
Tree Hydrodynamic Modelling of Soil Plant Atmosphere

Continuum (SPAC-3Hpy)

Supplementary Material

This document provides details on the derivation of the system of partial differential equa-

tions describing the water flow through the soil and root, and stem xylem, and a description

of the numerical scheme used to solve these equations. The explanation of the numerical

scheme is also meant to provide a user manual for the code developed in Python.

After the numerical scheme, details on the calculation of the transpiration rates, conduc-

tance and capacitances in the soil, root and stem xylem are presented. These refer to the

formulations used in the examples presented in the article and can be easily modified in the

code in different subroutines.

S.1 Governing equations

The water flow within the soil, and root and stem xylem is described as flow in porous media.

Equations for the mass conservation are combined with the Darcy’s equation extended to

unsaturated porous media to derive an equation for the water potential in the soil, roots,

and stem.

S.1.1 Soil

According to the schematic shown in Fig. 1 in the main text, for mass conservation, consid-

ering a volume of soil with an infinitesimal depth over an area As, dVs = Asdz, changes of

the mass of water, Ms (kg), over time within this volume are due to the difference between
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the water fluxes entering, Fin (kg s−1), and exiting, Fout (kg s−1), the volume, and the water

exchanged with the roots. This can be expressed as

∂Ms

∂t
= Fin − Fout − ρSdVs, (S.1)

where dMs = ρθsdVs, ρ is the density of water (kg m−3), θs is the soil volumetric water

content, and S (s−1) is the rate at which water is extracted from the soil per unit of mass of

water contained in dVs. The term Fout can be written as

Fout = Fin +
∂F

∂z
dz, (S.2)

which, substituting Eq. (S.2) into Eq. (S.1), yields

ρ
∂θs
∂t

Asdz = −∂F
∂z

dz − ρS Asdz. (S.3)

The flux F can be written as

F = ρ vs As, (S.4)

where vs is the Darcy’s velocity (m s−1), expressed as

vs = −Ks

(
∂Φs

∂z
+ ρg

)
, (S.5)

Ks being the hydraulic conductance of the soil (m2 s−1Pa−1), g the gravitational constant,

and Φs the soil water potential (Pa).

Eq. (S.3) thus can be simplified into

Cs
∂Φs

∂t
=
dθs
dΦs

∂Φs

∂t
=

∂

∂z

[
Ks

(
∂Φs

∂z
+ ρg

)]
− S. (S.6)

S.1.2 Roots

Following the same procedure as the soil, the conservation of water mass in the roots, with

dMr = ρθrArdz, results in

ρ
∂(θrAr)

∂t
dz =

∂

∂z

[
KrAr

(
∂Φr

∂z
+ ρg

)]
dz + ρSAsdz. (S.7)

Dividing Eq. (S.7) by ρAsdz leads to

Cr
∂Φr

∂t
=

d

dΦr

(
θrAr

As

)
∂Φr

∂t
=

∂

∂z

[
Kr

Ar

As

(
∂Φr

∂z
+ ρg

)]
+ S, (S.8)

where Ar/As (m2
root m−2

ground) is the root cross area index, representing the total root cross-

sectional area at a given elevation per unit of ground area.
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S.1.3 Stem

The conservation of water mass in the stems, with dMx = ρθxAxdz, results in

ρ
∂(θxAx)

∂t
dz =

∂

∂z

[
KxAx

(
∂Φx

∂z
+ ρg

)]
dz − ρSxdz, (S.9)

where Sx (m2 s−1) is the flow of water leaving the stems per unit of vertical length.

Dividing Eq. (S.9) by ρAsdz, such that water fluxes across soil, roots, and stem are expressed

in terms of ground area, one obtains

Cx
∂Φx

∂t
=

d

dΦx

(
θxAx

As

)
∂Φx

∂t
=

∂

∂z

[
Kx

Ax

As

(
∂Φx

∂z
+ ρg

)]
− Sx

As

, (S.10)

where Ax/As (m2
xylemm−2

ground) is the stem xylem cross area index, representing the total

sapwood area per ground area.

