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Abstract. A biome is a major regional ecological community characterized by distinctive life forms and principal plants. 

Many empirical schemes such as the Holdridge Life Zone (HLZ) system have been proposed and implemented to predict the 

global distribution of terrestrial biomes. Knowledge of physiological climatic limits has been employed to predict biomes, 10 

resulting in more precise simulation, however, this requires different sets of physiological limits for different vegetation 

classification schemes. Here, we demonstrate an accurate and practical method to construct empirical models for biome 

mapping: A convolutional neural network (CNN) was trained by an observation-based biome map, as well as images 

depicting air temperature and precipitation. Unlike previous approaches, which require assumption(s) of environmental 

constrain for each biome, this method automatically extracts non-linear seasonal patterns of climatic variables that are 15 

relevant in biome classification. The trained model accurately simulated a global map of current terrestrial biome distribution. 

Then, the trained model was applied to climate scenarios toward the end of the 21st century, predicting a significant shift in 

global biome distribution with rapid warming trends. Our results demonstrate that the proposed CNN approach can provide 

an efficient and objective method to generate preliminary estimations of the impact of climate change on biome distribution. 

Moreover, we anticipate that our approach could provide a basis for more general implementations to build empirical models 20 

of other climate-driven categorical phenomena. 

1 Introduction 

Terrestrial biomes and climate are among the earliest known ecological concerns, and many empirical schemes have been 

proposed to characterize their relationship (Prentice and Leemans, 1990). One of the best known of these schemes is the 

Holdridge Life Zone (HLZ) system (Holdridge, 1947), which classifies vegetation distribution using only two independent 25 

variables: the annual mean precipitation and the bio-temperature (i.e., mean of above-freezing air temperature). Due to its 

simplicity, this scheme has been extensively implemented in numerous studies (Emanuel et al., 1985; Henderson-Sellers, 

1991; Lugo et al., 1999; Monserud and Leemans, 1992; Prentice, 1990). For example, Elsen et al. (2021) applied historical 

climatologies and climate projections to the HLZ system for determining potential changes in global life zone distributions 

under changing climates. 30 
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Despite its relative simplicity, the HLZ scheme accounts well for ecophysiological constraints. This scheme is based on bio-

temperatures, given that plant productivity becomes negligible at temperatures below 0°C. Furthermore, it employs 

logarithmic conversions to better depict the relationship between climatic parameters and life zone boundaries, in 

quantitative recognition of the temperature control of metabolic processes. However, since the HLZ scheme only considers 

annual climate means, it cannot account for climatic tolerance (e.g., minimum and maximum temperatures) nor the 35 

occurrence and extent of drought seasons, both of which substantially affect biome distribution (Prentice et al., 1992). 

Efforts have been made to develop biome-mapping schemes that incorporate these environmental constraints. These 

implementations are considered to have clear physiological bases (Prentice et al., 1992; Woodward and Williams, 1987), and 

their predictions simulate present-day distributions of vegetation more accurately than the HLZ scheme. However, an 

important drawback of this type of approach is that it requires absolute physiological limits for each vegetation type or plant 40 

functional type (PFT), for which there is still insufficient comprehensive information, as this cannot be estimated from the 

geographical distribution of the vegetation (Lavorel et al., 2007). Making matters more difficult, researchers do not share the 

same classification criteria for terrestrial biomes, and the number of vegetation types or PFTs varies widely from five 

(Henderson-Sellers, 1991) to almost 100 (Box, 1981), depending on the research purpose and the geographical scale studied. 

By contrast, empirical approaches like the HLZ scheme do not require detailed physiological data, and thus have the 45 

advantage of being easily applicable to any given vegetation classification criteria. Recently, empirical models for biome 

mapping using various types of environmental data have been developed by employing multinomial logistic regression 

(Levavasseur et al., 2012; Levavasseur et al., 2013) and machine learning algorithms (Hengl et al., 2018). 

