et 

al., 2011;Shen et al., 2016;Xue et al., 2013b) is adopted to simulate hydrological processes that trigger the rainstorm-induced 

landslide events. The CREST model was first developed by University of Oklahoma (http://hydro.ou.edu; assessed 23 105 

December 2014) and NASA SERVIR Project Team (www.servir.net; assessed 15 September 2016) and served for predictions 

of flash floods caused by rainfalls on its early-version stage (Wang et al., 2011). The model is further enhanced by considering 

the Multi-Radar Multi-Sensor (MRMS) forcing data and has been used for hydroclimatology studies such as extreme 

hydrological events (e.g., floods and droughts) (Zhang et al., 2015;Khan et al., 2011) and statistical and hydrological evaluation 

in ungauged basins (Xue et al., 2013a). The CREST is run in a distributed fashion via a cell-to-cell design concept, while the 110 

coupling between overland flow generation and routing scheme allows a realistic and detailed simulation of hydrological 

variables such as soil moisture, which plays a major role in determining the stability of a slope. More recently, several coupled 

hydrological-geotechnical models based on the CREST model such as CRESLIDE (He et al., 2016) and iCRESTRIGRS 

(Zhang et al., 2016) have emerged as the application evolves. These models, counting on the hydrological simulation of the 

CREST, have achieved their capability of back-calculation and/or prediction for rainfall-triggered landslides. As a consequence, 115 

CREST has been comprehensively and extensively evaluated regarding its hydrological simulation skill and its flexibility for 

coupling. A detailed description of the CREST can be found in Wang et al. (2011) and Xue et al. (2015). For better 

understanding the work of this study, it is still important to briefly review the principal theories of the CREST model here. 

The CREST is driven by precipitation and potential or actual evapotranspiration. The rainfall-runoff generation 

processes are computed at each cell, starting with accounting for its received precipitation at each time step (𝑃). After 𝑃 passes 120 

the canopy layer and deducts canopy interception, the excess precipitation (𝑃!"#$) then reaches the soil surface. A conceptual 

variable infiltration curve (VIC), originated from the Xinanjiang Model (Zhao, 1992) and later adopted by the VIC model 

(Liang et al., 1994), is used to further divide the 𝑃!"#$ into excess rain (𝑅) and infiltration water (𝐼). The CREST assumes that 

each soil column is capable to store a maximum water depth, which is regarded as the infiltration capacity (𝑖) and varies over 

an area in the following relationship: 125 

𝑖 = 𝑖% *1 − (1 − 𝑎)
&
'. , (1) 
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where the 𝑖% is the maximum infiltration capacity of a cell and strongly depends on the soil properties; 𝑎 is a fraction number 

of a grid cell and 𝑏 is an empirical shape parameter. Under this assumption, the amount of water available for excess rain (𝑅) 

and infiltration (𝐼) can be further expressed as: 

𝐼 = 1
𝑊( −𝑊, 𝑖 + 𝑃soil ≥ 𝑖(																																													

(𝑊( −𝑊) +𝑊( ⋅ *1 −
𝑖 + 𝑃soil 

𝑖(
.
&)'

, 𝑖 + 𝑃soil < 𝑖(
, (2) 130 

𝑅 = 𝑃!"#$ − 𝐼, (3) 

where 𝑊% denotes the maximum water capacity of a cell; 𝑊 represents the total mean water of the three soil layers. 𝑅 can be 

further partitioned into overland and subsurface flows by comparing 𝑃!"#$ to the infiltration rate of the first layer (𝐾), which is 

closely related to the soil saturated hydraulic conductivity (𝐾!*+). Then CREST adopts the multi-linear reservoir method to 

simulate the cell-to-cell routing of overland and subsurface runoff at each time step. The model can better take into account 135 

the interaction between the surface and subsurface flows by coupling the runoff-generation process and the routing scheme 

(Wang et al., 2011). 

2.3 3D stability model based on sliding surface 

The 3D slope-stability analysis model was originally derived to describe the characteristics of a potential failure (Hovland, 

1979). This model has no iteration procedure but computes the 𝐹𝑆 directly compared to the slope-stability models established 140 

based on Bishop (1955) and Janbu et al. (1956). Embedded in geographic information systems (GIS), the model composes a 

slope failure with column units, expressed as grid cells in GIS (software like 3DSlopeGIS) (Xie et al., 2003;Xie et al., 2004;Xie 

et al., 2006). More recently, progress has been made in a more sophisticated software r.slope.stability (Mergili et al., 

2014a;Mergili et al., 2014b) that have the capacity to perform on a regional scale via a parallel computational technique. More 

importantly, the 3D slope-stability model demonstrates to be effective on both shallow and deep landslides, thus better behaves 145 

as a robust geotechnical tool and has a potential for wide applications (Zieher et al., 2017;Palacio Cordoba et al., 2020). 

However, to implement on a large scale, the previous versions of the 3D stability model treat the hydrological 

component (e.g., transient soil moisture and water level) as static or imposed inputs, failing to consider the time-dependent 

hydrological processes (Mergili et al., 2014b;Mergili et al., 2014a). In this work, the model is extended to take into account 

spatiotemporal variations of water fluxes and storages on regular grids by introducing the hydrological module. Following an 150 

assumption of being ellipsoidal or truncated in shape, the potential slope failures are randomly generated over a whole study 

region. When applied in a regional assessment, the theory of the model can be mainly divided into the following two parts. 
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Figure 1: Coordinate systems involved in an arbitrary ellipsoid. 

2.3.1 Coordinate transformation and geometric derivation 155 

Three levels of the coordinate system involved in this model are (i) GIS coordinate system (𝑥�,�𝑦�,�𝑧) over the whole study area 

(Fig. 1), (ii) Cartesian coordinate (𝑥�′,�𝑦�′,�𝑧�′) of each potential failure, and (iii) ellipsoid coordinate system (𝑥�″,�𝑦�″,�𝑧�″) along the 

direction of the steepest slope in a single ellipsoid. The center of each ellipsoid (𝑥, �,�𝑦, �,�𝑧,) is randomly generated within the 

study area, while the GIS coordinate system is simultaneously transformed to the Cartesian coordinate from a ground 

perspective (Mergili et al., 2014b): 160 

𝑥- = (𝑥�−�𝑥.)cos𝛼 + (𝑦�−�𝑦.)sin𝛼, (4) 

𝑦- = (𝑦�−�𝑦.)cos𝛼 − (𝑥�−�𝑥.)sin𝛼, (5) 

where 𝛼 is the main dip direction of the ellipsoid; 𝑥/ is easily derived as 𝑥-- = 0!

."!1
 (𝛽 is the main inclination of the ellipsoid, 

see in Fig. 2); 𝑦/  is identical to the 𝑦-  axis; 𝑧-  is identical to the 𝑧  axis (Fig. 1). Then we need to filter the grid cells 

encompassed by this random ellipsoid, meeting the following condition: 165 

𝑥-

𝑎23
+
𝑦-

𝑏23
⩽ 1, (6) 

where 𝑎2  and 𝑏2  are half axes of the ellipsoid, following the 𝑥/  and 𝑦/  axes, respectively. These geometric lengths are 

randomly generated within user-defined ranges. To facilitate the derivation, we give a value of another half axes of the ellipsoid 

(𝑐2) beforehand, which , in fact, is highly dependent on failure depth and should be reconsidered in following sections. Hence, 

with regard to an ideal ellipsoid, the above variables need to satisfy the basic equation of the ellipsoid: 170 

(𝑥-- + Δ𝑥--)3

𝑎43
+
𝑦--3

𝑏43
+

Δ𝑥-3

𝑐43(tan	 𝛽)3
= 1. (7) 

By solving the intermediate variable ∆𝑥--, the 𝑧/ can be computed as: 

𝑧/ =
Δ𝑥--

tan𝛽 .
(8) 
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Figure 2: Typical longitudinal section of an ellipsoid used as slip surface in iHydroSlide3D v1.0: (a) overall features involved in a 175 
potential failure, and (b) forces acting at each column considering the groundwater effect.  

Finally, we transformed it back into the GIS coordinate system: 

𝑧slip = 𝑧. +
(𝑧-- − 𝑥- sin 𝛽)

cos 𝛽 , (9) 

where 𝑧!$#5 is the elevation of the considered cell in the ellipsoid. Hereto we get all coordinates once a random ellipsoid is 

generated. We further note that such procedure is required for each random ellipsoid (i.e., each random loop) and thus is time-180 

consuming particularly in a regional map system. The countermeasures will be introduced in the following sections. 

