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Abstract.

Models and simulation tools for gravitational mass flows (GMF) such as snow avalanches, rockfall, landslides and debris

flows are important for research, education and practice. In addition to basic simulations and classic applications (e.g., hazard

zone mapping), the importance and adaptability of GMF simulation tools for new and advanced applications (e.g., automatic

classification of terrain susceptible for GMF initiation or identification of forests with a protective function) are currently5

driving model developments. In principle, two types of modeling approaches exist: process-based physically motivated and

data-based empirically motivated models. The choice for one or the other modeling approach depends on the addressed ques-

tion, the availability of input data, the required accuracy of the simulation output, and the applied spatial scale. Here we present

the computationally inexpensive open-source GMF simulation tool Flow-Py. Flow-Py’s model equations are implemented via

the Python computer language and based on geometrical relations motivated by the classical data-based runout angle concepts10

and path routing in three-dimensional terrain. That is, Flow-Py employs a data-based modeling approach to identify process

areas and corresponding intensities of GMFs by combining models for routing and stopping, which depend on local terrain and

prior movement. The only required input data are a digital elevation model, the positions of starting zones and a minimum of

four model parameters.

In addition to the major advantage that the open-source code is freely available for further model development, we illustrate15

and discuss Flow-Py’s key advancements and simulation performance by means of three computational experiments:

1. Implementation and validation: We provide a well-organized and easily adaptable solver and present its application to

GMFs on generic topograhies
::::::::::
topographies.

2. Performance: Flow-Py’s performance and low computation time is demonstrated by applying the simulation tool to a

case study of snow avalanche modeling on a regional scale.20
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3. Modularity and expandability: The modular and adaptive Flow-Py development environment allows to access spatial

information easily and consistently, which enables, e.g., back-tracking of GMF paths that interact with obstacles to their

starting zones.

The aim of this contribution is to enable the reader to reproduce and understand the basic concepts of GMF modeling at

the level of 1) derivation of model equations, and 2) their implementation in the Flow-Py code. Therefore, Flow-Py is an25

educational, innovative GMF simulation tool that can be applied for basic simulations but also for more sophisticated and

custom applications such as identifying forests with a protective function or quantifying effects of forests on snow avalanches,

rockfall, landslides and debris flows.

1 Introduction

The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, land-30

slides or debris flows. GMFs are characterized by 1) the composition of their mass, and 2) the behavior of their motion

(Köhler et al., 2018; Varnes, 1978; Okuda, 1991)
:::::::::::::::::::::::::::::::::::::::
(Köhler et al., 2018; Okuda, 1991; Varnes, 1978). However, certain common-

alities are shared between most GMFs such as that their motion is driven by the force of gravity and that they are all processes

acting on hill slopes (Varnes, 1978).

GMF simulation tools are crucial for developing natural hazard zoning maps and an integrated natural hazard risk manage-35

ment (Dorren et al., 2011; Guzzetti et al., 2002; Dorren, 2003; Barbolini et al., 2011; Sauermoser, 2006; Corominas et al., 2014; Fell et al., 2008; Fressard et al., 2014; Crozier and Glade, 2005; Guillard and Zezere, 2012; Van Westen et al., 2006)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Corominas et al., 2014; Fressard et al., 2014; Guillard and Zezere, 2012; Barbolini et al., 2011; Dorren et al., 2011; Fell et al., 2008; Sauermoser, 2006; Van Westen et al., 2006; Crozier and Glade, 2005; Dorren, 2003; Guzzetti et al., 2002)

. To optimize risk mitigation measures, e.g., by installing technical protection measures or planning and implementing nature-

based solutions and avoidance strategies efficiently, GMF runout models can be used in economic studies (Fuchs et al., 2007; Moos et al., 2018; Teich and Bebi, 2009)

:::::::::::::::::::::::::::::::::::::::::::::::::
(Moos et al., 2018; Teich and Bebi, 2009; Fuchs et al., 2007).40

Many GMF specific models exist, which provide estimations of runout lengths for snow avalanches (Christen et al., 2010; Sampl and Granig, 2009; Christen et al., 2002; Lied and Bakkehøi, 1980; Bakkehøi et al., 1983; McClung and Lied, 1987)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Christen et al., 2010; Sampl and Granig, 2009; Christen et al., 2002; McClung and Lied, 1987; Bakkehøi et al., 1983; Lied and Bakkehøi, 1980)

, landslides (Brenning, 2005), or rockfall (Guzzetti et al., 2002; Dorren, 2012)
:::::::::::::::::::::::::::::
(Dorren, 2012; Guzzetti et al., 2002). More gen-

eral GMF models can be applied to various GMFs and are either process-based physically (Sampl and Zwinger, 2004; Christen et al., 2010; Mergili et al., 2017; Wirbel et al., 2021)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wirbel et al., 2021; Mergili et al., 2017; Christen et al., 2010; Sampl and Zwinger, 2004) or data-based empirically motivated45

(Horton et al., 2013). The main differences between these two types are the larger number of input parameters and expensive

computational resources required for process-based physically motivated GMF models (hereafter referred to as process-based

models) in contrast to data-based empirically motivated models (hereafter referred to as data-based models) that usually involve

less input parameters and are computationally inexpensive; however, process-based models provide more detailed information

about a GMF process and its interactions with the terrain and obstacles in the flow path. The choice for one or the other model-50

ing approach depends on the addressed question, the availability of input data, the required accuracy of the simulation output,

and the applied spatial scale.

Depending on their application, one can choose between those two types of modeling approaches: process-based models are
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suitable for most applications provided that their input data requirements are met; however, to obtain detailed parameter sets

over large areas is labor intensive and often not possible. Therefore, process-based models are best used on smaller (hill-slope)55

scales and in data rich domains (Corominas et al., 2014; Van Westen et al., 2008), but methods to overcome the lack of parame-

terizations have been developed tackling even back calculations, solving the inverse problem (Ancey et al., 2003; Eckert et al., 2010; Fischer et al., 2015)

::::::::::::::::::::::::::::::::::::::::::::::::
(Fischer et al., 2015; Eckert et al., 2010; Ancey et al., 2003). In recent years, a number of data-based models, which require

less input parameter have been developed and applied to regional-scale case studies and for various GMFs. For example,

random walk-based models have already been applied to debris flows and other GMFs Gamma (1999); Mergili et al. (2015)60

:::::::::::::::::::::::::::::
(Mergili et al., 2015; Gamma, 1999). Huggel et al. (2003) developed a similar flow routing models and used it to assess GMFs

related to glacier lake outbursts, but their model can also be applied to other GMF types such as ice-rock avalanches (Huggel

et al., 2007; Noetzli et al., 2006). Horton et al. (2013) published the Flow-R simulation tool, which primarily aims at regionally

assessing debris flow susceptibilities, but is also applicable to other processes and variable friction relations. While data-based

models mostly lack a physical interpretation of their results they are computationally inexpensive and require less input data. In65

addition, data-based and process-based approaches can be combined in one model (Scheidl and Rickenmann, 2011; Barbolini et al., 2011)

::::::::::::::::::::::::::::::::::::::::::::
(Barbolini et al., 2011; Scheidl and Rickenmann, 2011). Using a combination of observations, and data-based and process-

based models for hazard zone mapping has been proposed to overcome the lack of hard to measure parameterizations for

process-based models, especially for statistically sensitive variables (Barbolini et al., 2000).