S.2 Numerical scheme

The water flow across the soil-plant-atmosphere continuum is lumped along the vertical

direction. The domain of the model can be idealized as the combination of the vertical

extent of the soil and the tree (root and stem) xylem, with exchange of water between the

soil and the roots (Fig. S.1).

Each of Eqs. (S.6), (S.8), and (S.10) can be written as

C
∂Φ

∂t
= −∂F

∂z
± S∗, (S.11)

where C is a capacitance, Φ is the water potential, F is the flux, and S∗ is a source or sink

term accounting for either the exchange of water between soil and roots or the water loss

due to transpiration for the stem xylem.

Eq. (S.11) is discretized using constant intervals, ∆z, with values of Φ calculated at the

nodes and fluxes, F , calculated between nodes. Eq. (S.11) is approximated using a fully

implicit backward Euler method, and its discretized form for a generic node i reads

Cn+1
i

Φn+1
i − Φn

i

∆t
= −

F n+1
i+1/2 − F

n+1
i−1/2

∆z
± S∗,n+1

i , (S.12)
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Figure S.1: Representation of the model domain

where n and n + 1 indicate values of the variables at two consecutive times, with ∆t =

tn+1 − tn. The fluxes can be then expressed as

F n+1
i+1/2 = −Kn+1

i+1/2

Φn+1
i+1 − Φn+1

i

∆z
−Kn+1

i+1/2ρg (S.13)

F n+1
i−1/2 = −Kn+1

i−1/2

Φn+1
i − Φn+1

i−1

∆z
−Kn+1

i−1/2ρg, (S.14)

where K is the hydraulic conductance (including the ratio of the areas appearing in Eqs. S.8

and S.10).

In the following, a full detailed description of the numerical approximation of the system of

equations and the implementation of initial and boundary conditions are presented.
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S.2.1 Discretization

Eqs. (S.6), (S.8), and (S.10) are approximated as in Eq. (S.11), and are then combined and

solved at the same time with the standard fully implicit Picard method following the scheme

in Celia et al. (1990).

With m denoting the number of the Picard iteration, and the subscript i denoting a generic

node, Eq. (S.12) reads

Cn+1,m
i

(Φn+1,m+1
i − Φn

i )

∆t
= +Kn+1,m

i+1/2

(Φn+1,m+1
i+1 − Φn+1,m+1

i )

(∆z)2
−Kn+1,m

i−1/2

(Φn+1,m+1
i − Φn+1,m+1

i−1 )

(∆z)2

+
Kn+1,m

i+1/2

∆z
ρg −

Kn+1,m
i−1/2

∆z
ρg ± S∗,n+1

i , (S.15)

with the hydraulic conductance calculated in the middle of two neighbouring nodes as

Kn+1,m
i−1/2 =

1

2
(Kn+1,m

i−1 +Kn+1,m
i ) (S.16)

Kn+1,m
i+1/2 =

1

2
(Kn+1,m

i +Kn+1,m
i+1 ). (S.17)

The terms in Eq. (S.15) can be rearranged as

Cn+1,m
i

∆t

(
Φn+1,m+1

i − Φn+1,m
i

)
+
Cn+1,m

i

∆t

(
Φn+1,m

i − Φn
i

)
= +

Kn+1,m
i+1/2

∆z2
(
Φn+1,m+1

i+1 − Φn+1,m
i+1

)
+
Kn+1,m

i+1/2

∆z2
(
Φn+1,m

i+1

)
−
Kn+1,m

i+1/2

∆z2
(
Φn+1,m+1

i − Φn+1,m
i

)
−
Kn+1,m

i+1/2

∆z2
(
Φn+1,m

i

)
+
Kn+1,m

i+1/2

∆z
ρg

−
Kn+1,m

i−1/2

∆z2
(
Φn+1,m+1

i − Φn+1,m
i

)
−
Kn+1,m

i−1/2

∆z2
(
Φn+1,m

i

)
+
Kn+1,m

i−1/2

∆z2
(
Φn+1,m+1

i−1 − Φn+1,m
i−1

)
+
Kn+1,m

i−1/2

∆z2
(
Φn+1,m

i−1

)
−
Kn+1,m

i−1/2

∆z
ρg ± S∗,n+1

i , (S.18)

which, defining the increment δΦn+1,m = Φn+1,m+1 − Φn+1,m, yields
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Cn+1,m
i

