Tree Hydrodynamic Modelling of Soil Plant Atmosphere
Continuum (SPAC-3Hpy)

Supplementary Material

This document provides details on the derivation of the system of partial differential equa-
tions describing the water flow through the soil and root, and stem xylem, and a description
of the numerical scheme used to solve these equations. The explanation of the numerical
scheme is also meant to provide a user manual for the code developed in Python.

After the numerical scheme, details on the calculation of the transpiration rates, conduc-
tance and capacitances in the soil, root and stem xylem are presented. These refer to the
formulations used in the examples presented in the article and can be easily modified in the

code in different subroutines.

S.1 Governing equations

The water flow within the soil, and root and stem xylem is described as flow in porous media.
Equations for the mass conservation are combined with the Darcy’s equation extended to
unsaturated porous media to derive an equation for the water potential in the soil, roots,

and stem.

S.1.1  Soil

According to the schematic shown in Fig. 1 in the main text, for mass conservation, consid-
ering a volume of soil with an infinitesimal depth over an area Ay, dV, = A,dz, changes of

the mass of water, M, (kg), over time within this volume are due to the difference between



the water fluxes entering, Fj, (kg s™!), and exiting, F,,; (kg s™!), the volume, and the water

exchanged with the roots. This can be expressed as
oM
ot

where dM, = pb,dV;, p is the density of water (kg m™2), 6, is the soil volumetric water

:En_Fout_de‘/sa (S]-)

content, and S (s7!) is the rate at which water is extracted from the soil per unit of mass of

water contained in dV;. The term F,,; can be written as
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which, substituting Eq. (S.2) into Eq. (S.1), yields
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The flux F' can be written as
F=po, A, (5.4)
where v, is the Darcy’s velocity (m s™!), expressed as
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K, being the hydraulic conductance of the soil (m? s™'Pa~!), g the gravitational constant,
and @, the soil water potential (Pa).
Eq. (S.3) thus can be simplified into
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S.1.2 Roots

Following the same procedure as the soil, the conservation of water mass in the roots, with

dM, = p0,.A,dz, results in

o T 02 02
Dividing Eq. (S.7) by pAsdz leads to
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where A, /A, (m?,, mg_found) is the root cross area index, representing the total root cross-

paerr)dz 0 |:KTAT (@ + pg)‘| dz + pSAgdz. (87)

Cr

sectional area at a given elevation per unit of ground area.
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S.1.3 Stem

The conservation of water mass in the stems, with dM, = pf,A,dz, results in
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where S, (m? s71) is the flow of water leaving the stems per unit of vertical length.
Dividing Eq. (S.9) by pAsdz, such that water fluxes across soil, roots, and stem are expressed

in terms of ground area, one obtains
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where A, /A (miylemmg_fomd) is the stem xylem cross area index, representing the total

sapwood area per ground area.

S.2 Numerical scheme

The water flow across the soil-plant-atmosphere continuum is lumped along the vertical
direction. The domain of the model can be idealized as the combination of the vertical
extent of the soil and the tree (root and stem) xylem, with exchange of water between the
soil and the roots (Fig. S.1).
Each of Egs. (S.6), (S.8), and (S.10) can be written as
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where C' is a capacitance, ® is the water potential, F' is the flux, and S* is a source or sink
term accounting for either the exchange of water between soil and roots or the water loss
due to transpiration for the stem xylem.

Eq. (S.11) is discretized using constant intervals, Az, with values of ® calculated at the
nodes and fluxes, F, calculated between nodes. Eq. (S.11) is approximated using a fully
implicit backward Euler method, and its discretized form for a generic node i reads
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Figure S.1: Representation of the model domain

where n and n + 1 indicate values of the variables at two consecutive times, with At =

t"t1 — ¢ The fluxes can be then expressed as
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where K is the hydraulic conductance (including the ratio of the areas appearing in Eqs. S.8
and S.10).
In the following, a full detailed description of the numerical approximation of the system of

equations and the implementation of initial and boundary conditions are presented.



S.2.1 Discretization

Egs. (S.6), (S.8), and (S.10) are approximated as in Eq. (S.11), and are then combined and
solved at the same time with the standard fully implicit Picard method following the scheme
in Celia et al. (1990).

With m denoting the number of the Picard iteration, and the subscript ¢ denoting a generic

node, Eq. (S.12) reads
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with the hydraulic conductance calculated in the middle of two neighbouring nodes as
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The terms in Eq. (S.15) can be rearranged as
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Reorganizing Eq.(S.19), one obtains
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For the soil, S"*! is a sink of water (i.e., the sign =" applies to Eq. (S.20))

ST = K, (2, 8) - F(OF ) (@I i) (5.21)
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where the subscripts s and r refer to soil and roots, and j is a node of the roots corresponding
to the same elevation z as ¢ for the soil (Figure S.1).

