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Abstract. Large computer models are ubiquitous in the earth sciences. These models often have tens or 
hundreds of tuneable parameters and can take thousands of core-hours to run to completion while 
generating terabytes of output. It is becoming common practice to develop emulators as fast 
approximations, or surrogates, of these models in order to explore the relationships between these inputs 
and outputs, understand uncertainties and generate large ensembles datasets. While the purpose of these 10 
surrogates may differ, their development is often very similar. Here we introduce ESEm: an open-
source tool providing a general workflow for emulating and validating a wide variety of models and 
outputs. It includes efficient routines for sampling these emulators for the purpose of uncertainty 
quantification and model calibration. It is built on well-established, high-performance libraries to ensure 
robustness, extensibility and scalability. We demonstrate the flexibility of ESEm through three case-15 
studies using ESEm to reduce parametric uncertainty in a general circulation model, explore 
precipitation sensitivity in a cloud resolving model and scenario uncertainty in the CMIP6 multi-model 
ensemble. 

1 Introduction 

Computer models are crucial tools for their diagnostic and predictive power and are applied to every 20 
aspect of the earth sciences. These models have tended to increase in complexity to match the 
increasing availability of computational resources and are now routinely run on large supercomputers 
producing terabytes of output at a time. While this added complexity can bring new insights and 
improved accuracy, sometimes it can be useful to run fast approximations of these models, often 
referred to as surrogates (Sacks et al., 1989). These surrogates have been used for many years to allow 25 
efficient exploration of the sensitivity of model output to its inputs (Lee et al., 2011b; Ryan et al., 2018), 
generation of large ensembles of model realisations (Holden et al., 2014, 2019; Williamson et al., 2013), 
and also model calibration (Holden et al., 2015a; Cleary et al., 2021; Couvreux et al., 2021). Although 
relatively common, these workflows invariably use custom emulators and bespoke analysis routines, 
limiting their reproducibility, and use by non-statisticians.  30 
Here we introduce ESEm, a general tool for emulating earth systems models and a framework for using 
these emulators, with a focus on model calibration, broadly defined as finding model parameters which 
produce model outputs compatible with available observations. Unless otherwise stated, model 
parameters in this context refer to constant, scalar model inputs rather than e.g., boundary conditions. 
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This tool builds on the development of emulators for uncertainty quantification and constraint in the 
aerosol component of general circulation models (Regayre et al., 2018; Lee et al., 2011b; Johnson et al., 40 
2018; Watson‐Parris et al., 2020), but is applicable much more broadly as we will show. 
Figure 1 shows a schematic of a typical model calibration workflow that ESEm enables, assuming a 
simple ‘one shot’ design for simplicity. Once the gridded model data has been generated it must be 
collocated (resampled) on to the same temporal and spatial locations as the observational data which 
will be used to calibrate, in order to minimize sampling uncertainties (Schutgens et al., 2016a, b). The 45 
Community Intercomparison Suite (CIS; (Watson-Parris et al., 2016)) is an open-source Python library 
that makes this kind of operation very simple. The output is an Iris (Office, 2020b) Cube-like object, a 
representation of a Climate and Forecast (CF)-compliant NetCDF file, which includes all of the 
necessary coordinate and metadata to ensure traceability and allow easy combination with other tools. 
ESEm uses the same representations throughout to allow easy input and output of the emulated datasets, 50 
plotting and validation and also allows chaining operations with other related tools such as Cartopy 
(Office, 2020a) and xarray (Hoyer and Hamman, 2016). Once the data has been read and collocated, it 
is split into training and validation (and optionally test) sets before performing emulation over the 
training data using the ESEm interface. This emulator can then be validated and used for inference and 
calibration. 55 

 
Figure 1: A schematic of a typical workflow using CIS and ESEm to perform model emulation and calibration. Note, only the 
locations of the observed data are used for resampling the model data.  

Emulation is essentially a multi-dimensional regression problem and ESEm provides three main options 
for performing these fits – Gaussian Processes (GPs), Convolutional Neural Networks (CNNs) and 60 
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Random Forests (RFs). Based on a technique for estimating the location of gold in South Africa from 
sparse mining information known as Krigging, and formalised by (Matheron, 1963), GPs have become 
a popular tool for non-parametric interpolation and an important tool within the field of supervised 70 
machine learning. Kennedy and O’Hagan (2001) first described the use of GPs for the calibration of 
computer models which forms the basis of current approaches. GPs are particularly well suited to this 
task since they provide robust estimates and uncertainties to non-linear responses, even in cases with 
limited training data. Despite initial difficulties with their scalability as compared to e.g., Neural 
Networks, recent advances have allowed for deeper, more expressive (Damianou and Lawrence, 2012) 75 
GPs which can be trained on ever larger volumes of training data (Burt et al., 2019). Despite their 
prevalent use in other areas of machine learning, CNNs and RFs have not been widely used in model 
emulation. Here we include both as examples of alternative approaches to demonstrate the flexible 
emulation interface as well as to motivate broader usage of the tool. For example, Section 5.1 shows the 
use of a RF emulator for exploring precipitation susceptibility in a cloud resolving model. 80 
One common use of an emulator is to perform model calibration. By definition, any computer model 
has a number of inputs and outputs. The model inputs can be high-dimensional boundary conditions or 
simple scalar parameters, and while large uncertainties can exist in the boundary conditions our focus 
here is on the latter. These input parameters can often be uncertain, either due to a lack of physical 
analogue, or lack of available data. Assuming that suitable observations of the model output are 85 
available, one may ask which values of the input parameters give the best output as measured against 
the observations. This model ‘tuning’ is often done by hand leading to ambiguity and potentially sub-
optimal configurations (Mauritsen et al., 2012). The difficulty in this task arises because, while the 
computer model is designed to calculate the output based on the inputs, the inverse process is normally 
not possible directly. In some cases, this inverse can be estimated and the process of generating an 90 
inverse of the model, known as inverse modelling, has a long history in hydrological modelling (e.g. 
Hou and Rubin, 2005). The inverse of individual atmospheric model components can be determined 
using adjoint methods (Partridge et al., 2011; Karydis et al., 2012; Henze et al., 2007) but these require 
bespoke development and are not amenable to large multi-component models. Simple approaches can 
be used to determine chemical and aerosol emissions based on atmospheric composition but these 95 
implicitly assume that the relationship between emissions and atmospheric concentration is reasonably 
well predicted by the model (Lee et al., 2011a). More generally, attempting to infer the best model 
inputs to match a given output is variously referred to as ‘calibration’, ‘optimal parameter estimation’ 
and ‘constraining’. In many cases finding these optimum parameters requires very many evaluations of 
the model, which may not be feasible for large or complex models and so emulators are used as a 100 
surrogate. ESEm provides a number of options for performing this inference, from simple rejection 
sampling to more complex Markov-Chain Monte-Carlo (MCMC) techniques. 
Despite their increasing popularity, no general-purpose toolset exists for model emulation in the Earth 
sciences. Each project must create and validate their own emulators, with all of the associated data 
handling and visualisation code that necessarily accompanies them. Further, this code remains closed-105 
source, discouraging replication and extension of the published work. In this paper we aim to not only 
describe the ESEm tool, but also elucidate the general process of emulation with a number of distinct 
examples, including model calibration, in the hope of demonstrating its usefulness to the field. A 
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description of the pedagogical example used to provide context for the framework description is 110 
provided in Section 2, the emulation workflow and the two models included with ESEm is provided in 
Section 3, we then discuss the sampling of these emulators for inference in Section 4, before providing 
two more specific example uses in Section 5 and some concluding remarks in Section 6. 