2.3.2 Basic hydrogeological mechanics 

This study adopted a conceptual parameter 𝑚 to better simulate the soil moisture of each considered column in a random 

ellipsoid (see in Fig. 2). The parameter originated from Montrasio and Valentino (2008) and were later represented in further 

applications (Liao et al., 2010;He et al., 2016). The parameter 𝑚 is a distributed value ranging from 0 to 1 and is controlled by 185 

hydrologic mechanisms (Fig. 2), which further impacts the matric suction and results in occurrences of landslides (Baum et 

al., 2010). More specifically, the apparent cohesion is strongly dependent on matric suction, which in turn is related to the 

degree of saturation of the soil column (𝑆6) (Montrasio and Valentino, 2008): 

𝑐7(𝑡) = 𝛿 ⋅ 𝑆6 ⋅ (1 − 𝑆6)8 ⋅ (1 −𝑚)9 , (10) 

where 𝛿 is a soil-type parameter and mainly refers to the peak shear stress at a failure layer; 𝛼 and 𝜆 are numerical parameters 190 

to estimate the extreme points of the shear strength curve versus 𝑆6 and versus the degree of saturation of the soil, respectively. 

Then the total cohesion (𝐶-) is computed as follow: 

𝐶- = 𝑐- + 𝑐7(𝑡), (11) 

where 𝑐- is effective cohesion depending on soil type and is treated as a constant value associated with each grid cell. The 

failures may take place in both partially and fully saturated scenarios (Lu and Likos, 2006;Lu and Godt, 2013); the latter should 195 

take the seepage force (𝑆) into account (Collins and Znidarcic, 2004). Considering the inter-slice forces in this model, the 
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seepage force is computed according to the hydraulic gradient, reflecting a more general situation in the hillslope (King, 

1989;Mergili et al., 2014b). Note that the seepage force is only considered in soil columns satisfying 𝑚 > 0. Besides, the grid 

cell that has a low elevation is excluded from the considered ellipsoid by comparing  𝑧!$#5 and 𝑧,: 

𝐷, = 𝑧, − 𝑧!$#5. (12) 200 

For the soil column satisfying both of the conditions: 𝑚 > 0	and 	𝐷, > 0, the seepage force can be approximated by 

the slope (𝛽:) and aspect (𝛼:) of the groundwater table (Fig. 2), acting in the direction of the hydraulic gradient (Mergili et 

al., 2014b;Mergili et al., 2014a): 

𝑆 = 𝛾; ⋅ 𝑑𝑥 ⋅ 𝑑𝑦 ⋅ 𝑚𝐻 ⋅ sin𝛽: , (13) 

where 𝛾; is the specific weight of water; 𝑑𝑥 and 𝑑𝑦 are the cell size, depending on the resolution of input data. To further 205 

transfer the seepage force from hydraulic gradient to sliding direction, 𝑆 is first divided into horizontal (𝑆<) and vertical (𝑆=) 

components (Fig. 2): 

𝑆< = 𝑆cos𝛽;		and	𝑆= = 𝑆sin𝛽;. (14) 

𝑆= is irrelevant to the direction, while 𝑆< needs to be further projected according to the dip direction of grid column (𝛼.) and 

the main inclination direction of the slip surface given by: 210 

𝑆.< = 𝑆<cos(𝛼; �−�𝛼.)	and	𝑆(< = 𝑆<cos(𝛼; �−�𝛼). (15) 

Conforming to the orthogonality rule, the projected seepage force (𝑆., 𝑆() and their vertical angle (𝛽>" , 𝛽>#) can be 

expressed as: 

𝑆. = a𝑆=3 + 𝑆.<3 ; 𝑆( = a𝑆=3 + 𝑆(<3

cos 𝛽>. =
𝑆.<
𝑆.
; 	𝛽>( =

𝑆(<
𝑆(

. (16) 

The final expression of the seepage force acting on each grid column can be written as normal and slope-parallel components: 215 

𝑁! = 𝑆. sin(𝛽>. − 𝛽.) ;	𝑇! = 𝑆( cos(𝛽>( − 𝛽() . (17) 

The soil weight (𝐺-), considering the variant degree of saturation and under the condition of 𝐷, > 0, is derived as: 

𝐺- = 𝑑𝑥 ⋅ 𝑑𝑦 ⋅ [𝛾? �𝐷, �+�𝛾: �⋅�𝑚�𝐻�⋅�(𝑛�−�1)�+�𝛾: �(𝐷, �−�𝑚�𝐻)�𝑛�𝑆6], (18) 

where 𝛾? is the unit weight of the dry soil; 𝑛 and 𝑆6 represent the porosity and soil saturation degree, respectively. Based on 

the limited equilibrium condition, the model assesses the critical scenarios by calculating the 𝐹𝑆, which can be mechanically 220 

subject to the stabilizing and destabilizing actions. Summarizing the derivations above, the extended version of the 3D slope-

stability equation can be written as follow: 

𝐹𝑆 =
i [(𝐶- + 𝛿 ⋅ 𝑆6 ⋅ (1 − 𝑆6)8 ⋅ (1 −𝑚)9) ⋅ 𝐴 + (𝐺-cos	 𝛽. +𝑁@)tan	 𝜑], cos 𝛽(

∑ (𝐺- sin 𝛽( + 𝑇@) cos 𝛽(,
, (19) 

where 𝜑 is the friction angle; 𝛽. and 𝛽( denote the dip and apparent dip of the slip surface at a considered soil column, 

respectively; 𝐴 is the slip surface area of each column and can be computed as: 225 
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𝐴 = 𝑑𝑥 ⋅ 𝑑𝑦
a1 − (sin𝛽0A)3msin 𝛽BAn

3

cos 𝛽0A cos 𝛽BA
, (20) 

where 𝛽0A and 𝛽BA are apparent dips of x- and y-axis, respectively. The relationships between the apparent dips and main 

sliding direction assigned to each soil column can be expressed as (Xie et al., 2003): 

tan𝛽( = tan𝛽.|cos(𝛼. − 𝛼)|
tan𝛽CD = tan𝛽. sin 𝛼.
tan𝛽ED = tan𝛽. cos 𝛼.

. (21) 

The model diagnoses whether the landslide is stable or not by comparing the value of 𝐹𝑆 with a critical value that 230 

usually set to 1. At the same time, for each random ellipsoid, the volume and area of a failure can be approximated by: 

𝑉F = ∑𝐷, ⋅ 𝑑𝑥 ⋅ 𝑑𝑦, (22) 

𝐴F = ∑𝑑𝑥 ⋅ 𝑑𝑦. (23) 

 

It is worth noting that the model can serve in a stand-alone manner by directly imposing soil moisture and groundwater 235 

table. However, in a more practical sense, the landslide model is coupled with the hydrological model. 

2.4 Soil moisture downscaling method 

A near-conservative downscaling method of soil moisture (Droesen, 2016;Wang et al., 2020) is adopted here to link different-

resolution-based submodules in the iHydroSlide3D v1.0, i.e., the relatively coarse-resolution hydrological model and the fine-

resolution 3D slope-stability model. The method relates the soil moisture with the topographic wetness index (𝑇𝑊𝐼TWI) by 240 

proposing a conversion parameter, the wetness coefficient (𝐾;). The relationship between 𝐾; and 𝑇𝑊𝐼 at the coarse resolution 

(𝐾;,."*H!4 and 𝑇𝑊𝐼."*H!4) is first detected, and the concave and convex areas are also distinguished. Then this relation is used 

to calculate 𝐾; and 𝑇𝑊𝐼 at the fine resolution (𝐾;,I#J4 and 𝑇𝑊𝐼I#J4), which is further used to fix the soil moisture at fine 

resolution. Readers may refer to Wang et al. (2020) for more detailed descriptions. This method helps the hydrological module 

produce soil moisture with a higher resolution that can be seamlessly utilized by the landslide module. The method has 245 

demonstrated its effectiveness (Wang et al., 2020) and is necessary for a hydrogeological-type model to balance the tedious 

computational tasks and accuracy. 
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2.5 Coupling strategy and model implementation 

 
Figure 3: Flow chart illustrating the work process of the iHydroSlide3D v1.0 model. 250 

The iHydroSlide3D v1.0 mainly consists of three sub-modules: (i) hydrological model CREST, (ii) soil moisture downscaling 

method, and (iii) 3D landslide-stability model (Fig. 3). The CREST undertakes the complete computational tasks of hydrologic 

processes, including interception by vegetation, water infiltration, runoff generation, cell-to-cell routing, and re-infiltration on 

each grid cell in the course of excess surface runoff moving from upstream to downstream, of which the infiltration and re-

infiltration play the most important role on the coupled hydrology-slope stability processes. The landslide model inherits the 255 

hydrological variables from the hydrological model and acts as a slope-stability monitor. The complete simulation cycle is 

seamlessly facilitated by the downscaling module. To elucidate the implementation of the iHydroSlide3D v1.0 model, we 

present the logical framework in Fig. 3 and summarize the detailed coupling strategy in the following aspects: 

