
Author Response to CC1.  

 

The comments in CC1 by Jennifer Frederick are in font color black.  The authors’ 

responses are in green. 

 

We thank Jennifer Frederick for going through our model results in detail.  We are very much 

aware of the current model development efforts in which she is involved and value her 

opinion in improving our model. She has proposed, with her own analysis, that: 

‘‘ArcticBeachv1.0 cannot predict the annual erosion rate any better than a random number 

generator can.’’  Seeing this as a rather crippling statement to our work, we have carefully 

gone through her code and analysis, and respectfully assert that this statement is not supported 

nor reflected by what she has provided in her analysis.   

 

We assert: 

 

• Contrary to what Jennifer Frederick has claimed, she did not compare our model 

results with random numbers. Instead, she used an unrealistically-constrained array of 

values having limits of 10% within observed retreat rates.   

• We would like to point out that any model or hindcast would be out-performed by a 

random number generator as long as the random numbers being generated were 

constrained to a close enough value to the observations. 

• Given that observed retreat rates themselves can have a much greater error than 10% 

and are difficult to assess (Lantuit et al., 2008, Jones et al. (2018)), we find it an unfair 

and misleading claim to assert that the results of our model are no better than choosing 

random numbers when the ‘random’ numbers were chosen closer to observations than 

the uncertain error bar on the observations themselves.  Further, Jennifer Frederick 

does not provide any reasoning for choosing a 10% threshold of deviations from 

observed retreat rates as her definition for her ‘random numbers’.  It is not mentioned 

in the main body of her comment that her ‘random’ numbers are constrained by this 

unrealistic threshold, well within the error of observations.  It is instead left to the 

reader to go through the methodology of the supplemental section in her community 

comment, or find the line in her model code. This tactic is potentially damaging in the 

sense that it could lead to misconceptions of our paper if the reader is unwilling to go 

through the methodology supplement of community comments in a discussion forum. 

• Our model includes essential physics that cannot be produced by a random number 

generator. For example, water levels are essential in driving coastline retreat (Barnhart 

et al., (2014), Kobayashi et al. (1999) and mentioned in Section 1, line 43-46 of the 

manuscript).  ArcticBeachv1.0 is able to calculate relative water levels using wind 

speed, wind direction, bathymetry, and coastline angle.  In light of declining sea ice 

cover and lengthened open water season, especially in those locations where freeze-up 

is being delayed further into the windy fall storm season, the importance of including a 

physical representation of changes in relative water levels due to wind forcing is 

paramount.  Water levels have long been known to be a driving factor in erosion, 

especially erosion of partially-frozen coastlines present in the Arctic (Aré (1988), 

Casas-Prat and Wang (2020)).  

• ArcticBeachv1.0 is the coupling of two widely-known and well-cited physics-based 

numerical models (Kobayashi et al. (1999) and Freeman et al. (1957)).  It is the first 

time a water level model has been coupled to a simplified Arctic erosion model with 

the aim of developing a computationally efficient physics-based parameterization of 

arctic erosion.   



o It is the first time such an approach is used that does not focus on one segment 

of coastline, such as the highly specialized processes occurring at Drew Point, 

Alaska. This is mentioned in the manuscript in Section 1, lines 27-38. 

o To say this coupled model is ‘under-developed’ suggests that a state-of-the-art 

similar approach already exists, and ours is less developed than state-of-the-art.   

o Since it is the first time an arctic erosion model has been developed such that it 

can simulate retreat on diverse types of coastlines in a computationally-

efficient manner, we argue that ArcticBeach v1.0 sets the state-of-the-art in 

developing a parameterization of arctic shoreline erosion based on physical 

principles. 

 

 

 

Review of ArcticBeach v1.0: A physics-based parameterization of pan-Arctic coastline 

erosion  

by Rebecca Rolph et al.  