2 Exemplar problem 

While we endeavour to describe the technical implementation of ESEm in general terms, we will refer 115 
back to a specific example use-case throughout in order to aid clarity. This example case concerns the 
estimation of absorption aerosol optical depth (AAOD) due to anthropogenic black carbon (BC) which 
is highly uncertain due to: limited observations and estimates of both pre-industrial and present-day 
biomass burning emissions; and large uncertainties in key microphysical processes and parameters in 
climate models (Bellouin et al., 2020).  120 
Briefly, the model considered here is ECHAM6.3-HAM2.3 (Tegen et al., 2018; Neubauer et al., 2019) 
which calculates the distribution and evolution of both internally and externally mixed aerosol species 
in the atmosphere and their effect on both radiation and cloud processes. We generate an ensemble of 
39 model simulations for the year of 2017 over three uncertain input parameters: (1) a scaling of the 
emissions flux of BC by between 0.5 and 2 times the baseline emissions, (2) a scaling on the removal 125 
rate of BC through wet deposition (the main removal mechanism of BC) by between 1/3 and 3 times the 
baseline values, and (3) a scaling of the imaginary refractive index of BC (which determines its 
absorptivity) between 0.2 and 0.8. The parameter sets are created using maximin latin-hypercube 
sampling (Morris and Mitchell, 1995) where the scaling parameters (1 and 2) are sampled from log-
uniform distributions, while the imaginary part of the refractive index is sampled from a normal 130 
distribution centered around 0.7. These parameter ranges were determined by expert elicitation and 
designed to cover the broadest plausible range of uncertainty. Unless otherwise stated five of the 
simulations are retained for testing while the rest are used for training the emulators (see Section 3.1 for 
more details). The model AAODs are emulated at their native resolution of approximately 1.8° 

longitude at the equator (192 x 96 grid cells). 135 
For simplicity, in this paper, we then compare the monthly mean model simulated aerosol absorption 
optical depth with observations of the same quantity in order to better constrain the global radiative 
effect of these perturbations. A full analysis including in-situ compositional and large-scale satellite 
observations, as well as an estimation of the effect of the constrained parameter space on estimates of 
effective radiative forcing will be presented elsewhere. 140 
Here we step through each of the emulation and inference procedures used to determine a reduced 
uncertainty in climate model parameters, and hence AAOD, by maximally utilising the available 
observations.  
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3 Emulation engines 

Given the huge variety of geophysical models and their applications, and the broad (and rapidly 
expanding) variety of statistical models available to emulate them, ESEm uses an Object Oriented (OO) 
approach to provides a generic emulation interface. This interface is designed in such a way as to 
encourage additional model engines, either in the core package through pull-requests, or more 150 
informally as a community resource. The inputs include an Iris cube with the leading dimension 
representing the stack of training samples, and any other keyword arguments the emulator may require 
for training. Using either user specified or default options for the model hyper-parameters and 
optimisation techniques, the model is then easily fit to the training data and validated against the held-
back validation data.  155 
In this section we describe the inputs expected by the emulator and the three emulation engines 
provided by default in ESEm. 

3.1 Input data preparation 

In many circumstances the observations we would like to use to compare and calibrate our model 
against are provided on a very different spatial and temporal sampling than the model itself. Typically, a 160 
model might use a discretized representation of space-time, whereas observations are typically point-
like measurements or retrievals. Naively comparing point observations with gridded model output can 
lead to large sampling biases (Schutgens et al., 2017). By collocating the models and observations, 
using CIS for example, we can minimise this error. An ensemble_collocate utility is provided in 
ESEm to use CIS to efficiently collocate multiple ensemble members on to the same observations. 165 
Other sources of observational-model error may still be present, and accounting for these will be 
discussed in Section 4.  
In earth sciences these (resampled) model values are typically very large datasets with many millions of 
values. With sufficient computing power these can be emulated directly, however often there is a lot of 
redundancy in the data due to e.g., strong spatial and temporal correlations and this brute-force 170 
approach is wasteful and can make calibration difficult (as discussed in Section 4). The use of summary 
statistics to reduce this volume while retaining most of the information content is a mature field 
(Prangle, 2015), and already widely used (albeit informally) in many cases. The summary statistic can 
be as simple as a global weighted average, or it could be an empirical orthogonal function (EOF) based 
approach (Ryan et al., 2018). Although some techniques for automatically finding such statistics are 175 
becoming available (Fearnhead and Prangle, 2012) this usually requires knowledge of the underlying 
data, and we leave this step for the user to perform using the standard tools available (e.g. Dawson, 
2016) as required.  
Once the data has been resampled and summarised it should be split into training, validation and test 
sets. The training data is used to fit the models, while the validation portion of the data is used to 180 
measure their accuracy while exploring and tuning hyper-parameters (including model architectures). 
The test data is held back for final testing of the model. Typically, a 70:20:10 split is used. Excellent 
tools exist for preparing these splits, including for more advanced k-fold cross validation, and we 
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include interfaces for such implementations in scikit-learn (Pedregosa et al., 2011), as well as routines 
for generating simple qualitative validation plots. Both scikit-learn and Keras (Chollet, 2015) include 
routines for automating the process of hyper-parameter optimization, with more advanced Bayesian 
optimization approaches available with the GPFlowOpt (Knudde et al., 2017) package. These all share 190 
many of the same dependencies as ESEm making installation very simple.   
The input parameter space can also be reduced to enable more interpretable and robust emulation (also 
known as feature selection). ESEm provides a utility for filtering parameters based on the Bayesian (or 
Akaike) information content (BIC; (Akaike, 1974)) of the regression coefficients for a lasso least angle 
regression (LARS) model, using the scikit-learn implementation. This provides an objective estimate of 195 
the importance of the different input parameters and allows removing any parameters which do not 
affect the output of interest. A complementary approach may be to apply feature importance tests to 
trained emulators to determine their sensitivity to particular input parameters. 

3.2 Gaussian Process engine 

Gaussian processes (GPs) are a popular choice for model emulation due to their simple formulation and 200 
robust uncertainty estimates, particularly in cases of relatively small amounts of training data. Many 
excellent texts are available to describe their implementation and use (Rasmussen and Williams, 2005) 
and we only provide a short description here. Briefly, a GP is a stochastic process (a distribution of 
continuous functions) and can be thought of as an infinite dimensional normal distribution (hence the 
name). The statistical properties of the normal distributions and the tools of Bayesian inference allow 205 
tractable estimation of the posterior distribution of functions given a set of training data. For a given 
mean function, a GP can be completely described by its second-order statistics and so the choice of 
covariance function (or kernel) can be thought of as a prior over the space of functions it can represent. 
Typical kernels include: constant; linear; radial basis function (RBF; or squared exponential); and 
Matérn 3/2 and 5/2 which are only once and twice differentiable respectively. Kernels can also be 210 
designed to represent any aspect of the functions of interest such as non-stationarity or periodicity. This 
choice can often be informed by the physical setting and provides greater control and interpretability of 
the resulting model compared to e.g., Neural Networks. Fitting a GP involves an optimization of the 
remaining hyper-parameters, namely the kernel length-scale and smoothness. 
A number of libraries are available which provide GP fitting, with varying degrees of maturity and 215 
flexibility. By default, ESEm uses the open-source GPFlow (Matthews et al., 2017) library for GP based 
emulation. GPFlow builds on the heritage of the GPy library (GPy, 2012) but is based on the 
TensorFlow (Abadi et al., 2016) machine learning library with out-of-the-box support for the use of 
Graphical Processing Units (GPUs), which can considerably speed up the training of GPs. It also 
provides support for sparse and multi-output GPs. By default, ESEm uses a zero mean and a 220 
combination of linear, RBF and polynomial kernels which are suitable for the smooth and continuous 
parameter response expected for the examples used in this paper and related problems. However, given 
the importance of the kernel for determining the form of the functions generated by the GP we have also 
included the ability for users to specify combinations of other common kernels and mean functions. See 
e.g., (Duvenaud, 2011) for a clear description of some common kernels and their combinations, as well 225 
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as work towards automated methods for choosing them. For stationary kernels, GPFlow automatically 230 
performs Automatic Relevance Determination (ARD) allowing lengthscales to be learnt independently 
for each input dimension. The user is also able to specify which dimensions should be active for each 
kernel in the case where the input dimension can be reduced (as discussed above). 
The framework provided by GPFlow also allows for multi-output GP regression and ESEm takes 
advantage of this to automatically provide regression over each of the output features provided in the 235 
training data. Figure 2 shows the emulated response from the ESEm generated GP emulation of 
absorption aerosol optical depth (AAOD) using a ‘Constant + Linear’ kernel for one specific set of the 
three parameters outlined in Section 2 chosen from the test set (not shown during training). The 
emulator does an excellent job at reproducing the spatial structure of the AAOD for these parameters 
and exhibits errors less than an order of magnitude smaller than the predicted values, and significantly 240 
smaller than e.g., typical model and observational uncertainties.  
 