1. Instead of directly linking the soil moisture with rainfall intensity, the model takes the water loss into account due 

to the interception and evapotranspiration. The hydrological module helps to better simulate antecedent conditions such as soil 260 

moisture and cumulative infiltration. As a consequence, the parameter 𝑚 is updated as a spatiotemporal variable (𝑚K) (He et 

al., 2016): 

𝑚K =
𝑊K

𝑛𝐷K(1 − 𝑆6)
, (24) 

where 𝑊K is the mean water amount of the three soil layers on a given grid cell. 𝑆6 can be computed as: 
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𝑆6 =
𝑊K

𝑊%
. (25) 265 

𝐷K is the landslide’s initiation depth for various soil states and is largely impacted by soil heterogeneity and hydraulic properties 

(Lu and Godt, 2008). Therefore, 𝐷K is determined by infiltration processes at time 𝑡 (He et al., 2016): 

𝐷K = q
2𝐾@𝐻,𝑡
𝜃L − 𝜃M

, (26) 

where 𝐾@ is saturated hydraulic conductivity; 𝐻, is capillary pressure; 𝜃L is volumetric water content of the saturated soil; 𝜃M 

is initial water content of the soil. Note that the 𝑚K, 𝑆6, and 𝐷K are gridded values. 270 

2. We prepare two sets of data with different resolutions: a relatively coarser hydrological resolution and a finer 

landslide resolution. Once the soil moisture is calculated for all coarser grid cells, the soil moisture downscaling module is 

activated to calculate a new soil moisture map in a finer resolution to fit the spatial resolution of the landslide model 

(𝑆𝑀NEOH" → 𝑆𝑀P*JO). 

3. In each simulation time step, the model generates a large number of ellipsoidal tested landslides with random 275 

geometric center and ellipsoid length and width. The latter is constrained by the range of maximum and minimum values, 

which are determined from field investigation and regarded as the input parameters. Each random ellipsoid adopts maximum 

soil depth as another geometric length (𝑐2) among the encompassed cells (𝐷K = maxw𝐷,2QQ$ �,�𝐷,2QQ% �,�𝐷,2QQ& �,�⋯ y). The coordinate 

transformation and related geometric derivation are then tackled according to Sect. 2.3.1. Next, each tested landslide slip 

surface corresponds to a 𝐹𝑆 value, based on the mechanical analysis described in Sect. 2.3.2. 280 

4. Attributable to random strategy in the model architecture, any tested landslide will be possibly overlapped by 

another one, resulting in the confusing values of 𝐹𝑆 for each considered grid cell. In other words, each grid cell has a chance 

to be stable or unstable. For instance, as illustrated in Fig. 4, grid cell #a is estimated to be unstable in a tested landslide #3 but 

stable in the tested landslides #4 and #5. In this work, we assign the minimum value of 𝐹𝑆 (𝐹𝑆(#J, Fig. 4b) to each grid cell 

(Mergili et al., 2014b). Each FS calculation is treated as an independent event, the failure probability (𝑃𝐹, Fig. 4a) is determined 285 

by counting the failure tests in all possible outcomes: 

𝐹𝑆K = minw𝐹𝑆F$ , 𝐹𝑆F% , 𝐹𝑆F& , ⋯ y, (27) 

𝑃𝐹K =
∑𝑃𝐹RST&

∑𝑃𝐹RST& +∑𝑃𝐹RSU&
. (28) 

The model counts all possible values of 𝐹𝑆 and, based on a sufficiently large number of ellipsoids (reasonable density value, 

Eq. 31) and possible ellipsoid dimensions, determine the final values of 𝐹𝑆 and 𝑃𝐹 for each considered grid cell. Similarly, 290 

each grid cell belongs to a maximum value of volume and area of a failure:  

𝑉F%V0 = maxw𝑉F$ , 𝑉F% , 𝑉F& , ⋯ y, (29) 

𝐴F%V0 = maxw𝐴F$ , 𝐴F% , 𝐴F& , ⋯ y. (30) 
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The records of these values are only effective in the current simulation moment and will be reset as the simulation time moves 

forward. As the hydrological process evolves, the model is able to dynamically assess the slope stability and treats the slope-295 

stability assessment indices as variables. 

 
Figure 4: Cell-to-cell routing scheme and potential landslides generated across the grid in the iHydroSlide3D v1.0 model: (a) and (b) 
illustrate the definitions of 𝑷𝑭 and 𝑭𝑺 within the framework, respectively. 

We believe that the above variables will reach the computational convergence provided the number of tested ellipsoids 300 

is sufficient enough. As a requirement, the “density” of ellipsoids is recommended to reflect the total number over the study 

area (Mergili et al., 2014b): 

𝑑! = 𝑛
𝐴5
𝐴!

= 𝑛
𝜋m𝑎2|(*C + 𝑎2|(#Jnm𝑏2|%V0 + 𝑏2|%XLn𝑐+

16𝐴!
, (31) 

where 𝑛 is the chosen total number of tested landslide; 𝐴5 is average vertical projection of area of a single tested landslide; 𝐴! 

is the extent of the study area; 𝑎2|(*C, 𝑎2|(#J, 𝑏2|(*C, and 𝑏2|(#J are the upper and lower limits for randomization of ellipsoid 305 

length and width; 𝑐+ is a dimensionless correction factor and is set to the average cosine of the slope (Mergili et al., 2014a). 

Note that the 𝑑! is strongly related to constraints of the random length and width and resolution of the digital elevation model, 

for which should be tested and set to an appropriate value before meaningful application. We also acknowledge that the model 

outcomes the worst-case situation (𝐹𝑆(#J, 𝑉(*C, and 𝐴(*C), however, along with the probability of the failure (𝑃𝐹). 

2.6 Auxiliary computational strategy 310 

There are two main computational bottlenecks in the model, which causes a large computational burden: (i) the operation of 

coordination transformation described in Sect. 2.3.1 is required for each random ellipsoid and, even in a single simulation time, 

will be executed 𝑛 times (see in Eq. 31); (ii) the 3D slope stability model is inherently complicated and is also repeatedly 

calculated for 𝑛 times, leading to tedious computational tasks. To cope with the above computation-intensive problems, the 

following strategies are adopted in this work: 315 
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1. We use the smallest and variable "moving window" to just encompass a single ellipsoid being tested. Each ellipsoid 

can correspond to a small coordinate matrix, in which the coordination transform occurs, to avoid computing the entire study 

area. 

2. iHydroSlide3D v1.0 is built upon a parallel computing framework and has a capacity of running on multicore 

processors or computer clusters. The model also provides the option to call the local maximum or a user-defined number of 320 

cores up to the limit of the hardware. The model divides the study area into user-defined number of tiles and each of them is 

processed independently in parallel. All computing tasks need to be queued until there are free computing cores. The slope-

stability information is computed and counted for each tile and is stored in the computer memory. At the end of each simulation 

time step, the model combines all tiles and recalculates the overlapping part of the margin of each "moving window", and then 

outputs the final results. The model clears the computer memory after the procedure and repeats the above operations in the 325 

next simulation period. 

2.7 Model validation 

iHydroSlide3D v1.0 can be mainly evaluated on the hydrological and landslide event levels (Fig. 3). Streamflow observations 

from the local gauge stations are utilized for validation of the modeled discharge. The statistical metrics such as Nash–Sutcliffe 

coefficient of efficiency (NSCE), Pearson correlation coefficient (CC), and relative bias are computed to measure the model 330 

performance. Furthermore, more than a single gauge station is necessary when the very large scale or multiple basins are 

involved. We also expect that the hydrologic process can be further calibrated by soil moisture data if the measurements are 

available, since soil moisture is more related to slope stability and thus is recommended (Lepore et al., 2013). To validate the 

model’s predicative capability for landslides, in situ measurements (e.g.,	𝐿,W, V, and 𝐴 of failures) will be ideal data for model 

validation and refinement. Such data not only serve for evaluation but also provide more hints for the constraint of random 335 

procedure and model preparation. However, in most cases, only point-like landslides are available for assessing the 

performance of initiation location prediction. Two existing synthetic indices %𝐿𝑅,QV@@ (Park et al., 2013;Tran et al., 2018) and 

Receiver Operating Characteristic (ROC) curve (Fawcett, 2006) are used for measure the model performance. Lack of the 

specific time for all landslide occurrences, we evaluated the model performance in the worst case of the hydrological conditions. 

