
1 
 

Calibrating the soil organic carbon model Yasso20 with 

multiple datasets 
 
Toni Viskari1, Janne Pusa1, Istem Fer1, Anna Repo 2, Julius Vira1, and Jari Liski1 

 5 
1Finnish Meteorological Institute, Helsinki, 00101, Finland 

2Natural Resource Center Finland, Helsinki, 00791, Finland 

Correspondence to: Toni Viskari (toni.viskari@fmi.fi) 

 

Abstract. Soil Organic Carbon (SOC) models are important tools for assessing global SOC distributions and 10 

how carbon stocks are affected by climate change. Their performances are, however, affected by data and 

methods used to calibrate them. Here we study how athe new version of Yasso SOC model, here named 

Yasso20, performs if calibrated individually or with multiple datasets and how the chosen calibration method 

affected the parameter estimation. We also compare Yasso20 to the previous version of the Yasso model. We 

found that when calibrated with multiple datasets, the model showed a better global performance compared to a 15 

single dataset calibration. Furthermore, our results show that more advanced calibration algorithms should be 

used for SOC models due to multiple local maxima in the likelihood space. The comparison showed that the 

resulting model performed better with the validation data than the previous version of Yasso. 

 

 20 

1. Introduction 

 

Soils are the second largest global carbon pool, hence even small changes in this pool impact the global carbon 

cycle (Peng et al. 2008). However, Soil Organic Carbon (SOC) and associatedchanges are difficult and 

laborious to measure (Mäkipää et al., 2008).  They can also vary drastically over space due to differences in 25 

litter fall, site and soil type as well as climate (Jandl et al., 2014, Mayer et al., 2020). Hence, SOC models are 

important tools for estimating current global soil carbon stocks and their future development (Manzoni and 

Porporato, 2009). Numerous SOC models have been developed in the past decades (Parton et al., 1996; Camino-

Serrano et al., 2018; Thum et al., 2019) to quantify the global SOC stocks and estimate the effects of different 

drivers, such as changing environmental conditions, on SOC stocks (Sulman et al., 2018, Wiesmeier et al, 30 

2019). 

 

While majority of SOC models rely on linear equations representing the movement of C within the soil, there 

has been studies showing the need to represent at least some of the SOC processes such as the microbial 

influence by non-linear equations (Zaehle et al., 2014; Liang et al. 2017) or that the state structure of the model 35 

affects which kind of data can be used to calibrate it (Tang and Riley, 2020). More complicated SOC models 

addressing these arguments have been developed, for example Millennial (Abramoff et al, 2018), and modules 

including additional drivers affecting the C pools have been included in existing SOC models, such as nitrogen 

(Zaehle and Friend, 2010) and phosphorus (Davies et al, 2016; Goll et al., 2017) cycles. Their implementation is 

hindered, though, by that detailed data is needed to constrain the model parameterization, but individual 40 
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measurements campaign datasets are often limited in size and lacking in nuance of the SOC state (Wutzlerand 

and Reichstein, 2007; Palosuo et al., 2012). Consequently, multiple datasets representing different processes 

should be used to parameterize the models in order to capture the multitude of SOC dynamics, but combining 

observation datasets with varying spatial scales, measurement temporal densities, inherent assumptions and 

structural errors can cause issues with adequately incorporating all the information (Oberpriller et al., 2021). 45 

The chosen calibration methodology is additionally affected by the same issues based on its approach of fitting 

the data.  

 

Litterbag decomposition experiments (Harmon et al., 2009) provide information on the faster decomposition 

processes, but their applicability to longer-term assessments have been questioned (Moore et al., 2017). 50 

Furthermore, even in current studies it is common to use only data from one litterbag decomposition experiment 

campaign (for example Kyker-Snowman, 2020) due to the differences in experimental setups and physical 

properties of the litterbags making direct comparison of results difficult. Organic carbon content can be 

measured from soil samples, but those measurements provide a limited snapshot because of the large number of 

measurements needed to detect changes and the slow dynamics of SOC (Mayer et al. 2020). Additionally, the 55 

SOC in these measurements cannot effectively be fractionated into different state components used in the 

models. Hence, assumptions need to be made on the amount of short-lived SOC to approximate the amount of 

long-lived SOC. There are also other aspects of litter that are known to affect the decomposition rate, e.g. the 

bigger the size of the woody litter the slower the decomposition is (Harmon et al., 2000), which requires detailed 

and specific observations to inform models. 60 

 

The Yasso07 model (Tuomi et al., 2009) was developed to address some of these challenges. In it, both the litter 

inputs and the soil carbon are divided into chemically measurable fractions that decompose at their own rate 

which are affected by environmental conditions, specifically ambient temperature and moisture. This direct link 

between the model state and litter input allowed using different litter decomposition experiment data to 65 

constrain model parameters. One of the core ideas in the development of Yasso07 is the parameterization 

process itself is done simultaneously with multiple datasets reflecting different parts of the SOC decomposition 

process in a Bayesian calibration framework (Zobitz et al., 2011). As a part of this approach, litterbag specific 

leaching term was introduced in order to be able to use information from several litterbag experiments at the 

same time (2011b). 70 

 

While the initial Yasso07 calibration addressed the challenges regarding the variety of data required, it did not 

touch in detail on the issues affecting the actual SOC model parameterization process. First, the Yasso07 did not 

calibrate all the parameters simultaneously with all the data, but instead calibrated the parameters in segments 

where the previously calibrated parameters were set as constant when calibrating the next set of parameters 75 

(Tuomi et al., 2011). While this makes the calibration process easier, it naturally also affects the results and 

associated uncertainties as well. Second, there has been no standard methods established to evaluate how the 

inclusion of additional datasets impacts the general performance of SOC models. In other words, does using 

multiple datasets improve the model estimates? Naturally, this applies to Yasso07 as well. Third, there have 

been studies which indicate that the choice of parameterization method does matter in ecosystem modelling (Lu 80 
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et al., 2017). It is reasonable to assume that would also hold true for SOC systems where there could be multiple 

parameter sets that can potentially produce a local fit into the data. Last, but not least, the previous Yasso07 

calibration workflow was not easily repeatable and reproducible to allow inclusion of new datasets and 

algorithms.  

 85 

In this study, we built upon previous Yasso developments to present a model formulation that expanded on how 

the environmental drivers affect the decomposition. The data used to calibrate the model is the same for both 

versions with the exception of the measurement data regarding long-term carbon allocation. For Yasso07, a time 

series dataset from Southern Finland while for Yasso20, approximated steady state SOC measurements from 

across the world was used to constrain the relevant parameters. Additionally, we use a more advanced model 90 

calibration method in association with a stricter protocol on what kind of data points were used for calibration 

and an open-source R package for data inclusion, repetition and reproduction of calibration. The model and 

produced parameter set will refer to as Yasso20 hereinafter. Our redesigned calibration protocol leverages 

BayesianTools R-package (Hartig et al., 2019), an open source general-purpose tool for Bayesian model 

calibration. Using BayesianTools in our workflow, we not only established a more reproducible and 95 

standardized application of Yasso20 calibration, but also leveraged interfacing with multiple calibration 

algorithms and examined the role of the calibration method.  