∆t

(
δΦn+1,m

i

)
+
Cn+1,m

i

∆t

(
Φn+1,m

i − Φn
i

)
= +

Kn+1,m
i+1/2

∆z2
(
δΦn+1,m

i+1

)
+
Kn+1,m

i+1/2

∆z2
(
Φn+1,m

i+1

)
−
Kn+1,m

i+1/2

∆z2
(
δΦn+1,m

i

)
−
Kn+1,m

i+1/2

∆z2
(
Φn+1,m

i

)
+
Kn+1,m

i+1/2

∆z
ρg −

Kn+1,m
i−1/2

∆z2
(
δΦn+1,m

i

)
−
Kn+1,m

i−1/2

∆z2
(
Φn+1,m

i

)
+
Kn+1,m

i−1/2

∆z2
(
δΦn+1,m

i−1

)
+
Kn+1,m

i−1/2

∆z2
(
Φn+1,m

i−1

)
−
Kn+1,m

i−1/2

∆z
ρg ± S∗,n+1

i . (S.19)

Reorganizing Eq.(S.19), one obtains

(
−Kn+1,m

i−1/2

∆z2

)
δΦn+1,m

i−1 +

(
Cn+1,m

i

∆t
+
Kn+1,m

i+1/2

∆z2
+
Kn+1,m

i−1/2

∆z2

)
δΦn+1,m

i +

(
−Kn+1,m

i+1/2

∆z2

)
δΦn+1,m

i+1 =

1

∆z2

[
Kn+1,m

i+1/2

(
Φn+1,m

i+1 − Φn+1,m
i

)
−Kn+1,m

i−1/2

(
Φn+1,m

i − Φn+1,m
i−1

)]
+
Kn+1,m

i+1/2

∆z
ρg −

Kn+1,m
i−1/2

∆z
ρg

− Cn+1,m
i

∆t

(
Φn+1,m

i − Φn
i

)
± S∗,n+1

i . (S.20)

For the soil, S∗,n+1
i is a sink of water (i.e., the sign ’-’ applies to Eq. (S.20))

S∗,n+1
i = ke,radi(z, t) · f(θn+1,m+1

i )(Φn+1,m+1
si

− Φn+1,m+1
rj

), (S.21)

where the subscripts s and r refer to soil and roots, and j is a node of the roots corresponding

to the same elevation z as i for the soil (Figure S.1).

Introducing the increments δΦn+1,m for the water potentials, the expression for S∗,n+1 in the

soil (with the sign ’-’ in Eq. S.19) and root xylem (with the sign ’+’ in Eq. S.19) is

S∗,n+1
i (z, t) = ke,radif(θn+1,m+1

i )(δΦn+1,m
si

− δΦn+1,m
rj

− Φn+1,m
si

+ Φn+1,m
rj

). (S.22)

Reorganizing the equation in the same form of Eq. (S.20), and substituting the expression

for the sink term (Eq. S.22), the numerical approximation for the soil nodes becomes:
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−
Kn+1,m

si−1/2

∆z2
δΦn+1,m

si−1 +

[
Cn+1,m

si

∆t
+
Kn+1,m

si+1/2

∆z2
+
Kn+1,m

si−1/2

∆z2
+ ke,radif(θn+1,m+1

i )