A convolutional neural network (CNN) has been successfully adapted for use in species distribution modelling at regional 

scales (Benkendorf and Hawkins, 2020; Botella et al., 2018); however, it has not been used to develop global biome models. 50 

A CNN is an algorithm for machine learning in which a model learns to conduct classification tasks directly from training 

data. Model training of a CNN is based on finding patterns in the spatial organization of the training data (typically images) 

that recognizes its classification well. Unlike other conventional algorithms for machine learning, CNN learns directly from 

training data without a requirement for manual feature extraction. For example, to account for seasonal variability, previous 

correlative climate-vegetation models needed to pre-define representative variables. Levavasseur et al. (2013) divided each 55 

climatic variable into four “seasonal” predictors by averaging data corresponding 3-month periods (i.e., DJF for winter, 

MAM for spring, JJA for summer, and SON for fall). By contrast, CNN can automatically extract non-linear seasonal 

patterns for climatic variables that are relevant in biome classification. 

Indeed, Botella et al. (2018) empirically demonstrated that a CNN model performed better at reconstructing species 

distributions than the popular species distribution modelling method, MAXENT (Phillips et al., 2006). This higher 60 

performance was attributed to CNN’s efficient use of spatial patterns in environmental variables, which often control species 

distribution. MAXENT ignores these spatial patterns. A second explanation for the improved performance is that CNN can 

treat high order interaction effects between input variables, whereas MAXENT, like the majority of other methods, only 

represents interactions between environmental variables by the products of variable pairs. 
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Using a CNN approach, we demonstrate an accurate and practical method to construct empirical models for operational 65 

global biome mapping. To the best of our knowledge, this is the first application of CNN to reconstruct a global biome map. 

We only employed a small number of climatic variables for input to examine how CNN improves the reconstruction 

accuracy compared to the classical HLZ scheme. We follow Ise and Oba (2019) and Ise and Oba (2020), a vital option for 

training CNN with a small number of input variables. This method represents climatic conditions using graphical images and 

employs them as training data for CNN models. After evaluating the accuracy of the biome map reconstructed by this 70 

method, we applied the trained CNN to climatic scenarios toward the end of the 21st century to demonstrate a possible 

model's application to predict the shift in the global biome map under changing climate. 

2 Methods 

2.1 Data 

For training the CNN model, we employed potential land cover types and the monthly climate information from the 75 

ISLSCP2 Potential Natural Vegetation Cover (Ramankutty and Foley, 2010) and CRU TS4.00 (Harris and Jones, 2017) 

datasets, respectively. Both datasets have a 0.5° global surface grid resolution. The ISLSCP2 dataset is an observation-based 

biome map, which classifies the global land surface into 15 vegetation types (Fig. 1a). The ISLSCP2 dataset represents the 

world's vegetation cover that would most likely exist now in equilibrium with present-day climate and natural disturbance in 

the absence of human activities. The CRU TS4.00 is based on an archive of climatic conditions observed in more than 4,000 80 

weather stations distributed worldwide. Climatic conditions between 1971 and 1980 were selected for CNN training since 

this time period is just before the beginning of a clear global warming trend (Rood, 2015), and the number of meteorological 

stations that contributed to the dataset remained relatively stable (Harris et al., 2014). 

In machine learning experiments, a fraction of the training data is typically divided randomly into two subsets, of which one 

is used for model training, and the other is then used to validate the trained model. This study used the CRU TS4.00 climate 85 

data as training data, which was generated by interpolating data from weather stations, meaning that values in each grid are 

not independent of those in nearby grids. Under these circumstances, validation using the typical procedures described above 

would risk overfitting (i.e., training the model too closely or exactly to a particular set of data, thereby creating a model that 

may fail to fit additional data or reliably predict future observations) (Leinweber, 2007). Therefore, other climate datasets 

were used for validating the trained model: NCEP/NCAR reanalysis (Kalnay et al., 1996), and the HadGEM2-ES (Collins et 90 

al., 2011) and MIROC-ESM datasets (Watanabe et al., 2011). Notably, the nature of these three datasets is different from 

that of the CRU TS4.00; the NCEP/NCAR consists of reanalysis data that incorporates observed and weather model output 

data, while the other two datasets were derived only from climate models. Details of these climate datasets are available in 

Table S1. To be consistent with the training data, the spatial resolutions of the validation data were linearly interpolated to a 

0.5° grid mesh, and climatic conditions from 1971 to 1980 were employed. 95 
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In this study, the accuracy when the model was applied to the training climate dataset (i.e., the CRU dataset) is referred to as 

the “training accuracy”, which shows how well the model was trained to extract common features of each category from 

images. The accuracy for the validation climate dataset (i.e., the NCEP/NCAR reanalysis, Had2GEM-ES, and MIROC-ESM 

datasets) is referred to as the “test accuracy”, which shows how the model is robust against independent input data. 