 

Due to the nature of the available SOC related datasets we hypothesize: I) the SOC model performs better 

globally if multiple datasets are simultaneously used to constrain it compared to a SOC model calibrated with an 100 

individual dataset despite the numerous assumptions required for combining the different information, II) the 

likelihood space created by these multiple datasets is uneven with multiple maxima to the degree that more 

advanced parameter methods are necessary for the end result not to be dependent on the starting point, and that 

III) These changes in the model formulation and the calibration protocol will improve how the Yasso model 

projections performance compared to the previous model version. 105 

 

The first hypothesis is tested by calibrating the Yasso with individual datasets as well as the combined data sets 

with the resulting performances compared using numerous validation datasets. All these calibrations are done 

for all the parameters simultaneously. The secondt hypothesis is tested by comparing the Yasso parameter 

values produced by parameter estimation methods of varying complexity and how well they converge.  110 

Furthermore, the more extensive calibration process has allowed constraining more details in the new Yasso 

formulation which is introduced here as well. 

 

2. Methods 

 115 

2.1 Yasso model description 

 

The Yasso model is based on four basic assumptions on litter decomposition and soil carbon cycle: 1) Litter 

consists of four groups of organic compounds (sugars, celluloses, wax-like compounds and lignin-like 

compounds) that decompose at their own rate independent of origin (Berg et al., 1982). 2) Decomposition of any 120 
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group results either in formation of carbon dioxide (CO2) or another compound group (Oades, 1988). 3) The 

decomposition rate is affected by environment temperature and moisture (Olson, 1963; Meentemeyer et al., 

1978; Liski et al., 2003). 4) The diameter size of woody litter determines the decomposition rate (Swift, 1977). 

Yasso20 is the next version of Yasso (Liski et al. 2005) and Yasso07 models (Tuomi et al., 2009, 2011b) and 

continues to build on these same assumptions. The main formulation contribution in Yasso20 compared to the 125 

previous versions is the added nuance in how climate drivers affect the different pools, which in turn is possible 

here due to the improved calibration scheme. For the purposes of the calibration here, another assumption was 

necessary: 5) The most stable soil carbon compounds are only formed in the soil as a result of bonding with 

mineral surfaces (Stevenson, 1982). The following model formulations apply for Yasso20. 

Based on the previously established assumptions, litter can be divided into four fractions according to their 130 

chemical composition. Compounds soluble in a polar solvent (water) represent sugars (W) and those soluble in a 

non-polar solvent (ethanol or dichloromethane) represent wax-like compounds (E). Compounds hydrolyzable in 

acid (for example sulphuric acid) represent celluloses (A) and the non-soluble and non-hydrolyzable residue 

represents lignin-like compounds (N). Additionally, there is a fifth compartment, humus (H), which represents 

long-lived, stable soil organic carbon produced by interaction with mineral compounds in the soil. As the carbon 135 

compounds are broken down by the decomposition processes, they become either new compounds belonging to 

another compartment or CO2. The decomposition rate of each compartment is considered independent of the 

litter origin and affected by a temperature, moisture, and size component.  

The masses (x) of the compartments at time t are denoted by vector x(t) = [xA(t), xW(t), xE(t), xN(t), xH(t)]. The 

Yasso model uses an annual timestep and determines the changes in those masses according to  140 

𝜕𝑥(𝑡)

𝜕𝑡
= 𝑀(𝜃, 𝑐)𝑥(𝑡)𝑇 + 𝑏(𝑡),                                                                                  (1) 

where b(t) is the litter input to the soil at the time t, θ is the set of parameters driving decomposition as defined 

in Table 1 and c contains the factors controlling the decomposition. As not only are accurate soil moisture 

estimates challenging to obtain for the measurements used here, but a vast majority of them are from the 

surface. Thus, air temperature T and precipitation P were used as the environmental  drivers along with the 145 

woody litter diameter d. Operator M is the product of the decomposition, as presented by K, and mass fluxes 

between compartments, as depicted by F, equations as follows 

𝑀(𝜃, 𝑐) = 𝐹(𝜃)𝐾(𝜃, 𝑐),                                                                                                                                                    

(2) 

𝐹(𝜃) =

[
 
 
 
 
−1 𝑝𝑊𝐴 𝑝𝐸𝐴 𝑝𝑁𝐴 0
𝑝𝐴𝑊 −1 𝑝𝐸𝑊 𝑝𝑁𝑊 0
𝑝𝐴𝐸 𝑝𝑊𝐸 −1 𝑝𝑁𝐸 0
𝑝𝐴𝑁 𝑝𝑊𝑁 𝑝𝐸𝑁 −1 0
𝑝𝐻 𝑝𝐻 𝑝𝐻 𝑝𝐻 −1]

 
 
 
 

,                                                                                                     (3) 150 

 

𝐾(𝜃, 𝑐) = 𝑑𝑖𝑎𝑔,                                                                              (4) 
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Here parameters pij ∈ [0,1] denote the flows from compartment i (i ∈{A,W,E,N}) to j (j∈{A,W,E,N,H}) and are 

included in the parameter vector θ. The decomposition rates ki(θ,c) were calculated according to 

𝑘𝑖(𝜃, 𝑐) =
𝛼𝑖

𝐽
ℎ(𝑑)(1 − 𝑒𝛾𝑖𝑃)∑ 𝑒𝛽𝑖1𝑇𝑗+𝛽𝑖2𝑇𝑗

2𝐽
𝑗=1 ,                                                                                           (5) 155 

where the base decomposition rate αi, temperature parameters βi1,βi2, and precipitation parameter γi for 

compartments i ∈ {A,W,E,N,H} are all a part of the parameter set θ. The temperature and precipitation 

dependent rate parameters are the same for compartments AWE, but both N and H compartments are given their 

own separate parameter values. In order to capture the annual temperature cycle more efficiently, the average 

monthly temperatures for all 12 months are given as an input with the model averaging over their impacts as 160 

seen in eq. (5). The total annual precipitation is used instead of monthly precipitation as seasonal variation such 

as snowfall or heavy rainfall followed by long dry stretches would hinder the calibration if the monthly 

precipitation was used. The temperature and precipitation equations are established in Tuomi et al. (2008). 

Woody litter decomposition rate in response to diameter (d) is described in h(d) based on Tuomi et al. (2011), as 

follows, 165 

ℎ(𝑑) = 𝑚𝑖𝑛((1 + 𝜑1𝑑 + 𝜑2𝑑
2)𝑟 , 1),         (6) 

where φ1, φ2, and r are parameters included in the parameter set θ.  

Given initial state x0, average environmental conditions c and constant litter input b(t) = b, the model prediction 

can be computed by solving the differential equation in Eq. (1). The solution becomes 

𝑥(𝑡) = 𝑀(𝜃, 𝑐)−1(𝑒𝑀(𝜃,𝑐)𝑡(𝑀(𝜃, 𝑐)𝑥0 + 𝑏) − 𝑏),                                                                                     (7) 170 

where the matrix exponential is determined numerically. In a steady state situation x = limt→∞x(t), equation 7 

becomes  

𝑥 = −𝑀(𝜃, 𝑐)−1𝑏,                                                                                                                                                                 (8) 

2.1.1 Yasso20 improvements 

 175 

Two main changes were introduced to the Yasso20 version here compared to the earlier Yasso07 version. The 

first change was that the temperature input for Yasso20 is given as the mean monthly temperature for each 

month of the year instead of the mean annual temperature and associated annual temperature amplitude. This 

was done in order to better represent the more nuanced global temperature profiles.  For example, the previous 

scheme was indifferent if the winter was long or short, which is, however, expected to affect the annual 180 

decomposition. The second change was to differentiate the climate driver impacts between the AWE, N and H 

pools instead of using the same parameter values for all the model C pools. This was done because previous 

research established that more complex carbon compounds require more energy to be broken up (Davidson and 

Janssen, 2006), which indicates that the parameters representing those dynamics should also differ between 

pools. It is expected that these changes will affect the model performance and the calibration results themselves, 185 

especially as this allows the environmental conditions to impact the pools differently. Thus this changed model 
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version was decided to be a new version of the model. We do not compare Yasso20 performance to Yasso07 

here. All model parameters given in Table 1 were targeted in the calibration. 

