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Summary 
This manuscript describes a model for Arctic coastal erosion that is based on a simplified physical 
erosion model of a partially frozen cliff and beach, coupled to a storm surge model. It is presented as a 
first step toward a parameterization of pan-Arctic shoreline erosion at a coarse spatial scale for 
capturing erosion rates on the order of years to decades. It uses physical data as boundary conditions, 
such as wind speeds and directions, wave period and height, and sea surface temperature, as well as 
accounting for sea ice cover. The authors claim the new model provides a promising starting point to 
project the retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few 
observations. 

General Summary of Comments 
I do not recommend publication in its current form. The model presented (ArcticBeachv1.0) is under-
developed and the authors have not shown that this model has any predictive skill that outperforms a 
random number generator (proof described in detail in my review). For transparency, I have also 
included the Python script which performs this analysis. My suggestion to the authors is further 
development of the model and resubmission for publication at a later date and after further 
collaboration and consultation with peers in this research field. One benefit of the model presented is its 
low computational cost. If the low computational cost can be maintained while improving its ability to 
robustly predict coastal retreat rates, this would represent a ground-breaking advance in the field! 

The results summarized in Figure 4 show the modeled annual and cumulative retreat at Mamontovy 
Khayata (MK) and Drew Point (DP) vs observations at each site. At first glance, the modeled retreat looks 
poor, but an error analysis was not provided to quantify model performance. For any predictive model, 
a thorough analysis of model predictive skill is required to evaluate its performance and ability to make 
reliable, robust predictions. One of the simplest routines is to test model predictions against a random 
prediction. If the model has good predictive skill, it should outperform a prediction generated at random 
within a plausible range of possible outcomes. This is essentially like posing the null hypothesis and 
showing that the model can disprove the null hypothesis. In this case, the null hypothesis states that, 
‘ArcticBeachv1.0 cannot predict the annual erosion rate any better than a random number generator 
can.’ If the ArcticBeachv1.0 model can predict annual erosion rate statistically significantly better than a 
random number generator, then it can rightfully claim predictive skill. My concern here for both 
locations is that, while there are a few years where modeled erosion matched observed erosion fairly 
well, there are also many years in this time series where the erosion is far outside of the running 
average. In these years, a model with high predictive skill should be able to reproduce the trend, if it has 
captured the correct physics. However, the ArcticBeachv1.0 model predictions end up under- or over-
estimating the retreat, in the OPPOSITE direction just as many times as they estimate the retreat in the 
CORRECT direction (above or below the mean retreat).  
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The conclusion from the analysis for predictive skill (described in full detail below) shows that the 
ArcticBeachv1.0 model has no predictive skill at the DP location, and has inverse predictive skill at the 
MK location. Based on the error analysis, I disagree with the authors, as stated in the abstract, that the 
ArcticBeachv1.0 model provides a promising starting point to project the retreat of Arctic shorelines, or 
to evaluate historical retreat in places that have had few observations. The results of this analysis at 
both locations indicate that the model in its current form is under-developed, and cannot be relied upon 
to provide robust and skillful predictions for coastal retreat rates in the Arctic more than a randomly 
generated number can (in the case of the DP location) nor can be relied to provide a prediction in the 
correct trend direction (in the case of the MK location). 

Detailed Analysis 
I performed an analysis on the modeled retreat vs the observed retreat to quantify the error. I used the 
mean squared error (MSE) of the annual retreat predictions as the performance metric. The MSE will 
penalize large differences between predicted and observed values more so than small differences, 
which is appropriate in this case because swings in retreat far outside the normal or average erosion 
behavior signify major disruptions in erosion drivers, which is what we want to capture with a robust, 
skillful predictive model. It is also thought that future conditions will become more extreme as climate 
changes in the Arctic, and thus erosion may continue to behave erratically. The mean squared error is 
defined as  
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where N is the number of retreat predictions with available retreat observations, M is a modeled retreat 
prediction, and O is a corresponding retreat observation for the model prediction. For this test, the 
MSEs for each location for ArcticBeachv1.0 vs observations are shown in Table 1. For the MK location, 
the MSE of the annual retreat between 1995 - 2018 was 125.48 m2, and for the Drew Point location, the 
MSE of the annual retreat between 2007 - 2016 was 61.55 m2. A perfect prediction for every year would 
yield an MSE of 0 m2 at both locations. 