]
δΦn+1,m

si

−
Kn+1,m

si+1/2

∆z2
δΦn+1,m

si+1 − ke,radif(θn+1,m+1
i )δΦrj =

1

∆z2

[
Kn+1,m

si+1/2

(
Φn+1,m

si+1 − Φn+1,m
si

)
− Kn+1,m

si−1/2

(
Φn+1,m

si
− Φn+1,m

si−1

)]
+
Kn+1,m

si+1/2

∆z
ρg −

Kn+1,m
si−1/2

∆z
ρg

−
Cn+1,m

si

∆t

(
Φn+1,m

si
− Φn

si

)
− ke,radif(θn+1,m+1

i )
(

Φn+1,m
si

− Φn+1,m
rj

)
. (S.23)

Likewise, the numerical approximation for the nodes of the root xylem becomes

−
Kn+1,m

ri−1/2

∆z2
δΦn+1,m

ri−1 +

[
Cn+1,m

ri

∆t
+
Kn+1,m

ri+1/2

∆z2
+
Kn+1,m

ri−1/2

∆z2
+ ke,radif(θn+1,m+1

i )

]
δΦn+1,m

ri

−
Kn+1,m

ri+1/2

∆z2
δΦn+1,m

ri+1 − ke,radif(θn+1,m+1
i )δΦsj =

1

∆z2

[
Kn+1,m

ri+1/2

(
Φn+1,m

ri+1 − Φn+1,m
ri

)
−Kn+1,m

ri−1/2

(
Φn+1,m

ri
− Φn+1,m

ri−1

)]
+
Kn+1,m

ri+1/2

∆z
ρg −

Kn+1,m
ri−1/2

∆z
ρg

−
Cn+1,m

ri

∆t

(
Φn+1,m

ri
− Φn

ri

)
+ ke,radif(θn+1,m+1

i )
(

Φn+1,m
si

− Φn+1,m
rj

)
. (S.24)

A similar approximation can be written for the stem xylem, where the sink term is simpler

than for the soil and root xylem, because it does not include interactions between nodes at

different elevations.

Considering, for example, that both soil and roots have the same depth (i.e, roots are present

from the bottom to the top of the soil column), the system of partial differential equations

can be approximated by a system of algebraic equations for each iteration within each time

step. In matrix format, this system of equations can be written as
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

b1 c1 0 0 ... Krad,1 0 0 ...

a2 b2 c2 0 ... 0 Krad,2 0 ...

0 a3 b3 c3 ... 0 0 Krad,3 ...

...

Krad,1 0 ... 0 br cr 0 ...

0 Krad,2 0 ... 0 ar+1 br+1 cr+1 0 ...

0 0 Krad,3 0 ... 0 0 ar+2 br+2 cr+2 0 ...

...

... ... ak−2 bk−2 ck−2 0

... ... 0 ak−1 bk−1 ck−1

... ... 0 0 ak bk



·



δn+1,m
1

δn+1,m
2

δn+1,m
3

δn+1,m
r

δn+1,m
r+1

δn+1,m
r+2

δn+1,m
k−2

δn+1,m
k−1

δn+1,m
k



=



dn+1
1

dn+1
2

dn+1
3

dn+1
r

dn+1
r+1

dn+1
r+2

dn+1
k−2

dn+1
k−1

dn+1
k



,
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where the subscripts r and k denote the bottom of the roots and top of the canopy, respec-

tively, and the node 1 represents the bottom of the soil (Figure S.1).

The matrix coefficients for a generic node within the soil read

ai = −
Kn+1,m

i−1/2

∆z2
(S.25)

bi =

(
Cn+1,m

i

∆t
+
Kn+1,m

i+1/2

∆z2
+
Kn+1,m

i−1/2

∆z2
+ ke,radif(θn+1,m+1

i )

)
(S.26)

ci = −
Kn+1,m

i+1/2

∆z2
(S.27)

Krad,i = −ke,radif(θn+1,m+1
i ) (S.28)

di =
1

∆z2

[
Kn+1,m

i+1/2 (Φn+1,m
i+1 − Φn+1,m

i )−Kn+1,m
i−1/2 (Φn+1,m

i − Φn+1,m
i−1 )

]
(S.29)

+ρg
(Kn+1,m

i+1/2 −K
n+1,m
i−1/2 )

∆z
− Cn+1,m

i

∆t
(Φn+1,m

i − Φn
i )− ke,radif(θn+1,m+1

i )
(

Φn+1,m
si

− Φn+1,m
rj

)
.

