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Abstract. Correct quantification of coastal cliff erosion requires accurate delineation of the cliff face bounded by the 

cliff top and base lines. Manual mapping is time consuming and relies on mapper’s decisions and skills. Existing 

algorithms are generally site specific and may be less suitable for areas with diverse cross-shore cliff geometry. Here 

we describe CliffDelineaTool (v1.2.0), a MATLAB/Python-based algorithm that identifies cliff base and top positions 

on complex cliffs using cross-shore transects extracted from digital elevation models. Testing on four 750-1200 m 10 

cliffed coastlines shows that the model performance is comparable to manual mapping and provides some advantages 

over existing methods but provides poor results for cliff sections with ambiguous cliff top edges. The results can form 

the basis for a range of analyses including coastal inventories, erosion measurements, spatio-temporal erosion trends, 

and coastline evolution modelling. 

1 Introduction 15 

Correct quantification of cliff erosion for scientific and management purposes requires accurate delineation of coastal 

cliff faces. Cliff base and top positions are often digitized manually on georeferenced maps, aerial photographs, ortho-

photographs, and digital elevation models (DEMs) (e.g. Dornbusch et al., 2008; Hapke et al., 2009; Brooks et al., 

2012; Orviku et al., 2013; Swirad et al., 2017; Young, 2018). However, manual mapping is subject to the mapper’s 

decisions and skills (Moore, 2000). The lack of uniform definitions for a cliff base and top leads to further 20 

inconsistencies. Payo et al. (2018) suggested that for consistency, the mapping should be performed at the same time 

for the entire dataset, and by one mapper. However, this becomes problematic for multi-temporal studies, and those 

that build on previous efforts. 

While manual digitization may be necessary when using cartographic sources, DEMs provide an opportunity to map 

the cliff base and top programmatically as these features are characterized by local changes in slope (Liu et al., 2009). 25 

Preference of manual over automated mapping, particularly for small (<km) areas of interest, may result from clear 

visual recognition of cliff base and top positions, and challenges with developing an algorithm that works for a range 

of cliff geometries outside the initial calibration dataset. However, automated cliff delineation increases objectivity 

and consistency, and decreases processing time, which is particularly useful for large-area high-resolution topographic 

datasets (Swirad and Young, 2021). 30 

Several studies used automated or semi-automated techniques to separate the cliff face from foreshore and/or 

hinterland. The studies vary in terms of local settings, spatial scale, available source datasets, and purpose. For 

instance, Alessio and Keller (2020) extracted the cliff base as a 3 m (NAVD88) elevation contour. Richter et al. (2013) 
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applied terrain filters (1st and 2nd derivative of elevation) sensitive to slope change to identify the cliff base line for a 

simple cliff morphology. Several authors identified cliff base positions as inflection points along cross-shore transects. 35 

Liu et al. (2009) identified cliff base and top points using transects combined with image segmentation, surface 

reconstruction, and edge detection on ortho-images. For relatively simple cliffs, Terefenko et al. (2019) identified the 

cliff base as the seaward-most location along the transects with at least 0.5 m vertical change over 1 m horizontal 

distance. Palaseanu-Lovejoy et al. (2016) and Payo et al. (2018) developed methods based on the ‘distance-to-

trendline’ where cliff base and top positions are extracted along cross-shore transects by comparing transect elevations 40 

with elevations along a straight line between transect ends (‘trendline’). Cliff base and top points were defined as 

locations along the transects with the largest vertical distance between the cliff profile and trendline, with the cliff 

base located below and cliff top above the trendline. Palaseanu-Lovejoy et al. (2016) manually adjusted transect 

lengths to ensure that the cliff was the most prominent topographic feature. Palaseanu-Lovejoy (2021) updated the 

model (iBluff, coded in R) to include automatic outlier removal using a moving window (Tukey, 1977). Payo et al. 45 

(2018) developed the C++ CliffMetrics algorithm (available also in SAGA GIS; Payo, 2020) where the distance-to-

trendline method is combined with automated transect generation for coasts with complex alongshore geometry. Payo 

et al. (2018) used a constant transect length to reduce pre-processing time. Errors associated with using the distance-

to-trendline method are addressed by calibrating the ‘vertical tolerance’, transect length parameters, and manual 

quality control (Payo et al., 2018). CliffMetrics performs well for simple cross-shore cliff morphology, but it is less 50 

suitable for more complex cliff profiles, where rotational landslides, within-cliff flattening, roads, etc. are present 

(Swirad and Young, 2021). 