Table 1 Mean squared error and cumulative erosion error statistics for ArcticBeachv1.0 and a randomly generated model. 

 Mamontovy Khayata Drew Point 
Mean Squared Error (MSE) 
Annual Erosion, ArcticBeachv1.0 
Model 

125.48 m2 61.55 m2 

Average MSE Annual Erosion, 
Randomly Generated Model 

16.36 m2 53.85 m2 

Standard Deviation of MSE 
Annual Erosion, Randomly 
Generated Model 

+/- 3.73 m2 +/- 19.12 m2 

Error Cumulative Erosion, 
ArcticBeachv1.0 Model 

48.77 m 3.42 m 

Average Error Cumulative 
Erosion, Randomly Generated 
Model 

39.19 m 20.28 m 



Standard Deviation of Average 
Error Cumulative Erosion, 
Randomly Generated Model 

+/- 15.10 m +/- 13.99 m 

 

Next, the model predictions are tested against a random number generator to judge predictive skill and 
give meaning to the MSE values calculated for ArcticBeachv1.0. For the MK location, a random number 
from within a plausible range of retreat was generated for each year using Python’s random package. 
The range in retreat was calculated as the minimum and maximum of the observed retreat data with a 
10% envelope (e.g. 1.18 m – 12.04 m). The MSE for the randomly chosen annual retreat was calculated 
against the observations. This numerical experiment was performed 5,000 times, and a histogram of 
results was created to obtain statistical behavior (shown in Figure 1). As reported in Table 1, the average 
MSE of the annual retreat from the randomly generated model was 16.36 m2, as compared to the 
ArcticBeachv1.0 model value of 125.48 m2 (shown as the red line superimposed on the histogram). The 
error is much larger for the ArcticBeachv1.0 model than the randomly generated model, while also lying 
significantly outside of the 1st standard deviation of the randomly generated model’s “predictions” 
(predictions in quotations because they are not truly predictions but random numbers). This suggests 
that the ArcticBeachv1.0 model has predictive skill, but its predictive skill is opposite of the observations 
(in the direction of larger error or in the opposite direction from mean annual retreat). This is clearly 
seen by inspection of Figure 4a in the manuscript, where large mismatches in the opposite direction 
from the mean annual retreat rates are predicted by the ArcticBeachv1.0 model, especially between 
years 2002 - 2018. 



   

Figure 1. Histogram of the mean squared error for a randomly generated model for the MK location. The orange lines show +/- 1 
standard deviation from the mean, while the red line shows the mean squared error for the ArcticBeachv1.0 model. 

The test was repeated for the Drew Point location. For the DP location, a random number between a 
plausible range of retreat was generated for each year using Python’s random package. The range in 
retreat was calculated as the minimum and maximum of the observed retreat data with a 10% envelope 
(e.g. 5.94 m – 24.83 m). The MSE for the randomly chosen annual retreat was calculated against the 
observations. This numerical experiment was performed 5,000 times, and a histogram of results was 
created to obtain statistical behavior (shown in Figure 2). As reported in Table 1, the average MSE of the 
annual retreat from the randomly generated model was 53.85 m2, as compared to the ArcticBeachv1.0 
model value of 61.55 m2 (shown as the red line superimposed on the histogram). In this case, the 
ArcticBeachv1.0 model performed slightly worse than the randomly generated model (since the MSE for 
the ArcticBeachv1.0 model was higher than the mean MSE for the randomly generated model). 
Additionally, the MSE for the ArcticBeachv1.0 model sits within the 1st standard deviation of the MSE for 
the randomly generated model. This suggests that the ArcticBeachv1.0 model does not predict erosion 
rates significantly different than a randomly generated number. If it did, then the MSE would be well 
below the 1st standard deviation of the randomly generated model. The performance can also be seen 
by inspection of Figure 4b, where the ArcticBeachv1.0 model predictions end up under- or over-
estimating the retreat at DP, in the OPPOSITE direction just as many times as they estimate the retreat 
in the CORRECT direction (above or below the mean retreat over the time period).  



  

Figure 2 Histogram of the mean squared error for a randomly generated model for the DP location. The orange lines show +/- 1 
standard deviation from the mean, while the red line shows the mean squared error for the ArcticBeachv1.0 model. 