We present the innovative and educational Flow-Py simulation tool, which employs a data-based motivated approach to70

predict the magnitude, i.e., runout (spatial extent including starting, transit and runout zones) and intensity (effects of a GMF at

a specific location) of GMF processes. Flow-Py builds on the ideas and algorithms from existing data-based GMF models.The

Flow-Py algorithm is based on a flow path identification in three-dimensional terrain (routing) and concepts for runout and

intensity estimates along this path (stopping). To determine the GMF’s runout and intensity we utilized well known runout

(travel) angle concepts (Heim, 1932), and derived corresponding geometrical quantities to motivate the Flow-Py model equa-75

tions. These geometric relations serve further as reference to validate the Flow-Py implementation and results. In addition to

runout and intensity predictions, Flow-Py simulations results are also a measure of how exposed a location in the flow path is

regarding the number of starting zones and associated transit zones, which route flux through that location.

This contribution is structured as follows: In Sect. 2 we describe the motivation and implementation of our GMF model,

which is further explained in the code repository (Neuhauser et al., 2021). A validation experiment is presented in Sect. 380

which shows simulation results from three simple generic slopes. The performance of Flow-Py is tested via a regional scale

simulation of snow avalanches in Sect. 4. The customization of Flow-Py is described in Sect. 5 and shows how flexible the

simulation tool is and that it can be easily adapted with extensions to specific modeling questions.

With this contribution we enable the reader to reproduce and understand the basic GMF model concepts and their imple-

mentation in the Flow-Py code.85
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2 Model description

The main objectives of the Flow-Py simulation tool are to compute the spatial extent (hereafter referred to as runout) of GMFs,

which consists of starting, transit and runout zones, and the intensity of the GMF. Flow-Py is based on data-driven empirical

modeling ideas (Heim, 1932) with automated path identification (Holmgren, 1994; Horton et al., 2013; Huber et al., 2016;

Wichmann, 2017) to solve the routing and stopping of GMFs in three-dimensional terrain. Data-based models often require less90

input data, a less complex parameterization and solution (e.g. no time-dependent equations are usually solved) than process-

based models. The Flow-Py simulation tool has been designed as a computationally inexpensive data-based model, which

facilitates its application on regional scales, including a large number of GMF paths. Simulations of single starting cells take 1

to 10 seconds where process based, depth average simulations usually operate under the order of minutes. This can be attributed

to the fact that no time depend equations, which process based models are built on, are solved in the underlying model equations95

of Flow-Py. The Flow-Py code is written in the Python computer language taking advantage of Pythons object-oriented class

method. The well-structured model implementation allows users to address GMF specific modeling questions by keeping

the parameterization flexible and enabling to include customized model extensions and add-ons. Flow-Py has already been

applied to dry snow avalanches, rockfall and shallow-seated landslides by adapting the parameterization. Experience from

similar studies also suggests that the model may also be suitable for other GMFs such as debris flows and wet snow avalanches100

Holmgren (1994); Gamma (1999).

The development philosophy to maximize the applicability of Flow-Py builds on:

1. flexible yet minimal input data requirements,

2. simple parameterizations which can describe a range of GMFs, and

3. a highly adaptable and customizable source code.105

In the following sections the model motivation, implementation, input data and Flow-Py results, and underlying model

equations are explained in detail.

2.1 Model motivation

The Flow-Py’s routing and flow path identification in three-dimensional terrain was inspired by the gravitational process path

model CPP (Wichmann, 2017), which introduced a weighting factor for the flow direction, and the programming architecture110

and persistence equations of Flow-R (Horton et al., 2013), combined with an adapted version of the flow direction algorithm

(Holmgren, 1994) to appropriately model movement in flat and uphill terrain. The routing is based on local terrain and prior

movement (flow direction and process intensity), which determines the flow path from starting to transit and runout zones

and simultaneously describes the flow concentration, including lateral spreading. To estimate the process intensity along the

identified path and the runout by introducing a stopping criterion we utilize the well-known runout angle (α) concept (Heim,115

1932; Lied and Bakkehøi, 1980; Bakkehøi et al., 1983; Körner, 1980) and derived corresponding geometrical quantities to
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Figure 1. GMF path with altitude z(s), projected travel distance s and local slope angle ψ with starting point s0,z(s0) and runout point

sα,z(sα). The corresponding geometric quantities are directly related to the runout angle α concept and include the local travel angle γ,

with corresponding total altitude change zγ and the process intensity measure zδ with angle δ.

motivate the Flow-Py model equations. Figure 1 depicts the runout angle along with the corresponding geometric relations in

a two-dimensional representation along a GMF path, building the foundation for the underlying model equations.

The geometric relations are directly deduced from the runout angle α and allow to motivate the stopping and intensity

estimates. Additionally, the geometric solution, represented by the α-line from starting (s0,z(s0)) to the runout (sα,z(sα))120

points, serves as reference for a model validation. Important quantities include the local travel angle γ:

tan(γ) =
z(s0)− z(s)
s− s0

, (1)

which, at the end of the GMF path, corresponds to the total travel angle (i.e., the so-called runout angle α (Heim, 1932)),

that can be expressed as:

tan(α) =
z(s0)− z(sα)
sα− s0

. (2)125

The local travel angle height zγ corresponds geometrically to the total elevation drop zγ from the starting point s0 to the

currently projected runout length s along the path:

zγ = tan(γ)(s− s0)

=
z(s0)− z(s)
s− s0

(s− s0) = z(s0)− z(s). (3)
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The total elevation drop zγ splits into zα

zα = tan(α)(s− s0)

=
z(s0)− z(sα)
sα− s0

(s− s0), (4)130

which is associated with the dissipation kinetic energy height, and zδ

zδ = zγ − zα

= z(s0)− z(s)−
z(s0)− z(sα)
sα− s0

(s− s0), (5)

which is a measure of the process intensity, corresponding to the kinetic energy height (based on the principles of energy

conservation, assuming a block movement with frictional dissipation associated to a Coulomb friction, Heim, 1932).

2.2 Implementation135

The Flow-Py simulation tool is implemented based on object-orientated programming ideas, which allows for easy model

customization (Neuhauser et al., 2021). Flow-Py is written in the freely available modern programming language Python3

(Van Rossum and Drake, 2009), which is widely used and supported by an active online community. The simulation tool is

highly adaptable and different routing and stopping routines can be easily implemented, which enables the user to adjust the

parameterization, also for multi model runs, and the equations that govern the movement of the mass down slope, and to im-140

plement Flow-Py in model chains. Flow-Py can be run either by command line allowing it to be called by external programs

or in a BASH file, or with a simple GUI, which guides the user through choosing input files and the parameterization.

A GMF usually has one or more starting zones that span over a single or multiple starting cells. Flow-Py computes the so-

called path, which we define as the spatial extent of the routing from each starting cell to the stopping cells. Each starting zone145

is associated with its own unique path; however, a certain location in the terrain can belong to many paths. Flow-Py identifies

the path with spatial iterations on the cell level, starting with a single cell of a starting zone and then transferring the final

results of the cell and path levels to the output raster level (see Fig. 2). To route on the three-dimensional terrain operating on a

quadrilateral grid, we implemented the geometric concepts that have been introduced in Sect. 2.1. That is, each path calculation

starts with a starting cell, operating on the cell level, requiring the definition of parent, base, child and other neighbor cells (see150

Fig. 2). For the discretized model equations that operate on the cell level we use capital letters to distinguish the variables from

the geometric motivation equations (see Sect. 2.1) with superscripts for the specification and subscripts for the cell indices.