Reviewed by Jennifer M. Frederick, Sandia National Laboratories, 

jennifer.frederick@sandia.gov  

 

Summary  

This manuscript describes a model for Arctic coastal erosion that is based on a simplified 

physical erosion model of a partially frozen cliff and beach, coupled to a storm surge model. 

It is presented as a first step toward a parameterization of pan-Arctic shoreline erosion at a 

coarse spatial scale for capturing erosion rates on the order of years to decades. It uses 

physical data as boundary conditions, such as wind speeds and directions, wave period and 

height, and sea surface temperature, as well as accounting for sea ice cover. The authors claim 

the new model provides a promising starting point to project the retreat of Arctic shorelines, 

or to evaluate historical retreat in places that have had few observations.  

 

General Summary of Comments  

I do not recommend publication in its current form.  The model presented (ArcticBeachv1.0) 

is under-developed and the authors have not shown that this model has any predictive skill 

that outperforms a random number generator (proof described in detail in my review). For 

transparency, I have also included the Python script which performs this analysis.  

 

We have gone through Jennifer Frederick’s random number generator in her script mentioned 

above (see the line of her code pasted below in green) and it is not stated in the text of her 

detailed review (including in her description explaining what a null hypothesis is to the 

authors) why she tuned the ‘random’ numbers to generate random values within 10% of the 

observed retreat.  The 10% used in her script refer to the error reported by authors in 

calculating erosion rates based on remote sensing imagery. The error of observations 

calculated for remote-sensing based computations of retreat are generally based on equations 

attempting to encapsulate all errors associated with the manipulations of the operator and of 

the georeferencing process (see Lantuit et al., 2008, 2011; Günther et al., 2013, Jones et al. 

2009). The total error or dilution of accuracy is the root of the sum of all squared error factors 

(RMSE from georeferencing, digitizing error, pixel resolution) divided by the number of 

observation years. The individual error factors remain the same independently of the period of 

observation, while the number of years obviously varies. The total error will therefore vary 

drastically based on the observation period. In other words, the error reported in these studies 

relates to longer periods of observations and not to individual years.  Previous studies have 

reported on errors varying between 4 to greater than 25% (see Lantuit et al., 2008, 2011; 



Günther et al., 2013, Jones et al. 2008, 2009)., but these errors could be much greater for 

shorter periods of observations. At Drew Point the total error varied between 4 and 9% (Jones 

et al. 2009) but would be greater if the observation periods were shortened. This shows that 

the 10% error chosen here does not reflect the error actually observed for individual years and 

actually does not relate to one specific period of observation. In fact, Jones et al. (2018) 

indicate that “it is difficult to accurately assess errors in erosion rate measurements associated 

with this type of analysis.”  Finally, the error for observations at Drew Point should be 

considered as among the lowest along the whole arctic coastline, and is an inaccurate 

depiction of observational error for average arctic coastal erosion. The selection of a 10% 

value for error is therefore highly subjective and not systematic. 

 

We would like to re-iterate any model would be deemed out-performed by a random number 

generator as long as the random number generator was constrained to a close enough value to 

the observations.  While ArcticBeachv1.0 is calibrated with observed values, it is not a 

random number generator.  It is based on a previously published, and well-cited, physical 

model of Arctic shoreline erosion (Kobayashi et al., 1999).  Thus, unlike a random number 

generator, it provides the opportunity to add more physical processes not yet captured in this 

study.   Additionally, as mentioned in Section 4.3 lines 405-413, the possibility to avoid water 

level calibration in the future could be implemented in future work.   