Here, we build on previous models to develop a new MATLAB/Python-based algorithm, CliffDelineaTool (v1.2.0; 

Swirad, 2021) that identifies cliff base and top positions on cross-shore transects for a range of complex cliff 

geometries. The model parameters are calibrated using four cliff sections that encompass a range of geomorphic 55 

settings, and then tested on four different cliff sections with topography ranging from simple to complex. The results 

are compared to manually mapped cliff lines, the distance-to-trendline method, and CliffMetrics using default 

parameters. 

2 Methods 

2.1 CliffDelineaTool workflow 60 

The model (Figure 1) uses eight user-defined parameters (Table 1) and an input text file containing rows of point ID, 

transect ID, distance from the seaward end of the transect, and elevation (Swirad et al., 2016). A single input file 

includes multiple ordered transects representing an entire coastal section.  
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Table 1. CliffDelineaTool user-defined parameters, and values optimized for the calibration coastal sections (areas of 

interest (AOIs) #1-4) and used to validate the model (AOIs #5-8). 65 

  Calibration Validation 

Parameter Description AOI #1 AOI #2 AOI 

#3 

AOI #4 AOI #5 AOI #6 AOI #7 AOI #8 

MaxBaseElev Maximum elevation of the cliff 

base (m, NAVD88) 

5 9 5 5 5 5 7 5 

NVert Number of consecutive points to 

define local scale 

20 20 30 30 20 20 20 20 

BaseSea Maximum seaward slope angle 

at the cliff base (°) 

12 13 9 15 20 20 20 15 

BaseLand Minimum landward slope angle 

at the cliff base (°) 

34 4 6 29 30 20 30 20 

TopSea Minimum seaward slope angle 

at the cliff top (°) 

39 32 18 14 30 25 30 40 

TopLand Maximum landward slope angle 

at the cliff top (°) 

14 8 10 19 10 25 20 35 

PropConvex Threshold parameter for stage 2 

cliff top replacement 

n/a 0.4 0.1 0.6 0.2 0.8 0.5 0.5 

SmoothWindow Moving window size for cross-

shore location smoothing 

(number of transects) 

8 4 13 14 10 5 5 25 
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Figure 1. CliffDelineaTool workflow and the three cliff top processing stages. Calibrated parameters NVert, MaxBaseElev, 

BaseSea, BaseLand, TopSea, TopLand, PropConvex, SmoothWindow are defined in Table 1. 
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Processing is performed on a transect-by-transect basis. Transect elevation gaps are filled through extrapolation 

(transect peripheries) and linear interpolation (interior sections). For each point, local seaward and landward slope 70 

angles are calculated as an average slope between the point and a user-defined number of adjacent points called the 

NVert parameter. The NVert value is used at various stages of the model workflow to determine local spatial 

relationships between points (Swirad and Rees, 2015). To remove unnecessary inland points, the landward transect 

end is set to NVert points landward of the highest elevation. Next, a straight line (‘trendline #1’) is created by 

connecting transect ends (Figure 2a; after Payo et al., 2018). 75 

 

Figure 2. Example identification of cliff base and top positions (transect #123 of AOI #3; see Figure 3c for topography and 

oblique photograph): a) potential cliff base positions and the point with the largest distance from trendline #1; b) potential 

cliff top positions and the point with the largest distance from trendline #2 (stage 1); c) alternative potential cliff top 

positions in case of complex cross-shore profile and the point with the largest distance from trendline #2 (stage 2). 80 
Identification and removal of alongshore cliff top outliers (stage 3) – alongshore distribution of d) stage 2 modelled and 

smoothed cliff top; e) standardized residuals between smoothed and stage 2 modelled cliff top; f) stage 3 modelled cliff top 

with outliers removed. Note the vertical exaggeration in a-c and horizontal exaggeration in d-f. 