The Python class object developed for Flow-Py is called Flow-Class, which can store values and functions. A Flow-Class

is created for each cell that is part of one path when the neighbor cell is recognized as a child cell and is then added to

the calculation queue. The Flow-Class saves information about a single cell, such as location, its parent cell(s), the output155

quantities, and other information needed for further calculations or computing the output raster. The cells in the calculation
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Figure 2. Left: The raster level summarizes the simulation results and output quantities for all GMF paths. The path level is the spatial level

that contains the spatial extent of a path associated with one starting cell. Right: On the cell level, the iterative routing with parent p, base b,

child c and other neighbor cells i,n is defined. The angle θ is the deviation between the projected incoming and outgoing directions, with the

angle ∠pbn formed from the directions of parent p to base b and from base b to neighbor n cells.

queue will be the base cell (center cell) for subsequent calculations. Information on the iteration step is temporally stored to the

respective cell’s Flow-Class. When the path calculations are finished, values from each cell’s Flow-Class are updated to their

respective location in the result array such that either a maximum value (e.g., Zδmax,the maximum Zδ for a cell over all path

calculations) or a running sum (e.g.,Zδsum, the sum of all Zδ values for a cell over all path calculations) of all calculated paths160

that route flux through that cell are stored. The Flow-Class can be extended to store additional information that can be used to

adjust stopping and routing calculations, e.g., the runout angle α is saved in the Flow-Class and could be adapted and scaled

with Zδb to account for an energy dependent friction.

Using Python’s object-oriented class method is a major advantage for advanced users since they can easily develop custom

extensions or add-ons. We present an example for a back-tracking extension, which saves information of infrastructure located165

in GMF flow paths in the Flow-Class adapting the Flow-Py output in Sect. 5.

2.3 Input data

Flow-Py’s core function loads and handles all input data, which are a digital elevation model (DEM) and a release raster

in .asc or .tiff format. The release raster shows observed or potential GMF starting zones containing one or several starting

cells. The release raster can be created by vector-to-raster conversion of polygon mappings by expert or by onset-susceptibility170

modelling
::::::::
modeling. Flow-Py employs parallel processing for short model run times by splitting the release raster and DEM

into tiles. Each tile is solved independently and sequentially in its own dedicated computer core and processing threads. Multi-

processing is set as the Flow-Py default, i.e. the number of free cores and the amount of RAM are first checked before splitting
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the starting cells and spreading runout calculations among the free computer cores, making sure that the amount of RAM is

not exceeded. The individual calculations are merged by updating the result arrays, which are transformed into output raster.175

The release raster shows potential GMF starting zones containing one or several starting cells. The DEM and the release

raster must be in the same extent and resolution with no resolution limit; however, 5 m and 10 m raster resolutions have been

tested. The major differences between different types of GMFs in regional runout modeling is the behavior of the movement

and its runout, which can be summarized by the runout length and the convergence or divergence of the spreading movement.

These behaviors are controlled by the parameterization of the stopping and routing routines in Flow-Py.180

2.4 Model equations and path identification

The Flow-Py model equations are formulated with respect to an equidistant quadratic grid with the same resolution and extent

as the input raster. During each spatial iteration, calculations are made on a 3x3 cells subset of the raster, where the flux across

the base cell (subscript b) is solved (see Fig. 2). The eight neighbor cells to the base cell (subscript i and n) can be parent cells

(subscript p) during an iteration step acting as flux source cells, or child cells (subscript c) acting as flux sink cells.185

The governing runout modeling question is broken down into two subquestions:

1. Where does the GMF move to?

2. Where does the GMF stop?

These questions are addressed in two dedicated modeling routines called the routing routine and the stopping routine.

2.4.1 Routing190

The routing routine considers a terrain contribution Ti and a contribution accounting for prior motion called persistence Pi

(Horton et al., 2013); the flux is solved from parent cells through the base cell to child cells. Eq. (6) is the basis of the routing

algorithm and shows how the terrain contribution Ti and the persistence contribution Pi are combined to distribute the routing

flux

Ri =
TiPi∑8
n=1TnPn

Rb. (6)195

Ri is the routing flux from the base cell to neighbor cell i and Rb is the total routing flux into the base cell (for starting cells

Rb =Rstart = 1). To conserve Ri, the amount of Rb must be equal to Ri unless a stopping criteria is met (see Sect. 2.4.4). To

conserve flux, Ti and Pi to cell i are normalized across all neighboring cells n. The normalized direction is then scaled with

Rb.

2.4.2 Terrain-based routing200
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The terrain-based routing accounts for the guiding effect of the slope on the movement. To distribute the flux we utilize the

terrain routing function:

Ti =
(tanφi)

exp∑8
n=1 (tanφn)

exp ∀

−90
◦ < φi < 90◦

exp ∈ [1;+∞]
(7)

where Ti is the normalized terrain based routing from the base cell i and φi =
ψi+90◦

2
is the distribution angle with the local

slope angle ψi from the center point of the base cell b to the center points of neighbor cells i where positive slopes indicate a205

downhill direction. The distribution function tanψi is used as a weight to give preference for distributing flux to steeper slopes,

where this distribution function allows for routing on flat and uphill terrain by returning values < 0 for −90◦ < ψi < 90◦. The

distribution function reaches a maximum at ψ = 90◦, which is a vertical drop or free-fall, and a minimum at ψ =−90◦ where

tanψi ≈ 0 occurring at a vertical rise or wall face.

To control the concentration of routing flux an approach based on the multiple flow direction algorithm for runoff has been210

employed (Holmgren, 1994). The exponent exp together with the flux cutoff (see Sect. 2.4.6) controls the lateral spreading

of the flow (Horton et al., 2013). When exp increases, the terrain based routing flux is concentrated to the steepest decent.

Together with the flux cutoff > 0, this results in the path’s lateral spreading to be reduced. As exp→∞ the divergence results

in a single flow direction (block movement) and as exp→ 1 wide spreading is encouraged (fluvial movement). However, other

terrain-based routing approaches can be easily implemented in Flow-Py (see Horton et al. (2013) for summary).215

2.4.3 Persistence-based routing

The persistence-based routing contribution aims to account for the influence or prior GMF movement on the subsequent

routing. It must be noted that persistence is empirically derived and may be conceptually comparable to momentum; however,

Flow-Py’s underlying model equations do not account for mass (and hence momentum).

Equation (8) shows the persistence routing function Pi for neighbor cell i:220

Pi =

Np∑
p=1

8∑
n=1

ZδpDn, (8)

which is consists of two components, the direction Dn Eq. (9) and the intensity Zδp , which has classically been called energy

line height (Körner, 1980). Because a base cell can receive flux from many parent cells p the persistence routing function is

calculated over all neighbor cells n considering the incoming flux from each parent cell.