 

2.2 Datasets used in the calibration 190 

 

Several datasets were simultaneously used to calibrate the model in order represent different processes related to 

soil carbon cycling: Decomposition bag time series data from the Canadian Intersite Decomposition Experiment 

(CIDET; Trofymov, 1998), Long-Term Intersite Decomposition Experiment (LIDET; Gholz et al, 2000) and 

European Intersite Decomposition Experiment (ED; Berg et al., 1991a, 1991b) projects, a collection of global 195 

soil organic carbon measurement gathered by Oak Ridge National Laboratory (Zinke et al., 1986) and woody 

matter decomposition dataset from Mäkinen et al. (2006). In addition to these large datasets, a smaller litter bag 

decomposition data set from Hobbie et al. (2005) was used to both evaluate how much addition of a 

comparatively small number of data points affects the calibration results as well as an independent validation 

dataset for the other calibration parameters. These datasets along with additional details are listed in Table 2. 200 

 

CIDET, LIDET and ED are litter bag decomposition timeseries where litter is left to decompose in a mesh bag 

and the remaining mass is measured at chosen time intervals over several years. Each dataset had the 

experiments with multiple different species, with the initial chemical composition also provided by the dataset, 

and different sites. Furthermore, while CIDET and LIDET only measured the remaining mass, ED also 205 

determines the AWEN fraction from one of the replicant samples, which allows us to directly compare it to the 

Yasso20 state variables. However, while in CIDET and LIDET the remaining mass has ash removed, in ED ash 

is still included in the remaining mass. The mean monthly temperatures and precipitations have been measured 

at each test site with the annual precipitation being summed up from the monthly precipitation values. 

 210 

The global SOC measurement dataset from Oak Ridge National Laboratory (Zinke et al., 1986) is collected 

from the data of numerous unrelated projects that have measured SOC as a part of their campaign. As such, 

there are/were no uniform applicable protocols to these measurements. For the purposes of the calibration, the 

data is assumed to represent the steady state SOC at that location and each measurement is treated as 

independent from the others even if they are from the same location. Furthermore, we only used SOC 215 

measurements that were below 20 kgC m-2 in the calibration. Values higher than those were found in high 

latitudes and considered as results of waterlogging, peat formation or permafrost, processes not described in 

Yasso20. The litter input was determined by combining the global GPP map from Beer et al. (2010) with the 

global NPP/GPP relationship set to 0.5 at the measurement locations due to lack of specific information on the 

NPP/GPP there. The Olson classification (Olson et al., 2001) regarding the local ecosystem type was used to 220 

roughly divide the ecosystems into grasslands, semi-forests and forests. The litter fractioning for these different 

systems are given in Supplemental Table 1. In addition, SOC chronosequence data from Liski et al. (1998) and 

plot level measurements of Liski and Westman (1995) was used as a validation data set. 

 

The woody decomposition data used here is from Mäkinen et al. (2006), which has measurements of multiple 225 

trees in different stages of decomposition over several decades in Finland. There are no signifiers to connect the 
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measurements from different years nor to indicate how much the tree diameter has been reduced over time 

because the data was not chronosequence data of the same trees. As such, the measurements were considered 

independent and representative of decomposition of a tree trunk of that size. 

 230 

The same litterbag and woody data were used to calibrate both Yasso07 and Yasso20.  The sole exception 

regarding the litterbag data is that the whole ED dataset was used in Yasso07 calibration while in Yasso20 we 

removed decomposition data from manipulation experiments. However, Yasso07 H pool parameters were not 

parameterized with the Oak Ridge data. Instead, the chronosequence data from Liski et al. (1998) was used in its 

calibration with climate and litterfall drivers derived from Southern Finland conditions (Tuomi et al., 2009). As 235 

already established, this dataset was not used in Yasso20 calibration and was only applied as a validation 

dataset. 

 

2.2.1 Dataset uncertainties 

 240 

The information of the uncertainty related to the measurements was limited. With CIDET and LIDET there are 

generally four replicants, sometimes less, from which the standard deviation in remaining mass can be 

calculated. Similar standard deviation is available for the ED measurements, but is only determined for the total 

mass loss and not for the AWEN pool measurements used here. Furthermore, there are other aspects affecting 

the uncertainties such as the ED measurements containing ash or LIDET measurement time series showing more 245 

noise than the CIDET measurements. For the global SOC dataset and the woody matter decomposition datasets 

no such replicant deviation is available nor is there any other established uncertainty. There are other similar 

measurement campaigns where uncertainty estimates are given, but it is not clear how directly they can be 

applied for the datasets used here. Consequently, here we used our expert opinion to determine the different 

dataset uncertainties relative to each other (Table 1) as we felt this was a more transparent manner to 250 

acknowledge the current limitations regarding assigning the uncertainties. 

 

Systematic differences in the litter bag properties affected the use of different datasets (Tuomi 2009; 

Tuomi2011b). In general, high mass loss rates were positively correlated with a large mesh size of the litter bags 

and high precipitation in our datasets. This is because the decomposing material in the litter bags is partially 255 

‘washed away’ into the surrounding soil by water flow and is thus removed from the bag due to processes other 

than decomposing. To correct for this, we added a leaching term to equation 1 as follows, 

𝑑𝑥(𝑡)

𝑑𝑡
= (𝐴(𝜃, 𝑐) − 𝜔𝑠𝑖𝑡𝑒𝑃𝐼5)𝑥(𝑡) + 𝑏(𝑡),        (9) 

where ωsite is the dataset-specific leaching term and I5 is a 5×5 identity matrix. This approach was simplified as 

there are multiple components expected to affect the leaching process and other systematic errors, but it was 260 

necessary to establish even this simplistic initial approach for the work here.  

 

Finally, long-lived carbon compounds represented by the H pool in the Yasso model are not produced in 

decomposition litter bags as they require organo-mineral associations which are unlikely to occur in the litter 

layer” 265 
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 that is only possible in the soil. Because of this pH (transfer fraction from AWEN pools to pool H) could have 

non-zero values only with the Oak Ridge global SOC dataset.  

 

 

2.3 Calibration protocol 270 

We used the BayesianTools R-Package (Hartig et al., 2019) in our calibration workflow for its standardized and 

flexible implementation of Markov chain Monte Carlo (MCMC) algorithms with external models, as well as for 

its post-MCMC diagnostic functionality. While our main aim in this paper was not to compare MCMC 

algorithms, once the interface was established with the BayesianTools, it was trivial to leverage the common 

setup and test the performances of different MCMC flavors as implemented by the package. We found this 275 

exercise helpful as our calibration problem involves a relatively high dimensional and irregular likelihood 

surface. It has been previously shown that for such systems the efficacy of the calibration may differ between 

algorithms (Lu et al., 2017). Thus, we tested two robust and efficient algorithms Differential Evolution Markov 

Chain with snooker updater (DEzs, ter Braak and Vrugt, 2008) and Differential Evolution Adaptive Metropolis 

algorithm with snooker updater (DREAMzs, Vrugt et al., 2009; Laloy and Vrugt, 2012; Vrugt, 2016), in 280 

addition to the long-established adaptive Metropolis (AM) algorithm (Haario et al., 2001).      