 
Figure 2: Example emulation of absorption aerosol optical depth (AAOD) for a given set of three model parameters (broadly scaling 
emissions of black carbon, removal of black carbon, and the absorptivity of black carbon) as output by: (a) the full ECHAM-HAM 245 
aerosol-climate model; (b) a Gaussian process emulation; (c) a random forest emulation; and (d) a convolutional neural network 
emulator, for parameter combinations that were not seen during training; as well as the differences between ECHAM-HAM and 
the emulators (d, e). 

3.3 Neural Network engine 

Through the development of automatic differentiation and batch-gradient descent it has become 250 
possible to efficiently train very large (millions of parameters), deep (dozens of layers) neural networks, 
using large amounts (terabytes) of training data. The price of this scalability is the risk of overfitting, 
and the lack of any information about the uncertainty of the outputs. However, both of these 
shortcomings can be addressed using a technique known as ‘dropout’ whereby individual weights are 
randomly set to zero and effectively ‘dropped’ from the network. During training this has the effect of 255 
forcing the network to learn redundant representations and reduce the risk of overfitting (Srivastava et 
al., 2014). More recently it was shown that applying the same technique during inference casts the NN 
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as approximating Bayesian inference in deep Gaussian processes and can provide a well calibrated 
uncertainty estimate on the outputs (Gal and Ghahramani, 2015). The convolutional layers within these 
networks also take into account spatial correlations which cannot currently be directly modelled by GPs 265 
(although dimension reduction in the input can have the same effect). The main drawback with a CNN 
based emulator is that they typically need a much larger amount of training data than GP based 
emulators. 
While fully connected neural networks have been used for many years, even in climate science (Knutti 
et al., 2006; Krasnopolsky et al., 2005), the recent surge in popularity has been powered by the 270 
increases in expressibility provided by deep, convolutional neural networks (CNNs) and the 
regularisation techniques (such as early stopping) which prevent these huge models from over-fitting 
the large amounts of training data required to train them. Many excellent introductions can be found 
elsewhere but, briefly, a neural network consists of a network of nodes connecting (through a variety of 
architectures) the inputs to the target outputs via a series of weighted activation functions. The network 275 
architecture and activation functions are typically chosen a-priori and then the model weights are 
determined through a combination of back-propagation and (batch) gradient descent until the outputs 
match (defined by a given loss function) the provided training data. As previously discussed, the 
random dropping of nodes (by setting the weights to zero), termed dropout, can provide estimates of the 
prediction uncertainty of such networks. The computational efficiency of such networks and the rich 280 
variety of architectures available have made them the tool of choice in many machine learning settings, 
and they are starting to be used in climate sciences for emulation (Dagon et al., 2020), although the 
large amounts of training data required have so far limited their use somewhat. 
ESEm uses the Keras library (Chollet, 2015) with the TensorFlow backend to provide a flexible 
interface for constructing and training CNN models and a simple, fairly shallow architecture is included 285 
as an example. This default model takes the input parameters and passes them through an initial fully 
connected layer before passing through two transpose convolutional layers which perform an inverse 
convolution and act to ‘spread-out’ the parameter information spatially. The results of this default 
model are shown in Figure 2c which shows the predicted AAOD from a specific set of three model 
parameters. While the emulator clearly has some skill, and produces the large-scale structure of the 290 
AAOD, the error compared to the full ECHAM-HAM output is larger than the GP emulator at around 
10% of the absolute values. This is primarily due to the limited training data available in this example 
(34 simulations). Also, this ‘simple’ network still contains nearly 1 million trainable parameters and so 
an even simpler network would probably perform better given the linearity of the model response to 
these parameters. 295 

3.4 Random Forests 

ESEm also provides the option for emulation with Random Forests using the open-source 
implementation provided by scikit-learn. Random Forest estimators are comprised of an ensemble of 
decision trees; each decision tree is a recursive binary partition over the training data and the predictions 
are an average over the predictions of the decision trees (Breiman, 2001). As a result of this 300 
architecture, Random Forests (along with other algorithms built on decision trees) have three main 
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attractions. Firstly, they require very little pre-processing of the inputs as the binary partitions are 
invariant to monotonic rescaling of the training data. Secondly, and of particular importance for climate 305 
problems, they are unable to extrapolate outside of their training data because the predictions are 
averages over subsets of the training dataset. As a result of this, a Random Forest trained on output from 
an idealized GCM was shown to automatically conserve water and energy (O’Gorman and Dwyer, 
2018). Finally, their construction as a combination of binary partitions lends itself to model responses 
that might be non-stationary or discontinuous. 310 
These features are of particular importance for problems involving the parameterization of sub-grid 
processes in climate models (Beucler et al., 2021) and as such, although parameterization is not the 
purpose of ESEm, we include a simple Random Forest implementation and hope to build on this in 
future. 

4 Calibration  315 

Having trained a fast, robust emulator this can be used to calibrate our model against available 
observations. Generally, this problem involves estimating the model parameters which could give rise 
to, or best match, the available observations. More formally, we can define a model as a function ℱ of 
input parameters 𝜃 and outputs 𝑌: ℱ(θ) = 𝑌. Generally, both 𝜃 and 𝑌 are high dimensional and may 
themselves be functions of space and time. Given a set of observations of 𝑌, denoted 𝑌!, we would like 320 
to calculate the inverse: ℱ"#(𝑌) = 𝜃.  
This inverse is unlikely to be well defined since many different combinations of parameters could 
feasibly result in a given output and so we take a probabilistic approach. In this framework we would 
like to know the posterior probability distribution of the input parameters: 𝑝(θ|𝑌!). Using Bayes’ 
theorem, we can write this as: 325 

𝑝(𝜃|𝑌!) =
𝑝(𝑌!|𝜃)𝑝(𝜃)

𝑝(𝑌!)  Eq. 1 

Where the probability of an output given the input parameters, 𝑝(𝑌!|𝜃), is referred to as the likelihood. 
While the model is capable of sampling this distribution, generally the full distribution is unknown and 
intractable, and we must approximate this likelihood. 

Depending on the purpose of the calibration and assumptions about the form of 𝑝(𝑌!|𝑌), different 
techniques can be used. In order to determine a (conservative) estimate of the parametric uncertainty in 330 
the model for example, we can use approximate Bayesian computation (ABC) to determine those 
parameters which are plausible given a set of observations. Alternatively, we may wish to know the 
optimal parameters to best match a set of observations and Markov-Chain Monte-Carlo based 
techniques might be more appropriate. Both of these sampling strategies are available in ESEm and we 
introduce each of them here. 335 
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4.1 Approximate Bayesian Computation 

The simplest ABC approach seeks to approximate the likelihood using only samples from the simulator 
and a discrepancy function	𝜌: 

𝑝(𝜃|𝑌!) ∝ .𝑝(𝑌
!|𝑌)𝑝(𝑌|𝜃)𝑝(𝜃)𝑑𝑌 ≈ .𝕀(𝜌(𝑌

!, 𝑌) ≤ 𝜖)		𝑝(𝑌|𝜃)	𝑝(𝜃)	𝑑𝑌 Eq. 2 

where the indicator function 𝕀(𝑥) = 5
1, 𝑥	𝑖𝑠	𝑡𝑟𝑢𝑒
0, 𝑥	𝑖𝑠	𝑓𝑎𝑙𝑠𝑒, and 𝜖 is a small discrepancy. This can then be 

integrated numerically using e.g., Monte-Carlo sampling of 𝑝(𝜃). Any of those parameters for which 340 
𝜌(𝑌!, 𝑌) ≤ 𝜖 are accepted and those which do not are rejected. As 𝜖 → ∞ therefore, all parameters are 
accepted and we recover 𝑝(𝜃). For 𝜖 = 0, it can be shown that we generate samples from the posterior 
𝑝(𝜃|𝑌!) exactly (Sisson et al., 2019). 
In practice however the simulator proposals will never exactly match the observations and we must 
make a pragmatic choice for both 𝜌 and 𝜖. ESEm includes an implementation of the ‘implausibility 345 
metric’ (Williamson et al., 2013; Craig et al., 1996; Vernon et al., 2010) which defines the discrepancy 
in terms of the standardized Cartesian distance between the observations and the emulator mean (𝜇$): 