(S.30)

The coefficients for a generic node associated with the roots are

ai = −
Kn+1,m

i−1/2

∆z2
(S.31)

bi =

(
Cn+1,m

i

∆t
+
Kn+1,m

i+1/2

∆z2
+
Kn+1,m

i−1/2

∆z2
+ ke,radif(θn+1,m+1

i )

)
(S.32)

ci = −
Kn+1,m

i+1/2

∆z2
(S.33)

Krad,i = −ke,radif(θn+1,m+1
i ) (S.34)

di =
1

∆z2

[
Kn+1,m

i+1/2 (Φn+1,m
i+1 − Φn+1,m

i )−Kn+1,m
i−1/2 (Φn+1,m

i − Φn+1,m
i−1 )

]
(S.35)

+ρg
(Kn+1,m

i+1/2 −K
n+1,m
i−1/2 )

∆z
− Cn+1,m

i

∆t
(Φn+1,m

i − Φn
i ) + ke,radif(θn+1,m+1

i )
(

Φn+1,m
si

− Φn+1,m
rj

)
.

(S.36)

The coefficients for a generic node of the stem read
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ai = −
Kn+1,m

i−1/2

∆z2
(S.37)

bi =

(
Cn+1,m

i

∆t
+
Kn+1,m

i+1/2

∆z2
+
Kn+1,m

i−1/2

∆z2

)
(S.38)

ci = −
Kn+1,m

i+1/2

∆z2
(S.39)

di =
1

∆z2

[
Kn+1,m

i+1/2 (Φn+1,m
i+1 − Φn+1,m

i )−Kn+1,m
i−1/2 (Φn+1,m

i − Φn+1,m
i−1 )

]
(S.40)

+ρg
(Kn+1,m

i+1/2 −K
n+1,m
i−1/2 )

∆z
− Cn+1,m

i

∆t
(Φn+1,m

i − Φn
i )− Sn+1

x,i /As,i, (S.41)

with details on the expression of Sx provided in Section S.3.

The system of algebraic equations is solved to find the values of δΦn+1
i ; this is then added to

Φn,m
i to calculate Φn+1,m+1

i , which is then used to calculate the new values of the coefficients

for the calculation of a new value of δΦi. These iterations proceed until the difference of

two successive calculated water potentials in each node approaches a predefined tolerance,

δ, such that

∣∣Φn+1,m+1 − Φn+1,m
∣∣ ≤ δ. (S.42)

S.2.2 Initial and boundary conditions

The initial condition needs to be a known function Φ0 = Φ(z, 0) across the soil, roots

and stem. A common choice is to assume that soil and both root and stem xylem are in

hydrostatic conditions (i.e., Φ0 = −ρgz), without water fluxes occurring across the system.

Boundary conditions are required at the bottom of the roots, at the top of the stem, and at

the bottom and top of the soil. No-flux boundary conditions are the default conditions for

the bottom of the roots and top of the stem. No flux boundary conditions can be imposed at

the bottom of the soil and a specific flux can be imposed at the top of the soil as infiltration.

Conditions at the bottom of the soil can be also provided as a given value of water potential

or as free drainage.
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No flux boundary conditions can be specified by imposing the flux at the corresponding

nodes to be zero. For example, in the case of the bottom of the soil, for i = 1, a no flux

condition is obtained by imposing F n+1
1−1/2 = 0 in Eq. (S.12).

Accordingly, the terms in the matrix summarizing the system of equation for node 1 are

b1 =
Cn+1,m

1

∆t
+
Kn+1,m

1+1/2

∆z2
+ ke,rad1f(θn+1,m+1

i ),

c1 = −
Kn+1,m

1+1/2

∆z2
,

Krad,1 = −ke,rad1f(θn+1,m+1
i )

d1 =
1

∆z2

[
Kn+1,m

1+1/2 (Φn+1,m
2 − Φn+1,m

1 )
]

+ ρg
Kn+1,m

1+1/2

∆z

−C
n+1,m
1

∆t
(Φn+1,m

1 − Φn
1 )− ke,rad1f(θn+1,m+1

i )
(

Φn+1,m
1 − Φn+1,m

rj

)
.