Potential cliff base locations are below trendline #1 and fulfill user-defined criteria of maximum elevation of the cliff 

base (MaxBaseElev), maximum local seaward slope (BaseSea) and minimum local landward slope (BaseLand). These 85 
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criteria eliminate physically invalid cliff base elevations and ensure finding inflection points (concavities) at the full 

transect (relationship to the trendline) and local (seaward and landward slopes) levels. From the set of potential cliff 

base locations, the point with the largest vertical distance from the trendline is selected to represent the cliff base 

following Palaseanu-Lovejoy et al. (2016) and Payo et al. (2018) (Figure 2a). If no points fulfill the criteria, the transect 

is skipped at this stage. 90 

Cliff top identification consists of three stages (Figure 1). In stage 1, trendline #2 is created by connecting the modelled 

cliff base with the landward end of the transect (Figure 2b). Potential cliff top locations are located above trendline #2 

and fulfill user-defined criteria of minimum local seaward slope (TopSea) and maximum local landward slope 

(TopLand) defining local convexities. From the set of potential cliff top locations, the point with the largest vertical 

distance from trendline #2 is selected to represent the cliff top following Palaseanu-Lovejoy et al. (2016) and Payo et 95 

al. (2018) (Figure 2b). If no points along the transect fulfill the criteria, the transect is skipped and has no explicitly 

modelled cliff top. 

In some locations with complex cliff face profiles, such as rotational landslides or mid-cliff roads, a local flattening 

within the cliff face may exist and cause an incorrect cliff top selection. To account for these situations, in stage 2 the 

model checks if any alternative potential cliff top exists landwards of the initial cliff top location identified in stage 1. 100 

Alternative potential cliff top positions located closer than NVert points from the initial top are rejected to ignore 

points that are likely part of the same convex section. Alternative positions must also be located above trendline #3 (a 

line from the initial cliff top to the landward transect end, Figure 2c), and greater than PropConvex (values between 0 

and 1) multiplied by the elevation difference between the initial cliff top and trendline #2. For example, if PropConvex 

= 0.5 and the initial cliff elevation is 4 m above trendline #2, potential cliff top locations must be >2 m (0.5 × 4 m) 105 

above trendline #2. If alternative positions exist, the initial top is re-located to the point with the largest vertical 

distance from trendline #2 (Figure 2c). Otherwise, the initial cliff top is retained. 

In stage 3, cliff top outliers are identified by comparing the cross-shore location to an alongshore smoothed cliff line, 

created from the median of an alongshore moving window (SmoothWindow) (Figure 2d). Residuals are calculated as 

a distance between the smoothed and modelled cross-shore locations. Transects with standardized residuals (residual 110 

divided by residual standard deviation) >2 are flagged as outliers (Figure 2e) and re-examined to identify new potential 

cliff top locations. If the standardized residual of the potential cliff top closest to the smoothed cross-shore location 

<2, it replaces the previously modelled top. Otherwise, the transect has no explicitly modelled cliff top (Figure 2f). 

2.2 Model development 

2.2.1 CliffDelineaTool calibration 115 

To optimize user-defined parameters (Table 1), four calibration coastal cliff sections in California (areas of interest 

(AOIs) #1-4) were selected spanning 650-1200 m alongshore that encompass a range of geomorphic settings (Table 

2; Figure 3a-d). Topographic information for each AOI was derived from 1 m DEMs created from a 2016 airborne 

LiDAR dataset (Swirad and Young, 2021).  
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Table 2. Characteristics of the areas of interest (AOIs) used to calibrate CliffDelineaTool. Average values are represented 120 
by mean ± standard deviation. 