𝜌E𝑌
!, 𝜇$(θ)F =

|𝑌! − 𝜇$|

H𝜎$
% + 𝜎&% + 𝜎'% + 𝜎(%

 Eq. 3 

where the total standard deviation is taken to be the squared sum of the emulator variance (𝜎$%, where 
available) and the uncertainty in the observations (𝜎&%) and due to representation (𝜎'%) and structural 
model uncertainties (𝜎(%). As described above, the representation uncertainty represents the degree to 350 
which observations at a particular time and location can be expected to match the (typically aggregate) 
model output  (Schutgens et al., 2016a, b). While reasonable approximates can often be made of this 
and the observational uncertainties, the model structural uncertainties are typically unknown. In some 
cases, a multi-model ensemble may be available which can provide an indication of the structural 
uncertainties for particular observables (Sexton et al., 1995), but these are likely to underestimate true 355 
structural uncertainties as models typically share many key processes and assumptions (Knutti et al., 
2013). Indeed, one benefit of a comprehensive analysis of the parametric uncertainty of a model is that 
this structural uncertainty can be explored and determined (Williamson et al., 2015).  

Framed in this way, 𝜖, can be thought of as representing the number of standard deviations the 
(emulated) model value is from the observations. While this can be treated as a free parameter and may 360 
be specified in ESEm, it is common to choose 𝜖 = 3	since it can be shown that for unimodal 
distributions values of 3𝜎 correspond to a greater than 95% confidence bound (Vysochanskij and 
Petunin, 1980). 
This approach is closely related to the approach of ‘history matching’ (Williamson et al., 2013) and can 
be shown to be identical in the case of fixed 𝜖 and uniform priors (Holden et al., 2015b). The key 365 
difference being that history matching may result in an empty posterior distribution, that is, it may find 
no plausible model configurations which match the observations. With ABC on the other hand the 
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epsilon is typically treated as a hyper-parameter which can be tuned in order to return a suitably large 375 
number of posterior samples. Both 𝜖 and the prior distributions can be specified in ESEm and it can thus 
be used to perform either analysis. The speed at which samples can typically be generated from the 
emulator means we can keep 𝜖 fixed as in history matching and generate as many samples as is required 
to estimate the posterior distribution.   

When multiple (𝒩)	observations are used (as is often the case) 𝜌 can be written as a vector of 380 
implausibilities, 𝜌(𝑌)* , 𝜇$(θ)) or simply 𝜌)(𝜃), and a modified method of rejection or acceptance must 
be used. While the full multivariate implausibility can be estimated it requires careful consideration of 
the covariance structure (Vernon et al., 2010). An obvious choice is to require 𝜌) < 𝜖	∀	𝑖	 ∈ 𝒩, 
however this can become restrictive for large 𝒩 due to the curse of dimensionality. The first step 
should be to reduce 𝒩 through the use of summary statistics as described above. After that, the simplest 385 
solution is to require the maximum implausibility should be below our threshold: max

)
{𝜌)} < 𝜖 (e.g., 

Vernon et al., 2010). An alternative is to introduce a tolerance (𝑇) such that only some proportion of 𝜌) 
need to be smaller than 𝜖: ∑ 𝐻(𝒩

),! 𝜌) 	− 	𝜖) < 𝑇, where 𝐻 is the Heaviside function (Johnson et al. 
2019), although this is a somewhat unsatisfactory approach that can hide potential structural 
uncertainties. On the other hand, choosing 𝑇 = 0 as a first approximation and then identifying any 390 
particular observations which generate a very large implausibility provides a mechanism for identifying 
potential structural (or observational) errors. These can then be removed and noted for further 
investigation.  
In order to illustrate this approach, we apply AERONET (AErosol RObotic NETwork) observations of 
AAOD to the problem of constraining ECHAM-HAM model parameters as described in Section 2. The 395 
AERONET sun-photometers directly measure solar irradiances at the surface in clear-sky conditions, 
and by performing almucantar sky scans are able to estimate the single scattering albedo, and hence 
AAOD, of the aerosol in its vicinity (Dubovik and King, 2000; Holben et al., 1998). Daily average 
observations are taken from all available stations for 2017 and collocated with monthly model outputs 
using linear interpolation. Figure 3 shows the posterior distribution for the parameters described in 400 
Section 2 if uniform priors are assumed and a Gaussian process emulator is calibrated with these 
observations. Of the one million points sampled from this emulator, 729474 (73%) are retained as being 
compatible with the observations with 𝑇 = 0.1. Lower values of both the imaginary part of the 
refractive index (IRI500) and the emissions scaling parameter (BCnumber) are shown to be more 
compatible with the observations than higher values, while the rate of wet deposition (Wetdep) is less 405 
constrained.  Hence, higher values of IRI500 and BCnumber can be ruled out as implausible given these 
observations (within the assumptions of our prior, GP model choices, and observational and structural 
model uncertainties).  
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Figure 3: The posterior distribution of parameters representing the plausible space of parameters for the example perturbed 
parameter ensemble experiment having been calibrated with a GP against observed absorbing aerosol optical depth measurements 
from AERONET. The diagonal histograms represent marginal distributions of each parameter while the off-diagonal scatter plots 
represent samples from the joint distributions. The colour represents the (average) emulated AAOD for each parameter 415 
combination. 

The matrix of implausibilities, 𝜌)(𝜃), can also provide very useful information regarding the 
information content of each observation with respect to the various parameter combinations. 
Observations with narrow distributions of small implausibility provide little constraint value, whereas 
observations with a broad implausibility provide useful constraints on the parameters of interest. 420 
Observations with narrow distributions of high implausibility are useful indications of previously 
unknown structural uncertainties in the model. 
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4.2 Markov chain Monte-Carlo (MCMC) 

The ABC method described above is simple and powerful, but somewhat inefficient as it repeatedly 
samples from the same prior. In reality each rejection or acceptance of a set of parameters provides us 425 
with extra information about the ‘true’ form of 𝑝(𝜃|𝑌!) so that the sampler could spend more time in 
plausible regions of the parameter space. This can then allow us to use smaller values of 𝜖 and hence 
find better approximations of  𝑝(𝜃|𝑌!).  

Given the joint probability distribution described by Eq. 2 and an initial choice of parameters 𝜃′ and 
(emulated) output 𝑌′, the acceptance probability r of a new set of parameters (𝜃) is given by: 430 

𝑟 =
𝑝(𝑌!|𝑌′)𝑝(𝜃′|𝜃)𝑝(𝜃′)
𝑝(𝑌!|𝑌)𝑝(𝜃|𝜃′)𝑝(𝜃)

 Eq. 4 

In the default implementation of MCMC calibration ESEm uses the TensorFlow-probability 
implementation of Hamiltonian Monte-Carlo (HMC) (Neal, 2011) which uses the gradient information 
automatically calculated by TensorFlow to inform the proposed new parameters 𝜃. For simplicity, we 
assume that the proposal distribution is symmetric: 𝑝(𝜃′|𝜃) 	= 	𝑝(𝜃|𝜃′), which is implemented as a zero 
log-acceptance correction in the initialisation of the TensorFlow target distribution. The target log 435 
probability provided to the TensorFlow HMC algorithm is then: 

𝑙𝑜𝑔(𝑟) = 𝑙𝑜𝑔(𝑝(𝑌!|𝑌′)) 	+ 	𝑙𝑜𝑔(𝑝(𝜃′)) 	− 	𝑙𝑜𝑔(𝑝(𝑌!|𝑌)) 	− 	𝑙𝑜𝑔(𝑝(𝜃))	 Eq. 5 

Note, that for this implementation the distance metric 𝜌 must be cast as a probability distribution with 
values [0, 1]. We therefore assume that this discrepancy can be approximated as a normal distribution 
centred about the emulator mean (𝜇$), with standard deviation equal to the sum of the squares of the 
variances as described in Eq. 3: 440 

𝑝(𝑌!|𝜇$) ≈
1

𝜎-√2𝜋
𝑒"

#
%.
&!"/"
0# 1

$

, 𝜎- = ^𝜎$
% + 𝜎&% + 𝜎'% + 𝜎(%	 Eq. 6 

The implementation will then return the requested number of accepted samples as well as reporting the 
acceptance rate, which provides a useful metric for tuning the algorithm. It should be noted that MCMC 
algorithms can be sensitive to a number of key parameters, including the number of burn-in steps used 
(and discarded) before sampling occurs and the step size. Each of these can be controlled via keyword 
arguments to the sampler. 445 
This approach can provide much more efficient sampling of the emulator and provide improved 
parameter estimates, especially when used with informative priors which can guide the sampler.  