2.2 Visualization of climate data for machine learning 100 

We graphically represented the standardized air temperature and precipitation data on a grid using R statistical computing 

software version 3.3.3 (R-Core-Team, 2018). These images will be referred to hereafter as visualized climatic environments 

(VCEs). For efficient machine learning, climate data were standardized prior to visualization. The -20–30°C monthly mean 

air temperature range and 8–400 mm/month precipitation range were log-transformed to 0.01–1.00. Values below and above 

these ranges were respectively treated as 0.00 and 1.00. To evaluate how seasonality of climate regulates the biome, we also 105 

conducted CNN training with annual mean air temperature and annual precipitation. For this analysis, an annual mean bio-

temperature range of 0–30°C and an annual precipitation range of 80–4000 mm/year were used. Here, bio-temperature was 

defined as the mean of above-freezing monthly air temperatures. Using the annual mean bio-temperature and annual 

precipitation, we first evaluated how different representations of the VCEs influenced the training and found no major 

differences (Table S2), and hence the most compact VCE with the smallest computation time requirement, the RGB colour 110 

tile, was used for this entire study. 

In the VCE of the RGB colour tile, up to three climate variables can be represented by RGB channels. To find the optimal 

combination of climatic variables, we systematically evaluated the model performance of 14 combinations of climatic 

variable experiments for both annual and monthly means (Tables S3 and S4, respectively). Downward shortwave radiation 

and humidity were added for this evaluation, as all of the climate datasets contain these. Generally, training accuracy 115 

increases with the number of climatic variables; however, the test accuracy does not increase further after two climatic 

variables. This suggests that models with three climatic variables are at risk of overfitting. Amongst the models of annual 

and monthly means of climatic variables, the model with monthly mean air temperature and monthly precipitation had the 

highest test accuracy. Therefore, models that combined air temperature (bio-temperature for the model of annual mean 

climate) and precipitation were employed for the entire study. 120 

We also evaluated the influences of different transformations of climatic variables (Table S5) and assignment patterns of air 

temperature and precipitation to RGB colour channels of the VCE (Table S6) on the resulting accuracy. Based on these 

evaluations, we settled on models with a combination of air temperature (bio-temperature for the model of annual mean 

climate) and precipitation, both of which are log transformed, and assigned to the blue and red channels, respectively, of the 

colour tile VCE representation. Examples of VCEs of annual mean climate and monthly mean climate are shown in figures 125 

S1 and S2, respectively. 
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2.3 Training of the CNN model 

The LeNet (Lecun et al., 1998), which is the world’s first CNN, was employed for this study. The computer employed to 

execute the learning had Ubuntu 16.04 LTS installed as the operating system and was equipped with an Intel Core i7-8700 

CPU, 16 GB of RAM, and an NVIDIA GeForce GTX1080Ti graphics card, which accelerates the learning procedure. On the 130 

computer, the NVIDIA DIGITS 6.0.0 software (Caffe version: 0.15.14) served as the basis for CNN execution, and LeNet 

was employed to train the CNN via the TensorFlow library. To see how DIGITS actually implements the CNN, its internal 

code can be viewed using the DIGITS menu (on the "New image model" screen, click the "Custom Network tab" and select 

"TensorFlow"). A description of the CNN model and its parameter settings are available in Supplementary Information 1. To 

train the CNN model, ten VCEs corresponding to years 1971–1980 were generated for each grid using the CRU data, 135 

resulting in 572,640 VCEs (i.e., 10 × 57,264 grids). These VCEs were assigned to 15 categories according to the 

observation-based biome of the grid, and the CNN model was trained to determine biomes from the VCEs. The numbers of 

training VCEs for each biome ranged from 4,490 (comprising temperate broadleaf evergreen forest/woodland areas) to 

91,740 (comprising evergreen/deciduous mixed forest area). The training was conducted for each of the annual and monthly 

sets of VCEs, and their computation times for training completion were 109 and 132 minutes, respectively. The annual and 140 

monthly climate training procedures are identical except for its VCEs. 