In another word, we would consider a successful prediction if the recorded landslide sites were estimated as failures during 340 

the complete rainfall event.  

2.8 Model inputs and outputs 

The model inputs can be summarized into four types (given in Table 1): meteorological forcing data, land surface feature data, 

simulation parameters, and calibration/verification data. The detailed description, value/resolution, and source can be found in 

Sect. 3. The abbreviations of input data correspond the file name in simulating folders, helping users quickly identify and 345 

prepare necessary documents. The output variables include all typical hydrological components (e.g., overland runoff, soil 

moisture, and infiltration information) and landslide assessments (𝐹𝑆, 𝑃𝐹, 𝑉F , and	𝐴F). Note that model output is controlled by 
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a user-defined "GlobalControlFile”, and the components are thus selected based on the interest of the user. The model calls 

for two sets of topographic data (see in Sect. 2.5) and all gridded data are either downscaled or aggregated to an objective 

spatial resolution to ensure the forcing and auxiliary data matching with each other. iHydroSlide3D v1.0 currently supports 350 

several different options for file formats (ASCII, TIFF, and TXT) and map projections, of which the Geographic Tagged Image 

File Format (GeoTIFF) is preferred for its distinct advantage of containing native compression capabilities, making the file 

sizes smaller. 
Table 1: Overview of inputs datasets needed in iHydroSlide3D v1.0 

Input Datasets Derived datasets/parameters 

Topographic Digital elevation model (DEM) Flow direction (FDR) 

Flow accumulation (FAC) 

Topographic wetness index (TWI) 

Land cover (LANDCOVER) Land surface cover Percentage impervious area (ISA) 

Soil texture (SOIL) Soil lookup table All soil-related parameters 

Forcing data Precipitation (Rain) and evapotranspiration 

(Pet) data 

NA 

Simulation parameters Previous literature, documents, and calibration 

results 

NA 

Calibration/verification data Recorded floods and landslides NA 

3 Materials and model setup 355 

We test the iHydroSlide3D v1.0 code in the Yuehe River Basin, Shaanxi Province, China (Fig. 5). The basin has an elevation 

between 270 to 2700 m a.s.l. and covers a total area of 1100 km3. The terrain in this basin is characterized by steep hills, 

gullies, and valleys, while its flood season is usually accompanied by heavy and frequent rainfall. As a result, this basin is 

highly susceptible to slope instability and sliding (Zhang et al., 2019;Wang et al., 2020). In this area, 54 slope failure locations 

were reported during a rainstorm from July 3th3rd to 4th in 2012 (have no more specific time record). In addition, the discharge 360 

of the flash flood was also observed at the outlet of the basin. 

Hourly precipitation data were provided by China Meteorological Administration (CMA) based on the observations 

of gauge stations and were interpolated into a spatial resolution of 3 arc sec (~ 90 m). The potential evapotranspiration (PET) 

data were derived from Global Land Data Assimilation System (GLDAS). The 3-h, 0.25° PET data were first downscaled to 

a resolution of 3'' using bilinear interpolation and further downscaled to an hourly scale using linear interpolation. Two different 365 

resolutions of DEM (90 m and 12.5 m) from the NASA Shuttle Radar Topography Mission (SRTM) Version 3.0 (SRTM3) 

DEM and Advanced Land Observing Satellite (ALOS) DEM are used for hydrological and landslide modelling (introduced in 

Sect. 2.5), respectively. The flow direction (FDR) and flow accumulation maps (FAC) are necessary for hydrological 
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simulation and can be derived from the DEM map. The slope angle map is optional for hydrological modelling but required 

for landslide modelling, which can be directly computed through a built-in slope angle calculation function in iHydroSlide3D 370 

v1.0. The TWI data were derived using the ESRI ArcGIS and its ArcHydro toolbox. The land cover data were derived from 

the 30m GlobeLand30-2010 data (Chen et al., 2015). Soil texture was classified into the 12 United States Department of 

Agriculture (USDA) soil texture types from the Harmonized World Soil Database (HWSD v1.2) (Wieder et al., 2014) based 

on a lookup table (Table 2) shared by both hydrological and landslide modules. 

The parameters used for this model are largely related to a priori map of soil information and have been generated 375 

by Wang et al. (2020) and Zhang et al. (2016). 𝑊% corresponds to available water capacity between field capacity and wilting 

point (Table 2) and is distributed according to both topography and soil texture (Yao et al., 2012;Wang et al., 2020). Saturated 

hydraulic conductivity (𝑘@) strongly depends on the soil type and is determined through the pedotransfer look-up table (Table 

2). Impervious surface area (ISA) can obviously affect the hydrological process such as infiltration and runoff generation and 

is calculated for each grid cell by considering the fractions of artificial surface and wetland in land cover map. For the landslide 380 

module, the constraints of the random landslides are regarded as priori parameters depending on the inventory. The inventory 

did not record the dimensional information (length and width) for all landslides but a few of them, from which we picked the 

maximum and minimum values to comprise the constraints. Considering the random interval equals the spatial resolution, the 

constraint boundaries were rounded to the integer for further simplification. The total tiles divided from the entire area, along 

with the landslide density and user-defined number of cores, are summarized as related to parallel computational parameters. 385 

All about the basic materials and parameters are briefly listed in Tables 3 and 4. 

We run the model on the High-Performance (HP) cluster with 1 manage node and 8 computational nodes (Intel(R) 

Xeon(R) CPU E5-2660 v4 @2.00GHz). Each node operates a CentOS with 28 cores and 64GB RAM and reaches a total of 

56 threads based on the hyper-threading technology.  

 390 
Figure 5: Locations of the Yuehe River Basin with its elevation and the reported landslide events. 
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Table 2: Lookup table of key parameters for different soil types used in this study (refer to Wang et al. (2020) and Zhang et al. 
(2016)). 

USDA 

Soil Type 

Soil 

Cohesion 

(kPa) 

Saturated 

Hydraulic 

Conductivity (m/s) 

Porosity Friction 

Angle 

(degree) 

Soil Dry 

Unit Weight 

(kN/mY) 

Field 

Capacity 

(mY/mY) 

Wilting 

Point 

(mY/mY) 

Silty clay 30 1.06 ×10−6 0.49 18.5 18 0.36 0.21 

Clay 40 1.31 ×10−6 0.47 16.5 19.5 0.36 0.21 

Silty clay 

loam 

50 1.44 ×10−6 0.48 16.5 14 0.34 0.19 

Clay loam 35 2.72 ×10−6 0.46 20 14 0.34 0.21 

Silt 9 2.05 ×10−6 0.52 26.5 16.5 0.32 0.165 

Silt loam 9 2.50 ×10−6 0.46 24 14 0.3 0.15 

Sandy 

clay 

24.5 4.31 ×10−6 0.41 22.5 18.5 0.31 0.23 

Loam 10 4.53 ×10−6 0.43 22.5 13 0.26 0.12 

Sandy 

clay loam 

29 6.59 ×10−6 0.39 20 15 0.33 0.175 

Sandy 

loam 

6 1.02 ×10−5 0.4 32 15 0.23 0.1 

Loamy 

sand 

7.5 1.78 ×10−5 0.42 28.5 20.5 0.14 0.06 

Sand 5 2.44 × 10−5 0.43 40 21 0.12 0.04 

 395 

Table 3: Detailed information of basic input data used in iHydroSlide3D v1.0. 

Model input Value/resolution Data source 

Rain (mm) Downscaled to hourly and of 3'' resolution China Meteorological Administration (CMA) based 

on gauge stations 

Pet (mm) Downscaled to hourly and of 3'' resolution Global Land Data Assimilation System (GLDAS) 

DEM (m) 90 m and 12.5 m for hydrological and 

landslide modelling, respectively 

SRTM3 DEM (NASA v2.1) and ALOS DEM (Alaska 

Satellite Facility) 

FDR (°) 90 m resolution Derived from the DEM data using the ESRI ArcGIS 

ArcHydro toolbox 
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FAC (-) 90 m resolution Derived from the DEM data using the ESRI 

ArcGISArcHydro toolbox 

LANDCOVER (-) Aggregated to 90 m resolution GlobeLand30-2010 (Chen et al., 2015) 

SOIL (-) USDA soil code from 1 to 12 with 90 m 

resolution 

Harmonized World Soil Database (HWSD v1.2, 

(Wieder et al., 2014)) and the Natural Resources 

Conservation Service (NRCS) of the US Department 

of Agriculture 

TWI (-) Derived using ESRI ArcGIS and the 

ArcHydro toolbox based on the slope and 

the upstream contributing area; Both 90 m 

and 12.5 m resolution are necessary 

NA 

 

Table 4: Description of simulation parameters used in iHydroSlide3D v1.0. 