4.3 Extensions 

While ABC and MCMC form the backbone of many parameter estimation techniques, there has been a 
large amount of research on improved techniques, particularly for complex simulators with high-450 
dimensional outputs. See (Cranmer et al., 2020) for an excellent recent review of the state-of-the art 
techniques, including efforts to emulate the likelihood directly, utilising the ‘likelihood ratio trick’, and 
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even including information from the simulator itself (Brehmer et al., 2020). The sampling interface for 
ESEm has been designed to decouple the emulation technique from the sampler and enable easy 
implementation of additional samplers as required.  

5 Other use cases 

In order to demonstrate the generality of ESEm for performing emulation and/or inference over a 460 
variety of earth science datasets here we introduce two further examples.  

5.1 Cloud-resolving model sensitivity  

In this example, we use an ensemble of large-domain simulations of realistic shallow cloud fields to 
explore the sensitivity of shallow precipitation to local changes in the environment. The simulation data 
we use for training the emulator is taken from a recent study (Dagan and Stier, 2020) which performed 465 
ensemble daily simulations for one month-long period during December 2013 over the ocean to the East 
of Barbados, sampling the variability associated with shallow convection. Each day of the month 
consisted of two runs, both forced by realistic boundary conditions taken from reanalysis, but with 
different cloud droplet number concentrations (CDNC) to represent clean and polluted conditions. The 
altered CDNC was found to have little impact on the precipitation rate in the simulations, and so we 470 
simply treat the CDNC change as a perturbation to the initial conditions and combine the two CDNC 
runs from each day together to increase the amount of data available for training the emulator. At hourly 
resolution, this provides 1488 data points. 
However, given that precipitation is strongly tied to the local cloud regime, not fully controlling for 
cloud regime can introduce spurious correlations when training the emulator. As such we also filter out 475 
all hours which are not associated with shallow convective clouds. To do this, we consider domain-
mean vertical profiles of total cloud water content (liquid + ice), 𝑞-, and filter out all hours where the 
vertical sum of 𝑞- below 600hPa exceeds 10-6 kg/kg. This condition allows us to filter out hours 
associated with the onset and development of deep convection in the domain, as well as masking out 
hours with high cirrus layers or hours dominated by transient mesoscale convective activity which is 480 
advected in by the boundary conditions. After this, we are left with 850 hourly data points which meet 
our criteria and can be used to train the emulator. 
As our predictors we choose five representative cloud controlling factors from the literature (Scott et al., 
2020), namely, in-cloud liquid water path (LWP), geopotential height at 700hPa (𝑧2!!), estimated 
inversion strength (EIS), sea-surface temperature (SST) and the vertical pressure velocity at 700hPa 485 
(𝑤2!!). All quantities are domain-mean features and the LWP is a column average. 
We then develop a regression model to predict shallow precipitation as a function of these five domain-
mean features using the scikit-learn Random Forest implementation within ESEm. After validating the 
model using Leave-One-Out cross-validation, we then retrain the model using the full dataset, and use 
this model to predict the precipitation across a wide range of values environmental values.  490 
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Finally, for the purpose of plotting, we reduce the dimensionality of our final prediction by averaging 
over all features excluding LWP and 𝑧2!!, and then plot in LWP-𝑧2!! space. This allows us to 
effectively account for, or marginalise out, those other environmental factors and investigate the 
sensitivity of precipitation to LWP for a given 𝑧2!!, as shown in Figure 4. LWP and 𝑧2!! were chosen 
for plotting purposes as they are mutually uncorrelated and so span the two-dimensional space 495 
effectively. 

 
Figure 4: The mean precipitation emulated by ESEm using a Random Forest model trained on the five environmental factors 
diagnosed from an ensemble of cloud resolving models as described in the text. Panel (a) shows a validation plot of the emulated 
precipitation values against the model values using Leave-One-Out cross-validation. Panel (b) shows the emulated precipitation 500 
plotted as a function of liquid water path and geopotential height at 700mb (𝒛𝟕𝟎𝟎) by averaging over the remaining three dimensions 
corresponding to SST, EIS and 𝒘𝟕𝟎𝟎. A random subset of 140 of the training points are also shown overlaid on the emulated 
precipitation as scatter points, with the scatter outlines showing the relative error between the emulator and the training data. 

  

Figure 4a illustrates how the Random Forest regression model can capture most of the variance in 505 
shallow precipitation from the cloud-resolving simulations, with an R2 of 0.81 and a root mean square 
error (RMSE) of 0.01 mm hr-1. Additionally, the model captures basic physical features such as the non-
negativity of precipitation without requiring additional constraints. The coloured surface in the Figure 
4b shows the two-dimensional truncation of the model predictions after averaging over all features 
except LWP and 𝑧2!!, and shows that the model is behaving physically by predicting an increase in 510 
precipitation at larger LWP and lower 𝑧2!!.  
While emulators have previously been used to investigate the behaviour of shallow cloud fields in high-
resolution models (e.g., using GPs, Glassmeier et al., 2019), this example demonstrates that Random 
Forests are another promising approach, particularly due to their extrapolation properties.  

5.2 Exploring CMIP6 scenario uncertainty  515 

The 6th coupled model intercomparison project (CMIP6); (Eyring et al., 2016) coordinates a large 
number of formal model intercomparison projects (MIPs), including ScenarioMIP (O’Neill et al., 2016) 
which explored the climate response to a range of future emissions scenarios. While internal variability 
and model uncertainty can dominate the uncertainties in future temperature responses to these future 
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emissions scenarios over the next 30-40 years, uncertainty in the scenarios themselves dominates the 
total uncertainty by the end of the century (Hawkins and Sutton, 2009; Watson-Parris, 2021). Efficiently 
exploring this uncertainty can be useful for policy makers to understand the full range of temperature 535 
responses to different mitigation policies. While simple climate models are typically used for this 
purpose (e.g., (Smith et al., 2018; Geoffroy et al., 2013)), statistical emulators can also be of use.  
Here we provide a simple example of emulating the global mean surface temperature response to a 
change in CO2 concentration and aerosol loading. For these purposes we consider a change in aerosol 
optical depth (AOD) and the cumulative emissions of CO2 as compared to the start of the ScenarioMIP 540 
simulations (averaged over 2015-2020). We use the global mean AOD and cumulative CO2 at 2050 and 
2100 for each model (11 models were used in this example: CanESM5, ACCESS-ESM1-5, ACCESS-
CM2, MPI-ESM1-2-HR, MIROC-ES2L, HadGEM3-GC31-LL, UKESM1-0-LL, MPI-ESM1-2-LR, 
CESM2, CESM2-WACCM and NorESM2-LM) across the five main scenarios (SSP119, SSP126, 
SSP245, SSP370, SSP585 and SSP434). The mean was taken over model submissions for which 545 
multiple ensemble members were available to reduce model internal variability. As shown in Fig. 5, a 
simple Gaussian Process regression model is able to fit the resulting temperature change well across the 
range of training data. We can see that the emulator uncertainty increases away from the CMIP6 model 
values as expected and largely reflects the inter-model spread within the range of scenarios explored 
here. 550 