 

The line in the code provided by Jennifer Frederick, which constrains the random number 

generator within 10% of the observed retreat rates, is copy-pasted below: 

 
randomlist_DP.append(random.uniform(min(obs_DP)*0.90,max(obs_D

P)*1.10))  

 

As with all numerical physics-based models, the opportunity exists to add more physical 

processes with the goal of reproducing model output that more closely resembles reality.  One 

of the primary uses of numerical models is to develop our understanding of the real world, 

and to predict what might happen in the future.  A random number generator that is 

constrained to past observations is not used in place of numerical models because we do not 

have observations of the future.  While data assimilation is a great tool, it is not possible to 

solely rely on observations to predict future processes --- we need to understand the physics 

involved. Or, indeed, if one would like to look at the sensitivity of a certain process, we would 

have to use a model with multiple processes in order to (for example) effectively ‘turn off’ 

that one process we are interested in and see what impact that has on the results.  Such an 

understanding is not possible by using only a random number chosen well within the error of 

observations.  Sensitivity studies to different coastline properties has been conducted and 

those results explained in Section 3.5 ‘Sensitivity to critical model parameters’. 

 

One such process that is important for erosion is water level, and we are able to calculate the 

relative water levels at a very low computational cost, at any point along the Arctic coastline, 

from globally-available reanalysis wind speed and direction, or, for example, CMIP projected 

winds.  This is done with a well-known and well-cited storm surge modelling approach, 

explained in Section 2.2, lines 139-157.  We argue that a random number generator is in no 

position to calculate physically-relevant variables that drive Arctic coastal erosion, and our 

model provides establishes the state-of-the-art of computationally-efficient coupled storm-

surge Arctic erosion processes. 

 



My suggestion to the authors is further development of the model and resubmission for 

publication at a later date and after further collaboration and consultation with peers in this 

research field.  

 

We view the assumption above that we have not collaborated with peers in this research field 

as presumptuous.  Further, this comment does not refer to any part of the scientific scope of 

the manuscript. 

 

One benefit of the model presented is its low computational cost. If the low computational 

cost can be maintained while improving its ability to robustly predict coastal retreat rates, this 

would represent a ground-breaking advance in the field!  

 

We appreciate that Jennifer Frederick sees our approach as one that is worth developing 

further, and would like to add that ArcticBeach v1.0 represents a way forward not only in the 

field of arctic erosion, but also those fields involved in nearshore carbon cycling and 

biogeochemistry (referenced in Section 4.3, lines 387-393 of the manuscript).  

 

The results summarized in Figure 4 show the modeled annual and cumulative retreat at 

Mamontovy Khayata (MK) and Drew Point (DP) vs observations at each site. At first glance, 

the modeled retreat looks poor, but an error analysis was not provided to quantify model 

performance. For any predictive model, a thorough analysis of model predictive skill is 

required to evaluate its performance and ability to make reliable, robust predictions. One of 

the simplest routines is to test model predictions against a random prediction. If the model has 

good predictive skill, it should outperform a prediction generated at random within a plausible 

range of possible outcomes. This is essentially like posing the null hypothesis and showing 

that the model can disprove the null hypothesis. In this case, the null hypothesis states that, 

‘ArcticBeachv1.0 cannot predict the annual erosion rate any better than a random number 

generator can.’ This null hypothesis would be disproved for any possible model as long as the 

random number generator is constrained to a close enough range to observations.  If all 

models could be constrained so closely by observations at the same time as knowing what 

values will be observed in the future, any numerical model hindcast or prediction is irrelevant.  

Given that Jennifer Frederick unrealistically constrained her random number generator closer 

to observed values than error of the observations themselves, we do not find her analysis 

relevant in a scientific context.  If the ArcticBeachv1.0 model can predict annual erosion rate 

statistically significantly better than a random number generator, then it can rightfully claim 

predictive skill. My concern here for both locations is that, while there are a few years where 

modeled erosion matched observed erosion fairly well, there are also many years in this time 

series where the erosion is far outside of the running average. In these years, a model with 

high predictive skill should be able to reproduce the trend, if it has captured the correct 

physics. However, the ArcticBeachv1.0 model predictions end up under- or over-estimating 

the retreat, in the OPPOSITE direction just as many times as they estimate the retreat in the 

CORRECT direction (above or below the mean retreat). 