The directionDn maintains the flow direction from a parent cell (p, flux source) to the base cell b. Weights are used to define225

the flow direction and are expressed as:

Dn =max{0,cos(θ)}, (9)
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where θ = ∠pbn− 180◦ is the resulting deviation angle between the projected incoming and outgoing direction, with ∠pbn

as angle formed from the directions of parent
:::
cell p to base

:::
cell b and from base

:::
cell

:
b to neighbor

:::
cell ncells, compare Fig. 2.

Cells located opposite of a parent cell are assigned the full weight of one. Where cells 45◦
:::
45◦

:
off of the direct flow direction230

get a weight of cos(45
◦
) or 0.707 similar to Horton et al. (2013). The reason that the persistence function passes flux through

three cells and not only one is to compensate for the restriction that there are only eight directions to move on a raster grid. A

weight of 0 is given to all other cells including the parent cell.

The intensity Zδp is stored in the Flow-Class of the parent cell p from a previous iteration step, and the value of Zδ is saved

in the Flow-Class of each child cell. If one child cell has more than one parent cell, then Zδmax,path (maximum value of Zδ for235

the many combinations of routes to a cell on a single path) is stored in its Flow-Class.

The intensity Zδn at the neighbor cell n is cell-wise calculated, i.e. cell to cell throughout the spatial iterations. The intensity

Zδbn refers to the iterative part of Zδn that is associated with the spatial step from the base cell b to the neighbor cell n. Equation

(10) shows the calculation of Zδn, where Zδb is the intensity of the base cell b, which is stored in its Flow-Class. Zδb was

calculated on a previous spatial iteration when the current base cell was a child cell:240

Zδn = Zδb +Zδbn, (10)

where Zδbn is calculated with respect to:

Zαbn = Sbn tan(α), (11)

Zγbn = Zb−Zn, (12)

Zδbn = Zγbn−Z
α
bn, (13)245

where the subscript bn refers to base cell b to neighbor cell n, with the distance Sbn and the iterative energy quantities

Zαbn,Z
γ
bn,Z

δ
bn (see Fig. 1).

The total projected distance along the GMF path Sn is expressed as

Sn = Sb+Sbn. (14)

The parent cell further away from the stopping condition (larger Zδ) will have more influence on the routing flux. After all250

n parent cells are calculated for each neighbor i the persistence-based routing Pi is combined with the terrain-based routing

Ti, as seen in Eq. (7). When the parent cell has a large Zδp the persistence-based routing Pi will be the dominant term in Eq.

(7); however, if Zδp is small, then the terrain based-routing Ti will dominate the routing direction.

There are two limits that are imposed in the persistence routing routine: First, any cell that has previously been a base cell

cannot be a child cell (a parent cell can not be a child cell). The disadvantage of this limit exerts on half-pipe shaped terrain255

in which the mass moves up a slope and back down on the same path but in the opposite direction. This limit is necessary to
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keep small amounts of flux from routing back and forth in terrain shaped like a bowl. The major advantage of this limit is the

reduction of iteration steps by not calculating further flux for child cells resulting from flux oscillating in a bowl feature.

The second limit is imposed on the maximum value of Zδi , which is a limit of the process intensity (Zδlim), corresponding to

a kinetic energy height or GMF velocity limit, respectively:260

Zδn =min(Zδn, Z
δ
lim), (15)

which is important for some GMF types, because it is analogous to introducing a turbulent friction coefficient in a process-

based model (Horton et al., 2013). In the examples used in Sect. 3, 4 and 5, no such limits are imposed.

2.4.4 Stopping

Two stopping criteria are employed: First, a runout angle criterion that limits how far the GMF runout goes. The second is a flux265

cutoff stopping routine, which, together with the divergence control (exp) in the routing routine, limits the lateral spreading of

the path. The GMF will not propagate further, if either stopping criteria is met; however, the runout angle mainly determines

the total travel distance in the main flow direction, while the flux cutoff influences the lateral spreading.

2.4.5 Runout angle-induced stopping

The runout angle-induced stopping routine is based on the geometric quantities derived with the α angle concepts (c.f. Eq. (1270

to 5); see Fig. 1). The local travel angle γn is the inclination of the line formed from the top of the starting zone to the current

neighbor cell n. The stopping condition is reached when γn < α, i.e. when

Zδn < 0. (16)

When the stopping condition is met, no child cells are assigned in the next iteration step.

2.4.6 Routing flux-induced stopping275

The second stopping criterion is based on the assumption that a GMF must have a critical amount of routing fluxRi to continue

its propagation. If the GMF has an excessively divergent flow concentration that dilutes down and across a slope, then the flow

concentration (that can be associated to GMF mass) disappears at a critical amount of spreading, corresponding to the critical

routing flux threshold Rstop.

The routing flux stopping criteria is met when280

Ri <Rstop, (17)
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and the runout angle stopping condition is also met and neighbor cell i is not a child cell. If Ri ≥Rstop and the runout

angle stopping condition is not met, then neighbor cell i is a potential child cell, and is added to the calculation queue and a

Flow-Class is accepted.

The routing flux-induced stopping mainly limits the width or spreading of the path. The magnitude of the routing flux of the285

potential child cell Ri relates to the percentage of initial routing flux from the start cell, where the starting flux Rstart = 1. As

default Rstop = 3 · 10−4 has been adopted in Flow-Py and is shown in the examples in Sect. 3, 4 and 5.

2.5 Flow-Py Outputs
:::::::
outputs

The outputs of Flow-Py are a set of raster in the same resolution and extent as the input DEM providing information about the

runout of the GMF and different measures of the intensity:290

– Zδmax is the local maximum Zδ for a cell over all path calculations. This is a geometric measure of highest intensity in

terms of Zδ for all starting cells which can be associated to maximum kinetic energy that is expected at each location

(raster cell).

– Rmax is the local maximum routing flux for a cell over all path calculations. This is a measure of intensity in terms of

the maximum of flow concentration from a single start cell that is expected at each location (raster cell).295

– Zδsum is the sum of all Zδ for a cell over all path calculations. This is a measure of intensity in terms of Zδ combined

with the number of starting cells that route flux through a location (raster cell).

– CC is path cell counts, which is the number of paths that route flux through a location (raster cell). Together with Zδsum
an average of Zδ can be formed.

– γmax is the local maximum flow path travel angle for a cell over all path calculations. This is a measure of how exposed300

a location is with regards to how close the highest GMF intensity in terms of Zδ is to the runout angle stopping criteria.

3 Model testing and validation on generic slopes

This first computational experiment demonstrates the Flow-Py routing and stopping algorithms for GMF modeling on simple

but increasingly complex generic topographies. We highlight how GMFs interact with different terrain features and show

the influence of different parameterizations on the flux; however, we do not perform a detailed parameter study, which is305

beyond the scope of this contribution. First, we describe the scenarios (terrain and model parameterizations) and present the

simulations results. For each scenario, we altered the model parameterization or terrain complexity. Then the behavior of the

simulations and a comparison to the geometrically expected results, which allows for validation of the models implementation,

are summarized and discussed.

The generic topographies used for Flow-Py testing were generated using the generate topography functions provided within310

AvaFrame (Wirbel et al., 2021). Terrain data was saved in ASCII raster format (.asc) with 10m resolution. The release raster
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consisted of three 100 m2-neighboring starting cells (starting zone = 300 m2, 3 raster cells) located close to the top of the

generic terrain model at an elevation of 982 m. The three starting cells are centered on the y-plane.