 
Figure 5: Global mean surface temperature response to a change in aerosol optical depth (AOD) or cumulative atmospheric CO2 
concentration relative to the 2015-2020 average as emulated by ESEm using Gaussian process regression trained on CMIP6 
ScenarioMIP outputs (shown as circles, the multi-model mean for each scenario are shown as square points). The contour lines 
represent the 1σ uncertainty in the emulator values, in Kelvin.  555 

Using a MCMC sampler, we are able to generate a joint probability distribution for the required change 
in AOD and CO2 in order to meet 2.0℃ temperature rises since pre-industrial times as shown in Fig. 6 
(assuming the present-day simulations start at +0.8℃ for simplicity). The effect of a decrease in 
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(cooling) aerosol on the remaining carbon budget for a given temperature target is clear. It should be 
noted though that the short lifetime of aerosol means that while aerosol emissions can affect the year of 
crossing a certain temperature threshold, stabilising at that temperature requires net-zero emissions of 565 
CO2 regardless of the aerosol.  
While more physically interpretable emulators are appropriate for such important estimates, the 
advantage these statistical emulators have over e.g., simple impulse response models is the ability to 
generalise to high-dimensional outputs, such as those shown in Fig. 2 (and e.g., (Mansfield et al., 
2020)). They can also account for the full complexity of Earth System Models and the many processes 570 
they represent. This is straightforward to achieve with ESEm. 

 

 
Figure 6: The joint probability distribution for a change in aerosol optical depth (AOD) or cumulative atmospheric CO2 
concentration relative to the 2015-2020 average compatible with a change of 1.2K global mean surface temperature 575 
(approximately 2℃ above pre-industrial temperatures) as sampled from a Gaussian process emulator using MCMC accounting 
for emulator uncertainties. The solid black line corresponds to a change of 1.2K by interpolating the emulator surface shown in 
Figure 5. 

6 Conclusions 

We present ESEm – a Python library for easily emulating and calibrating earth system models. 580 
Combined with the popular geospatial libraries Iris and CIS, ESEm makes reading, collocating and 
emulating a variety of model and earth system data straightforward. The package includes Gaussian 
process, Neural Network and Random Forest emulation engines and a minimal, clearly defined interface 
allows simple extension, as well as tools for validating these emulators. ESEm also includes two 
popular techniques for calibration (or inference), optimised using TensorFlow to enable efficient 585 
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sampling of the emulators. By building on fast and robust libraries in a modular way we hope to provide 
a framework for a variety of common workflows.  
We have demonstrated the use of ESEm for model parameter constraint and optimal estimation with a 590 
simple perturbed parameter ensemble example. We have also shown how ESEm can be used to fit high-
dimensional response surfaces over an ensemble of cloud-resolving model simulations in order to 
determine the sensitivity of precipitation to environmental parameters in these simulations. Such 
approaches can also be useful in marginalising over, potentially confounding, variables in observational 
data. Finally, we presented the use of ESEm for the emulation of the multi-model CMIP6 ensemble in 595 
order to explore the global mean temperature response to changes in aerosol loading and CO2 
concentration in-between the handful of prescribed scenarios available in ScenarioMIP.  
There are many opportunities to build on this framework and introduce the latest inference techniques 
(Brehmer et al., 2020), as well as bringing this setting of parameter estimation closer to the large body 
of work in data assimilation. While this has historically focussed on improving estimates of time-600 
varying boundary conditions (the model ‘state’), recent work is exploring using these approaches to 
concurrently estimate constant model parameters (Brajard et al., 2020) We hope this tool will provide a 
useful framework in which to explore such ideas. 
We strive to ensure reliability in the library through the use of automated unit-tests and coverage 
metrics. We also provide comprehensive documentation and a number of example notebooks to ensure 605 
useability and accessibility. Through the use of a number of worked examples we hope also to have 
shed some light on this, at times, seemingly mysterious sub-field. 
Health warning: While every effort has been made to make this tool easy to use and generally 
applicable, the example models provided make many implicit (and explicit) assumptions about the 
functional form and statistical properties of the data being modelled. Like any tool, the ESEm 610 
framework can be misused. Users should familiarise themselves with the models being used and consult 
the many excellent textbooks on this subject if in any doubt as to their appropriateness for the task at 
hand. 

Author contributions 

DWP designed the package and led its development. AD contributed the precipitation example and RF 615 
module. LD provided the AAOD example and dataset. PS provided supervision and funding 
acquisition. DWP prepared the manuscript with contributions from all co-authors.  

Acknowledgements 

This work has evolved through numerous projects in collaboration with Ken Carslaw, Lindsay Lee, 
Leighton Regayre and Jill Johnson and we thank them for sharing their insights and R scripts from 620 
which this package is inspired. Those previous collaborations were funded by Natural Environment 



 

19 

 

Research Council (NERC) grants NE/G006148/1 (AEROS); NE/J024252/1 (GASSP), and E/P013406/1 
(A‐CURE) which we gratefully acknowledge. 
For this work specifically, DWP and PS acknowledge funding from NERC projects NE/P013406/1 (A-
CURE) and NE/S005390/1 (ACRUISE) as well as from the European Union’s Horizon 2020 research 625 
and innovation programme iMIRACLI under Marie Skłodowska-Curie grant agreement No 860100. PS 
additionally acknowledges support from the ERC project RECAP and the FORCeS project under the 
European Union’s Horizon 2020 research programme with grant agreements 724602 and 821205. AW 
acknowledges funding from the Natural Environment Research Council, Oxford DTP, Award 
NE/S007474/1. LD acknowledges funding from NERC project NE/P013406/1 (A-CURE). 630 
The authors also gratefully acknowledge useful discussions with Dino Sedjonovic, Shahine Bouabid 
and Daniel Partridge as well as the support of Amazon Web Services through an AWS Machine 
Learning Research Award and NVIDIA through a GPU research grant. We further thank Victoria 
Volodina and one anonymous reviewer for their thorough and considered feedback which helped 
improve this manuscript. 635 

Code availability  

The ESEm code, including that used to generate the plots in this paper is available here: 
https://doi.org/10.5281/zenodo.5466563. 

Data availability  

The BC PPE data is available here: https://zenodo.org/record/3856645. The ensemble CRM data is 640 
available here: https://zenodo.org/record/3785603. The raw CMIP6 data used here is available through 
the Earth System Grid Federation and can be accessed through different international nodes e.g.: 
https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/. The derived dataset is available in the ESEm 
repository: https://doi.org/10.5281/zenodo.5466563   

References 645 

 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., 
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, 
S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, 
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on 650 
Heterogeneous Distributed Systems, Arxiv, 2016. 

Akaike, H.: A new look at the statistical model identification, Ieee T Automat Contr, 19, 716–723, 
https://doi.org/10.1109/tac.1974.1100705, 1974. 

Deleted: https://doi.org/10.5281/zenodo.5196632

Deleted: https://doi.org/10.5281/zenodo.5196632655 



 

20 

 

Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson‐Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A. ‐
L., Dufresne, J. ‐L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., 
McCoy, D. T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, 
O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate Change, 58, 
https://doi.org/10.1029/2019RG000660, 2020. 660 

Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., and Gentine, P.: Enforcing Analytic Constraints in Neural Networks Emulating 
Physical Systems, Phys Rev Lett, 126, 098302, https://doi.org/10.1103/physrevlett.126.098302, 2021. 

Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to emulate a dynamical model 
from sparse and noisy observations: A case study with the Lorenz 96 model, J Comput Sci-neth, 44, 101171, 
https://doi.org/10.1016/j.jocs.2020.101171, 2020. 665 

Brehmer, J., Louppe, G., Pavez, J., and Cranmer, K.: Mining gold from implicit models to improve likelihood-free inference, 201915980, 
https://doi.org/10.1073/pnas.1915980117, 2020. 

Breiman, L.: Random Forests, Mach Learn, 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001. 

Burt, D. R., Rasmussen, C. E., and Wilk, M. van der: Rates of Convergence for Sparse Variational Gaussian Process Regression, Arxiv, 
2019. 670 

Chollet, F.: Keras, 2015. 