The conclusion from the analysis for predictive skill (described in full detail below) shows 

that the ArcticBeachv1.0 model has no predictive skill at the DP location, and has inverse 

predictive skill at the MK location. Based on the error analysis, I disagree with the authors, as 

stated in the abstract, that the ArcticBeachv1.0 model provides a promising starting point to 

project the retreat of Arctic shorelines, or to evaluate historical retreat in places that have had 

few observations. The results of this analysis at both locations indicate that the model in its 

current form is under-developed, and cannot be relied upon to provide robust and skillful 



predictions for coastal retreat rates in the Arctic more than a randomly generated number can 

(in the case of the DP location) nor can be relied to provide a prediction in the correct trend 

direction (in the case of the MK location). These statements are misleading and do not 

provide the full scope of the reviewer’s case for ‘random number generator’.  The argument 

that has been made multiple times by the reviewer that the ArcticBeach v1.0 is no more useful 

at evaluating erosion than choosing random numbers could be applied to any model, not just 

ArcticBeach v1.0.     

 

We would like to re-iterate to the point that if all models could be constrained so closely by 

reality (or, as done in Jennifer Frederick’s analysis, even closer to reality than the error of 

what we are able to observe) any numerical model hindcast is irrelevant.   

 

Detailed Analysis  

I performed an analysis on the modeled retreat vs the observed retreat to quantify the error. I 

used the mean squared error (MSE) of the annual retreat predictions as the performance 

metric. The MSE will penalize large differences between predicted and observed values more 

so than small differences, which is appropriate in this case because swings in retreat far 

outside the normal or average erosion behavior signify major disruptions in erosion drivers, 

which is what we want to capture with a robust, skillful predictive model. It is also thought 

that future conditions will become more extreme as climate changes in the Arctic, and thus 

erosion may continue to behave erratically. The mean squared error is defined as 

 

where N is the number of retreat predictions with available retreat observations, M is a 

modeled retreat prediction, and O is a corresponding retreat observation for the model 

prediction. For this test, the MSEs for each location for ArcticBeachv1.0 vs observations are 

shown in Table 1. For the MK location, the MSE of the annual retreat between 1995 - 2018 

was 125.48 m2, and for the Drew Point location, the MSE of the annual retreat between 2007 

- 2016 was 61.55 m2. A perfect prediction for every year would yield an MSE of 0 m2 at both 

locations. 

[Table 1 is given in original CC1]. 

Next, the model predictions are tested against a random number generator to judge predictive 

skill and give meaning to the MSE values calculated for ArcticBeachv1.0. For the MK 

location, a random number from within a plausible range of retreat was generated for each 

year using Python’s random package. The range in retreat was calculated as the minimum and 

maximum of the observed retreat data with a 10% envelope (e.g. 1.18 m – 12.04 m). The 

MSE for the randomly chosen annual retreat was calculated against the observations. This 

numerical experiment was performed 5,000 times, and a histogram of results was created to 

obtain statistical behavior (shown in Figure 1). As reported in Table 1, the average MSE of 

the annual retreat from the randomly generated model was 16.36 m2, as compared to the 

ArcticBeachv1.0 model value of 125.48 m2 (shown as the red line superimposed on the 

histogram). The error is much larger for the ArcticBeachv1.0 model than the randomly 

generated model, while also lying significantly outside of the 1st standard deviation of the 

randomly generated model’s “predictions” (predictions in quotations because they are not 

truly predictions but random numbers). This suggests that the ArcticBeachv1.0 model has 



predictive skill, but its predictive skill is opposite of the observations (in the direction of 

larger error or in the opposite direction from mean annual retreat). This is clearly seen by 

inspection of Figure 4a in the manuscript, where large mismatches in the opposite direction 

from the mean annual retreat rates are predicted by the ArcticBeachv1.0 model, especially 

between years 2002 - 2018. 

[Figure 1 is given in original CC1]. 