3.1 Parabolic, open slope

The first example topography is built from a parabolic slope that connects with a flat (0◦ slope) plane. The extent of the terrain315

model is 5000 m (x-axis) by 1500 m (y-axis). The transition from parabolic slope to flat plane takes place at 2250 m along the

x-axis. The total altitude difference of the terrain is 1000 m, with a maximum altitude located at x = 0. This parabolic slope

example is used as the base topography, to which more complex terrain features are added.

Figure 3 shows the parabolic slope and the results from two simulations, where the color scale is the Zδmax as an indication of

the intensity of the GMF. The parameterization used for these simulations are α= 25◦ , Rstop = 3 · 10−4 and Zδlim = 8,849m320

(the height of Mount Everest, i.e. no effective limit is used)). The parameter that controls the concentration of flux (exp) is

varied between the two simulations to show results with low spreading (Fig. 3a, exp= 100) and high spreading (Fig. 3b,

exp= 8).
:::
The

::::
run

::::
time

:::
for

:::::
these

::::::::
examples

:::::
when

:::
run

:::
on

:
a
::::::::
personal

::::::::
computer

::::
with

:::
and

:::::
eight

::::
core

::::::::
processor

::::::
(AMD

::::::
Ryzen

::
7

:::::
2700X

::::::::::
Eight-Core

::::::::
Processor

::::
3.70

:::::
GHz)

::::
and

:::
32

:::
GB

::::::
RAM,

:::
are

:
1
::
s
:::
for

:::
the

:::
low

::::::::
spreading

:::::
case

::::
(Fig.

:::
3a)

::::
and

::
16

::
s
:::
for

:::
the

::::
high

::::::::
spreading

::::
case

::::
(Fig.

::::
3b).325

Comparing the top and bottom panels of Fig. 3, it can be seen that keeping the terrain, the runout angle and Rstop the same

but reducing the exp value, increases the spreading of the GMF, yet the runout length does not change. In the low spreading

example in Fig. 3a (exp= 100), the behavior of the downhill flow is restricted to a single flow direction in steeper terrain.

Once the slope flattens out the path diverges with very limited spreading. The small amount of spreading in flatter terrain can

be explained by the low Zδmax, which results from the persistence-based routing being dominated by the terrain-based routing.330

The front of the GMF runout is defined by the runout angle-induced stopping routine with Zδmax = 0 (black). The sides of the

GMF process path are defined by the routing flux-induced stopping routine and because Zδmax > 0 the runout angle-induced

stopping condition is not met.

3.2 Parabolic, channelized slope

This topography has the same extent, center line profile and configuration as the parabolic slope in Sect. 3.1; however, an335

hour glass shaped channel is added, which begins wide and becomes narrow returning to a wide channel in the runout zone

again. The parameterization used for this scenario is α= 25◦, exp= 8, Rstop = 3 · 10−4 and Zδlim = 8,849m, such that one

can compare it to the simulation results shown in Fig. 3b.

This example highlights the routing flux-induced stopping and the terrain-based routing (Fig. 4). The GMF travels down

the channel and does not spread like in the previous example (Fig. 3). That is, the routing algorithms acts on the channelized340

terrain and concentrates the flux in the center of the channel. The GMF does not spread outside of the channel because the flux

that is routed up the channels walls does not exceed the flux cutoff Rstop, hence the routing flux-induced stopping criteria is

met.
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Figure 3. GMF runout modeled with Flow-Py on a simple parabolic slope connected to a flat plane with the runout angle α= 25◦. The

divergence control is exemplified with a low spreading (a, exp= 100) and a high spreading (b, exp= 8) simulation. Both examples use a

flux cutoff ofRstop = 3 ·10−4 and Zδlim = 8,849m (the height of Mount Everest, i.e. no effective limit is used). Cooler colors indicate areas

where the process has a relatively low intensity with regards to Zδmax and warmer colors show areas where the process has a relatively high

intensity with regards to Zδmax, which is associated to maximum kinetic energy..
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Figure 4. GMF runout modeled with Flow-Py on a parabolic slope with a channel with α= 25◦, exp= 8, Rstop = 3 · 10−4 and Zδlim =

8,849m. The colors show the value of Zδmax, which is associated to maximum kinetic energy. The topography is a simple parabolic slope

connected to a flat plane.

3.3 Parabolic, channelized slope with superimposed dam

The topography used in this scenario is the same as in the last Sect. (3.2) including a superimposed obstacle that crosses345

the terrain such that the GMF must travel uphill to overcome it. We refer to this obstacle as a dam as it could resemble a

dam built in the GMF path. This example highlights how the Flow-Py simulation responds to flat or uphill terrain, which is

where persistence-based routing will dominate over the terrain-based routing. The parameterization used is α= 25◦, exp= 8,

Rstop = 3 · 10−4 and Zδlim = 8,849m, so that the result can be directly compared with the spreading example shown in Fig.

3b and the channelized example (Fig. 4). The dam has a shape of a Gaussian function with a width of 75 m and a height of 75350

m which is added on top of the topography of the parabolic slope with a channel. The center of the dam (maximum height) is

located at 1350 m (Fig. 5).

The GMF traveled just as far as in the previous examples, but its spreading increased once it encounters the dam since uphill

terrain is more divergent (Fig. 5). The GMF has a lower Zδmax or energy when reaching the top of the dam; however, after

the dam the intensity is the same as in previous examples resulting in the same runout length with a slightly different lateral355

shape.
:::::::
Changing

:::
the

::::::::::::::
parameterization

::::
such

::::
that

:::::::
α= 30◦

:::::
would

:::::
result

::
in
:::
the

:::::
GMF

:::::::
stopping

:::
on

:::
the

::::
face

::
of

:::
the

::::
dam,

::::::::
resulting

::
in

:
a
::::::
shorter

::::::
runout

:::::
length

::::
than

:
a
:::::::::::
channelized

:::::::
parabolic

:::::
slope

:::::::
without

:
a
:::::
dam.
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Figure 5. GMF runout modeled with Flow-Py on a parabolic slope with a channel and a dam that crosses the terrain at 1350 m with α= 25◦,

exp= 8, Rstop = 3 · 10−4 and Zδlim = 8,849m. The colors show the value of Zδmax which is associated to maximum kinetic energy. The

topography is a simple parabolic slope connected to a flat plane.

3.4 Discussion on model testing and validation

The Flow-Py simulation tool is based on a simple model that allows for regional application and was not specifically designed

to model a singular GMF. However, simulations on generic topographies and of single paths provide a visual description of360

how the implemented routing and stopping routines react to different terrain features and parameterizations. The parameters

Rstop and exp are primarily responsible for limiting the spreading of the path, where α and Zδlim are primarily responsible for

limiting the runout distance. Rstop and exp are dependent on the resolution of the DEM, where α and Zδlim are not.

Figure 6 shows Zδmax values for the center line of all scenarios presented in this Sect., which allows to quantify and validate

the model implementation. All simulations yield the same values for Z+Zδmax (where Z is the terrain height) along the center365

line, although topographies and associated three-dimensional runout extents differ significantly. This is particularly interesting

for the third scenario (Fig. 5) where not only Z +Zδmax values are matched but the routing and propagation of the GMF

continued beyond the obstacle, where it usually would prohibit any propagation, e.g., with an often employed steepest descent

routing approach.