Parameters Description Value/resolution Source 

TimeStep (s) Time step of the simulation  Defined by user NA 

ISA (%) Percentage impervious area  Computed based on land cover map NA 

Ksat (mmh-1) Saturated hydraulic conductivity  Derived from soil texture map NA 

WM (mm) Available water capacity Computed from topography and 

soil texture 

Wang et al. (2020) 

B (-) Exponent of the infiltration curve Determined by soil texture Flamig et al. (2020) 

Ncores (-) Number of parallel computational 

cores 

Defined by user and limited by 

hardware 

NA 

LandslideDensity 

(-) 

Density of the random ellipsoid 

over the area 

Defined in Eq. (31) and chosen as a 

appropriate after testing 

Refer to Mergili et al. 

(2014a) 

TotalTile (-) Number of divisions of study area Defined by user and should refer to 

Ncores 

NA 

MAXae (m) The maximum length of a random 

ellipsoid 

200  Landslide inventory 

MINae (m) The minimum length of a random 

ellipsoid 

50 Landslide inventory 

MAXbe (m) The maximum width of a random 

ellipsoid 

150 Landslide inventory 
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MINbe (m) The minimum width of a random 

ellipsoid 

50 Landslide inventory 

4 Results 

4.1 Evaluation of the soil moisture downscaling method 400 

We first evaluated the impacts and effectiveness of the soil moisture downscaling method, which provides more detailed soil 

water information (groundwater) for landslide modelling, and may directly impact the stability assessments. Compared to the 

infinite landslide model (Wang et al., 2020), the 3D model can fully consider the grid cells encompassed by an assumed 

landslide boundary (elliptical outline, see in Fig. 6). The cells were chosen from the 90-m resolution datasets with different 

antecedent soil water amount, of which the single value was converted to a range among over the 7 × 7 map with a 12.5-m 405 

spatial resolution (Fig. 6). The long axis (𝑎2) of the tested ellipse reaches the diagonal of the square as far as possible to 

encompass more soil columns, and the potential depth of a failure is set to 2 m. The downscaled soil moisture values are 

irregularly distributed (Fig. 6) because they are contributed by several factors with local slope angle as the major one (Wang 

et al., 2020). As a consequence, the factor of safety was computed to a different value when using the single or composed soil 

moisture values for an assumed landslide (Table 5). In these four test sites, the risks are computed as the worse case situations. 410 

However, in reality, such effects will be more uncertain due to the fact that the location and geometry of a landslide and 

associated hydrological conditions are all variable during the modelling. We argue that this downscaling method is necessary 

when we perform the iHydroSlide3D v1.0 in a cross-scale manner. 

 
Figure 6: Soil moisture downscaling results from a coarser resolution (90 m) to a finer resolution (12.5 m). (a)~(d) are four grid cells 415 
selected from the 90-m resolution map. The ellipse is the assumed landslide boundary and encompasses the grid cells with the 12.5 
m resolution. 

Table 5: Impacts of soil moisture downscaling on the potential slope failures in terms of the computed FS value. 

Test 

cases 

Original soil moisture 

(𝑚Y/𝑚Y) 

Downscaled soil moisture 

(𝑚Y/𝑚Y) 

Original FS FS from downscaled 

soil moisture 

1 71.9% 66.3%~83.6% 1.65 1.97 
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2 77.5% 71.2%~84.5% 1.45 1.81 

3 71.6% 62.6%~86.2% 1.96 2.35 

4 75.3% 68.3%~87.3% 1.46 1.78 

4.2 Testing landslide density 

The model requires an appropriate user-defined landslide density that is highly related to model computation efficiency. This 420 

value is determined to satisfy the convergence of the results over the study area and, meanwhile, an acceptable level of the 

running time. Similar work has been done in the previous research (Mergili et al., 2014b) and, equally important, here we 

further study the relationship between the tile size and random ellipsoid density required. We carried out the convergence tests 

for three different sizes of a divided tile: 20 × 20, 50 × 50, and 100 × 100 (number of grid cells). For each scenario, we 

increased the 𝑑! (see in Eq. (31)) value and compared the spatial pattern with the previous 𝑑! step. Two computational targets, 425 

the cumulative changed area over the entire region (∑changed	pixels	area) and cumulative changed 𝐹𝑆 multiplied by area (△

FSR × area), were used to evaluate the quantity of the convergence results (Mergili et al., 2014b). The total changed pixels 

area is easier to satisfy the convergence condition, i.e., all pixels have been assigned relatively invariant value of 𝐹𝑆, while 

another target is strongly affected by the area of the tile (Fig. 7). In general, all the scenarios have similar convergence processes 

in term of ∑changed	pixels	area (around the 500 in Fig. 7). △ FSR × area is more difficult to converge with the increase of 430 

the total area because this cumulative value is closely related the total number of the cells. We note that there exists no 

theoretical value of landslide density due to the fact that the generation of the potential landslide is totally random. Strictly 

speaking, 𝑑@ = ∞ will be an optimum value; however, there will always be a trade-off between the quality and efficiency of 

the calculation. Further, the increase for overall quality of the prediction cannot be found with a larger adopted density when 

the ∑changed	pixels	area has converged, which in turn, can significantly increase the computational burden (Mergili et al., 435 

2014a). Besides, the density is mainly determined by constraints for the randomization of ellipsoid dimensions, for which the 

value would be set based on necessary tests if the model is applied to a new area. For the application in this study area, we 

consider 𝑑@ = 500 a sufficiently reasonable approximation. The computing time for simulation is 55432 s, with 328 s per time 

step.  
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 440 
Figure 7: Landslide density tests for tiles with (a) 20 × 20, (b) 50 × 50, and (c) 100 × 100 grid cells. The total areas for the three 
scenarios are also presented. Two targets are computed during an interval of △ 𝒅𝐬 = 𝟏.  

4.3 Characteristics of rainfall and flood events 

Provided the essential parameters and datasets are appropriately prepared for iHydroSlide3D v1.0, we choose June 20, 00:00 

to July 15, 00:00 as the simulation period, which is defined by two factors: (i) the period must include the main rainstorm 445 

triggering the flood and slope failures; and (ii) the period should be longer than the observation period to exclude the effect of 

initial conditions (Zhang et al., 2016;Wang et al., 2020). As illustrated in Fig. 8, the rainstorm started around July 4, 00:00 and 

reached the peak rate (exceeded 25 mm/h) within 5 hours, and lasted for about a day across the region. The peak discharge 

was observed a few hours after the peak-rainfall moment, reaching a value close to 1000 m3/s. The comparison between the 

modeled and observed discharge shows a generally good agreement with Bias=37.9%, NSEC=0.77, and CC=0.93, respectively 450 

(Fig. 8). The slightly large bias implies there is likely some uncertainty in routing or flow concentration processes depicted by 

the hydrological module in iHydroSlide3D v1.0. Moreover, the model is behaves sensitive to the rainfall data (before July 4, 

02:00 and after July 7, 14:00). As a result, uncertainty in the rainfall data may contribute to the bias in the simulated stream 

flow. Nevertheless, the above results indicate that the iHydroSlide3D v1.0 is generally capable of simulating the flood events 

and runoff processes when the model is calibrated. 455 
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Figure 8: Basin-average rainfall rates and modeled hydrographs against the observed streamflow. 