 AOI #1 AOI #2 AOI #3 AOI #4 

Geographic location 34°28’15.54’’N 

120°13’8.30’’W 

33°18’49.31’’N 

117°29’7.61’’W 

33°20’47.17’’N 

117°31’20.70’’W 

35°57’24.90’’N 

121°28’57.90’’W 

Alongshore extent (m) 700 965 1180 655 

Number of transects 141 194 237 132 

Cross-shore extent (m) 87 159 264 249 

Average cross-shore 

cliff extent (m) 

23 ± 6 29 ± 15 153 ± 22 76 ± 32 

Average cliff base 

elevation (m, NAVD88) 

2.7 ± 0.4 6.7 ± 0.7 3.5 ± 0.7 4.3 ± 0.8 

Average cliff height (m) 26 ± 2 23 ± 1 42 ± 2 60 ± 10 

Average foreshore slope 

(°) 

5.4 ± 5.4 5.7 ± 5.7 5.6 ± 3.6 7.1 ± 8.7 

Average cliff slope (°) 47 ± 12 43 ± 18 28 ± 15 46 ± 13 

Average hinterland 
slope (°) 

10 ± 11 7.1 ± 10 16 ± 15 26 ± 17 

Morphology Cliff is the unique slope, 

beach and hinterland are 
planar, cliff top has a 

near-straight shape 

Back beach berm, 

gullies that intersect the 
cliff top, complex cliff 

top line 

Rotational landslides 

resulting in within-cliff 
flattening, vegetation, 

beach cusps, road within 

cliff face 

Rocky foreshore, road 

adjacent to the cliff, sloping 
hinterland, gullies  
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Figure 3. Areas of Interest (AOIs) used to calibrate (a-d) and validate (e-h) CliffDelineaTool. Vertical exaggeration is 

labelled in red for profiles. Photographs copyright © 2002-2021 Kenneth & Gabrielle Adelman, California Coastal Records 

Project, www.Californiacoastline.org. 125 

Parallel calibration transects generated with ArcGIS tools were spaced 5 m alongshore to capture meso-scale details 

of alongshore cliff geometry and sampled at 1 m cross-shore resolution. Points representing ‘true’ cliff base and top 

locations were visually selected for each transect. The CliffDelineaTool results were compared with the distance-to-

trendline method (Palaseanu-Lovejoy et al., 2016) and CliffMetrics (SAGA GIS version; Payo, 2020) using input 

parameters (seaward transect end points, transect length, and no transect smoothing) to match the same cross shore 130 

transects used for CliffDelineaTool and the default vertical tolerance of 0.5. Maximum cliff base elevation 

(MaxBaseElev) was subjectively set to 5 m (NAVD88) for AOIs #1, #3, and #4, and 9 m (NAVD88) for AOI #2 based 

http://www.californiacoastline.org/
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on DEM inspection (Figure 3, Table 2). The remaining seven parameters were calibrated to minimize root mean 

squared error (RMS) between true and modelled cliff base and top positions while not skipping too many transects. 

NVert and threshold slope angles (BaseSea, BaseLand, TopSea and TopLand) were calibrated using the characteristics 135 

of the true cliff base and top locations. Slope angles were calculated for a range of NVert values (Table 2). Local slope 

angle distributions were summarized in statistical terms (Figure 4), and outliers were defined as points greater than q3 

+ 1.5 × (q3 - q1) or less than q1 - 1.5 × (q3 - q1), where q1 and q3 are the 25th and 75th percentiles (red pluses in Figure 

4; Tukey, 1977). NVert = 20 was selected for AOIs #1-2 and NVert = 30 was selected for AOIs #3-4 to minimize the 

number of outliers while maintaining a relatively narrow and normal slope angle distribution. Threshold slope angles 140 

were picked as minimum or maximum values excluding outliers (q3 + 1.5 × (q3 - q1) or q1 - 1.5 × (q3 - q1); black 

whisker ends in Figure 4; Table 1).  
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Figure 4. Distributions of the local seaward and landward slopes of true cliff base and top locations for varying NVert 

values. Boxplots include median (red bar), 25th (q1) and 75th (q3) percentiles (blue box), range excluding outliers (black 145 
whiskers) and outliers (red pluses). Outliers are defined as values greater than q3 + 1.5 × (q3 - q1) or less than q1 - 1.5 × (q3 

- q1). Values in red located above the plots provide the number of outliers (if >0). Grey shadow indicates local slope 

distributions at selected NVert value. 