Furthermore, the analysis was extended to quantify the error in the cumulative erosion. The cumulative 
erosion error was calculated as the difference between the sum of the observed annual retreat values 
and the sum of the modeled annual retreat values. As reported in Table 1, the cumulative retreat error 
was 48.77 m (reported as “roughly 40 m” in the manuscript text, line 215) for the MK location, and 3.42 
m (reported as “within a few meters” in the manuscript text, line 215) for the DP location.  

Similarly to the random model numerical experiments presented for the annual retreat predictions, the 
same procedure is repeated for the cumulative erosion error. For each year, using the same set of 
random numbers that were generated for annual retreat, the cumulative retreat was calculated by 
summing the random annual retreat values for each numerical experiment. A histogram was created for 
each location, shown in Figure 3 (MK) and Figure 4 (DP).  

For the MK location, the mean cumulative erosion error for randomly generated model was 39.19 m 
(see Table 1), as compared to the ArcticBeachv1.0 model value of 48.77 m2 (shown as the red line 
superimposed on the histogram). In this case, the ArcticBeachv1.0 model performed slightly worse than 
the randomly generated model (since the cumulative erosion error for the ArcticBeachv1.0 model was 
higher than the error in the randomly generated model). Moreover, the mean cumulative erosion error 
for the ArcticBeachv1.0 model sits within the first standard deviation of the cumulative erosion error for 



the randomly generated model. This suggests that the ArcticBeachv1.0 model does not predict 
cumulative erosion significantly different than a randomly generated number at the MK location. 
Interestingly, while the annual retreat predictions were skillful (albeit in the opposite direction), the 
cumulative retreat might as well have been generated at random. 

 

Figure 3 Histogram of the cumulative erosion error for a randomly generated model for the MK location. The orange lines show 
+/- 1 standard deviation from the mean, while the red line shows the cumulative erosion error for the ArcticBeachv1.0 model. 

At the DP location, the mean cumulative erosion error for randomly generated model was 20.28 m (see 
Table 1), as compared to the ArcticBeachv1.0 model value of 3.42 m2 (shown as the red line 
superimposed on the histogram). In this case, the ArcticBeachv1.0 model performed significantly better 
than the randomly generated model (since the cumulative erosion error for the ArcticBeachv1.0 model 
was lower than the error in the randomly generated model and it was positioned outside of the 1st 
standard deviation of the randomly generated model error). This makes sense because the 
ArcticBeachv1.0 model did a decent job predicting the erosion rate at Drew Point for years in which the 
erosion was relatively average, but happened to over- or under- estimate the erosion for anomalous 
years at roughly equal magnitudes, and as a result summing to roughly zero, thus providing little 
contribution to the cumulative retreat error metric. 



 

Figure 4 Histogram of the cumulative erosion error for a randomly generated model for the DP location. The orange lines show 
+/- 1 standard deviation from the mean, while the red line shows the cumulative erosion error for the ArcticBeachv1.0 model. 

The conclusion from the analysis for predictive skill shows that the ArcticBeachv1.0 model has no 
predictive skill at the DP location, and has inverse predictive skill at the MK location. Based on the error 
analysis, I disagree with the authors, as stated in the abstract, that the ArcticBeachv1.0 model provides a 
promising starting point to project the retreat of Arctic shorelines, or to evaluate historical retreat in 
places that have had few observations. The results of this analysis at both locations indicate that the 
model in its current form is under-developed, and cannot be relied upon to provide robust and skillful 
predictions for coastal retreat rates in the Arctic more than a randomly generated number can (in the 
case of the DP location) nor can be relied to provide a prediction in the correct trend direction (in the 
case of the MK location). As disheartening as this error analysis seems, the MK location does show 
promise because of its ability to capture opposite trends. I suggest to the authors to investigate this 
behavior more closely, as it probably indicates some physical behavior captured in the model that may 
be relevant for erosion rates, but in the opposite sense. 

Table 1: From what I understand, the two study locations have identical material properties, but they 
differ in geometry only with cliff height. Is this an adequate demonstration of the model’s ability to 
provide a “physics-based numerical model that can be applied across all partially frozen shorelines”? 
(Quote from lines 36-37) I was expecting more diversity between demonstration sites. 