All three algorithms use Markov chains to explore the parameter space and generate samples from the posterior. 

However, AM uses a single chain, whereas DEzs and DREAMzs use multiple interacting chains simultaneously. 

While DREAM emerged from DE, DREAM further uses adaptive subspace sampling to accelerate convergence 

(Vrugt, 2016). All three algorithms use proposal distributions to generate successive candidate samples and 285 

grow the chains. However, AM uses a multivariate Gaussian distribution as the proposal which is most effective 

when the target distribution (a.k.a. posterior) is also Gaussian. Whereas, DEzs and DREAMzs algorithms use 

the differential evolution principle to optimize the multivariate proposals (with snooker jumps to increase the 

diversity of the proposals), automatically adjust the scale and orientation of the proposal distribution according 

to the target distribution (Vrugt et al., 2009; 2016). As a result of these properties, especially when not tuned 290 

properly, AM can take much longer to complete the high-dimensional parameter search and can suffer from 

premature convergence when multiple distant local optima are present (Vrugt, 2016; Lu et al., 2017). Whereas 

DEzs and DREAMzs can potentially resolve non-gaussian, high-dimensional and multimodal target 

distributions more effectively without much configuration (Laloy and Vrugt, 2012, Lu et al., 2017). 

                    295 

In our calibration protocol, we ran 3 chains for each algorithm where DEzs and DREAMzs further tripled each 

chain. We initialized these chains from the prior distributions (Table 1) using the random sample generator of 

the BayesianTools package. Each chain was run for 1.5 x 106 iterations and the last 1.5 x 105 iterations were 

used to compute the posterior probability distributions after removing the burnin. Convergence diagnostics were 

checked by visually inspecting the trace plots of the chains, as well as calculating the multivariate R-statistic of 300 

Gelman and Rubin (1992). 

 

For the likelihood function we used a simple approach where the uncertainties are assumed to be normally 

distributed and independent of each other. In the litterbag experiments because the absolute uncertainty remains 
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the same over time while the amount of decomposing litter decreases, the relative uncertainty increases over 305 

time. There are uncertainty dynamics affecting the data in reality that is not accounted for here such as more 

nuanced time dependence of the uncertainties, uncertainty auto-correlation in a time series and non-normally 

distributed uncertainties. Due to not having reliable information to properly assess how these effects should be 

included into the likelihood calculations here, we chose the described basic approach. This is considered to 

make it more straight-forward to later add the missing uncertainty dynamics as approximations of them become 310 

available and examine how those inclusions affect the calibration results. 

 

Initially the calibration was done with all the parameters associated with the Yasso20 model. However, if the 

estimated parameter values for the p-terms in eq. 3 were within three decimals from either 0 or 1, they were set 

to nearest limit value of 0 or 1, after which the calibration was redone. During the calibration, the p value 315 

parameterization can never settle at 0 or 1 and, hence, it is impossible to know what the real p value is that close 

to the limit. The calibration results presented here only had four p values that were not set: pWA, pWN, pEW and 

pEA. Parameters pAW and pNA were set to 1 and the other AWEN related p values were set to 0. Furthermore, 

since we assumed that only decomposition in the W pool results in CO2, we estimated only pEW and set pEA to 

be the E-pool remnant from 1 with pEN set to 0. 320 

 

2.4 Validation protocol 

Each of the litter decomposition experiments (CIDET, LIDET and ED) was randomly split into two: data used 

for calibration (80% of the measurements) and data used for validation (20% of the measurements). 

Furthermore, the random division is done so that the whole measurement time series from one bag is always 325 

fully either in calibration or validation data. It was also verified that each site and species in was approximately 

equally represented in both the calibration and the validation data. Due to the noise and bias in both the global 

SOC measurement data sets in addition to the separate processes included in those calibrations, we did not 

divide them into calibration/validation parts but used all the data for calibration.  

The experiments were conducted by calibrating the Yasso model individually with the calibration data from 330 

each litter bag decomposition data set (CIDET-only, LIDET-only, ED-only) as well as a joint calibration that 

used all the calibration data detailed before (i.e. CIDET, LIDET, ED, Mäkinen, global SOC). The leaching 

parameter was individually calibrated for each decomposition bag dataset during the joint calibration. In 

addition, the Hobbie3 dataset (Hobbie, 2005) was used as an independent validation dataset. Since there was no 

information on its leaching parameter, that was set to zero in the validation runs. The validation for each 335 

calibration results was done with all the separate validation data sets. Similar validation dataset is created with 

the Mäkinen wood decomposition data with 20 % of the data points set aside for validation purposes. There was, 

however, no independent calibration done with the Mäkinen dataset as there is not enough of data there to 

constrain the model completely and in the validation analysis the focus was on how it performed over wood size 

instead of time. 340 

The global Oak Ridge SOC data set was not split into calibration/validation parts for two reasons. First, as it 

was the only dataset calibrating the H parameters, there was no efficient to way to evaluate how the addition of 
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new data would have impacted the model performance regarding this dataset. Second, the dataset was found to 

be so noisy that the randomized choosing of the validation datapoints already affected the results to a noticeable 

degree. Due to this, the H parameter calibration was evaluated with two separate small datasets. First, SOC 345 

measurements from several plots Hyytiälä, Finland (Liski & Westman, 1995) where the dominant tree species of 

each plot is known was used to test if Yasso20 was able to calculate an approximately correct SOC value for the 

plots. The SOC values for plots with the same dominant species were averaged for the comparison with the 

litterfall used for each species listed in Supplemental Table 2. Second, a SOC chronosequence from Liski (1998) 

was used to determine if Yasso20 is able to realistically simulate the SOC accumulation over time scales of 350 

hundreds of years. In this dataset there are 26 soil age gradient data points from the Finnish coast which has 

been used to approximate the SOC accumulation in the soil over hundreds of years after the ice age. Tree litter 

and climate driver data from Hyytiälä, Finland was used here as the main focus is on if the simulated system 

reaches steady state in the same time window as the measurements. The climate driver data used for these 

validation runs is included in Supplemental Table 3. 355 

2.5 Yasso07/Yass020 comparison protocol 

During the calibration of Yasso07, there was no separate validation data set aside for the CIDET, LIDET and 

ED and all the data was used for the parameterization. Because of that we do not use those validation datasets 

for the model performance comparison. Instead, only the Hobbie3 validation dataset and the Hyytiala plots are 

used for to determine if there is any notable improvement in Yasso20 performance with them compared to 360 

Yasso07. For the litterbag data, the comparison shall be the RMSE while for the Hyytiala plots how the model 

projected steady state SOCs compare to the measured plot values. 

To assess the differences in the model over long-term decomposition, both models were used to model the 

decomposition of a hypothetical straw litter (A=620 g, W=50 g, E=20 g, N=310 g) over a 100-year time period 

with the Hyytiälä, Finland climate drivers. This is not based on any measurement time series and is purely a 365 

synthetic test. 