Next, CliffDelineaTool checks for false cliff tops caused by a local flattening within the cliff face using PropConvex 

(stage 2 of the model, Figure 1). PropConvex was calibrated by inspecting the cliff top RMS for values ranging from 150 

0.1 to 0.9 at 0.05 intervals (Figure 5a-d). For the simple cliff morphology of AOI #1, introducing PropConvex did not 

change the modelled cliff top locations, but it did decrease the RMS for more complex AOIs #2-4 (Figure 5a-d; Table 

1). Next, cliff top outliers were identified. Optimal SmoothWindow was selected by comparing moving window 

ranging from 1 to 20 alongshore transects for each AOI to minimize RMS and number of skipped transects (Figure 
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5e-h; Table 1). The modelled cliff base and top locations were converted to polylines using ArcGIS and intersected 155 

with transects to define cliff base and top locations on skipped transects. Overall, these steps improved automated cliff 

mapping performance for the more complex cliff sections and usually exhibited lower RMS compared to the distance-

to-trendline method and CliffMetrics (Table 3; Figure 6). 

 

Figure 5. Calibration of PropConvex (testing from 0.1 to 0.9 at 0.05 interval) (a-d) and SmoothWindow (testing from 1 to 20 160 
transects) (e-h). Vertical dashed lines represent the optimal values (Table 1). 

Table 3. Performance of CliffDelineaTool at various stages, the distance-to-trendline method and CliffMetrics (Payo, 2020). 

AOI Error metric CliffDelineaTool Distance-to-

trendline 

CliffMetrics 

(default 

paramters) 
Stage 1 Stage 2 Stage 3 Stage 3 including  

skipped transects 

#1 Skipped cliff base points (%) 0 0 0 0 0 0 

Cliff base RMS (m) 0.3 0.3 0.3 0.3 0.4 0.6 

Skipped cliff top points (%) 7.8 7.8 9.2 0 0 0 

Cliff top RMS (m) 5.0 5.0 3.6 6.1 5.0 4.9 

#2 Skipped cliff base points (%) 0 0 0 0 0 0 

Cliff base RMS (m) 5.9 5.9 5.9 5.9 14 12 

Skipped cliff top points (%) 0 0 2.6 0 0 0 

Cliff top RMS (m) 6.7 4.9 4.4 4.9 5.8 5.8 

#3 Skipped cliff base points (%) 2.1 2.1 2.1 0 0 0 

Cliff base RMS (m) 5.4 5.4 5.4 5.3 74 70 

Skipped cliff top points (%) 2.1 2.1 2.1 0 0 0 

Cliff top RMS (m) 83 28 9.7 10 74 73 

#4 Skipped cliff base points (%) 0.8 0.8 0.8 0 0 0 

Cliff base RMS (m) 1.7 1.7 1.7 2.0 31 11 

Skipped cliff top points (%) 0.8 0.8 0.8 0 0 0 

Cliff top RMS (m) 40 26 16 16 29 28 
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Figure 6. Location of the cliff base and top at various stages of the CliffDelineaTool calibration. 

2.2.2 CliffDelineaTool evaluation 165 

Ten geoscientists manually digitized the cliff base and top for four different sections of the California coastline (AOIs 

#5-8) with diverse morphology using 1 m resolution DEMs and hillshade maps (Table 4; Figure 3e-h). The ‘true’ cliff 

base and top positions were defined as the median of the manually mapped positions.  
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Table 4. Characteristics of the areas of interest (AOIs) used to evaluate CliffDelineaTool. Average values are represented 

by mean ± standard deviation. 170 

 AOI #5 AOI #6 AOI #7 AOI #8 

Geographic location 34°25’6.44’’N 

119°47’49.20’’W 

33°21’19.13’’N 

117°32’3.34’’W 

34°33’36.12’’N 

120°37’49.53’’W 

34°54’6.71’’N 

120°39’36.70’’W 

Alongshore extent (m) 845 1195 745 1075 

Number of transects 170 240 150 216 

Cross-shore extent (m) 134 309 366 650 

Average cross-shore 

cliff extent (m) 

26 ± 4 101 ± 42 49 ± 40 158 ± 56 

Average cliff base 

elevation (m, NAVD88) 