In addition, the model motivation allows to predict the geometrically and theoretically expected solution in terms of runout370

and zδ . By comparing the geometrically correct solution zδ with the simulation results of Zδmax for each scenario we obtain a

match with root mean squared error of 4 · 10−5 for each simulation result compared with the geometric solution (see Fig. 6).

This in turn validates the discretized model equations and their correct implementation. That is, the cell by cell approach to the
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Figure 6. Geometric solution for the stopping criteria (red line) represented by the α-line from starting to the runout points with Zδmax values

for the center lines of scenarios presented in Sect. 3.1 and 3.2 (black line), and 3.3 (black dashed line).

routing results in expected behavior with all the stopping points matching the geometric solution even on flat and uphill terrain

with very high accuracy. Furthermore, Zδmax values solved on the 10 m grid for each scenario fit the continuous geometric375

solution. This validation however is only relevant for the intensity Zδmax and runout length along the center line. It was not

the aim to fully validate the implementation of the spreading algorithm; however, the scenarios show satisfying results where

single flow and divergent flow behavior, i.e. ranges from block to fluvial GMF behavior, can be reproduced by changing the

Flow-Py parameterization (Fig. 3).
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4 Performance testing on a regional scale380

This section is dedicated to highlight the performance of the Flow-Py simulation tool in real terrain and on a regional scale by

applying it to the snow avalanche GMF.

4.1 Study area description and experimental setup

The study area is located in the mountains surrounding the Austrian villages Vals and Gries am Brenner in Tyrol close to the

Italian border (Plörer and Stöhr, 2021). The area of the study area is 104.5 km2. The input DEM is freely available from Land385

Tirol (data.tirol.gv.at) issued under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

The computation time is dependent on the number of starting cells and the extent of the paths (how divergent/concen-

trated). We developed an overly simple starting zone model to test the performance of Flow-Py on a regional scale. There

are many models for identifying potential avalanche starting zones that use a range of slope inclinations such as 28 ◦ to 60 ◦

Veitinger et al. (2016); Maggioni and Gruber (2003); Pistocchi and Notarnicola (2013)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Veitinger et al., 2016; Pistocchi and Notarnicola, 2013; Maggioni and Gruber, 2003)390

. More information such as terrain curvature, forest cover and average maximum snow depth are used to further restrict the

number and size of potential starting zones. The starting zone model employed is based solely on the slope inclinations de-

rived from the 10 m DEM with the goal to provide a sufficient number of starting cells with potentially long runout lengths

for performance testing. To achieve this we used two criteria for identifying starting cells: first, starting cells must be located

above 1800 m, second, the starting cell must have a slope inclination between 31◦ to 34◦. The range of slope inclinations used395

is much smaller than used in more sophisticated models, this method was used to reduce the number of starting cells with out

introducing more information such as forest area, or average snow depth, but rather relying solely on the 10 m DEM.

The parameterization for this simulation was α= 25◦ and exp= 8 and Rstop = 3 · 10−4 and Zδlim = 8,849m, which have

successfully been used to model large to very large avalanches (D’Amboise et al., 2021). For snow avalanches an exp of 8 on

a 10 m resolution DEM has produced good results in the past studies (Huber et al., 2016).400

4.2 Results

The study area contains 1045311 raster cells 104531100 m2) and starting cells comprise 5.4% of the total study area 56969

raster cells or 5696900 m2 ), which can be seen in Fig. 7. The simulation took 3 h and 45 min with multi-processing on 16

cores.

Flow-Py identified 642630 cells or 61.5 % of the total study area as part of the avalanche starting, transit and runout zones405

(see Fig. 8 ). Many of the these cells belong to multiple paths and are, therefore, base cells for many calculations which is

reflected in the CC (cell counts) output raster. The CC output is not shown, however all the example input data and simulation

results can be found in D’Amboise et al. (2021).
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Figure 7. Study area for Flow-Py performance testing on a regional scale. Snow avalanche starting cells (green) are defined by locations

above 1800 m on slope inclinations between 31 to 34 ◦. The maps utilize datasets from the following sources: a:©OpenStreetMap contributors

2021. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.; b: Natural Earth. Free vector and raster map data

@ naturalearthdata.com; c: Land Tirol - data.tirol.gv.at issued under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

4.3 Discussion

The GMF path (extent of the avalanche starting, transit and runout zones) is determined by the length of runout and the410

amount of spreading. Because of the over simple starting zone model used these results should not be used to examine the

avalanche situation in the study area, but rather for demonstrating the computational performance of Flow-Py. In this example,

the dominant term that determines the runout length is the runout angle α, but it can also be affected by Zδlim. The dominant

term that determines the spreading of the process are the divergence (exp) and flux cutoff (Rstop). Combined they can also

limit the runout length when Rstop is high or divergence (low exp-values) is excessively high.
::::::::
However,

:::
the

::::::::
feedback

::::
that415

:::::::::
propagates

:::::::
between

:::
the

:::::::
routines

::::::
should

:::
not

:::
be

:::::::
ignored.

::
A

::::
large

::::::
runout

:::::
angle

:::::
(short

::::::
runout

::::::
length)

::::
will

::::::
restrict

:::
the

:::::::::
spreading

:::::::::
capabilities

::::
even

:::::
when

:::::
using

:
a
::::
low

:::
exp

:::
for

::
a

:::::
highly

::::::::
divergent

:::::::
process.

:

The parameterization used in this example has been used in past work for simulations of extreme avalanche events D’Amboise

et al. (2021), however there is need for much more extensive parameter studies. In particular the interaction on how exp and

Rstop interact to limit the spreading of the GMF and the use of Zδlim to limit the reach of the GMF.420
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Figure 8. Flow-Py simulation results of snow avalanche runout and intensity (Zδmax) in complex terrain on a regional scale. The simulation

took 3 h and 45 min. The map utilizes data from ©OpenStreetMap contributors 2021. Distributed under the Open Data Commons Open

Database License (ODbL) v1.0. and Land Tirol (data.tirol.gv.at) issued under a Creative Commons Attribution 4.0 International (CC BY 4.0)

license.

In our experience the
:::
The run time of the model

:::::::::
simulations is highly dependent on the spreading, and

:::::::
scenario

:::
and

:::::::::
parameter

::::::
setting.

:::
For

::::::::
Flow-Py

::
we

:::::::
showed

::::
that

:::
the

:::::::::
simulation

:::
run

::::
time

::
in

:::
the

::::::::
parabolic

:::::
slope

:::::::
example

::::::
varies

::
by

:::
an

::::
order

:::
of

:::::::::
magnitude

::
by

::::::::
changing

:::
the

:::::::::
divergence

:::::::::
parameter,

::::
exp

::::::::
(compare

::::
Fig.

::
3a

::::
and

::::
Fig.

::::
3b).

:::
The

::::
run

::::
time

::
is

:::::::
affected to a lesser extent on the

number of starting cells and the length of the runout. Therefore, the feedback that propagates between the routines should not

be ignored. A large runout angle (short runout length) will restrict the spreading capabilities even when using a low exp for a425

highly divergent process

:::
The

::::::::::
comparison

:::
of

::::::::::::
computational

:::::::::
efficiency

::
of

:::::
GMF

::::::::::
simulation

:::::
tools

::
is

:::
not

::
a
:::::
trivial

:::::
task,

:::::::
because

:::::
there

::
is
::

a
::::
lack

:::
of

::::::::::
standardized

::::::::
examples

::::
and

:::::::::::::::
parameterizations

::::
used

:::
for

:::::::::::::
benchmarking.