Cleary, E., Garbuno-Inigo, A., Lan, S., Schneider, T., and Stuart, A. M.: Calibrate, emulate, sample, J Comput Phys, 424, 109716, 
https://doi.org/10.1016/j.jcp.2020.109716, 2021. 

Couvreux, F., Hourdin, F., Williamson, D., Roehrig, R., Volodina, V., Villefranque, N., Rio, C., Audouin, O., Salter, J., Bazile, E., Brient, 
F., Favot, F., Honnert, R., Lefebvre, M., Madeleine, J., Rodier, Q., and Xu, W.: Process‐Based Climate Model Development Harnessing 675 
Machine Learning: I. A Calibration Tool for Parameterization Improvement, J Adv Model Earth Sy, 13, 
https://doi.org/10.1029/2020ms002217, 2021. 

Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A.: Bayes linear strategies for history matching of hydrocarbon reservoirs, in: 
Bayesian Statistics, vol. 5, edited by: Bernado, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M., Clarendon Press, Oxford, UK, 69–
95, 1996. 680 

Cranmer, K., Brehmer, J., and Louppe, G.: The frontier of simulation-based inference, Proc National Acad Sci, 117, 30055–30062, 
https://doi.org/10.1073/pnas.1912789117, 2020. 

Dagan, G. and Stier, P.: Ensemble daily simulations for elucidating cloud–aerosol interactions under a large spread of realistic 
environmental conditions, Atmos Chem Phys, 20, 6291–6303, https://doi.org/10.5194/acp-20-6291-2020, 2020. 

Dagon, K., Sanderson, B. M., Fisher, R. A., and Lawrence, D. M.: A machine learning approach to emulation and biophysical parameter 685 
estimation with the Community Land Model, version 5, Adv Statistical Clim Meteorology Oceanogr, 6, 223–244, 
https://doi.org/10.5194/ascmo-6-223-2020, 2020. 

Damianou, A. C. and Lawrence, N. D.: Deep Gaussian Processes, Arxiv, 2012. 

Dawson, A.: eofs: A Library for EOF Analysis of Meteorological, Oceanographic, and Climate Data, J Open Res Softw, 4, e14, 
https://doi.org/10.5334/jors.122, 2016. 690 



 

21 

 

Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance 
measurements, J Geophys Res Atmospheres, 105, 20673–20696, https://doi.org/10.1029/2000jd900282, 2000. 

Duvenaud, D.: Automatic model construction with Gaussian processes, 2011. 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci Model Dev, 9, 1937–1958, 695 
https://doi.org/10.5194/gmd-9-1937-2016, 2016. 

Fearnhead, P. and Prangle, D.: Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate 
Bayesian computation, J Royal Statistical Soc Ser B Statistical Methodol, 74, 419–474, https://doi.org/10.1111/j.1467-9868.2011.01010.x, 
2012. 

Gal, Y. and Ghahramani, Z.: Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, 2015. 700 

Geoffroy, O., Saint-Martin, D., Olivié, D. J. L., Voldoire, A., Bellon, G., and Tytéca, S.: Transient Climate Response in a Two-Layer 
Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments, J Climate, 26, 1841–
1857, https://doi.org/10.1175/jcli-d-12-00195.1, 2013. 

GPy: GPy: A Gaussian process framework in python, 2012. 

Hawkins, E. and Sutton, R.: The Potential to Narrow Uncertainty in Regional Climate Predictions, B Am Meteorol Soc, 90, 1095–1108, 705 
https://doi.org/10.1175/2009bams2607.1, 2009. 

Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of the adjoint of GEOS-Chem, Atmos Chem Phys, 7, 2413–2433, 
https://doi.org/10.5194/acp-7-2413-2007, 2007. 

Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, 
F., Jankowiak, I., and Smirnov, A.: AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization, 710 
Remote Sens Environ, 66, 1–16, https://doi.org/10.1016/s0034-4257(98)00031-5, 1998. 

Holden, P. B., Edwards, N. R., Garthwaite, P. H., Fraedrich, K., Lunkeit, F., Kirk, E., Labriet, M., Kanudia, A., and Babonneau, F.: 
PLASIM-ENTSem v1.0: a spatio-temporal emulator of future climate change for impacts assessment, Geosci Model Dev, 7, 433–451, 
https://doi.org/10.5194/gmd-7-433-2014, 2014. 

Holden, P. B., Edwards, N. R., Hensman, J., and Wilkinson, R. D.: ABC for climate: dealing with expensive simulators, Arxiv, 2015a. 715 

Holden, P. B., Edwards, N. R., Garthwaite, P. H., and Wilkinson, R. D.: Emulation and interpretation of high-dimensional climate model 
outputs, 42, https://doi.org/10.1080/02664763.2015.1016412, 2015b. 

Holden, P. B., Edwards, N. R., Rangel, T. F., Pereira, E. B., Tran, G. T., and Wilkinson, R. D.: PALEO-PGEM v1.0: a statistical emulator 
of Pliocene–Pleistocene climate, Geosci Model Dev, 12, 5137–5155, https://doi.org/10.5194/gmd-12-5137-2019, 2019. 

Hou, Z. and Rubin, Y.: On minimum relative entropy concepts and prior compatibility issues in vadose zone inverse and forward 720 
modeling, Water Resour Res, 41, https://doi.org/10.1029/2005wr004082, 2005. 

Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays and Datasets in Python, J Open Res Softw, 5, https://doi.org/10.5334/jors.148, 
2016. 



 

22 

 

Johnson, J. S., Regayre, L. A., Yoshioka, M., Pringle, K. J., Lee, L. A., Sexton, D. M. H., Rostron, J. W., Booth, B. B. B., and Carslaw, K. 
S.: The importance of comprehensive parameter sampling and multiple observations for robust constraint of aerosol radiative forcing, 725 
Atmos Chem Phys, 18, 13031–13053, https://doi.org/10.5194/acp-18-13031-2018, 2018. 

Karydis, V. A., Capps, S. L., Russell, A. G., and Nenes, A.: Adjoint sensitivity of global cloud droplet number to aerosol and dynamical 
parameters, Atmos Chem Phys, 12, 9041–9055, https://doi.org/10.5194/acp-12-9041-2012, 2012. 

Kennedy, M. C. and O’Hagan, A.: Bayesian calibration of computer models, J Royal Statistical Soc Ser B Statistical Methodol, 63, 425–
464, https://doi.org/10.1111/1467-9868.00294, 2001. 730 

Knudde, N., Herten, J. van der, Dhaene, T., and Couckuyt, I.: GPflowOpt: A Bayesian Optimization Library using TensorFlow, Arxiv, 
2017. 

Knutti, R., Meehl, G. A., Allen, M. R., and Stainforth, D. A.: Constraining Climate Sensitivity from the Seasonal Cycle in Surface 
Temperature, J Climate, 19, 4224–4233, https://doi.org/10.1175/jcli3865.1, 2006. 

Knutti, R., Masson, D., and Gettelman, A.: Climate model genealogy: Generation CMIP5 and how we got there, Geophys Res Lett, 40, 735 
1194–1199, https://doi.org/10.1002/grl.50256, 2013. 

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Chalikov, D. V.: New Approach to Calculation of Atmospheric Model Physics: Accurate 
and Fast Neural Network Emulation of Longwave Radiation in a Climate Model, Mon Weather Rev, 133, 1370–1383, 
https://doi.org/10.1175/mwr2923.1, 2005. 

Lee, C., Martin, R. V., Donkelaar, A. van, Lee, H., Dickerson, R. R., Hains, J. C., Krotkov, N., Richter, A., Vinnikov, K., and Schwab, J. 740 
J.: SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space‐based (SCIAMACHY and OMI) 
observations, J Geophys Res Atmospheres 1984 2012, 116, https://doi.org/10.1029/2010jd014758, 2011a. 

Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and Spracklen, D. V.: Emulation of a complex global aerosol model to quantify 
sensitivity to uncertain parameters, Atmos Chem Phys, 11, 12253–12273, https://doi.org/10.5194/acp-11-12253-2011, 2011b. 