3.3 ± 0.6 4.9 ± 1.0 3.9 ± 2.3 3.6 ± 1.9 

Average cliff height (m) 31 ± 3 34 ± 4 38 ± 17 105 ± 35 

Average foreshore slope 

(°) 

4.4 ± 4.3 7.4 ± 7.2 7.5 ± 8.5 6.8 ± 8.6 

Average cliff slope (°) 50 ± 10 30 ± 17 38 ± 17 36 ± 8.2 

Average hinterland 
slope (°) 

6.9 ± 7.3 17 ± 15 11 ± 9.2 22 ± 10 

Morphology Cliff is the unique slope, 

beach and hinterland are 
planar, cliff top has a 

near-straight shape 

Rotational landslides 

resulting in within-cliff 
flattening, trees, beach 

cusps, gullies that 

intersect the cliff top 

Plunging cliff, foreshore 

rocks, road adjacent to 
the cliff, sloping 

hinterland 

Steep hinterland, cliff is part 

of a mountain slope, 
multiple superposed 

landslides 

CliffDelineaTool, the distance-to-trendline method, and CliffMetrics were applied on the four test sections (AOIs #5-

8) and compared to the manually mapped cliff lines. For CliffDelineaTool, NVert was set at 20 because the test sections 

have the same 1 m DEM resolution as the calibration set. MaxBaseElev was set based on average cliff base elevation 

(Table 4). Remaining parameters values (BaseSea, BaseLand, TopSea, TopLand, PropConvex and SmoothWindow) 

were selected based on average foreshore, cliff and hinterland slopes (Table 4), and visual assessment on initial model 175 

runs (Table 1). RMS between true and modelled cliff base and top locations was used to assess model performance 

on all transects (including skipped transects). 

3 Results 

Consistency of the manual, and performance of the automated cliff mapping varied between the four evaluation AOIs. 

The simple cliff geometry and unambiguous location of the cliff base and top of AOI #5 resulted in low (≤2.7 m) RMS 180 

for all mapping methods (Table 5; Figure 7a-b). In general, cliff base locations were more consistent between manual 

mappers and CliffDelineaTool compared to the cliff top. The distance-to-trendline method had relatively high (>>10 

m) cliff base RMS for all three complex AOIs (#6-8), sometimes placing the cliff base on the upper cliff face or 

hinterland (B in Figure 7d). Using default parameters, CliffMetrics generally performed better than the distance-to-

trendline method, but had higher RMS compared to CliffDelineaTool. CliffDelineaTool (RMS = 1.1-8.2 m) and 185 

manual mapping (RMS = 0.7-11 m) gave comparable cliff base detection results. For AOI #6 the distance-to-trendline 

method and CliffMetrics sometimes placed cliff base at beach cusps (C in Figure 7d). For complex AOIs #6-8, manual 

and automated cliff top positions were varied (RMS = 2.9-214 m). In AOI #6 one mapper (#2) selected the head scarp 

of an interior landslide as the cliff top about 100 m from the cliff top selected by all other mappers (A in Figure 7c). 

However, the models also picked sections of the landslide head scarp (D in Figure 7d). In AOI #7 two mappers 190 

interpreted an elevated section between two separate landslide scars as cliff top (E in Figure 7e), differing from most 

other mappers and both models that opted for a simpler cliff top shape (Figure 7e-f). The cliff top position was the 
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most diverse for AOI #8, with mappers’ interpretation ranging from the top of the coastal mountain slope (F in Figure 

7g) to the mid-slope (G in Figure 7g), and tops of interior cliff face landslide scars (H in Figure 7g). CliffDelineaTool 

gave inconsistent results, while the distance-to-trendline method and CliffMetrics placed the cliff top at the top of the 195 

mountain slope (Figure 7h). 

Table 5. RMS between the true (median of manually mapped), individual manual mapping and modelled cliff base and top 

positions. 