 

3. Results 

 

3.1 Calibration performance 370 

The first step was to determine if there is a notable difference in how the different calibration methods perform 

with the global dataset. All three calibration methods (AM, DEzs, DREAMzs) produced similar maximum a 

posteriori (MAP) values for global (joint) calibration where all data streams were used (Figure 1, Supplemental 

Table 4). Closer examination of different chains, though, shows that while DEzs and DREAMzs converged to 

the same parameters, individual AM chains instead produced different parameter distributions. Closer 375 

examination of different chains, though, shows that while DEzs and DREAMzs converged to the same 

parameters, individual AM chains instead produced different parameter distributions and thus the calibration 

itself did not converge. The AM chain parameter distributions already settled into these distributions based on 

the initial parameter values given to them and even after doubling the number of iterations (Not shown) the 

distributions remained the same. In our view, this is indicative of what would happen if a simple single chain 380 
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calibration was done with SOC models. The Gelman-Rubin (G-R) statistics for the different calibration methods 

(Supplemental Table 4) reflect these differences in convergence as well, with DEzs having the values within the 

acceptable boundary while values for AM are above acceptable ranges. DREAMzs also performs generally well 

but shows more divergence with the parameter values than DEzs. Similar behaviour was seen when running the 

individual dataset calibrations, where individual AM chains would mix well, but converged at different values 385 

from each other (Not shown). Per global calibration diagnostics of different algorithms, we decided to report the 

rest of the results with the DEzs algorithm for clarity as its estimates were converging best out of the three 

examined methods. When the global calibration with the DEzs algorithm was repeated with the Hobbie3 data set 

included, the resulting parameter distributions were nearly identical to the calibration done without the Hobbie3 

data set included (Not shown). 390 

 

3.2 Parameter estimates and correlations 

The next step was to examine how the use of multiple datasets simultaneously affected the calibrated parameter 

sets compared to when using only individual datasets for calibration. The parameter sets produced by the 

calibrations differ from each other to a meaningful degree in both the parameter mean value as well as the 395 

associated uncertainty range (Figure 2; supplemental table 5). Despite that, though, there are certain patterns in 

the parameter sets: The pool decomposition rate relationships remain the same in that W has the quickest 

turnover rate followed by A with N being the slowest to decompose. With the climate terms, both CIDET and 

LIDET calibrations have difficulties in settling on the climate terms while covering multitude of different 

climate types while ED calibration, where the climate differences between measurement locations are minor, 400 

produces a relative narrow climate parameter estimate. The global calibration, however, does clearly converge 

around certain climate parameters even if the uncertainty range is remains wide. And even though the ED 

dataset has the most detail about the AWEN distribution, the AEW decomposition rates estimated based on it do 

not appear to converge with multiple peaks in the parameter distributions. 

 405 

To further examine the parameter calibration, we analyzed the correlations between different parameter values 

produced by the DEzs algorithm from the global calibration (Figure 3), which shows that the correlations are the 

strongest between processes affecting the same pools. The p-terms which had been set to 0 and 1 were excluded 

from the correlation analysis since they did not vary during the calibration. The AWE pools decomposition rates 

have strong positive correlations between the decomposition rates as well as with the climate driver terms 410 

affecting decomposition in them. Similarly, there are strong negative correlations between the temperature terms 

affecting the same pools and a strong positive correlation between the H pool terms. There are both strong 

positive and negative correlations with the size related parameters. While the exact correlation values changed 

depending on the calibration dataset, the general relationships remained similar (Not shown). 

 415 

3.3 Validation and comparison to Yasso07 

The final step was to validate how the different parameter sets perform with separate validation datasets and 

determine if there are notable systematic errors with regard to the climate driver data. For each dataset, the 

RMSE values are at their lowest when using the parameter sets calibrated with that specific dataset (Table 3), 

though the global parameter set produced RMSE values close to those lowest values. However, when using the 420 
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parameter sets calibrated by other datasets than the validation data have been chosen from, the RMSE values 

became higher indicating worse model performance. When the RMSE analysis was done with the Hobbie3 

dataset, the global parameter showed the best performance. It should be noted that since in the ED data set 

measurements are for each individual AWEN pool, the individual measurements are smaller in value than the 

total mass measurements of CIDET/LIDET/HOB3. Consequently, the RMSE values for ED are smaller than 425 

those for CIDET/LIDET/HOB3 datasets.  

 

With regard to the long-term SOC projections, the comparisons with the Hyytiälä forest plot measurements 

(Table 4; Figure 4) indicates that at least in the Nordic forests Yasso20 potentially slightly overestimates the 

steady state SOC, with the largest differences still being below 2 kg C m-2. It should be noted, though, that there 430 

is notable variance within the measurements in addition to the uncertainty related to the driver data. The 

chronosequence data (Figure 5) shows that the model projection saturates approximately in 1000 years similarly 

to the measurements. 

 

When examining how Yasso20 performs relative to Yasso07, the RMSE for Yasso07 projections is 118.2 grams 435 

compared to the Yasso20 RMSE of 110 grams. With the Hyytiälä forest plot measurements (Table 4), in all 

plots Yasso07 overestimated the SOC by at least 3 kg C m-2 more than Yasso20. However, when examining the 

distribution of carbon into different pools in these steady states (Not shown), more meaningful differences were 

revealed. For Yasso07, only ~37 % of the SOC was in the long-lived H pool while ~50 % of the carbon was in 

the N pool.  By comparison, with Yasso20 projections ~54 % of the carbon is in the long-lived H pool and ~27 440 

% in the N pool.  

 

The hypothetical straw litter decomposition (Figure 6) shows that while the total carbon remainder for the two 

models are close to each other for the first 10 years, after that there is a clear divergence between the model 

projections with Yasso07 having higher remaining carbon than Yasso20. More detailed inspection of the results 445 

(Not shown) found that this difference was due to the N pool decomposing at a much slower rate than in 

Yasso07 than in Yasso20. This also causes less carbon to accumulate in the H pool in Yasso07 than in Yasso20 

with the latter having approximately twice as much carbon in the H pool than the former after 50 years. When 

repeated with warmer climate drivers (Not shown), Yasso07 time series projection decreases at a faster rate than 

Yasso20 time series projection. 450 

 

3.4 Residual analysis 

When checking residuals from the litter bag experiments against mean annual temperature, annual temperature 

variation and total annual precipitation (Figure 7), there appears to be a tendency for Yasso20 to increasingly 

underestimate the remaining litter bag C with growing average mean temperature and precipitation. The error 455 

does not, though, show any signal when looking at the temperature variation within the year. With the woody 

decomposition residuals (Figure 8), there is a slight negative trend over time and a slight positive trend over 

size. Both are minor, though, and the residuals for the woody decomposition are relatively evenly distributed for 

the validation dataset. 