The conditions at the bottom of the roots and top of the stem can be obtained in a similar

way.

In the case of a specified water potential boundary condition (Dirichlet), the potential at

the bottom of the soil is a series of known values, such that φ(1, t) = Φbi . This leads to the

following expression for Φn+1,m+1
2 :

(
−Kn+1,m

2−1/2

∆z2

)
δΦbi +

(
Cn+1,m

2

∆t
+
Kn+1,m

2+1/2

∆z2
+
Kn+1,m

2−1/2

∆z2
+ ke,rad2f(θn+1,m+1

2 )

)
δΦn+1,m

2 +(
−Kn+1,m

2+1/2

∆z2

)
δΦn+1,m

3 − ke,rad2f(θn+1,m+1
2 )δΦsi =

1

∆z2

[
Kn+1,m

2+1/2

(
Φn+1,m

3 − Φn+1,m
2

)
−Kn+1,m

2−1/2

(
Φn+1,m

2 − Φn+1,m
bi

)]
+
Kn+1,m

2+1/2

∆z
ρg

−
Kn+1,m

2−1/2

∆z
ρg − Cn+1,m

2

∆t

(
Φn+1,m

2 − Φn
2

)
− ke,rad2f(θn+1,m+1

2 )(Φn+1,m
si

− Φn+1,m
rj

) (S.43)

Reorganizing in the form of the matrix yields
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a2 =
−(Kn+1,m

2−1/2 )

∆z2
(S.44)

b2 =

(
Cn+1,m

2

∆t
+
Kn+1,m

2+1/2

∆z2
+
Kn+1,m

2−1/2

∆z2
+ ke,rad2f(θn+1,m+1

2 )

)
(S.45)

c2 =
−(Kn+1,m

2+1/2 )

∆z2
(S.46)

Krad,2 = −ke,rad2f(θn+1,m+1
2 ) (S.47)

d2 =
1

∆z2

[
Kn+1,m

2+1/2 (Φn+1,m
3 − Φn+1,m

2 )−Kn+1,m
2−1/2 (Φn+1,m

2 − Φn+1,m
bi

)
]

(S.48)

+ρg
(Kn+1,m

2+1/2 −K
n+1,m
2−1/2 )

∆z
− Cn+1,m

2

∆t
(Φn+1,m

2 − Φn
2 )− ke,rad2f(θn+1,m+1

2 )
(

Φn+1,m
si

− Φn+1,m
rj

)
(S.49)

In the case of soil profile with deep groundwater levels, the water flux at the bottom of the

soil is only due to gravity; therefore, the pressure gradient is equal to zero:

F n+1
1−1/2 = −Kn+1

1−1/2 (0 + ρg) , (S.50)

Cn+1
1

Φn+1
1 − Φn

1

∆t
= −

F n+1
1+1/2 − (−Kn+1

1−1/2ρg)

∆z
− S(Φn

1 ). (S.51)

Reorganizing in matrix format, one obtains

b1 =
Cn+1,m

1

∆t
+
Kn+1,m

1+1/2

∆z2
+ ke,rad1f(θn+1,m+1

1 ),

c1 = −
Kn+1,m

1+1/2

∆z2
,

Krad,1 = −ke,rad1f(θn+1,m+1
1 )

d1 =
1

∆z2

[
Kn+1,m

1+1/2 (Φn+1,m
2 − Φn+1,m

1 )
]

+ ρg
Kn+1,m

1+1/2

∆z
− Cn+1,m

1

∆t
(Φn+1,m

1 − Φn
1 )

−
Kn+1,m

1−1/2 ρg

∆z
− ke,rad1f(θn+1,m+1

1 )
(

Φn+1,m
1 − Φn+1,m

rj

)
.