Mansfield, L. A., Nowack, P. J., Kasoar, M., Everitt, R. G., Collins, W. J., and Voulgarakis, A.: Predicting global patterns of long-term 745 
climate change from short-term simulations using machine learning, Npj Clim Atmospheric Sci, 3, 44, https://doi.org/10.1038/s41612-
020-00148-5, 2020. 

Matheron, G.: Principles of geostatistics, Econ Geol, 58, 1246–1266, https://doi.org/10.2113/gsecongeo.58.8.1246, 1963. 

Matthews, A., er G. de G., Wilk, M. van der, Nickson, T.,   Fujii, Keisuke., Boukouvalas, A., Leon-Villagra, P.,   Ghahramani, Z., and 
Hensman, J.: GPflow: A Gaussian process library using TensorFlow, 18, 1–6, 2017. 750 

Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M., Haak, H., Jungclaus, J., Klocke, D., Matei, D., 
Mikolajewicz, U., Notz, D., Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the climate of a global model, J Adv Model Earth Sy, 4, 
n/a-n/a, https://doi.org/10.1029/2012ms000154, 2012. 

Morris, M. D. and Mitchell, T. J.: Exploratory designs for computational experiments, J Stat Plan Infer, 43, 381–402, 
https://doi.org/10.1016/0378-3758(94)00035-t, 1995. 755 

Neal, R.: Handbook of Markov Chain Monte Carlo, Chapman Hall Crc Handbooks Mod Statistical Methods, 20116022, 
https://doi.org/10.1201/b10905-6, 2011. 



 

23 

 

Neubauer, D., Ferrachat, S., Drian, C. S.-L., Stier, P., Partridge, D. G., Tegen, I., Bey, I., Stanelle, T., Kokkola, H., and Lohmann, U.: The 
global aerosol–climate model ECHAM6.3–HAM2.3 – Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity, Geosci 
Model Dev, 12, 3609–3639, https://doi.org/10.5194/gmd-12-3609-2019, 2019. 760 

Office, M.: Cartopy: a cartographic python library with a Matplotlib interface, 2020a. 

Office, M.: Iris: A Python library for analysing and visualising meteorological and oceanographic data sets, 2020b. 

O’Gorman, P. A. and Dwyer, J. G.: Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, 
Climate Change, and Extreme Events, J Adv Model Earth Sy, 10, 2548–2563, https://doi.org/10.1029/2018ms001351, 2018. 

O’Neill, B. C., Tebaldi, C., Vuuren, D. P. van, Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., 765 
Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci 
Model Dev, 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. 

Partridge, D. G., Vrugt, J. A., Tunved, P., Ekman, A. M. L., Gorea, D., and Sorooshian, A.: Inverse modeling of cloud-aerosol interactions 
– Part 1: Detailed response surface analysis, Atmos Chem Phys, 11, 7269–7287, https://doi.org/10.5194/acp-11-7269-2011, 2011. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., 770 
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, 12, 
2825--2830, 2011. 

Prangle, D.: Summary Statistics in Approximate Bayesian Computation, Arxiv, 2015. 

Rasmussen, C. E. and Williams, C. K. I.: Gaussian Processes for Machine Learning, https://doi.org/10.7551/mitpress/3206.001.0001, 
2005. 775 

Regayre, L. A., Johnson, J. S., Yoshioka, M., Pringle, K. J., Sexton, D. M. H., Booth, B. B. B., Lee, L. A., Bellouin, N., and Carslaw, K. 
S.: Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF, Atmos Chem Phys, 18, 
9975–10006, https://doi.org/10.5194/acp-18-9975-2018, 2018. 

Ryan, E., Wild, O., Voulgarakis, A., and Lee, L.: Fast sensitivity analysis methods for computationally expensive models with multi-
dimensional output, Geosci Model Dev, 11, 3131–3146, https://doi.org/10.5194/gmd-11-3131-2018, 2018. 780 

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P.: Design and Analysis of Computer Experiments, Stat Sci, 4, 409–423, 
https://doi.org/10.1214/ss/1177012413, 1989. 

Schutgens, N., Tsyro, S., Gryspeerdt, E., Goto, D., Weigum, N., Schulz, M., and Stier, P.: On the spatio-temporal representativeness of 
observations, Atmos Chem Phys, 17, 9761–9780, https://doi.org/10.5194/acp-17-9761-2017, 2017. 

Schutgens, N. A. J., Partridge, D. G., and Stier, P.: The importance of temporal collocation for the evaluation of aerosol models with 785 
observations, Atmos Chem Phys, 16, 1065–1079, https://doi.org/10.5194/acp-16-1065-2016, 2016a. 

Schutgens, N. A. J., Gryspeerdt, E., Weigum, N., Tsyro, S., Goto, D., Schulz, M., and Stier, P.: Will a perfect model agree with perfect 
observations? The impact of spatial sampling, Atmos Chem Phys, 16, 6335–6353, https://doi.org/10.5194/acp-16-6335-2016, 2016b. 

Sexton, D. M. H., Murphy, J. M., Collins, M., and Webb, M. J.: Multivariate probabilistic projections using imperfect climate models part 
I: outline of methodology, Clim Dynam, 38, 2513–2542, https://doi.org/10.1007/s00382-011-1208-9, 1995. 790 

Sisson, S. A., Fan, Y., and Beaumont, M. A.: Handbook of approximate Bayesian computation, Boca Raton, 2019. 

Deleted: Met 

Deleted: Met 



 

24 

 

Smith, C. J., Forster, P. M., Allen, M., Leach, N., Millar, R. J., Passerello, G. A., and Regayre, L. A.: FAIR v1.3: a simple emissions-based 
impulse response and carbon cycle model, Geosci Model Dev, 11, 2273–2297, https://doi.org/10.5194/gmd-11-2273-2018, 2018. 795 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.: Dropout: A Simple Way to Prevent Neural Networks 
from Overfitting, 15, 1929–1958, 2014. 

Tegen, I., Lohmann, U., Neubauer, D., Drian, C. S.-L., Ferrachat, S., Heinhold, B., Stier, P., Watson-Parris, D., Schultz, M. G., Schutgens, 
N. A. J., Rast, S., and Kokkola, H.: The aerosol-climate model ECHAM6.3-HAM2.3: Aerosol evaluation, 2018. 

Vernon, I., Goldstein, M., and Bower, R. G.: Galaxy formation: a Bayesian uncertainty analysis, Bayesian Anal, 5, 619–669, 800 
https://doi.org/10.1214/10-ba524, 2010. 

Vysochanskij, D. F. and Petunin, Y. I.: Justification of the 3σ rule for unimodal distributions, 21, 25–36, 1980. 

Watson-Parris, D.: Machine learning for weather and climate are worlds apart, Philosophical Transactions Royal Soc, 379, 20200098, 
https://doi.org/10.1098/rsta.2020.0098, 2021. 

Watson-Parris, D., Schutgens, N., Cook, N., Kipling, Z., Kershaw, P., Gryspeerdt, E., Lawrence, B., and Stier, P.: Community 805 
Intercomparison Suite (CIS) v1.4.0: a tool for intercomparing models and observations, Geosci Model Dev, 9, 3093–3110, 
https://doi.org/10.5194/gmd-9-3093-2016, 2016. 

Watson‐Parris, D., Bellouin, N., Deaconu, L., Schutgens, N., Yoshioka, M., Regayre, L. A., Pringle, K. J., Johnson, J. S., Smith, C. J., 
Carslaw, K. S., and Stier, P.: Constraining uncertainty in aerosol direct forcing, Geophys Res Lett, https://doi.org/10.1029/2020gl087141, 
2020. 810 

Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L., and Yamazaki, K.: History matching for exploring and 
reducing climate model parameter space using observations and a large perturbed physics ensemble, Clim Dynam, 41, 1703–1729, 
https://doi.org/10.1007/s00382-013-1896-4, 2013. 

Williamson, D., Blaker, A. T., Hampton, C., and Salter, J.: Identifying and removing structural biases in climate models with history 
matching, Clim Dynam, 45, 1299–1324, https://doi.org/10.1007/s00382-014-2378-z, 2015. 815 

  Formatted: Font: Not Bold