:::::
More

:::::::::
specifically

:::::
these

::::
tests

::::
are

::::::::
restricted

::
by

:::::::
limited

:::::
model

::::::
access

:::
and

:::::::::
simulation

::::
tools

:::::::::
belonging

::
to

:::
the

:::::::::
data-based

:::::
class

::
of

::::::
models

::::::
require

::
a

:::::
spatial

::::::::
iteration

:::::
where

::::::::::::
process-based

::::::
models

::::
solve

:::
the

:::::::::
equations

::
of

::::::
motion

:::
and

::::::::
therefore

:::
the

::::::::::::::
spatial-temporal

::::
flow

::::::::
evolution.

:::::
Since

:::
the

:::::
solver

::::
and

::::::::::::::
parameterization430
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::::
differ

:::::::::
drastically

::
a
:::::
direct

::::::::::
comparison

::
is

:::
not

:::::::
possible

:::
for

:::::::
different

::::::::
modeling

::::::::::
approaches.

::::::
Values

::
in
::::::::
literature

::::
vary

:::::::::::
significantly

::
for

:::
the

:::::::
different

:::::
types

::
of

:::::::::
simulation

::::
tools

:::::::::::::::::::::::::::::::::
(Fischer et al., 2020; Rauter et al., 2018)

:
,
::::
their

:::::::
potential

:::
for

::::::::::
comparison

:
is
::::::
limited

::::
due

::
to

:::
the

::::::
already

:::::::::
mentioned

:::::::
variation

::
in
::::::::

scenarios
::::
and

::::::::
parameter

::::::
setting

:::
but

::::
also

:::
the

:::::::
different

::::::::
computer

::::::::
hardware

::::
used

::
to
::::
test

:::
the

::::::::
simulation

:::::
tools,

:::::::
ranging

::::
from

::::::::
personal

:::::::::
computers

::
to

:::::
cloud

:::::::::
computing

::::::::::
approaches.

:::::::
However

::
a
::::::::::
comparison

::
of

::::::::::
simulations

:::
run

::
on

:::
the

:::::
same

::::::::
hardware

:::
that

:::::
result

::
in

::
a

::::::
similar

:::::
spatial

::::::
extent

:::
can

:::
be

::::
used

::
to

::::
gain

::::::
insight

::
on

::::::::::::
computational

::::::::::::::::::
efficiency/simulation435

:::
run

::::
time.

:

::
To

:::::::
provide

:::
an

:::::::
estimate

::
of

:::::::::::::
computational

::::::::
efficiency

:::
we

:::::::::
compared

:::::::
Flow-Py

::::::::::
simulation

:::
run

::::
with

:::
the

:::::
open

::::::
source

:::::::
process

:::::
based

:::::::
physical

:::::::::
simulation

:::
tool

:::::::::
AvaFrame

:::::::::
Com1DFA

:::::::::::::::::
(Wirbel et al., 2021)

:
.
:::::::
Flow-Py

:::
and

::::::::::
Com1DFA

:::::::::
simulations

:::::
were

:::
run

::
on

::
a

:::::::
personal

::::::::
computer

::::
with

::::
and

::::
eight

::::
core

::::::::
processor

::::::
(AMD

::::::
Ryzen

::
7

::::::
2700X

:::::::::
Eight-Core

:::::::::
Processor

::::
3.70

:::::
GHz)

:::
and

:::
32

:::
GB

::::::
RAM.

:::
For

:::
the

::::::::
parabolic

:::::
slope

:::::::
example

::::
(Fig.

:::
3)

:
it
::::::
turned

:::
out

::::
that

:::::::
Flow-Py

:::::::
requires

:::
1-2

::::::
orders

::
of

:::::::::
magnitude

::::
less

::::::::::::
computational

::::
time440

:::
than

::::::::::
Com1DFA,

:::::
using

::::::::::
operational

:::::::
standard

::::::::::
parameters

::::
(e.g.

:
5
:::

m
::::::::::::
computational

::::::::
resolution

:::::::::
compared

::
to

::::
10m

::
in

:::
the

::::::::
Flow-Py

:::::::
example)

:::
for

:::::::::
avalanches

:::
of

::::::::::
catastrophic

:::
size

::::
and

::
an

::::::::
estimated

::::::
release

::::::::
thickness

::
of
::
1
::
m

::
as

:::::::
required

:::::
input.

5 Model customization and adaptability

The third computational experiment highlights the adaptability of the Flow-Py simulation tool with an example for a custom

extension that was designed to answer a specific question, but additional information and calculations can be easily added into445

the Flow-Classes (Neuhauser et al., 2021).

5.1 Experimental setup and methods

This specific model customization experiment addresses the research question: What areas on the terrain are associated with

endangering a location containing infrastructure by a GMF? For this example the parabolic slope from Sect. 3.1 and release

raster from Sect. 3 were used as input data with the parameterization α= 25◦, exp= 8, Rstop = 3 · 10−4 and Zδlim = 8,849m450

as well as an additional input raster that contains the location of infrastructure. With the experimental setup defined the initial

question can be refined: What raster cells on the synthetic parabolic slope are associated with routing flux of an GMF through

a specific set of raster cells that have been identified as locations with infrastructure?

A custom extension called the back-tracking extension was implemented to change the runout model to a model that high-

lights terrain associated with endangering infrastructure. The back-tracking results will be a spatially explicit subset of the455

GMF path. Three steps are required to adjust the Flow-Py simulation tool:

1. Load the infrastructure raster as an additional input raster.

2. Adjust the calculation and store new information in the Flow-Class.

3. Save the back-tracking information as a raster and discard the default outputs.

Steps 1 and 3 are simple tasks when using the existing input and outputs of Flow-Py as an example. For the version of Flow-460

Py used in this contribution an automatic switch was added such that, when an additional input raster is included, Flow-Py will
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initiate the back-tracking extension and suppress the normal Flow-Py outputs (ee
::
see

:
the Flow-Py repository (Neuhauser et al.,

2021) for more information on implementing these steps).

Step 2 is the more challenging adjustment that highlights the adaptable nature of the Flow-Class organization. Since the goal

of back-tracking is to find the avalanche starting, transit and runout zones that are associated with endangering infrastructure,465

a new back-tracking variable must be added to the Flow-Class storing information about a cell’s parents. If the back-tracking

variable of a cell is 0, then this cell is not associated with endangering infrastructure; if it is 1, then the cell is associated with

endangering infrastructure. After a path is calculated and before updating the result raster, the back-tracking routine can start.

Starting with the cells identified as a location with infrastructure a family tree can be constructed by looking at which cells

acted as parent cells to these infrastructure cells. For each parent cell the back-tracking variable is changed from 0 to 1. After470

looping over all cells identified as parent cells that are related to cells containing infrastructure, the result raster can be updated

with the back-tracking results and the next GMF starting cell can be calculated.

To optimize the back-tracking extension with regards to model run time, the starting cells have been ordered by elevation.