For the top of the soil column, considering inputs from infiltration, the flux at the node i = s

is known as F n+1
s+1/2 = qinf , resulting in

12



Cs
Φn+1

s − Φn
s

∆t
= −

qinf − F n+1
s−1/2

∆z
− S, (S.52)

qn+1,m+1
inf = max

(
−q,−

(
θsat − θn+1,m+1

s

)
·
(

∆z

∆t

))
, (S.53)

where q is the precipitation rate.

Reorganizing in matrix format leads to

as = −
Kn+1,m

s−1/2

∆z2
,

bs =
Cn+1,m

s

∆t
+
Kn+1,m

s−1/2

∆z2
+ ke,radsf(θn+1,m+1

s ),

Krads = −ke,radsf(θn+1,m+1
s ),

ds =
1

∆z2

[
−Kn+1,m

s−1/2 (Φn+1,m
s − Φn+1,m

s−1 )
]
− ρg

Kn+1,m
s−1/2

∆z
− Cn+1,m

s

∆t
(Φn+1,m

s − Φn
s )

−ke,radsf(θn+1,m+1
s )

(
Φn+1,m

s − Φn+1,m
rj

)
+
qinf
∆z

.

S.3 Transpiration

Transpiration is calculated in a subroutine and can thus be defined according to the formu-

lation assigned by the user. Here, we present how transpiration was calculated in Sections

3.2 and 3.3, following the formulation implemented in (Verma et al., 2014).

The water that the trees lose to the atmosphere via transpiration (Sx/As) is calculated as

Sx

As

= T · l(z), (S.54)

where T is the transpiration rate per unit of ground area (m s−1). Transpiration is distributed

throughout the canopy height using the leaf area density (LAD) (l(z), m2 m−2 m−1), which

is the leaf area index (LAI) distributed along the canopy height z.

Transpiration is calculated through the Penman Monteith formulation (Allen et al., 1998;

Verma et al., 2014):

T =

[
Qn∆ + CpDga

λ[∆gc + γ(gc + ga)]

]
gc, (S.55)
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where Qn (W m−2) is the net radiation, ∆ (kg m−1s−2K−1) is the slope of the saturation

vapor pressure curve for a given temperature, Cp (kg m−1s−2K−1) is the specific heat of air, D

is the vapour pressure deficit (VPD) (Pa), λ (kg m−1 s−2) is the latent heat of vaporisation,

ga (m s−1) is the aerodynamic conductance, γ (kg m s−2K−1) is the psychrometric constant,

and gc (m s−1) is the canopy conductance. In this study, Qn is assumed to be 60% of incoming

solar radiation; this is different from Verma et al. (2014), where this term was calculated as

70% of solar radiation .∆ is calculated as

∆ =

[
4098

(Ta − 35.85)2

]
esat, (S.56)

where esat (Pa) is the saturation vapour pressure for a given temperature (Ta), given as

esat = 611 exp

[
17.27(Ta − 273.15)

Ta − 35.85

]
. (S.57)

The canopy conductance, gc, is calculated as

gc =

[
gsgb
gs + gb

]
LAI, (S.58)

where LAI is the leaf area index, gb (m s−1) is the leaf boundary layer conductance per

m2 of leaf area and gs (m s−1) is the stomatal conductance, which depends on both plant

physiology and environmental factors. In the present model, gs is modeled as (Jarvis, 1976),

gs = gsmax · f(Sin) · f(Ta) · f(D) · f(Φx), (S.59)

where gsmax (m s−1) is the maximum stomatal conductance, and f(Sin), f(Ta), f(D), and

f(Φx) are empirical functions [-], representing the behavior of gs according to variations in

solar radiation, temperature, VPD, and leaf water potential, respectively. These functions

vary between 0 and 1, and are calculated as

f(Sin) = 1− exp(−krSin), (S.60)

f(Ta) = 1− kt(Ta − Topt)2, (S.61)

f(D) =
1

(1 +Dkd)
, (S.62)

f(Φx) =

[
1 +

(
Φxleaf

Φx50

)nl
]−1

, (S.63)
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where kr, kt, kd and nl are empirical constants, Topt is the air temperature at which f(Ta)

is 1, and Φx50 is the leaf water potential at 50% loss of conductivity. f(Φx) represents the

inverse polynomial expression commonly used to express the effect of water potential on

xylem conductance (Manzoni et al., 2013).