The test was repeated for the Drew Point location. For the DP location, a random number 

between a plausible range of retreat was generated for each year using Python’s random 

package. The range in retreat was calculated as the minimum and maximum of the observed 

retreat data with a 10% envelope (e.g. 5.94 m – 24.83 m). The MSE for the randomly chosen 

annual retreat was calculated against the observations. This numerical experiment was 

performed 5,000 times, and a histogram of results was created to obtain statistical behavior 

(shown in Figure 2). As reported in Table 1, the average MSE of the annual retreat from the 

randomly generated model was 53.85 m2, as compared to the ArcticBeachv1.0 model value 

of 61.55 m2 (shown as the red line superimposed on the histogram). In this case, the 

ArcticBeachv1.0 model performed slightly worse than the randomly generated model (since 

the MSE for the ArcticBeachv1.0 model was higher than the mean MSE for the randomly 

generated model). Additionally, the MSE for the ArcticBeachv1.0 model sits within the 1st 

standard deviation of the MSE for the randomly generated model. This suggests that the 

ArcticBeachv1.0 model does not predict erosion rates significantly different than a randomly 

generated number. If it did, then the MSE would be well below the 1st standard deviation of 

the randomly generated model. The performance can also be seen by inspection of Figure 4b, 

where the ArcticBeachv1.0 model predictions end up under- or over-estimating the retreat at 

DP, in the OPPOSITE direction just as many times as they estimate the retreat in the 

CORRECT direction (above or below the mean retreat over the time period). 

[Figure 2 is given in original CC1]. 

Furthermore, the analysis was extended to quantify the error in the cumulative erosion. The 

cumulative erosion error was calculated as the difference between the sum of the observed 

annual retreat values and the sum of the modeled annual retreat values. As reported in Table 

1, the cumulative retreat error was 48.77 m (reported as “roughly 40 m” in the manuscript 

text, line 215) for the MK location, and 3.42 m (reported as “within a few meters” in the 

manuscript text, line 215) for the DP location.  

Similarly to the random model numerical experiments presented for the annual retreat 

predictions, the same procedure is repeated for the cumulative erosion error. For each year, 

using the same set of random numbers that were generated for annual retreat, the cumulative 

retreat was calculated by summing the random annual retreat values for each numerical 

experiment. A histogram was created for each location, shown in Figure 3 (MK) and Figure 4 

(DP).  

For the MK location, the mean cumulative erosion error for randomly generated model was 

39.19 m (see Table 1), as compared to the ArcticBeachv1.0 model value of 48.77 m2 (shown 

as the red line superimposed on the histogram). In this case, the ArcticBeachv1.0 model 

performed slightly worse than the randomly generated model (since the cumulative erosion 

error for the ArcticBeachv1.0 model was higher than the error in the randomly generated 

model). Moreover, the mean cumulative erosion error for the ArcticBeachv1.0 model sits 

within the first standard deviation of the cumulative erosion error for the randomly generated 

model. This suggests that the ArcticBeachv1.0 model does not predict cumulative erosion 



significantly different than a randomly generated number at the MK location. Interestingly, 

while the annual retreat predictions were skillful (albeit in the opposite direction), the 

cumulative retreat might as well have been generated at random. 

[Figure 3 is given in original CC1]. 

At the DP location, the mean cumulative erosion error for randomly generated model was 

20.28 m (see Table 1), as compared to the ArcticBeachv1.0 model value of 3.42 m2 (shown 

as the red line superimposed on the histogram). In this case, the ArcticBeachv1.0 model 

performed significantly better than the randomly generated model (since the cumulative 

erosion error for the ArcticBeachv1.0 model was lower than the error in the randomly 

generated model and it was positioned outside of the 1st standard deviation of the randomly 

generated model error). This makes sense because the ArcticBeachv1.0 model did a decent 

job predicting the erosion rate at Drew Point for years in which the erosion was relatively 

average, but happened to over- or under- estimate the erosion for anomalous years at roughly 

equal magnitudes, and as a result summing to roughly zero, thus providing little contribution 

to the cumulative retreat error metric. 