 



import random 
import numpy as np 
import matplotlib.pyplot as plt 
 
# This script performs an error analysis of the ArcticBeachv1.0 model 
# as presented in the manuscript by R. Rolph et al. submitted to 
# EGU journal Geoscientific Model Development. 
 
# Abbreviations throughout this script: 
# DP = Drew Point  
# MK = Mamontovy Khayata 
# mae = mean absolute error 
# mse = mean squared error 
# cee = cumulative erosion error 
# diff = difference 
# obs = observation 
# ABv1p0, AB = ArcticBeachv1.0 
# cumu = cumulative 
 
# I used https://automeris.io/WebPlotDigitizer/ to pull numbers from  
# Figure 4b in the manuscript. 
year_DP = [2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016] 
ABv1p0_DP = [4.783878951, 9.017355894, 19.55784951, 18.78027211, 17.3115148, 28.58638707, 12.90524288, 13.07803786, 13.85561526, 30.14154187] 
obs_DP = [22.15835141, 15.84598698, 19.32754881, 6.605206074, 16.95227766, 22.5813449, 13.34056399, 16.39913232, 16.20390456, 22.02819957] 
 
diff = [] 
mae = [] 
diff2 = [] 
mse = [] 
cumu_DP = 0 
cumu_ABDP = 0 
for i in range(len(obs_DP)): 
    cumu_ABDP = cumu_ABDP + ABv1p0_DP[i] 
    cumu_DP = cumu_DP + obs_DP[i] 
    diff.append(abs(ABv1p0_DP[i]-obs_DP[i])) 
    diff2.append(diff[i]*diff[i]) 
    mae.append(diff[i]*(1/len(obs_DP))) 
    mse.append(diff2[i]*(1/len(obs_DP))) 
mae_DP = sum(mae) 
print('Drew Point MAE = '+str(mae_DP)) 
mse_DP = sum(mse) 
print('Drew Point MSE = '+str(mse_DP)) 
print('Drew Point Cumulative Erosion = '+str(cumu_DP)) 
print('ArcticBeach Cumulative Erosion = '+str(cumu_ABDP)) 
cee_DP = abs(cumu_DP-cumu_ABDP) 
print('Drew Point Cumu. Erosion Error = '+str(cee_DP)) 
 
# I used https://automeris.io/WebPlotDigitizer/ to pull numbers from  
# Figure 4a in the manuscript. 
year_MK = [1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018] 
ABv1p0_MK = [9.504391468, 1.066499373, 3.513174404, 3.732747804, 3.324968632, 3.074027604, 4.422835634, 0.752823087, 1.819322459, 0.846925972, 
1.191969887, 1.411543287, 2.383939774, 1.442910916, 8.814303639, 13.80175659, 8.061480552, 14.33500627, 8.814303639, 14.33500627, 9.91217064, 
22.45922208, 13.08030113, 16.49937265] 
obs_MK = [5.740276035, 4.485570891, 3.795483061, 3.795483061, 3.136762861, 3.732747804, 3.889585947, 6.179422836, 6.587202008, 6.493099122, 
5.207026349, 5.39523212, 6.775407779, 6.900878294, 4.987452949, 5.740276035, 10.94730238, 4.203262233, 2.321204517, 4.861982434, 7.402760351, 
1.317440402, 3.199498118, 2.728983689] 
 
diff = [] 
mae = [] 
diff2 = [] 
mse = [] 
cumu_MK = 0 
cumu_ABMK = 0 
for i in range(len(obs_MK)): 
    cumu_ABMK = cumu_ABMK + ABv1p0_MK[i] 
    cumu_MK = cumu_MK + obs_MK[i] 
    diff.append(abs(ABv1p0_MK[i]-obs_MK[i])) 
    diff2.append(diff[i]*diff[i]) 
    mae.append(diff[i]*(1/len(obs_DP))) 
    mse.append(diff2[i]*(1/len(obs_DP))) 
mae_MK = sum(mae) 
print('Mamontovy Khayata MAE = '+str(mae_MK)) 
mse_MK = sum(mse) 
print('Mamontovy Khayata MSE = '+str(mse_MK)) 
print('Mamontovy Khayata Cumulative Erosion = '+str(cumu_MK)) 