Introducing the increments §®"+1™ for the water potentials, the expression for $*"*! in the
soil (with the sign " in Eq. S.19) and root xylem (with the sign '+’ in Eq. S.19) is

S ) = Kagaa fO] QO — 0@ — @ L @), (S.22)
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Reorganizing the equation in the same form of Eq. (S.20), and substituting the expression

for the sink term (Eq. S.22), the numerical approximation for the soil nodes becomes:
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Likewise, the numerical approximation for the nodes of the root xylem becomes
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A similar approximation can be written for the stem xylem, where the sink term is simpler
than for the soil and root xylem, because it does not include interactions between nodes at
different elevations.

Considering, for example, that both soil and roots have the same depth (i.e, roots are present
from the bottom to the top of the soil column), the system of partial differential equations
can be approximated by a system of algebraic equations for each iteration within each time

step. In matrix format, this system of equations can be written as
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where the subscripts r and k denote the bottom of the roots and top of the canopy, respec-

tively, and the node 1 represents the bottom of the soil (Figure S.1).

The matrix coefficients for a generic node within the soil read
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The coefficients for a generic node associated with the roots are
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The coefficients for a generic node of the stem read

(S.36)
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with details on the expression of S, provided in Section S.3.

The system of algebraic equations is solved to find the values of §®?**; this is then added to
O™ to calculate ® ™! which is then used to calculate the new values of the coefficients
for the calculation of a new value of §®;. These iterations proceed until the difference of
two successive calculated water potentials in each node approaches a predefined tolerance,

0, such that

|<I)n+1,m+1 _ q)n+1,m| S S (842)

S.2.2 Initial and boundary conditions

The initial condition needs to be a known function ®, = ®(z,0) across the soil, roots
and stem. A common choice is to assume that soil and both root and stem xylem are in
hydrostatic conditions (i.e., &y = —pgz), without water fluxes occurring across the system.
Boundary conditions are required at the bottom of the roots, at the top of the stem, and at
the bottom and top of the soil. No-flux boundary conditions are the default conditions for
the bottom of the roots and top of the stem. No flux boundary conditions can be imposed at
the bottom of the soil and a specific flux can be imposed at the top of the soil as infiltration.
Conditions at the bottom of the soil can be also provided as a given value of water potential

or as free drainage.
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No flux boundary conditions can be specified by imposing the flux at the corresponding
nodes to be zero. For example, in the case of the bottom of the soil, for i« = 1, a no flux
condition is obtained by imposing Flnjll/z =0 in Eq. (S.12).

Accordingly, the terms in the matrix summarizing the system of equation for node 1 are
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The conditions at the bottom of the roots and top of the stem can be obtained in a similar
way.

In the case of a specified water potential boundary condition (Dirichlet), the potential at
the bottom of the soil is a series of known values, such that ¢(1,t) = ®,,. This leads to the
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Reorganizing in the form of the matrix yields
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In the case of soil profile with deep groundwater levels, the water flux at the bottom of the

soil is only due to gravity; therefore, the pressure gradient is equal to zero:

F1nj11/2 = _K?jll/z 0+ pg), (S.50)
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Reorganizing in matrix format, one obtains
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For the top of the soil column, considering inputs from infiltration, the flux at the node ¢ = s

. nt+l . .
is known as F5+1/2 = Qiny, resulting in
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where ¢ is the precipitation rate.

Cs (S.52)

Reorganizing in matrix format leads to
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S.3 Transpiration

Transpiration is calculated in a subroutine and can thus be defined according to the formu-
lation assigned by the user. Here, we present how transpiration was calculated in Sections
3.2 and 3.3, following the formulation implemented in (Verma et al., 2014).

The water that the trees lose to the atmosphere via transpiration (S, /As) is calculated as
— =T-1(z), (S.54)

where T is the transpiration rate per unit of ground area (m s~!). Transpiration is distributed
throughout the canopy height using the leaf area density (LAD) (I(z), m* m~2 m™'), which
is the leaf area index (LAI) distributed along the canopy height z.