4.4 Evolution of landslide risk responding to hydrological process 

4.4.1 Soil moisture and factor of safety 

The evolutions of the soil moisture and landslide susceptibility are illustrated in Fig. 9. There is a small part of this region 460 

being predicted as unstable areas (Fig. 9a) in the beginning of the storm and can be explained by (i) the effect of antecedent 

rainfall or initial hydrological conditions, and (ii) some grid cells that have steep slopes and are extremely unstable (Arnone et 

al., 2011;Aristizábal et al., 2016). These grid cells, generally located on very steep slopes, are more easily calculated as unstable 

areas in terms of 𝐹𝑆 value according to Eq. (19), which may bring some overestimation in the iHydroSlide3D v1.0. However, 

we have attempted to avoid such weakness by using wetting front concept with regard to slope failure depth (Eq. (26)), which 465 

is subject to hydrologic infiltration process and remains very small at the early stage of the rainfall event. As a result, a very 

small portion is estimated (Fig. 9a). The soil moisture drastically increases when the rainstorm starts, particularly for the 

computational elements (streaks in Fig. 9a and b) belonging to main routing channels of the drainage network. Based on the 

cell-to-cell flow routing rule, at the early stage of the storm, these cells have more chances to experience re-infiltration of 

excess surface runoff from upstream cells. As a consequence, they are more likely to reach a saturated condition. This 470 

phenomenon emphasizes the contribution of topography to the evolution of soil moisture at the early stage of a rainstorm, 

when the saturated hydraulic conductivity is relatively similar. In accordance with the soil moisture, more conditional unstable 

grid cells are predicted compared to the spatial pattern before rainfall starts. Soil moisture and landslide risk still continue to 

increase 3 hours later and after the rainstorm reaches its peak; as a result, most of the study area is fully saturated and unstable 

cells are substantially increased (Fig. 9c). Different from the early stage, the excess portion of rainfall cannot effectively be 475 

absorbed by soil anymore but contributes to runoff instead, leading to the flood along the river channel (Fig. 8). No significant 

difference can be observed between Fig. 9c and d, as the water amount of the rainfall has exceeded the infiltration demand and 

water capacity. 
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Figure 9: Spatiotemporal evolutions of the soil wetness (i.e., degree of saturation) and factor of safety. (a)~(d) are four moments that 480 
span the complete rainfall event.  

4.4.2 Probability of failure 

The model estimates the probability of failure for each grid cell due to the random operation of potential landslide generation 

(Sect. 2.7), although soil properties and hydrological conditions are deterministic. The original unstable areas were further re-

classified to a different degree of probability (Fig. 10). We specifically divided the risk zones in terms of the 𝑃𝐹 values 485 

referring to the available classification (Lizárraga and Buscarnera, 2020;Vandromme et al., 2020): low (0 < 𝑃𝐹 < 5%), 

moderate (5% < 𝑃𝐹 < 30%), high (30% < 𝑃𝐹 < 60%), and very high (𝑃𝐹 > 60%). As shown in Fig. 10a, most of the 

unconditional unstable areas fell in zones of low and moderate susceptibility whilst the others were estimated as the risks of 

high or very high. The former grid cells (e.g., inset 2 in Fig. 10), affected by the cell with a steep slope, might be computed as 

unstable because iHydroSlide3D v1.0 assesses the slope stability using the 3D landslide model (Eq. (19)) and then outputs the 490 

minimum 𝐹𝑆 after random tests. In this work, relying on the 𝑃𝐹 classification, we can infer there are only a few steep grid 

cells (includes themselves) near the grid cells with small values of 𝑃𝐹, at least they are attenuated by the flat terrain. On the 

other side, for the grid cells with large 𝑃𝐹 values (e.g., inset 1 in Fig. 10, zones of high or very high), the local topography is 

more likely to be continuous steep slopes that can be repeatedly calculated as unstable and thus cause larger 𝑃𝐹 values (Eq. 

28). However, very few landslides are observed in the areas with steep slopes (Fig. 9 and 10). These areas may be covered by 495 

no or very thin colluvium or regolith; under this circumstance, soil depth tends to be negatively related to slope angle according 

to field survey or available soil thickness models (Ho et al., 2012;Lanni et al., 2012;Alvioli and Baum, 2016;Tran et al., 2018). 

In this way, hazards like rockfall or avalanche are more expected instead of rainfall-induced landslides for these areas with 

extremely steep slope angles. Spatiotemporal evolution of the 𝑃𝐹 value shows that the probabilistic approach is capable of not 
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only identifying the stable or unstable areas but also monitoring the unstable area in a more reliable and informative way. 500 

Compared to the binary assessment (stable & unstable), this method can help to better understand the relationship of landslide 

risk with local topography and dynamic hydrological conditions. 

iHydroSlide3D v1.0 depicted the evolutions of unstable area and all risk zones (in percent of the whole region) 

introduced above over the computational time (curves in Fig. 11). These two areas are controlled by the patterns of 𝐹𝑆 and 

𝑃𝐹, respectively. Overall, the unstable area holds its leading position during the complete rainstorm. More specifically, 𝐹𝑆 505 

values respond more dramatically to the rainfall event than 𝑃𝐹 values, which makes the unstable area increase more rapidly at 

the peak stage of the rainfall. This is not surprising because changing the value of 𝑃𝐹 should obey stricter rules (Eqs. (27) and 

(28)) and experience repeatedly random tests. Among the various classes of the probability, the percent area and sensitivity to 

rainfall decrease with increasing 𝑃𝐹-class value (see in Fig. 11). At the early stage, the unconditional unstable area is computed 

less than 5%, followed by percent area according to the 𝑃𝐹 values, particularly for 𝑃𝐹 > 60% (close to zero, precisely 0.12%). 510 

At the end of the rainfall (the soil is nearly fully saturated and the curves are steady), the percent area with 𝑃𝐹 > 5% is about 

10% less than the total unstable area, followed by the other zones of risk. A slight increase is observed for 𝑃𝐹 > 60% (zone 

of very high) and most of them are contributed by unconditional unstable, which is immune to hydrological process (Aristizábal 

et al., 2016). The rest of the curves lie between them. The spatiotemporal classification of the landslide probability, as well as 

the traditional binary state of slope stability, are meaningful for landslide risk delineation and monitoring the area with a 515 

specific failure probability of interest. 
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Figure 10: Spatiotemporal evolutions of the landslide occurrence probability. (a)~(d) are four moments that span the complete 
rainfall event. 520 

 
Figure 11: Evolution of percent area computed as unstable or various failure probabilities as the rainfall continues. 

4.5 Spatial performance of model 

We evaluated the spatial performance of the iHydroSlide3D v1.0 during the study period as presented in Table 6. We also 

compare our model with the previous coupled model CRESLIDE, of which the infinite slope stability is adopted (Fig. 12). 525 

Results show that 33 out of 54 landslides were successfully predicted, falling into the area with 𝐹𝑆 < 1 and 𝑃𝐹 > 0. For the 

zones of landslide risk, most of the failures (reaches 53.7%) are observed in low and moderate risk zones, whilst the remainder 

are in the zones with high and very high risks. The value of  %𝐿𝑅𝑐𝑙𝑎𝑠𝑠 index is evaluated as 82.91% when using factor of 

safety for prediction, and the same index reaches 94.05% when we add up the values for all four risk zones. To be less 

conservative, the %𝐿𝑅𝑐𝑙𝑎𝑠𝑠 index for 𝑃𝐹 prediction can be 82.79%, which is close to the value by 𝐹𝑆 prediction, if we only 530 

consider the landslide risk from low to high. This result can be explained by the number of landslides per unit area, i.e., the 

binary approach would cover more extensive areas to contain the landslide locations. By adopting the probabilistic approach 

to identify classified risk zones, we can focus on the area of interest and make more targeted and efficient predictions. 

The ROC analysis demonstrates that the iHydroSlide3D v1.0 generally has a higher hit rate and lower false positive 

rate relative to the CRESLIDE model that is coupled with the infinite landslide model. The Area Under the ROC Curve (AUC) 535 

values for them are 0.77 and 0.72, respectively, suggesting that iHydroSlide3D v1.0 outperforms CRESLIDE in this case study. 

As mentioned in Sect. 2.3.2, the most significant difference between the two models is the assumption of landslide geometry. 

The 3D model takes the neighbouring cells into account and thus provides a comprehensive 𝐹𝑆 value (Eq. (19)), while the 

infinite models abruptly solve the limit equilibrium equation on a solo raster cell and are strongly conditioned by the local 

topography (Mergili et al., 2014b). This explains why the infinite-type models have a tendency to provide more conservative 540 

results (i.e., lower stability or worst situation) (Xie et al., 2006;Tran et al., 2018;Mergili et al., 2014b;Chakraborty and 

Goswami, 2016;He et al., 2021), indicated by higher false positive rates (e.g., 0.32 for CRESLIDE versus 0.20 for 

iHydroSlide3D when the threshold equals 1) in this study. 
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 545 
Table 6: Comparison of 𝑳𝑹𝒄𝒍𝒂𝒔𝒔 and %𝑳𝑹𝒄𝒍𝒂𝒔𝒔 obtained from FS and PF values. The unstable areas are further divided into 
several risk zones with regard to their PF values. 