print('ArcticBeach Cumulative Erosion = '+str(cumu_ABMK)) 
cee_MK = abs(cumu_MK-cumu_ABMK) 
print('Mamontovy Khayata Cumu. Erosion Error = '+str(cee_MK)) 
 
mae_vector_DP = [] 
mse_vector_DP = [] 
cee_vector_DP = [] 
 
mae_vector_MK = [] 
mse_vector_MK = [] 
cee_vector_MK = [] 
 
print(min(obs_DP)*0.90); print(max(obs_DP)*1.10) 
print(min(obs_MK)*0.90); print(max(obs_MK)*1.10) 
 
for k in range(5000): 
    randomlist_DP = [] 
    diff = [] 
    mae = [] 
    diff2 = [] 
    mse = [] 
 
    for i in range(len(obs_DP)): 
        randomlist_DP.append(random.uniform(min(obs_DP)*0.90,max(obs_DP)*1.10)) 
        diff.append(abs(randomlist_DP[i]-obs_DP[i])) 
        diff2.append(diff[i]*diff[i]) 
        mae.append(diff[i]*(1/len(obs_DP))) 
        mse.append(diff2[i]*(1/len(obs_DP))) 
 
    mae_vector_DP.append(sum(mae)) 
    mse_vector_DP.append(sum(mse)) 
    cee_vector_DP.append(abs(sum(randomlist_DP)-cumu_DP)) 
     
for k in range(5000): 
    randomlist_MK = [] 
    diff = [] 
    mae = [] 
    diff2 = [] 
    mse = [] 
 
    for i in range(len(obs_MK)): 
        randomlist_MK.append(random.uniform(min(obs_MK)*0.90,max(obs_MK)*1.10)) 
        diff.append(abs(randomlist_MK[i]-obs_MK[i])) 
        diff2.append(diff[i]*diff[i]) 
        mae.append(diff[i]*(1/len(obs_MK))) 
        mse.append(diff2[i]*(1/len(obs_MK))) 
 
    mae_vector_MK.append(sum(mae)) 
    mse_vector_MK.append(sum(mse)) 
    cee_vector_MK.append(abs(sum(randomlist_MK)-cumu_MK)) 
     
 
print(' '); print('Drew Point Location:') 
print('average MAE = '+str(np.mean(mae_vector_DP))) 
print('minimum MAE = '+str(min(mae_vector_DP))) 
print('maximum MAE = '+str(max(mae_vector_DP))) 
print('st.dev  MAE = '+str(np.std(mae_vector_DP))) 
print('confidence = ');print(str(np.mean(mae_vector_DP)-np.std(mae_vector_DP)) + ' - ' + str(np.mean(mae_vector_DP)+np.std(mae_vector_DP))) 
plt.hist(mae_vector_DP, 50) 
plt.axvline(mae_DP, color='red') 
plt.axvline(np.mean(mae_vector_DP)-np.std(mae_vector_DP), color='orange') 
plt.axvline(np.mean(mae_vector_DP)+np.std(mae_vector_DP), color='orange') 
plt.title('Mean Absolute Error Histogram, Drew Point') 
plt.ylabel('Number of Occurrences') 
plt.xlabel('Mean Absolute Error [m]') 
plt.show() 
print(' '); print('Drew Point Location:') 
print('average MSE = '+str(np.mean(mse_vector_DP))) 
print('minimum MSE = '+str(min(mse_vector_DP))) 
print('maximum MSE = '+str(max(mse_vector_DP))) 
print('st.dev  MSE = '+str(np.std(mse_vector_DP))) 
print('confidence = '); print(str(np.mean(mse_vector_DP)-np.std(mse_vector_DP)) + ' - ' + str(np.mean(mse_vector_DP)+np.std(mse_vector_DP))) 
plt.hist(mse_vector_DP, 50) 
plt.axvline(mse_DP, color='red') 
plt.axvline(np.mean(mse_vector_DP)-np.std(mse_vector_DP), color='orange') 