 AOI #5 AOI #6 AOI #7 AOI #8 

 base top base top base top base top 

Mapper #1 0.9 1.1 2.5 8.1 11 2.9 3.6 174 

Mapper #2 1.0 1.5 4.3 28 3.6 6.8 3.0 79 

Mapper #3 1.1 1.3 1.5 10 4.8 18 4.2 166 

Mapper #4 0.8 1.7 1.2 7.5 1.8 5.3 2.9 116 

Mapper #5 0.8 1.2 1.3 10 2.7 13 2.7 25 

Mapper #6 1.4 1.3 4.3 9.0 6.6 21 5.8 111 

Mapper #7 1.1 1.7 1.2 16 5.6 4.2 5.1 61 

Mapper #8 1.0 1.5 1.6 11 3.5 4.1 3.7 169 

Mapper #9 0.9 2.3 1.3 11 3.4 3.9 2.3 49 

Mapper #10 0.7 1.9 2.7 13 5.2 5.4 2.5 17 

Average of mappers 1.0 1.5 2.2 12 4.8 8.5 3.6 97 

Distance-to-trendline 2.1 2.7 82 32 82 28 63 215 

CliffMetrics (default parameters) 2.0 2.5 40 30 10 28 75 201 

CliffDelineaTool 1.1 1.5 3.8 25 8.2 8.3 4.8 99 
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Figure 7. (a, c, e, g) Individual manually mapped and (b, d, f, h) median of manual mapping and modelled cliff base and 200 
top positions for AOIs #5-8. Locations A: pre-slide cliff top position interpreted as cliff top by mapper #2; B: cliff base 

placed in the hinterland by the distance-to-trendline method; C: beach cusps identified as cliff base by the distance-to-

trendline method and CliffMetrics; D: interior cliff face location selected as cliff top by all models; E: elevated section 

between two landslide scars interpreted as cliff top by two mappers; F: top of the mountain slope interpreted as the cliff 

top; G: cliff top placed in the mid-slope; H: cliff top placed at the lower mountain slope. 205 



 

16 
 

4 Discussion  

Acceptable model results depend on the purpose of cliff delineation. At the scale and resolution considered here, the 

model generally provided comparable results to manual mapping for diverse cliff morphology. Model performance 

generally correlates with the amount of inconsistency between manual mappers related to the cliff complexity. For 

example, in complex AOI #8 mean manual mapper and CliffDelineaTool RMS were both high (97 and 99 m, 210 

respectively). Conversely, for simple AOI #5, manual mapper and CliffDelineaTool RMS were both low (1.5 m both). 

The present model does not resolve the situations where a transect crosses the cliff top multiple times, and typically 

places the cliff top at the seaward-most crossing point (Figure 6b). Other model application issues include occasional 

treetop selection for cliff top positions (Figure 6c-d) when using non-bare-earth DEMs. Given these issues and high 

RMS in complex cliff sections we suggest that model outputs should be visually controlled (similar to Payo et al., 215 

2018), and not used where the cliff top is very ambiguous such as AOI #8 with complex tall mountain slopes. 

Unlike the models of Palaseanu-Lovejoy et al. (2016) and Payo et al. (2018), CliffDelineaTool does not generate 

transects. For this study, simple cross shore transects with 5 m alongshore spacing were defined manually for each 

AOI. The relatively short AOI alongshore sections permitted use of parallel transects (Swirad, 2021). However, for 

longer, more complex cliff sections varying transect orientation will improve results and could be generated with 220 

CliffMetrics (Payo et al., 2018). 

We compared CliffDelineaTool to the distance-to-trendline method which forms basis of iBluff (Palaseanu-Lovejoy, 

2021) and CliffMetrics (Payo et al., 2018). However, iBluff and CliffMetrics both include additional steps to improve 

results and correct erroneous cliff base and top positions. iBluff uses manual transect shortening during pre-processing, 

and outlier removal using smoothing window, similar to CliffDelineaTool. CliffMetrics uses manual quality control 225 

and iterative parameter selection (Payo et al., 2018). The CliffMetrics results presented here used default parameters 

and predefined transects to provide a direct comparison to CliffDelineaTool. However, one of the strengths of 

CliffMetrics includes the ability to quickly iterate parameter set up. Therefore, the results could be improved using 

iterative parameter selection and varying transect length and orientation. 