 460 
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4. Discussion 

 

The benefit of calibrating with multiple datasets 

 

Our results show that simultaneously using multiple datasets from different environments improves the general 465 

applicability of the SOC model even when the simplistic leaching factor approach had to be used to be able to 

compare different litter bag datasets and detailed uncertainty estimates were lacking, confirming our first 

hypothesis. This is in line with prior studies arguing for larger representation in the calibration data (Zhang et 

al., 2020). Furthermore, a more detailed analysis of different calibrations shows (Figure 2) that the information 

from multiple datasets is in truth even necessary for the calibration as when calibrating only with one dataset, 470 

the decomposition parameter uncertainty ranges either were large or, in the case of the more nuanced EuroDeco 

dataset, don’t even appear to converge. Something that was not examined in this study was how the 

uncertainties for the different datasets should be defined. Even if the assigned measurement uncertainties were 

correct for each dataset, combining them introduces structural uncertainties that should also be accounted for 

(MacBean et al., 2016). A potential method to address would be to estimate the dataset uncertainties along with 475 

the model parameters, as done for example in Cailleret et al. (2020), but applying this approach to the SOC 

system will require a more thorough analysis in order to assess how it impacts the results. 

 

Further inclusion of smaller dataset 

 480 

Even with this global calibration, individual locations can be affected by specific SOC decomposition conditions 

not currently accounted for in the models (Malhotra et al., 2019). Naturally, if smaller datasets of SOC and 

decomposition measurements are available from locations affected by specific decomposition dynamics, for 

example agricultural soils that are treated in a very specific manner, it would be logical to use that local 

information to constrain the SOC model to better suit that location. However, the results here raise questions on 485 

how those smaller datasets should be implemented in the model calibration. The inclusion of the Hobbie3 

dataset did not meaningfully impact the calibration results (Not shown), which is reasonable considering how 

small that litterbag dataset (N=192) is compared to the totality of the other datasets (N=~17 000 of which 

Nlitterbag = ~12 000) being used in the calibration. This indicates that due to the sheer size of the global 

calibration data set, smaller local data sets cannot effectively be used just by adding it to the joint calibration 490 

process. Additionally, while the smaller datasets such as the Hobbie3 datasets contain site specific information, 

they are similar measurements as the ones within CIDET and LIDET and, thus, there is no reason to believe 

they would provide additional insight to the global application. There are other options, though, by either using 

the globally estimated parameter ranges as the priors for a calibration with the local data, re-weighing the 

different datasets based on expert opinion (Oberpriller et al., 2021) or employing a hierarchical calibration 495 

approach (Tian et al., 2020, Fer et al., 2021), but the impact of these approaches should be separately researched 

and tested. Our study still successfully provided a global parameter set that increases the applicability of Yasso 

model and informs global SOC estimates. 

 

Calibration method 500 
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Here we showed that by using a DEzs  calibration algorithm, we were able to simultaneously use multiple 

different types of datasets to constrain the soil organic carbon (SOC) model Yasso and produce a converging 

parameter set. Additionally, using a more conventional model calibration approach, here the Adaptive 

Metropolis (AM), showed that it was vulnerable to the local likelihood maximas and that the resulting parameter 505 

sets were strongly affected by the starting values. This supports our second hypothesis that more advanced 

calibration methods are necessary to better explore the likelihood surface and estimate SOC model parameters 

due to the trade-offs between the parameter values that result in equifinality in the parameter space.  

Furthermore, even the more stable calibration method produced different results for different individual datasets 

used to calibrate. More advanced calibration methods, though, then need to be applied to minimize the impact of 510 

the resulting uneven parameter space and producing Gelman-Rubin values within more acceptable ranges 

(Gelman and Rubin, 1992). Something that was curious in our results was that DEzs converged better than 

DREAMzs (Supplemental Table 4) despite the latter being a more state-of-the-art method (Vrugt, 2016). We 

were not able to determine the reason for this in our tests here, specifically was it something related to the 

behaviour of the parameter space or to some aspect of the technical implementation. 515 

 

Impact of prior parameter information  

 

One of the fundamental challenges for calibrating SOC models is lack of experimental information regarding the 

model parameter value distributions. Therefore, we used generally broad uniform prior distributions for the 520 

calibration here. However, it is still important to evaluate the calibration results based on our understanding of 

the overall system behaviour. For example, initially we used wider priors for parameters pH and αH (Results not 

shown), which in turn resulted in the calibration producing a pH value of ~0.08 and, consequently, a much 

higher H pool decomposition rate. As this did not fit with the system behavior seen i.e. with the bare fallow 

experiments (Menichetti et al., 2019) or the soil chronosequence (Fig 3-3), we applied a narrower prior 525 

constraint on the related parameters. Another, and a more, complicated example is that when using wider prior 

constraints for the N pool decomposition rate parameter αN, the calibration resulted in the N pool being largely 

insensitive to the temperature and moisture drivers. While there are no direct measurements of the lignin pool 

temperature sensitivity, there have been studies showing that the energy needed for breaking down SOC 

compounds increased with complexity (Davidson and Janssen, 2006; Karhu et al., 2010) indicating that the N 530 

pool should be temperature sensitive. Here we chose to constrain αN to a lower range, which in turn forced a 

climate driver sensitivity for it. All these examples illustrate that prior information and expert opinion should 

directly inform the calibration and the calibration results themselves should further be reassessed in their 

physical meaning. 

 535 

How Yasso20 performs in comparison to Yasso07 

When comparing the litter bag validation dataset performances of Yasso07 and Yasso20, there is an 

improvement with Yasso20 even though both models have been calibrated largely with the same litterbag data. 

This underlines that the added model detail and reconsidered calibration process have a positive impact on the 

model projections. What is more striking, though, is that Yasso20 does perform better across the board with the 540 
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Hyytiälä SOC data than Yasso07 where the latter model’s long term SOC component was calibrated with 

Finnish conditions. This result argues that while local calibration data is important, even for those specific 

locations there could be a benefit in including global data in the calibration. These results validate the third 

hypothesis concerning the impact of the presented improvements on model performance. 

A more thorough analysis of the model projections revealed a more fundamental difference in the model 545 

dynamics than initially indicated by the comparison datasets. In Yasso07 the N pool decomposes much slower, 

which impacts the rest of the decomposition dynamics and causes less long-lived H pool carbon to be formed 

during the soil decomposition. As a consequence of differences in the calibration procedures and the resulting 

model versions, Yasso07 projects higher SOC values than Yasso20 with the same input values and these model 

versions would also react differently to changes in climate conditions and litter input. 550 

The Yasso07 dynamics are most likely due to a combination of multiple reasons which highlights the 

complicated process of SOC model calibration. As Yasso07 was calibrated in segments, the woody 

decomposition parameters were calibrated after the AWENH pool parameters were determined from the global 

litter bag experiments and Finnish SOC measurements. When looking at the calibration results from individual 

datasets (Figure 2) there are parameter sets there which have similarly low decomposition rates for N pool as 555 

Yasso07. Depending on how the different measurement datasets were weighed, it might be that those datasets 

that favored slower N pool decomposition had more impact than with Yasso20 calibration. Finally, in Yasso20 

the climate driver parameters are different between the AWE and N pools and while the temperature terms are 

close to each other, the precipitation terms do differ from each other while in Yasso07 they would be the same. 

This would affect the Yasso07 dynamics during calibration. The calibration is made even more vulnerable to all 560 

these factors because a vast majority of the litter bag data used here is from the first six years of decomposition 

where Yasso07 and Yasso20 are very close to each with regard to total carbon remaining (Figure 6). In such a 

situation it is very possible that less developed calibration protocols can lead to unrealistic system dynamics that 

still appear to produce good results within limited time windows. 