2.4 Validation of the trained model 

To validate the trained CNN model, a VCE of the average climate conditions from 1971 to 1980 was obtained for each grid 

and each validation climate dataset. These VCEs were applied to the trained CNN model and were classified by their most 

plausible biome. It took roughly 8 minutes to complete the VCE classification (i.e., 57,264 in total) for each climate dataset. 145 

Then, the computed biome distributions were validated by quantitative comparison with the observation-based biome map of 

ISLSCP2. 

For comparing the differences and similarities between two biome maps, cross-tabulation matrices were obtained for each 

comparison. Tables S7 and S8 show cross-tabulation matrices of training accuracies as examples. Using these matrices, the 

differences between the two biome maps were separated into two components: quantity disagreement and allocation 150 

disagreement (Pontius and Millones, 2011). Here, a quantity disagreement indicates a discrepancy between the proportions 

of the categories (i.e., the biome), while an allocation disagreement indicates a discrepancy in the spatial allocation of the 

categories under a given set of category proportions in the reference and comparison maps. 

The use of one particular climatic dataset for training and three different climatic datasets for validation introduces a source 

of arbitrary error. To examine the dependency of climatic datasets for training and reconstructing performances, an 155 

experiment was performed wherein training and reconstruction of the same biome map was conducted using all 

combinations of the four historical climatic datasets, and then the reconstructive accuracies were compared. 
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Ten years of climate data may be insufficient to accurately train the model. We therefore conducted a sensitivity test in 

which performance was compared among models trained on monthly climate data averaged over 10-year (1971–1980; 

control), 20-year (1961–1980), and 30-year (1951–1980) periods. Validation datasets for each model were averaged over the 160 

same periods as the training data. 

We used different climate datasets for training and validating the models to avoid overfitting that may be caused by 

dependencies in values among nearby grids in the training data (CRU TS4.0). To assess the effects of overfitting, we 

compared performance among four models that differed with respect to the grain size of training data. Nearby grid cells 

(0.5°) of the CRU dataset were aggregated by one of four grain sizes: 1 × 1 (0.5°), 2 × 2 (1.0°), 4 × 4 (2.0°), and 8 × 8 (4.0°). 165 

For each grain size group, 70% of grains were randomly selected for model training, and the remaining were assigned to 

validation. Validation with coarser grains should be less impacted by overfitting. In addition to the extent of overfitting, 

grain size may also influence training efficiency, because a coarser grain may skew the allocation ratio of minor biomes 

between training and validation sub-groups, especially when these biomes have clumped distributions. To assess this 

possibility, validation was also conducted using other climate datasets. 170 

Finally, we conducted an additional experiment for comparing the accuracy of PNV map reconstruction between the HLZ 

scheme and our method using common training data set. We developed a look-up table of the most common PNV for each 

combination of annual precipitation class and annual mean bio-temperature class, consistent with the HLZ scheme. Note that 

the HLZ scheme employs a hexagon table, but we employed a cross-tabulation table for simplicity. CRU annual climate and 

ISLSCP2 PNV map were used for generating the table. Then the table was applied to all climatic datasets we employed in 175 

this study, drawing reconstructed PNV maps for comparison. 

2.5 Application of the CNN model to future climate scenarios 

Following validation, the CNN model trained with monthly mean climate data was used to predict future biome distribution 

maps by applying climate scenarios for the 21st century. These predictions were conducted in combinations of two GCMs 

(i.e., MIROC-ESM and HadGEM2-ES) and two representative concentration pathways (RCPs; i.e., RCP2.6 and RCP8.5). 180 

These RCPs represent the atmospheric greenhouse gas (GHG) concentration forecasts adopted by the IPCC for its 5th 