Transpiration is calculated through the Penman Monteith formulation (Allen et al., 1998;
Verma et al., 2014):

- | @B+ CDy o (S.55)
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where @,, (W m™2) is the net radiation, A (kg m~'s™2K™!) is the slope of the saturation
vapor pressure curve for a given temperature, C), (kg m~'s™2K™!) is the specific heat of air, D
is the vapour pressure deficit (VPD) (Pa), A (kg m~! s72) is the latent heat of vaporisation,
go (m s71) is the aerodynamic conductance, v (kg m s72K™!) is the psychrometric constant,
and g, (m s7!) is the canopy conductance. In this study, @, is assumed to be 60% of incoming
solar radiation; this is different from Verma et al. (2014), where this term was calculated as
70% of solar radiation .A is calculated as

4098

I T S0

where e,y (Pa) is the saturation vapour pressure for a given temperature (7,), given as

17.27(T, — 273.15)
sat — 611 S.57
Coat eXp{ T, — 35.85 } (5:57)
The canopy conductance, g., is calculated as
9sGb
.= | ——| LAI, S.58
g [gs + gb} ( )

where LAI is the leaf area index, g, (m s™!) is the leaf boundary layer conductance per
m? of leaf area and g, (m s™!) is the stomatal conductance, which depends on both plant

physiology and environmental factors. In the present model, g5 is modeled as (Jarvis, 1976),

9s = Gsmax * f(Sm) ' .f(Ta) ’ f(D) ’ f((bﬂﬁ)ﬂ (859)

where ggmar (m s7!) is the maximum stomatal conductance, and f(S;,), f(T.), f(D), and
f(®,) are empirical functions [-|, representing the behavior of g, according to variations in
solar radiation, temperature, VPD, and leaf water potential, respectively. These functions

vary between 0 and 1, and are calculated as

f(Ta) =1- kt<Ta - Topt)27 (861)
1
(D) = (11 Dky)’ (S5.62)

F(@,) = [1 + (%)nlr, (S.63)
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where k,, k;, ks and n; are empirical constants, T, is the air temperature at which f(7,)
is 1, and @50 is the leaf water potential at 50% loss of conductivity. f(®,) represents the
inverse polynomial expression commonly used to express the effect of water potential on
xylem conductance (Manzoni et al., 2013).

Night time transpiration is modeled as

En = Emax : f(Ta) ' f(D) ' f(q)m>7 (SG4>

where 4, (m s71) is the maximum night time transpiration, which was estimated in Verma

et al. (2014).

S.4 Soil water retention relationships

The relationships between K, ®, and 6, are modeled according to van Genuchten (1980) as

K, — k;;at @1/2 [1 o (1 . @1/n)m]2 ’ (865)
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1

p— 1 _— .
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where K (m? s7! Pa™!) is the effective soil hydraulic conductivity, ks s (m s™1) is the soil
hydraulic conductivity under saturated soil conditions, 6y, and 6,.s indicate the saturated

and residual values of the soil volumetric water content, and C; (Pa™') is the soil capacitance.
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S.5 Hydraulic conductances

S.5.1 Root radial conductance

The exchange of water between soil and roots depends of the amount of roots contained in
different soil layers. The fraction of roots at different soil depths is modeled following Vrugt
et al. (2001), with the function

T(Z) - (1 - ;> €xXp <_—qz Z) Zri < z < Zr,-; (871)
er — Zr, er — Zr, ’

where z is the vertical coordinate (positive upwards), z,, is the elevation of the top of the
roots, and z,, is the elevation of the bottom of the roots, with z., — z,, the root depth.

Using Eq.(S.71), the root water uptake is written as

S(Z’ t) = ks,rad f(e) : Aind(z) : % : ((I)s - (I)r), (872)

where f(0) [-] is a water stress reduction function, ®, and ®,., are water potentials (Pa) for
the soil and roots, respectively, ks 44 (m3s*1mr_0%tPa*1) is the soil-to-root radial conductance

per unit of root surface area, and A;,; is the lateral root surface area index. The f(6)

function is written as,

0 0< 0, (.73)

_ ) (0—06)
f(0) = (62— 01) 01 <0 <0, (S.74)
1 6> 0, (S.75)

where #; and 6, are the soil water content below which root water uptake is ceased and
the soil water content below which root water uptake start decreasing, respectively (Feddes

et al., 1976).

S.5.2 Axial conductances

The effective axial conductance of the roots, K, (m?s7'Pa~!), can be defined as

k. A,
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with,

N (1 ! ) , (S.77)

1+ exp(ay(®, —by))
where kg, (m s71) is the specific axial conductivity for the root system, and a, (Pa™!) and
b, (Pa) are parameters for the root xylem cavitation curve, which describes the vulnerability
of xylem to cavitation.
The effective hydraulic conductance of the axial stem xylem, K, (m? s7! Pa™!), is defined

similarly as Eq. (S.76), as

K;t - T i
pg As

(S.78)

with

kx(q)z<z7t)) = kmag - (1 - 1+ exp(apl(CI)x — bp))> ) (879>

where kg, (m s7!) is the maximum conductivity of saturated stem xylem, and a, (Pa™!)

and b, (Pa) are the shape parameters of the cavitation curve.
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