Night time transpiration is modeled as

En = Emax · f(Ta) · f(D) · f(Φx), (S.64)

where Emax (m s−1) is the maximum night time transpiration, which was estimated in Verma

et al. (2014).

S.4 Soil water retention relationships

The relationships between Ks, Φs and θs are modeled according to van Genuchten (1980) as

Ks =
ks,sat
ρg

Θ1/2
[
1− (1−Θ1/n)m

]2
, (S.65)

Cs =
dθs
dΦs

=
dθs
ρgdhs

=
−αm(θsat − θres)

ρg(1−m)
Θ1/m(1−Θ1/m)m, (S.66)

where,

Θ(z, t) =
θ − θres
θsat − θres

, (S.67)

θ = θres +
(θsat − θres)

[1 + (α|h|)n]m
, (S.68)

m = 1− 1

n
, (S.69)

0 < m < 1, (S.70)

where Ks (m2 s−1 Pa−1) is the effective soil hydraulic conductivity, ks,sat (m s−1) is the soil

hydraulic conductivity under saturated soil conditions, θsat and θres indicate the saturated

and residual values of the soil volumetric water content, and Cs (Pa−1) is the soil capacitance.

15



S.5 Hydraulic conductances

S.5.1 Root radial conductance

The exchange of water between soil and roots depends of the amount of roots contained in

different soil layers. The fraction of roots at different soil depths is modeled following Vrugt

et al. (2001), with the function

r(z) =

(
1− z

zrj − zri

)
exp

(
−qz

zrj − zri
z

)
zri 6 z 6 zrj , (S.71)

where z is the vertical coordinate (positive upwards), zrj is the elevation of the top of the

roots, and zri is the elevation of the bottom of the roots, with zrj − zri the root depth.

Using Eq.(S.71), the root water uptake is written as

S(z, t) = ks,rad f(θ) · Aind(z) · r(z)∫ zrj
zri

r(z)dz
· (Φs − Φr), (S.72)

where f(θ) [-] is a water stress reduction function, Φs, and Φr, are water potentials (Pa) for

the soil and roots, respectively, ks,rad (m3s−1m−2
rootPa−1) is the soil-to-root radial conductance

per unit of root surface area, and Aind is the lateral root surface area index. The f(θ)

function is written as,

f(θ) =


0 θ ≤ θ1, (S.73)

(θ − θ1)
(θ2 − θ1)

θ1 < θ ≤ θ2, (S.74)

1 θ > θ2, (S.75)

where θ1 and θ2 are the soil water content below which root water uptake is ceased and

the soil water content below which root water uptake start decreasing, respectively (Feddes

et al., 1976).

S.5.2 Axial conductances

The effective axial conductance of the roots, Kr (m2s−1Pa−1), can be defined as

Kr =
kr
ρg

Ar

As

, (S.76)
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with,

kr(z, t) = ksax ·
(

1− 1

1 + exp(ap(Φr − bp))

)
, (S.77)

where ksax (m s−1) is the specific axial conductivity for the root system, and ap (Pa−1) and

bp (Pa) are parameters for the root xylem cavitation curve, which describes the vulnerability

of xylem to cavitation.

The effective hydraulic conductance of the axial stem xylem, Kx (m2 s−1 Pa−1), is defined

similarly as Eq. (S.76), as

Kx =
kx
ρg

Ax

As

, (S.78)

with

kx(Φx(z, t)) = kmax ·
(

1− 1

1 + exp(ap(Φx − bp))

)
, (S.79)

where kmax (m s−1) is the maximum conductivity of saturated stem xylem, and ap (Pa−1)

and bp (Pa) are the shape parameters of the cavitation curve.
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