Assessment Report (AR5) in 2014. RCP2.6 assumes that global annual GHG emissions will peak between 2010 and 2020 

and decline substantially afterwards. By contrast, RCP8.5 assumes that emissions will continue to rise throughout the 21st 

century. The scenarios RCP2.6 and RCP8.5, respectively project that atmospheric CO2 could reach 421 ppm and 936 ppm 

by the end of the 21st century (IPCC, 2013). 185 
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3 Results and Discussion 

3.1 Reconstruction of the current biome distribution with the CNN model 

A comparison of the training accuracies between the annual climate model and the monthly climate model demonstrated that 

simulation of some biomes largely depended on climate seasonality (Fig. 1). Besides the most plausible biome, the CNN 

outputs its certainty, which is the probability (in %) of the classification judged by the CNN. Geographical distribution of the 190 

certainty clearly showed considering seasonality improves the certainty except Northern parts of South America and African 

continents where no apparent seasonality exists (Fig. S3). These results are consistent with Prentice et al. (1992), 

demonstrating that global biome distribution is under substantial controls of climatic tolerance and the occurrence and extent 

of drought seasons. In fact, seasonality significantly improved the average training accuracies from 3.5% to 61.9% for 

tropical deciduous forests, 0.4% to 54.8% for temperate broadleaf evergreen forests, and 24.5% to 79.0% for boreal 195 

deciduous forests (Tables S7 and S8). The same pattern can be observed in test accuracy comparisons (Fig. 2, Fig. S3), 

although temperate broadleaf evergreen and boreal deciduous forests were largely absent from Had2GEM-ES and MIROC-

ESM, respectively. These absences would be due to differences in the reconstructed current climate among datasets (Fig. S4). 

Overall, for all climatic datasets examined, better training and test accuracies were consistently obtained in CNN models 

trained with monthly mean climate data than in those trained with annual mean climate data (Fig 3). Thus, the CNN model 200 

trained with monthly mean climate data was used for analysis with the climate scenarios in the 21st century. 

For all combinations of CNN models and climatic data, the allocation disagreement was much larger than the quantity 

disagreement: while the allocation disagreement ranged from 0.227 to 0.392, the quantity disagreement varied from 0.037 to 

0.200 (Fig. 3). The larger allocation disagreement can be explained by the tendency of observation-based biome distributions 

to be fragmented over areas with similar climatic conditions (Fig. 1a), while model reconstructed biome distributions had 205 

more continuous structures (Figs. 1b, 1c, and 2) (For example, Australian continent). The probability of the most plausible 

biome tended to be lower for these fragmented regions (Fig. S3), suggesting these regions have climatic conditions suitable 

for multiple potential biomes. The lower quantity disagreement demonstrated that the CNN model reconstructed the fraction 

of the global biome composition under the current climatic conditions well. As the main purpose of this research is to 

develop an empirical model of climatic controls on biome distribution, this would indicate that the reconstructions of biome 210 

maps with the CNN models are actually much more accurate for their particular purpose than implied by the accuracies 

found from the simple map comparison. 

Table 1 compares the dependence of reconstruction accuracy on combinations of climate datasets for training and test 

climate datasets. Accuracies were higher and less variable when the climate dataset for training and testing were identical 

(0.701–0.734), compared to when these datasets were different (0.394–0.559). These results suggest that uncertainty in 215 

historical climate reconstruction and over-fitting are more significant sources of failure in reconstructing biome distribution 

than the dependency of training on a particular climate dataset. 
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No major trends were observed in test accuracies in the sensitivity test, which compared performance among models trained 

using monthly climate averaged over 10-, 20-, and 30-year periods, (Table S9). This indicates that climate data averaged 

over a 10-year period are sufficient for model training. However, long-term climatic conditions are important in controlling 220 

biome distribution via extreme climates, which may cause complete reorganization of systems and communities and may 

provide important opportunities for, and constraints to, plant recruitment. For example, in response to anomalous drought 

during 2002-2003, regional-scale dieoff of overstory woody plants was observed across southwestern North American 

woodlands (Breshears, et al., 2005). Considering the effects of extreme climates in the model would be an interesting topic 

for future study. 225 

Grain size of the training and validation data did not result in noticeable differences in training and test accuracies, with the 

exception of the CRU dataset (Table S10), demonstrating that the influence of grain size on training efficiency is negligible. 