[Figure 4 is given in original CC1]. 

The conclusion from the analysis for predictive skill shows that the ArcticBeachv1.0 model 

has no predictive skill at the DP location, and has inverse predictive skill at the MK location. 

Based on the error analysis, I disagree with the authors, as stated in the abstract, that the 

ArcticBeachv1.0 model provides a promising starting point to project the retreat of Arctic 

shorelines, or to evaluate historical retreat in places that have had few observations. The 

results of this analysis at both locations indicate that the model in its current form is under-

developed, and cannot be relied upon to provide robust and skillful predictions for coastal 

retreat rates in the Arctic more than a randomly generated number can (in the case of the DP 

location) nor can be relied to provide a prediction in the correct trend direction (in the case of 

the MK location). As disheartening as this error analysis seems, the MK location does show 

promise because of its ability to capture opposite trends. I suggest to the authors to investigate 

this behavior more closely, as it probably indicates some physical behavior captured in the 

model that may be relevant for erosion rates, but in the opposite sense.  

Table 1: From what I understand, the two study locations have identical material properties, 

but they differ in geometry only with cliff height. Is this an adequate demonstration of the 

model’s ability to provide a “physics-based numerical model that can be applied across all 

partially frozen shorelines”? (Quote from lines 36-37) I was expecting more diversity between 

demonstration sites. 

We thank Jennifer Frederick for her perspective, and realize we needed to add more 

description in the manuscript that make clear how unambiguously different our validation 

sites are.  We have now added a new subsection called ‘Validation Sites’ that describes them 

in more detail.  However, we would also like to point out that one should not look at the 

simplified material properties that represent study sites in a model framework in order to get 

an idea of what that study site is like in real life.  When there is no effort to examine the 

differences between the real-life sites themselves, one will have a misconception of each site 

because simplifications must be taken when representing a real-life site in a model.  This 

misconception is exemplified by the approach taken by Jennifer Frederick in her comment 

above when she states that the ‘two study locations have identical material properties, but they 

differ in geometry only with cliff height’ and there is not enough ‘diversity between 

demonstration sites.’   We note that it is impossible to capture all of the material diversity at 



the spatial and temporal scale of real-life into a model, that our values come from published 

literature (see references in Table 1) and we would like to highlight that one should not look 

at model representations of study sites to judge what the real-life site is like. 

When we want to examine if physical segments of Arctic coastlines are different, we go 

directly to the coast itself during fieldwork (as has been done for many years by co-authors of 

this work, with a decades-long strong German-Russian-Canadian collaboration).  We also 

examine published observational literature (naturally, including those papers the authors have 

not written themselves, because these sites have been the focus of co-authors work), and also 

examine historical and satellite data.   

In addition, not only are the real-life physical coastline properties just a part of the story of 

what determines differences at a coast, but what also must be included are the differences in 

the climate variables at the coast, such as sea ice coverage and wind speed and direction.  All 

of these parts of the story are vital to understand if one would like to compare whether or not 

two coastlines are similar.  Our study sites, for example, Mamontovy Khayata, on Bykovsky 

Peninsula, Siberia, and Drew Point, Alaska, USA, are starkly different in their main erosional 

features (e.g. dominance of block erosion at Drew Point, mentioned in the manuscript on lines 

32-34 and also in newly added Methods subsection 2.1.3, see response to Reviewer #1) and 

Mamontovy Khayata (e.g. dominance of thermodenudation, now highlighted in the new 

Methods subsection 2.1.3 in response to Reviewer #1).   

We would also like to point out that our two study sites are located on roughly opposite sides 

of the Arctic Ocean, they have different open water season lengths (Figures 6-8), wind speed 

and direction (Figures 6-7) and bathymetry.  These differences are all taken into account in 

our coupled storm surge arctic erosion model, and consequently in our coupled erosion model.  

This is mentioned in Section 2, lines 58-67.  
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