plt.axvline(np.mean(mse_vector_DP)+np.std(mse_vector_DP), color='orange') 
plt.title('Mean Squared Error Histogram, Drew Point') 
plt.ylabel('Number of Occurrences') 
plt.xlabel('Mean Squared Error [m2]') 
plt.show() 
print(' '); print('Drew Point Location:') 
print('average CEE = '+str(np.mean(cee_vector_DP))) 
print('minimum CEE = '+str(min(cee_vector_DP))) 
print('maximum CEE = '+str(max(cee_vector_DP))) 
print('st.dev  CEE = '+str(np.std(cee_vector_DP))) 
print('confidence = '); print(str(np.mean(cee_vector_DP)-np.std(cee_vector_DP)) + ' - ' + str(np.mean(cee_vector_DP)+np.std(cee_vector_DP))) 
plt.hist(cee_vector_DP, 50) 
plt.axvline(cee_DP, color='red') 
plt.axvline(np.mean(cee_vector_DP)-np.std(cee_vector_DP), color='orange') 
plt.axvline(np.mean(cee_vector_DP)+np.std(cee_vector_DP), color='orange') 
plt.title('Cumulative Erosion Error Histogram, Drew Point') 
plt.ylabel('Number of Occurrences') 
plt.xlabel('Cumulative Erosion Error [m]') 
plt.show() 
 
print(' '); print('Mamontovy Khayata Location:') 
print('average MAE = '+str(np.mean(mae_vector_MK))) 
print('minimum MAE = '+str(min(mae_vector_MK))) 
print('maximum MAE = '+str(max(mae_vector_MK))) 
print('st.dev  MAE = '+str(np.std(mae_vector_MK))) 
print('confidence = '); print(str(np.mean(mae_vector_MK)-np.std(mae_vector_MK)) + ' - ' + str(np.mean(mae_vector_MK)+np.std(mae_vector_MK))) 
plt.hist(mae_vector_MK, 50) 
plt.axvline(mae_MK, color='red') 
plt.axvline(np.mean(mae_vector_MK)-np.std(mae_vector_MK), color='orange') 
plt.axvline(np.mean(mae_vector_MK)+np.std(mae_vector_MK), color='orange') 
plt.title('Mean Absolute Error Histogram, Mamontovy Khayata') 
plt.ylabel('Number of Occurrences') 
plt.xlabel('Mean Absolute Error') 
plt.show() 
print(' '); print('Mamontovy Khayata Location:') 
print('average MSE = '+str(np.mean(mse_vector_MK))) 
print('minimum MSE = '+str(min(mse_vector_MK))) 
print('maximum MSE = '+str(max(mse_vector_MK))) 
print('st.dev  MSE = '+str(np.std(mse_vector_MK))) 
print('confidence = '); print(str(np.mean(mse_vector_MK)-np.std(mse_vector_MK)) + ' - ' + str(np.mean(mse_vector_MK)+np.std(mse_vector_MK))) 
plt.hist(mse_vector_MK, 50) 
plt.axvline(mse_MK, color='red') 
plt.axvline(np.mean(mse_vector_MK)-np.std(mse_vector_MK), color='orange') 
plt.axvline(np.mean(mse_vector_MK)+np.std(mse_vector_MK), color='orange') 
plt.title('Mean Squared Error Histogram, Mamontovy Khayata') 
plt.ylabel('Number of Occurrences') 
plt.xlabel('Mean Squared Error') 
plt.show() 
print(' '); print('Mamontovy Khayata Location:') 
print('average CEE = '+str(np.mean(cee_vector_MK))) 
print('minimum CEE = '+str(min(cee_vector_MK))) 
print('maximum CEE = '+str(max(cee_vector_MK))) 
print('st.dev  CEE = '+str(np.std(cee_vector_MK))) 
print('confidence = '); print(str(np.mean(cee_vector_MK)-np.std(cee_vector_MK)) + ' - ' + str(np.mean(cee_vector_MK)+np.std(cee_vector_MK))) 
plt.hist(cee_vector_MK, 50) 
plt.axvline(cee_MK, color='red') 
plt.axvline(np.mean(cee_vector_MK)-np.std(cee_vector_MK), color='orange') 
plt.axvline(np.mean(cee_vector_MK)+np.std(cee_vector_MK), color='orange') 
plt.title('Cumulative Erosion Error Histogram, Mamontovy Khayata') 
plt.ylabel('Number of Occurrences') 
plt.xlabel('Cumulative Erosion Error [m]') 
plt.show() 
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