 565 

 

Leaching 

 

As established in section 2.2, in order to compare the measurements from different litter bag experiments, there 

needs to be a parameter that accounts for the litter bag types’ impact on the mass loss rate (Tuomi et al., 2009). 570 

When testing with independent litterbag data, we see that even with this added assumption, the global 

calibration produces a better fit than the calibration based on individual litterbag campaigns (Table 5). This 

supports using data from multiple litterbag campaigns in model calibration. However, in the results it is evident 

that not only are the leaching parameters estimated to be essentially zero when calibrating only with individual 

decomposition bag data sets (Supplemental Table 5), but also when simultaneously calibrating with all the data 575 

sets, only the ED dataset ends up having a meaningfully non-zero value. First of all, this indicates the current 

straight-forward formulation for leaching is insufficient as with the individual dataset calibrations the other 

parameter values are able to produce fits where there is no leaching despite knowledge that it is a factor. Second, 
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even when calibrating multiple data sets simultaneously, the calibration appears to  apply the leaching effect to 

only one of the datasets even when it should affect all of them.  580 

 

A further complication is that the differences in RMSE results (Table 3) suggest that there are systematic 

differences between the datasets resulting from various sources such as the experimental setup or environmental 

differences. As a consequence, calibrating with these kinds of datasets will result in systematic differences in 

model performance as established in Oberpriller et al. (2021) as can be seen in how CIDET/LIDET calibrated 585 

Yasso performs with the ED dataset and vice versa. By being a corrective term, the leaching factor introduced 

here will also reflect all those other elements causing the systematic differences, for example different 

mycorrhizal environments, instead of just being about the physical properties of the litter bag. Due to all these 

factors,the leaching impact needs to be further studied and the relevant equations need to first be formulated 

with experimental data specifically gathered for that purpose. There also needs to be additional work in trying to 590 

better quantify what those other systematic error elements are so that they can be better addressed. 

 

Humus formation and the need for the layer Yasso  

 

There is an important point concerning the parameterized humus (H) formation term pH here. The long-term H 595 

formation can only take place in the soil itself as it requires the presence of mineral compounds (Schmidt et al., 

2011), which is why only the global soil carbon dataset in this study could be used to constrain H parameters. 

However, they are only point measurements with no information of how the state changes over time. Therefore, 

we have to assume that the measurements represent the approximated steady state from an assumed litter fall. 

This not only causes larger parameter uncertainties, but also the estimated pH parameter value will represent the 600 

fraction of the total litter fall that ends up in the H pool while in reality with the surface vegetation litter there 

needs to be an additional mechanism that transfer the carbon compounds to soil while root litter is already in 

that environment. Consequently, if examining litter decomposition taking place only in the soil, such as with 

roots, it is likely that pH for that soil system would be larger than what is estimated here. This would fit with 

previous research suggesting that the root biomass specifically appears to be connected to the amount of long-605 

term carbon in the soil as more of it would be able to form H compounds than the surface vegetation 

(Clemmensen et al., 2013; Jackson et al., 2017). However, currently the amount of data that would allow 

efficiently separating the above and below soil decomposition processes during the calibration process is 

limited. Additionally beyond this, there are presence of mineral compounds and other conditions that affect how 

efficiently H is formed that should be included when formalizing H formation (Rasmussen et al., 2018). Better 610 

addressing the formation of H is a crucial development step for the model, but the current approach provides an 

initial way to estimate the H pool size/quantity. 

 

Temperature and precipitation impact 

 615 

At first glance it appears that the current version of Yasso20 overestimates SOC decomposition (i.e. 

underestimates SOC amount) at higher precipitation and temperature values, as indicated by the negative trend 

in Fig 7. In the current formulation of environmental drivers (eq. 5), only the lower precipitation values decrease 
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the decomposition rate with the system becoming insensitive to increases in precipitation after a certain 

threshold. However, it is known that at higher moisture levels the SOC decomposition rates decrease (Keiluweit 620 

et al., 2017). A more informative driver of moisture conditions (e.g. monthly soil moisture) and a more realistic 

response function could help disentangle the reasons behind this trend in the residuals in the future. The current 

version of Yasso20 uses precipitation as the driver instead of soil moisture because the decomposition bags from 

the data sets used as constraints here are on the surface and thus were expected to be primarily controlled by 

precipitation. In the light of current findings, next steps in Yasso model development towards using soil 625 

moisture as model drivers are planned.  

 

Closer examination of the error distribution over the climate drivers, though, suggests some more complexity. 

Even at the lower precipitation values while both CIDET and ED data errors cluster approximately equally 

around zero, the LIDET data points show a shift towards negative errors similarly to at higher precipitation 630 

values. Thus, it appears that the issue is at least partially due to the data set itself rather than the pure 

precipitation signal. Similar behaviour can be seen with mean temperature, although it isn’t as pronounced. 

Thus, there is a seeming systematic error when simulating the LIDET data with the global calibration parameter 

sets. It is yet unclear if this is due to something with the measurements, something with the processes or if the 

climate driver data is not similarly representative of the conditions as with the other used data sets. 635 

 

Litter size impact on decomposition 

 

In the current Yasso20 implementation, the woody litter diameter does not change during the decomposition 

process while in reality the wood shrinks as it decomposes. This explains why when comparing the model 640 

results to the tree decomposition validation dataset (Fig 8), the model overestimates the decomposition rate for 

decades old tree stems with a measured diameter of approximately 10 cm. In those cases, the model assumes 

that was the size of the trunks when the decomposition started and, consequently, the size impact is smaller than 

it should be. While the model still performs well with the validation database regardless of this, it is an 

important aspect to consider when applying Yasso20 model with woody decomposition. 645 

 

 

5. Conclusions 

 

Soil organic carbon (SOC) models should be constrained by data from multiple different ecosystems and 650 

reflecting the various dynamics affecting the SOC decomposition process. Using data from multiple datasets 

produced parameter sets which performed better in a global comparison than parameter sets calibrated with 

information from individual datasets, highlighting the necessity of using more data. However, the traditional 

AM calibration method had difficulties converging to a single parameter set when used with multiple datasets, 

most likely due to the numerous local likelihood maximas within the likelihood space, and our deliberate choice 655 

for avoiding detailed algorithm-specific configurations which reduces repeatability and re-applicability. 

Consequently, our results showed that more advanced methods such as DEzs should be used when calibrating 

SOC models. Furthermore, we identified numerous aspects where further detailed data is needed to better 
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constrain the model processes in question, for example regarding the leaching parameter that allows comparison 

of different litter decomposition bag experiments or better connecting varying soil moisture conditions to 660 

changes in SOC.  
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Parameter 
symbol Parameter description 

Prior 
distributions Starting values 

αA Base decomposition rate for pool A (1/year) U(0,2) 1.86, 0.23, 1.37 

αW Base decomposition rate for pool W (1/year) U(0,10) 3.52, 6.0, 9.74 

αE Base decomposition rate for pool E (1/year) U(0,2) 0.36, 1.63, 0.82 

αN Base decomposition rate for pool N (1/year) U(0,0.1) 0.01, 0.06, 0.03 

αH Base decomposition rate for pool H (1/year) U(0.001,0.01) 0.0024, 0.0094, 0.0045 

pAW Transference fraction from pool A to pool W U(0,1) Set value of 1-pH 

pAE Transference fraction from pool A to pool E U(0,1) Set value of 0 

pAN Transference fraction from pool A to pool N U(0,1) Set value of 0 

pWA Transference fraction from pool W to pool A U(0,1) 0.31, 0.37, 0.68 

pWE Transference fraction from pool W to pool E U(0,1) Set value of0 

pWN Transference fraction from pool W to pool N U(0,1) 0.42, 0.45, 0.20 

pEA Transference fraction from pool E to pool A U(0,1) Set value of 1-pEW-pH 

pEW Transference fraction from pool E to pool W U(0,1) 0.47, 0.91, 0.04 

pEN Transference fraction from pool E to pool N U(0,1) Set value 0. 