In contrast, test accuracies of the CRU dataset were lower at coarser grain sizes, at 80.4%, 78.2%, 76.1%, and 72.2% for the 

1 × 1, 2 × 2, 4 × 4, and 8 × 8 grain sizes, respectively. These results suggest that dependencies in values among nearby grids 

in the CRU dataset resulted in overfitting. However, the effect of overfitting appears to have been much smaller than that of 230 

systematic differences among climate datasets (Fig. S4); irrespective of grain size, test efficiencies of the CRU dataset were 

least 19.5% higher than those of other datasets. Therefore, our validation method, which suffers from the systematic 

differences among climate datasets, should underestimates the actual performance of the models, and performance would be 

much better than we demonstrated in this manuscript. 

The accuracy of PNV reconstruction using the HLZ look-up table for each climate data set is 50.0% for CRU, 43.2% for 235 

NCEP/NCAR, 44.71% for HadGEM2-ES, and 37.2% for MIROC-ESM (Fig. S5). These values are lower than any of our 

models trained with annual precipitation and annual mean bio-temperature (all models of Table S2 and model 5 in Table S3). 

This comparison shows that our method delivers a more accurate reconstruction of the PNV map even if seasonality was not 

taken into consideration. Consistent with the biome map from the CNN model trained by annual climate (Fig. 1b), the look-

up table of the most common PNV (Table S11) lacks tropical deciduous forest and temperate broadleaf evergreen forest. 240 

Besides, the look-up table also lacks temperate needle-leaf forest and boreal deciduous forest. Probably, the coarse resolution 

of the look-up table cannot provide a climate range where these vegetations become the most common vegetation type. 

3.2 Prediction of biome distribution with the CNN model 

The applications of the CNN model to the climate scenarios predicted a significant shift in global biome distributions (Fig. 4) 

and area coverages (Fig. S5) under rapid warming trends (Figs. S7 and S8). For both GCM outputs, more intense biome 245 

shifts were predicted for RCP8.5 than for RCP2.6, but the shift trends remained consistent. The most visible change was the 

expansion of temperate forests over boreal forests in both North America and Eurasia. Boreal and cold vegetation shrank and 

its composition changed; tundra areas gave way to boreal forests, while boreal evergreen forests became confined to a 

narrow strip at higher latitudes. Tropical vegetation remained relatively unchanged, but nearly all tropical deciduous forests 
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in the southern hemisphere were substituted by savanna, which coincided with a reduction in annual precipitation (Figs. S7 250 

and S8). 

Given the uncertainty of the climatic predictions derived from the ESMs and RCP scenarios, our analysis of the climate 

change effect only indicates the potential for considerable changes in biome distribution at the end of the 21st century. 

Besides, changes in expected biome, which is an equilibrium state of vegetation coverage, are not always accompanied by 

immediate changes in actual vegetation. In fact, these time lags can be very long (i.e., decades to millennia) because the 255 

adjustment of vegetation to new climate conditions entails a series of plant population dynamics processes, such as seed 

dispersal, establishment, competition against other existing plants, and reproduction (Sato and Ise, 2012). Even present-day 

plant species distributions are considered not in equilibrium with present-day climates (e.g., Woodward, 1990). Our study 

cannot infer such transient changes in vegetation, however, current process base approaches are also not a reliable option for 

reconstructing plant population dynamic processes at the global scale; biome map predictions under common changing 260 

climate scenarios differ significantly from state-of-the-art dynamic global vegetation models (DGVMs) (Pugh et al., 2020). 

Hence, empirical and top down approaches, like our simulation, should still have an important role to play in approximate 

mapping of biomes under changing climatic conditions. 