FS class Number of 

events (𝑎) 

Ratio to total events	

(c =
𝑎
𝑏) 

% predicted area 

(d =
𝑐𝑒𝑙𝑙,QV@@
𝑐𝑒𝑙𝑙KZKVQ

) 

𝐿𝑅𝑐𝑙𝑎𝑠𝑠 

(e =
𝑐
𝑑) 

 %𝐿𝑅𝑐𝑙𝑎𝑠𝑠 

(= 𝑒/𝑓) 

FS < 1 33 61.11 24.46 2.50 82.91 

FS > 1 21 38.89 75.54 0.51 17.09 

Total events  54 (𝑏) 100 100 3.01 (𝑓) 100 

𝑃𝐹 = 0 (Null) 21 38.89 75.54 0.51 5.95 

0 < 𝑃𝐹 < 5% (Low) 13 24.07 9.04 2.66 30.76 

5% < 𝑃𝐹 < 30% (Moderate)  16 29.63 9.6 3.09 35.66 

30% < 𝑃𝐹 < 60% (High)  3 5.56 3.92 1.42 16.37 

𝑃𝐹 > 60% (Very high) 1 1.85 1.9 0.97 11.26 

Total events 54 100 100 8.66 100 

 

 
Figure 12: ROC plot comparing slope-stability results from the CRESLIDE and iHydroSlide3D v1.0 models. The points on curves 550 
correspond to 𝑭𝑺 = 𝟏 for both models. The AUC values are also shown in the plot. 

4.6 Landslide hazard analysis 

The iHydroSlide3D v1.0 is capable of computing the extent (i.e., the area 𝐴F and volume 𝑉F) of potential landslides, which is 

essential for landslide hazard assessment. Compared to the visual techniques (e.g., aerial photograph interpretation and high-

resolution imagery) or in-situ investigation, the model estimates the 𝐴F and 𝑉F in a physics-based manner and strongly depends 555 
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on the restrictions of random ellipsoids. In this way, 𝐴F is simply determined by the number of encompassed raster cells, while 

𝑉F is computed by the soil columns and the failure depth associated with hydrological infiltration (Eq. 26). Therefore, there 

exist common phenomena that the values of 𝑉F are more variable than that of the 𝐴F, i.e., one unique 𝐴F may correspond to 

multiple 𝑉F. Further, the adjacent cells may share the same value of 𝐴F and 𝑉F because they are possible to fall into the same 

potential landslide. In this work, we recorded and presented the max value of the 𝐴F and 𝑉F as the worst scenario across the 560 

unstable area (see in Fig. 13) after the sufficient random tests. Results show that most of the areas range from 4 × 10[m3 to 

5 × 10[m3, while the volumes are more variable with a maximum value of around 1.1 million m3. The relatively large value 

of 𝑉F may be resulted from (i) a relatively large 𝐴F that contains more soil columns or (ii) deep-seated landslides involved. It 

is worth noting that the areas with extremely large values of 𝑉F (Fig. 13b) are roughly overlapped by the areas with relatively 

large 𝑃𝐹 (Fig. 10d). This can be explained by that, in our pursuit of the minimum of the 𝐹𝑆, a relatively thick failure depth 565 

was adopted in these areas, which caused an overprediction for landslide areas (Ho et al., 2012). Although the maximum 

magnitudes (𝐴F	and	𝑉F) of landslide hazards provide more conservative assessments, we expect that they are acceptable in 

slope engineering assessment (Tran et al., 2018). 

Due to lack of historical documents for real 𝐴F and 𝑉F in this field, we evaluated the landslide hazard results by fitting 

the relationships of the 𝐴F and 𝑉F and comparing them with the existing relationships reported in previous literature. As the 570 

nature of these two geometrical properties introduced above, we did not collect all the values for each pixel. HereInstead, we 

prepared the fitted source into six data sets according to the combinations of 𝐴F and 𝑉F (source data in Table 7). All possible 

𝑉F values referred to the cases with 𝑃𝐹%XL and 𝑃𝐹%V0, and four risk zones. We further fitted these six sets by power law and 

counted the R-square number (see in Table 7). Moreover, as a comparison, we collected four available relationships from 

previous literature computed using field measurements in their study (Table 7, ID 7 to 10). We then plotted them by substituting 575 

the 𝐴F values in this work (See in Fig. 14). Obviously, relatively less data is plotted in Fig. 14a and b, which, as we have 

pointed above, shows all possible areas for potential landslides without duplicate value. The values of 𝑉F estimated with 𝑃𝐹%V0 

(Fig. 14b) are relatively larger than that with 𝑃𝐹%XL (Fig. 14a) because the deeper slip depth tends to obtain a smaller 𝐹𝑆, 

which in turn inevitably results in a larger volume of a failure. The fitted curves are close to the available equations in terms 

of trend, among which the Abele (1974) model overestimated the 𝑉F in cases with ID 1 and 2. The efficiency of the fitted 580 

equations is generally good in terms of 𝑅3, reaching 0.992. However, such a power model has low efficiency for cases of ID 

3 to 6 with low 𝑅3 and abnormally wide confidence intervals. Although these cases adopt the unique combinations of 𝐴F and 

𝑉F, it is still very likely to accept the samples with identical 𝐴F and consequently get more dots in 𝐴F~𝑉F graph (Fig. 14c, d, e, 

and f), which further pose hinders to fit them as functions (i.e., a binary relation between two sets that associates every element 

of the first set to exactly one element of the second set). In other words, they are regarded as sampling error when the power 585 

model is considered. We acknowledge that, Iin this work, we can only provide relatively ideal geometrical information (with 

regular and limited characteristics) in a mathematical manner, which is determined by the cell size and random procedure. 

Even so, we appropriately consider the power models in the cases of ID 1 and 2 where unique values of 𝐴F are applied. We 
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further nNote that such relationships are not only limited to the maximum and minimum 𝑃𝐹 value but also any value of interest 

on the users' side. For those applications limited by field measurements, the method proposed here is expected to roughly 590 

assess the magnitude of landslide hazards. 

 

 
Figure 13: Spatial patterns of the max values of (a) 𝑨𝑳 and (b) 𝑽𝑳 for model-predicted landslides. 

Table 7: Relationships linking maximum landslide area 𝑨𝑳 to landslide volume 𝑽𝑳. 595 

ID Equation 𝐴F%XL(m3) 𝐴F%V0(m3) Source data used to fit 𝑅3 

1 𝑉F = 285.5 × 𝐴FM.]^_ 5.47 × 10Y 9 × 10[ Unique 𝐴F and 𝑉F with 𝑃𝐹%XL 0.992 

2 𝑉F = 146.4 × 𝐴FM._]] 5.47 × 10Y 9 × 10[ Unique 𝐴F and 𝑉F with 𝑃𝐹(*C 0.992 

3 𝑉F = 26.727 × 𝐴F&.M]& 5.47 × 10Y 9 × 10[ Unique combination of 𝐴F  and 𝑉F 

in the zone of low 

0.599 

4 𝑉F = 80.29 × 𝐴FM.^[3 7.19 × 10Y 8.83 × 10[ Unique combination of 𝐴F  and 𝑉F 

in the zone of moderate 

0.184 

5 𝑉F = 513.4 × 𝐴FM.]^[ 6.25 × 10Y 8.83 × 10[ Unique combination of 𝐴F  and 𝑉F 

in the zone of high 

0.13 

6 𝑉F = 154.1 × 𝐴FM.^M] 6.25 × 10Y 8.58 × 10[ Unique combination of 𝐴F  and 𝑉F 

in the zone of very high 

0.221 

7 𝑉F = 0.074 × 𝐴F&.[`M 2 × 10M 1 × 10a Guzzetti et al. (2009)  

8 𝑉F = 0.39 × 𝐴F&.Y& 1 × 10& 3 × 10Y Imaizumi and Sidle (2007)  

9 𝑉F = 0.242 × 𝐴F&.YM_ 2 × 10` 6 × 10_ Abele (1974)  

10 𝑉F = 12.273 × 𝐴F&.M[_ 3 × 10` 3.9 × 10&M Haflidason et al. (2005)  
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Column 1 lists the equation number. Column 2 shows the fitted equations in this work (ID 1 to 6) and available equations (ID  

7 to 10) selected from previous literature. Columns 2 and 3 list the ranges of 𝐴# applied for equations; the data for ID 1 to 6 is  

from this work; data for ID 7 to 10 is from literature. Column 4 gives the data source. Column 5 lists the commonly statistical  

measure R-squared (𝑅$). 

 600 
Figure 14: Six sets of source data (ID 1 to 6 in Table 7) are plotted and fitted in this work. All available equations (ID 7 to 10 in Table 
7) are plotted by substituting the 𝑨𝑳 values in this work. Red zone shows 95% confidence intervals. 