pNA Transference fraction from pool N to pool A U(0,1) Set value of 1-pH 

pNW Transference fraction from pool N to pool W U(0,1) Set value of 0 

pNE Transference fraction from pool N to pool E U(0,1) Set value of 0 

pH 
Transference fraction from AWEN pools to pool 
H U(0.001,0.01) 0.0071, 0.0064, 0.0026 

β1 
The first order temperature parameter for AWE 
pools (1/C) U(0,0.2) 0.03, 0.04, 0.17 

β2 
The second order temperature parameter for 
AWE pools (1/C2) U(-0.05,0) -0.013, -0.007, -0.003 

βN1 
The first order temperature parameter for N 
pool (1/C) U(0,0.2) 0.12, 0.01, 0.02 

βN2 
The second order temperature parameter for N 
pool (1/C2) U(-0.05,0) -0.24, -0.04, -0.03 

βH1 
The first order temperature parameter for H 
pool (1/C) U(0,0.2) 0.002, 0.11, 0.20 

βH2 
The second order temperature parameter for H 
pool (1/C2) U(-0.05,0) -0.0001, -0.0014, -0.39 

Γ 
The precipitation impact parameter for AWE 
pools (year/mm) U(-2,0) -0.93, -1.96, -1.34 

γN 
The precipitation impact parameter for N pool 
(year/mm) U(-2,0) -1.66, -0.32, -0.63 

γH 
The precipitation impact parameter for H pool 
(year/mm) U(-10,-5) -9.65, -6.15, -5.47 

φ1 The first order impact parameter for size (1/cm) U(-3,0) -0.81, -1.41, -1.19  
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φ2 
The second order impact parameter for size 
(1/cm2) U(3,0) 0.82, 0.25, 2.25 

r The exponent parameter for size U(0,1) 0.83, 0.17, 0.49 

wED The leaching parameter for ED dataset U(-1,0) -0.08, -0.02, -0.05 

wCIDET The leaching parameter for CIDET dataset U(-1,0) -0.03, -0.1, -0.08 

wLIDET The leaching parameter for LIDET dataset U(-1,0) -0.08, -0.04, -0.02 

 

Table 1: The parameters, prior distributions and initial values used in this calibration study. The 

initial values for the different chains were randomly drawn from the prior distribution (U: uniform). 

If the starting value is listed as a set value, then parameter was not varied in the calibration and the 890 

given value was used for all chains. 
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Data N No. of 

Species 

Time 

range 

(a) 

T range 

(C) 

P range 

(mm) 

Elevation 

range 

(m) 

Uncertainty 

used in 

calibration 

Note Reference 

Non-woody litter decomposition 

      

Mesh size 

(cm)  

CIDET 1259 10 0-6 -9.8–9.3 261–
1782 

48–1530 100g 0.25 x 0.5 Trofymow 1995 

LIDET fine roots 2608 4 0-10 -7.4–
26.3 

150–
3914 

0–3650 200g 0.055 x 

0.055 

Gholz et al. 2000 

LIDET litter 5900 29 0-10 -7.4–
26.3 

150–
3914 

0–3650 200g 0.055 x 

0.056 

Gholz et al. 2001 

EURODECO 2184 5 0-5.5 0.2–7 469–
1067 

46–350 A:40g, 

W:10g,  

E: 20g, 

N:40g 

1 x 1 Berg et al. 1991a, b 

Hobbie 192 4 0-5 6.7 3676 270 100g 0.3 x 0.2 Hobbie 2005 

Woody litter 

decomposition 

       

Diameter 

(cm) 

 

Finland 1281 3 0-60 3.1 570 na 250g 4.5–40.9 Mäkinen et al. 

2006 

SOC accumulation 

       

Soil depth 

(cm) 

 

Finland 26  5300 3 500 0 NA 0–30 Liski et al. 2005 

SOC stock 

Global 
4113 

  
-26.9–

28.0 0–5663 0–3900 

 

7.5 kg 
0–100 Zinke et al. 1986 

Finland 30   3.2 681 115–180 NA 0–100 Liski & Westman 

1995 

Total 17563         

 

Table 2: The measurement data sets used in this research 895 
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Validation 

dataset 

CIDET 

calibration 

LIDET 

calibration 

ED 

calibration 

Global 

calibration 

CIDET 109.0 128.8 226.4 115.5 

LIDET 224.3 168.8 345.4 199.9 

ED 49.5 55.0 35.5 40.3 

Hob3 133.8 126.6 367.0 110.0 

 

Table 35. The RMSE values for the different validation datasets when the model is ran with the MAP 900 

values from the calibrations done with the different datasets. As with the measurements, the RMSE 

unit here is grams. Lowest RMSE for a particular dataset is bolded. 
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Site ID (Dominant tree 
species; Number of 
plots) 

Averaged SOC 
(Standard deviation)  

Yasso20 projected steady 
state SOC 

Yasso07 projected steady 
state SOC 

CT_SP (Pine; 5) 5.78 (0.97) 5.82 8.32 

VT_SP (Pine; 7) 5.73 (0.71) 7.39 10.61 

VT_NS (Spruce; 2) 6.86 (0.67) 8.78 13.06 

MT_SP (Pine; 4) 6.89 (1.93) 8.80 12.78 

MT_NS (Spruce; 7) 8.61 (0.84) 9.26 13.87 

OMT_NS (Spruce; 5) 9.6 (2.2) 10.26 15.47 

 

Table 4: Both averaged measured SOC and projected SOC values with both Yasso07 and Yasso20 for 905 

forest plots in Hyytiälä, Finland classified by measurement site. All the units are in kgC m-2. 
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Figure 1: The global calibration results with the different calibration methods. 

  910 
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Figure 2: The estimated parameter distributions using DEzs with different calibration data 

sets. 

 

  915 
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Figure 3: Parameter correlations for the global calibration with the DEzs algorithm. 
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Figure 4: The projected steady state SOC compared to the averaged measured SOC values in plots 920 

from multiple measurement sites.  

  



34 
 

 

 

Figure 5: Measurement (Red dots) and model (Blue line) based projections of SOC accumulation on 925 

the Finnish coast after the end of ice age. 
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a) 

 930 

b) 

 

Figure 6: The remaining decomposing carbon for a hypothetical straw litter in Hyytiälä, Finland 

climate condition when simulated with Yasso07 (solid red) and Yasso20 (dashed blue) with a) 20 year 

and b) 100 year time window. 935 
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Figure 7: Residual analysis between simulated and observed carbon remnant on a) mean 

temperature (C), b) temperature variation (C) and c) total precipitation (mm y-1) at the 

validation site.  940 
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a)

 

b) 

 945 

Figure 8: Residual analysis between simulated and observed carbon remnants of wood 

decomposition from Mäkinen et al. (2006) on a) decomposition time and b) diameter. 
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