If a starting cell is located in the path of a previously calculated starting cell at a higher elevation, then the lower elevation

starting cell is removed from the queue of starting cells that must be calculated. This will greatly reduce the run time of the475

model as less starting cells and process paths need to be computed; however, no information about the back-tracking is lost

because the process path of the lower starting cell will be a subset of the upper starting cell’s path, but other output raster such

as cell counts (CC) and the Zδsum are no longer be valid since some starting cells are ignored for optimization.

To test the back-tracking extension two types of infrastructure were considered: a linear infrastructure such as a road, railroad

or walking path that crosses the terrain, and a single pixel which could represent a building or utility pole.480

5.2 Results

Figure 9a shows linear infrastructure (vertical red line) crossing the parabolic terrain, with the areas identified by the back-

tracking extension. Most of the path located uphill of the infrastructure has been identified by the back-tracking extension

except for few cells that lay on its edges. This is because these cells were not parent cells due to the routing flux-induced

stopping criterion.485

The bottom panel of Fig. 9 shows how the back-tracking extension behaves for a single infrastructure cell (red), e.g. a build-

ing, in the center of the GMF path. A wedge shape subset of the process path starting at the infrastructure cell and extending up

slope is identified by the back-tracking extension, and it is clearly shown that not all uphill cells of the infrastructure cell route

flux through the infrastructure cell. In both linear and building infrastructure cases, all cells that lay below the infrastructure

cells are not identified by the back-tracking extension.490

5.3 Discussion

The back-tracking extension is a complex adaptation because inputs, outputs and some calculations are changed. However,

because of the modular and adaptive Flow-Py development environment and the advantages of programming in Python’s

object-oriented class method, this complex task could be adopted with little effort.
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Figure 9. GMF runout modeled with Flow-Py and results of the back-tracking extension with α= 25◦, exp= 8, Rstop = 3 · 10−4 and

Zδlim = 8,849m. The textured areas highlight starting, transit or runout zones associated with endangering linear infrastructure (a) or a

building (b). The topography is a simple parabolic slope connected to a flat plane.
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Different routing or stopping approaches could also be easily added to the Flow-Class, which may be necessary to represent495

different types of GMFs more precisely. For instance, the additional energy dissipation due to terrain roughness or forest can

be included by accepting different runout angles in the Flow-Class (D’Amboise et al., 2021) as well as a Voellmy-type friction

term (Voellmy, 1955), which is dependent on the GMF intensity (Zδb ). Moreover, material flowing versus material sliding or

falling down slope behave differently, which could be described more precisely in the Flow-Py simulation tool by including

more complex
:::::::
different routing and stopping routines

:
,
::::
such

::
as

:::
the

:::::::
TauDEM

:::::::
routing

::
for

:::::
snow

:::::::::
avalanches

:::::::::::::::::::
(Tarboton et al., 2015)500

::
or

:
a
:::::::
steepest

:::::
decent

::::::
single

::::
flow

::::::
method

:::::::::::::::::
(Huggel et al., 2003). However, many of potential Flow-Py extensions will include one

or more of the three steps outlined with the back-tracking examples (i.e. load additional input, adjusting the calculation or save

additional output).

We used the back-tracking extension to exemplify and highlight the adaptability of the Flow-Py simulation tool. By mak-

ing small adaptions Flow-Py was changed from a runout model to a model that identifies endangered infrastructure, which505

demonstrates how Flow-Py can be used to investigate questions related to specific GMFs.

6 Conclusions and outlook

Flow-Py is an open-source simulation tool for data-based gravitational mass flow (GMF) runout and intensity modeling, which

is suitable for spatially explicit applications on a regional scale. GMF is a term that generalizes the flow of various materials

in different ratios of solids, water (ice) and air down a slope. The GMF behavior, the runout length and the amount of lateral510

spreading are all partially dependent on the composition of the material (Pudasaini and Mergili, 2019). Flow-Py handles

diverse flow behaviors by providing an adjustable parameterization that acts to control the spreading and runout lengths of the

simulated GMF path.

Flow-Py’s basic model equations and well-organized solver split the GMFs runout modeling into two routines: 1) routing

of the GMF, and 2) stopping of the GMF. The routing routine is further broken down into terrain-based and persistence-based515

routing, and the stopping routine is further broken down into two stopping criteria based on runout length and the amount

of flux. With this, Flow-Py provides and educational GMF model development environment, which combines computational

efficiency with low entry barriers for adaptations/extension, such as the presented back-tracking extension.

Besides the local topography two factors influence the spreading of the simulated GMF, namely the exp parameter and the

routing flux threshold Rstop. However, the four main parameters (runout angle α, divergence control exp, flux cutoff Rstop520

and the limit of the process intensity Zδlim) have to be defined based on ones experience or corresponding guidelines to obtain

the desired range of motion behaviors corresponding to different materials and their compositions. However, further studies

are needed for in depth parameter investigations, including the development of parameter sets which can be used for specific

GMF types such as rockfall, different types of snow avalanches or landslides. Part of these parameter studies should include a

sensitivity study on the DEM resolution used.525

The implementation of the model equations to route the flux on the cell level has the advantage that the flow path does not

need to be predetermined in contrast to some similar statistical runout methods (Lied and Bakkehøi, 1980). Therefore, Flow-
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Py combines the simplicity of a runout angle-motivated model with the advantages associated with process-based modeling,

providing a corresponding intensity measure and allowing for routing in flat or uphill terrain as we demonstrated in a compu-

tational experiment. The results of a second experiment show that the run time of the model is suitable for regional modeling530

(several 100 km2 ) (see Sect. 4). The main factor that control model run time is the parameterization, especially the amount of

spreading which is controlled by exp and Rstop; however, the number of starting cells and the number of available computer

cores are also important factors influencing model run time.

One of the major benefits of Flow-Py compared to existing GMF simulation tools is its well-organized code that allows

easy adaptations and extension development. A custom extension was developed for Flow-Py for taking into account terrain535

complexity with regards to snow avalanches, where automated avalanche terrain exposure scale (ATES) maps were created

(Larsen et al., 2020). Future work is being carried out to develop a custom extension which will adapt the stopping criteria to

other statistical models (Lied and Bakkehøi, 1980; Barbolini et al., 2011). We presented the back-tracking extension in Sect. 5

to demonstrate adaptability of the simulation tool, which required adjustments to the input data, calculations and output raster.

The additional calculations took advantage of Flow-Py’s programming in Python’s object-oriented class method, the Flow-540

Class. The output can be used to identify forests with a direct object protective function by combining the back-tracking results

with a map of the current forest cover in a post-processing procedure. More simple extensions have already been developed and

used, e.g., the forest extension which has been applied to quantify the forest’s protective effects in transit zones of rockfall and

starting, transit and runout zones of snow avalanches, adapting the runout angle stopping criteria dependent on forest structure

and the intensity (Zδmax) of the GMF (D’Amboise et al., 2021).545

We have shown that Flow-Py is an innovative GMF simulation tool that can be applied for basic simulations (e.g., for hazard

zone mapping) but also for more sophisticated custom applications such as identifying areas that potentially endanger specific

infrastructure. Furthermore, not only presenting Flow-Py in this contribution but also the modeling concepts that motivated its

model equations and their implementation in the Flow-Py code enables one to reproduce and understand the basic concepts of

GMF modeling and to also use Flow-Py as an educational tool.550

Code and data availability. The Flow-Py code and user manual can be found on the repository at Neuhauser et al. (2021)

Input data and simulation results can be found at D’Amboise et al. (2021)
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