5 Discussion and conclusions 

We have modified the 3D landslide model to make it applicable for more general situations (i. e., all possible soil moisture 

state). To this end, we incorporated the distributed hydrological model CREST to undertake the computational task of 605 

hydrological components, forming a new coupled hydrological-geotechnical model called iHydroSlide3D v1.0. The model is 

capable of assessing the spatiotemporal landslide susceptibility (𝐹𝑆 and 𝑃𝐹), performing hazard analysis (geometric properties 

of landslides, 𝐴F  and 𝑉F ), and predicting flash floods driven by rainfall processes. Considering differential needs for 

computational resolutions by the hydrological and landslide modules, we embedded the soil downscaling method to seamlessly 

execute the code within such a sophisticated framework containing two datasets with different resolutions containing two 610 

resolutions datasets. For the purpose that the model is practicably performed in the case of large scale, we parallelized the 

program for efficiency In addition, we parallelized the code of the landslide module for efficient large-scale performance.  We 

would like to roughly evaluated our computational efficiency by comparing with two available parallel codes TRIGRS v2.1 

(Alvioli and Baum, 2016) and r.slope.stability (Mergili et al., 2014a). The runtime for the single time step is 328 s for the 

present code, while it is 110 s and 1900 s for TRIGRS v2.1 and r.slope.stability, respectively in their descriptive literatures. 615 

Such a comparison is unfair because the runtime was not obtained under the same testing prerequisites. Moreover, differences 

in model structure prevent them from being treated equally. TRIGRS v2.1 uses a simple infinite-slope description and 
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r.slope.stability does not include the hydrological simulation. We show them here only for the general impression, upon which 

users may estimate the computational cost based on hardware and simulation scale.  

Prior information on parameters is necessary for this model and need to be handled with the utmost care. As a matter 620 

of fact, Mmost of the parameters are determined by available datasets and field records, while few of them are calibrated 

manually based on computational experimental tests. In particular, the we want to point out that landslide density could 

significantly affect the output results and, even worse, a small value may yield meaningless results and unwanted consequences. 

Thus, the landslide density is necessary to be regularly tested when the code is applied for a new region. However, we would 

preliminarily recommend 𝑑@ = 500 for a rough assessment as it has been tested in detail in this study and a study by Mergili 625 

et al. (2014a). We conclude that the converged density value tends to be irrelevant to the tile area once the constraints of the 

landslide’s shape are determined. We also argue that the soil downscaling method is necessary when we run the hydrological 

and landslide modules at different resolutions, because the uneven soil moisture patterns exactly impact the slope stability 

assessment. In particular, the 3D stability model should sufficiently consider the spatial distribution of soil moisture within an 

objective slip surface. This is a typical difference when we adopt the downscaling method comparing to the infinite stability 630 

model (Wang et al., 2020). 

In this work, we have prepared the observed river streamflow from the gauge and the point-like landslide locations. 

Although we have gotten a generally good agreement with the observations in terms of discharge and similar efforts have been 

done in previous studies (He et al., 2016;Zhang et al., 2016;Wang et al., 2020), the results cannot directly prove that the soil 

moisture is accurately estimated, which is truly associated with slope stability, per se. Other soil moisture data through site 635 

measurement (Lepore et al., 2013) or satellite (Zhuo et al., 2019a;Zhuo et al., 2019b) can be used to further validate the model 

performance. However, field measurements are usually not available and even many boreholes can only cover some of the 

many grid cells in a large-scale region (Marin et al., 2021), making the representativeness of ground observations questionable. 

The observation from the satellite is useful for soil moisture in shallow depth, hindering the application for landslide predictions 

at a deep depth (Zhuo et al., 2019a). Therefore, we consider the soil moisture as an intermediate hydrological component, of 640 

which the spatial pattern is simulated at each time step. 

The model advantageously provides a spatiotemporal perspective for the evolution of hydrological processes, as well 

as the landslide assessments and hazards. Together with the random operation, the model can simultaneously assign the 

unstable grid cells with factor of safety and failure probability. We expect such a combination of landslide assessment analysis 

is effective and more targeted. Moreover, temporal monitoring of the process evolution is useful for dynamic management of 645 

unstable areas subject to rainfall events. The overall performance of the model is generally satisfactory based on the statistical 

metrics of both hydrological (Bias, NSEC, CC) and landslide aspects (%𝐿𝑅,QV@@, 𝑅𝑂𝐶 − 𝐴𝑈𝐶). We further recommend that 

the %𝐿𝑅,QV@@ index can be appropriately used to evaluate the landslides within various zones of risk determined by 𝑃𝐹 ranges. 

Note that we did not distinguish the unconditional stable and unstable grid cells beforehand, although they can inherently occur 

in the landslide models built upon the limit equilibrium principle (Aristizábal et al., 2016). However, iHydroSlide3D v1.0 650 

defined the failure depth by adopting the wetting front concept that is subject to the infiltration process. The model, therefore, 
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can better target the rainfall event and reasonably handles the hydrologic initial conditions. In addition, the results also indicate 

that the 3D landslide model can ameliorate the overprediction problem, known to be present in the infinite landslide models. 

The comprehensive assessments (in both flood and landslide) possibly contribute to land management and disaster 

risk management with professional analysis. The landslide susceptibility and hazard zoning are able to manage landslide hazard 655 

in urban/rural areas by excluding development in higher hazard areas, and requiring hydro-geotechnical assessment in the 

planning stage (Fell et al., 2008). The conception has been introduced across some countries such as France (Fell et al., 2008) 

and Switzerland (Leroi et al., 2005). A recent work corroborated existing hypotheses that urbanization increases landslide 

hazards (Johnston et al., 2021). Our model could be used as a tool to study the importance of considering interactions with 

urbanization when predicting landslide hazards under climate change scenarios. The current modular framework and flexibility 660 

of modelling setup also make it feasible to link with other numerical weather prediction models and real-time forcings. We 

would like to stress that tThese complicated applications generally require extraordinary computing resources to support. The 

verification for landslide geometric output (volume and surface area) is still limited by the available measured data (e.g.  

landslide scars used in Arnone et al. (2011)). Instead, we evaluated them with the fitted power-law equations, which, together 

with the available relationships in previous studies, are used as statistical tools for analysis of regional landslide magnitude. 665 

As a matter of fact, wWe haven’t unveiled the fundamental geotechnical mechanics of landslide in terms of 3D geometry of 

the sliding surface, which need be solved through field investigation. The present study employs the limit equilibrium method 

and iteration in a manner akin to Marchesini et al. (2009). Notably, we expanded upon previous research by conducting model 

simulations over a considerably larger spatial extent, thereby yielding more fine-grained findings. 

Another limitation is the geotechnical parameters extracted from the available datasets. Determining their values in 670 

this way cannot consider geotechnical uncertainty due to inherent temporal and spatial variability of terrain materials (Hicks 

and Spencer, 2010;Griffiths et al., 2011;Mergili et al., 2014a). One way to overcome the problem is adopting the Monte Carlo 

approach, of which the examples can be found in literature (Raia et al., 2014;Mergili et al., 2014a;Vandromme et al., 2020). 

Such embedded probabilistic method, no doubt, will considerably bring additional computational burden. In addition, we 

associate the failure depth with the infiltration process in this work, neglecting the spatial distribution of soil thickness in a 675 

terrain, which shall be a subject of future studies by supplying different soil-thickness assumptions.  

In summary, a new hydrological-geotechnical model, iHydroSlide3D v1.0, coupling a distributed hydrological model 

(CREST) and a three-dimensional slope stability model (3D landslide model), was described and tested in this study. The 

model is capable of simulating the spatiotemporal evolutions of hydrological components and landslide susceptibility and 

hazard. In order to coordinate the different resolution of datasets required for hydrological and landslide modules, the soil 680 

downscaling module is embedded to ensure that the code can be seamlessly executed. For efficiency, we program the code 

within a parallel framework and, together with the auxiliary efforts, make it possible to run in a large region. The model 

comprehensively presented the consequences of rainfall-triggered landslides at the watershed scale. With the evaluations from 

both hydrological and landslide aspects, we highlight the performance of iHydroSlide3D v1.0 on back-analysis and the 

potential for predicting cascading flood–landslide disasters. The produced zones of risk and landslide geometric properties are 685 
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valuable for disaster prevention and risk management. The modelling system presented in this work is also designed as a 

framework and has the potential to adopt other hydrological or land surface model (LSM) schemes and landslide models as 

alternatives. Moreover, iHydroSlide3D v1.0 can be further improved by optimizing geotechnical parameters and adopting 

other soil-thickness assumptions. 

 690 
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