3.3 Limitations and future directions of our approach 

There are two types of approach to mapping biomes: the correlative climate-vegetation approach and process-based approach 265 

(Notaro et al., 2012; Yates et al., 2009). We employed the former, which has advantages and disadvantages compared to the 

latter. An advantage of the correlative approach is that it is relatively straightforward and may be rapidly applied to different 

climate change scenarios. Indeed, models using the correlative approach are a common tool for predicting the impacts of 

climate change on biodiversity for conservation planning, because they can be easily used to simultaneously assess large 

numbers of species (e.g., Thomas et al., 2004).  270 

An important disadvantage of the correlative method is that extrapolating current correlations between climate and biome 

distributions into the future may lead to seriously biased predictions; strong performance in the present climate does not 

guarantee similar performance under a new set of climatic conditions that may occur in the future. However, neither 

Had2GEM-ES (Fig. S3f and Fig. S9a, b) nor MIROC-ESM (Fig. S3h, and Fig. S9c, d) showed apparent expansions of biome 

uncertainty in projected climatic conditions at the end of the 21st century. This may suggest outside the environmental space 275 

of the training data is not conspicuous at the global scale. For quantifying methodological uncertainty might also result from 

comparison of performances between correlative and process-based models in 'unsuitable' outside the environmental space 

of the training data (Yates et al., 2009). 

A second disadvantage of the correlative approach is that it cannot infer impacts of elevated atmospheric CO2 on biome 

distribution. An increase in CO2 may favour forests over grasslands due to the advantage that C3 plants may gain over C4 280 

plants under such conditions (Bond et al., 2003). Notably, palaeoecological studies have demonstrated that C4 ecosystems 

were more extensive during the last glacial maximum and decreased in abundance following deglaciation in response to 
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increased atmospheric CO2 concentrations (Ehleringer et al., 1997). Besides, projections of atmospheric CO2 have 

significant divergence among socioeconomic scenarios from 421 ppm (RCP2.6) to 936 ppm (RCP8.5) at the end of the 21st 

century. 285 

DGVMs, which use process-based approaches, may facilitate the identification of areas where elevated CO2 may affect 

biome distribution under projected climates. Indeed, the third phase of the Inter-sectoral Impact Model Inter-comparison 

Project, now in progress (Warszawski et al., 2014), includes a sensitivity test for CO2 in which biome distribution is 

compared between scenarios of both climate and CO2 change, and scenarios of climate change only. We should note, 

however, that even for current state-of-the-art process-based models, incorporating effects of elevated CO2 is not 290 

straightforward due to their complexity; effects appear to be taxon specific, to interact strongly with soil type and climate, 

and to be highly dependent on nitrogen availability (Korner, 2003; Spinnler et al., 2002). 

We must also keep in mind that the correlative climate-vegetation approach ignores feedbacks between vegetation and 

climate, which are known to influence vegetation distribution at equilibrium (Pitman, 2003). Both Had2GEM-ES and 

MIROC-ESM explicitly consider climate-vegetation interactions, including dynamic adjustment of biome distribution, and 295 

hence its projected climates are the outcomes of such interactions. However, due to the difference in projected distributions 

of biomes among models, some regions should have mismatched reconstructions of the interactions. Implementing the CNN 

model with earth system models to dynamically adjust biome distribution to simulated climate distribution would address 

this issue. 

The CNN model was trained with an observation-based biome map, which is composed of natural vegetation only. However, 300 

the impact of human activity on ecosystems is now so prevalent, and hence predicting ecosystem changes without explicit 

consideration of socio-economic systems would be challenging (Ellis, 2015). Therefore, future research might address how 

current patterns of human activity interact with projected biome changes to reveal regions where these interactive agents 

align and amplify one another. 

This study only considers biome distribution at the 0.5-degree scale. At this scale, climate can be regarded as the dominant 305 

factor that determines vegetation composition, and hence correlative climate-vegetation approach fits well in identifying 

vegetation distribution. However, at more local scales, topography, soil type, and fine-scale biotic and abiotic interactions 

(e.g., habitat structure, fire, storms) become increasingly important (Willis and Whittaker, 2002). One possible extension of 

our study is integrating these factors, acting at different spatial scales, into a hierarchical modelling framework (Pearson and 

Dawson, 2003). Another possible extension is simply adding one more variable that tightly controls PNV at sub-grid scales 310 

(such as altitude, slopeness, or slope aspect) into the VCE because one of the three RGB channels is empty in our model. 

Our study adopted the LeNet architecture implementation, which has six hidden layers, to create CNN models. Botella et al. 