For best performance, CliffDelineaTool should be calibrated to the user study section. The input parameters have a 230 

varied impact on model performance (Figure 6). MaxBaseElev is easily selected using a slightly conservative cliff 

base elevation estimated from the general site settings. The optimal NVert parameter depends on DEM resolution and 

cross-shore cliff extent. Calibration showed that in general the greater the NVert value the narrower the distribution 

of the four threshold slopes (BaseSea, BaseLand, TopSea and TopLand) and the higher the number of outliers. That 

relationship holds until NVert value (30 for AOI #1, 40 for #3 and 70 for #4, Figure 4) over which the q1 - q3 box 235 

becomes very wide or the distribution is dominated by outliers. Figure 8 shows the cliff top optimized for NVert values 

of 10, 20, 30, 40 and 50 for AOI #4. It suggests that during stage 2, low NVert value can cause incorrect cliff top 

section caused by minor protruding features such as vegetation (A in Figure 8), while higher value can inhibit correct 

stage 2 cliff top replacement (B in Figure 8). TopLand of 10-20° is generally appropriate when hinterland is planar or 

gently sloping but should be increased for cliffs with steeper inland areas. BaseSea and BaseLand are important for 240 

proper cliff base placement for coastal sections with back beach cusps and landslide deposits. SmoothWindow 

parameter depends on alongshore complexity of the coast, bay/headland sequence spacing, and their relation to 
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transect spacing. Model results are sensitive to TopSea, PropConvex and SmoothWindow, and testing various values 

on short sections of the study area with visual inspection can help identify optimal values (Figure 6). 

 245 

Figure 8. Location of the stage 2 cliff top after optimizing all parameters for NVert ranging 10-50. Location A: vegetation 

interpreted as cliff top for model runs with low NVert values. Location B: high NVert values can inhibit correct stage 2 cliff 

top replacement to locations further landward. 

Two previous studies have successfully used parts of CliffDelineaTool. Swirad and Young (2021) used a modified 

version of CliffDelineaTool to automate mapping of cliff base and top positions along the California coast (1646 km). 250 

The modified version did not include stage 2 (shifting cliff top landwards for within-cliff flattening areas) and stage 3 

(removal of outliers) but did include a Laplacian topographic filter (Richter et al., 2013). The automated results were 

visually inspected and some (10% of the cliff base and 29% of the cliff top positions) required manual modification 

to correct positions. Young et al. (2021) used the present CliffDelineaTool model to identify the cliff base in 155 0.25 

m resolution DEMs along a 2.5 km coastal section at 1 m alongshore transect spacing. Quality control showed that 255 

cliff base misplacement was negligible, while the total processing time was ~30 min (Young et al., 2021). These 

studies demonstrate the tool’s applicability for both large space and time datasets, and over a range of DEM 

resolutions. 

5 Conclusions 

Building on previous studies, we developed a new algorithm (CliffDelineaTool) to delineate coastal cliffs from DEMs. 260 

The model identifies cliff base and top positions along cross-shore transects using elevation and slope characteristics. 

It considers complex cliff morphology and removes alongshore cliff top outliers. CliffDelineaTool provides results 

comparable to manual mapping and improves cliff base and top identification for complex cross-profiles. The 

automated results have known errors and should be inspected visually. The method has been applied successfully on 

two large datasets (Swirad and Young, 2021; Young et al., 2021), greatly reducing processing time. With calibration 265 

and quality control CliffDelineaTool can be used on a wide variety of coastal setting facilitating a range of scientific 

and managerial applications but has limited application where the cliff top is ambiguous. 
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Code availability 

CliffDelineaTool was initially coded in MATLAB R2019a. The source code, and the calibration and validation 

datasets explored in this paper (DEMs, model input, true and modelled cliff base and top positions) are available at 270 

https://zenodo.org/record/5724975 (Swirad, 2021). See https://github.com/zswirad/CliffDelineaTool (last access: 

2021-11-24) for the latest version of the source code, Python version of the tool (CliffDelineaToolPy, v1.0.0) and user 

instructions. Cliff top positions identified with MATLAB and Python versions of the code may vary slightly due to 

the program-specific outlier removal functions.  
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