(2018) found that a deep network (six hidden layers) outperformed a shallow network (one hidden layer) for building species 

distribution models; however, Benkendorf and Hawkins (2020) found that using more than two hidden layers was of no 

benefit, and argued that the usefulness of deeper networks depends on the size of the training dataset. Therefore, carefully 315 

selecting the approximate complexity of architecture implementation may improve model accuracy. We compared 
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performances of models trained by four different types of VCE representation of annual precipitation and average annual 

bio-temperature, and all models have an almost equal performance (Table S2). This result might indicate that LeNet 

perfectly extracts at least two variables irrespective of how visualized. Lastly, the default parameters in NVIDIA DIGITS 6.0 

remained largely unchanged. Our approach was kept relatively simple to demonstrate the robustness of our concept; however, 320 

further improvements to the scheme could be explored by selecting other implementation architectures and systematically 

testing the effect of parameter modulation. 

4 Conclusion 

Regardless of the limitations discussed above, this study provides an efficient and practical method for generating 

preliminary estimations of the potentially dramatic impact of climate change on biome distributions. Since this method is 325 

simply an application of image classification AI, it demands much less technical skill and computer resources. 

Reconstruction of global biome distribution substantially improved when climate seasonality was taken into consideration, 

demonstrating that the method successfully extracted seasonal patterns of climatic variables that are relevant in biome 

classification. This method could also be applied to building empirical models of other climate-driven phenomena such as 

cropping systems and the spread of vector-borne diseases, and hence has potential to be a de facto standard for building 330 

empirical models across a range of research and application fields. 
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Table 1 460 

CNN model accuracies for biome distribution simulations. These accuracies were obtained using the model trained by the 

climatic dataset on the row, with the climate dataset on the column as an input reconstruction. Therefore, the shaded cells 

show the accuracy when the climate datasets for training and reconstruction were identical. For each climate dataset, the 

monthly mean-temperature and monthly precipitation during 1971 to 1980 were standardized and log transformed, then used 

for drawing the RGB-colour tile VCEs. 465 

 CRU NCEP/NCAR Miroc-ESM HadGEM2-ES 
CRU 0.736 0.559 0.478 0.512 

NCEP/NCAR 0.553 0.704 0.431 0.485 
Miroc-ESM 0.540 0.394 0.701 0.417 

HadGEM2-ES 0.430 0.505 0.450 0.712 
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Figure 1: Comparison of global biome distributions used to evaluate the training accuracies of the convolutional neural network 470 
(CNN) model. (a) An observation-based biome map of the ISLSCP2. (b) Biome map derived from the CNN model that was trained 
with images of annual mean climate. (c) Biome map derived from a CNN model trained with images of monthly mean climate. 
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Figure 2: Test accuracies representing how the trained CNN models simulate a biome map with climatic conditions spanning from 475 
1971 to 1980. (a, c, e) Biome map generated by the CNN model that was trained with annual mean climate images from the CRU 
dataset. (b, d, f) Biome map generated by the CNN model that was trained by monthly mean climate images from the CRU dataset. 
Three climatic datasets, which were not involved during the training process, were employed to generate these maps. (a, b) 
NCEP/NCAR reanalysis data; (c, d) output of the Had2GEM-ES dataset; and (e, f) output of the MIROC-ESM dataset. Colour 
definitions are available in Figure 1. 480 
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Figure 3: Fractions of agreement and disagreement between observation-based biome map and simulated biome maps trained by 
monthly mean climate or annual mean climate from CRU climate data spanning from 1971 to 1980. These CNN models were 
adapted to one of the four climatic datasets (CRU, NCEP, Had2GEM-ES, and MIROC-ESM) spanning the same period of the 485 
training data. The fraction of agreement of the CRU corresponds to the training accuracy, while that of other climate data 
corresponds to the test accuracy. 
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Figure 4: Predicted biome maps under climatic scenarios from 2091 to 2100. Monthly means of four sets of forecasted climatic 490 
conditions derived from combinations of two climate models (i.e., Had2GEM-ES and MIROC-ESM) and two RCP scenarios (i.e., 
RCP2.6 and RCP8.5). These means were applied to the CNN model that was trained by the current biome distribution map, as 
well as the present climatic condition derived from the CRU dataset. Color definitions are available in Figure 1. 


