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Abstract. A comprehensive understanding of the effects of meteorology, emission and chemistry on severe haze is critical in 

the mitigation of air pollution. However, such understanding is largely hindered by the nonlinearity of atmospheric chemistry 

systems. Here, we developed a novel quantitative decoupling analysis (QDA) method to quantify the effects of emission, 

meteorology, chemical reaction, and their nonlinear interactions on the fine particulate matter (PM2.5) pollution based on the 

accompanying simulations for different atmospheric processes. Via embedding the QDA method into the Weather Research 15 

and Forecasting-Nested Air Quality Prediction Modeling System (WRF-NAQPMS) model, we first employed this method into 

a typical heavy haze episode in Beijing. Different from the previously sensitive simulation method, which usually linked to a 

certain period, the QDA achieves the fully decomposing analysis of PM2.5 concentration during any pollution event into seven 

different parts, including meteorological contribution (M), emission contribution (E), chemical contribution (C), and 

interactions among these drivers (i.e., ME, MC, EC and MCE). The results show that the meteorology contribution varied 20 

significantly at different stages of episode, from 0.21 µg∙m-3∙h-1 during accumulation period to -11.82 µg∙m-3∙h-1 during the 

removal period, dominating the hourly changes of PM2.5 concentrations. The chemical contributions were shown to increase 

with the level of haze, which become largest (0.37 µg∙m-3∙h-1) at the maintenance period, 25% higher than that during the clean 

period. The contribution of primary emission is relatively stable in all stages due to the use of fixed emission during the 

simulation. Besides, the QDA method highlights that there exist nonnegligible coupling effects of meteorology, emission and 25 

chemistry on PM2.5 concentrations (-1.83 to 2.44 µg∙m-3∙h-1), which were commonly ignored in previous studies and the 

development of heavy-pollution control strategies. These results indicate that the QDA method can not only provide 

researchers and policy makers with valuable information for understanding of key factors to heavy pollution, but also help the 

modelers to find out the sources of uncertainties among numerical models. 
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1 Introduction 30 

Atmospheric particulate matter especially fine particulate matter smaller than 2.5 µm (PM2.5), can reduce visibility, 

degrade air quality, boost health expenditures, and increase respiratory diseases and mortality (Xing et al., 2021; Huang et al., 

2014; Lelieveld et al., 2015). Over the past two decades, rapid development of industrialization and urbanization has led to 

severe haze pollution in China (Lu et al., 2019b; Chen et al., 2018; Liu et al., 2017; Hartmann et al., 2014) with the Beijing-

Tianjin-Hebei (BTH) region exhibiting the largest PM2.5 concentrations (Lin et al., 2015). The ambient PM2.5 concentration is 35 

controlled by complex atmospheric processes, including emission, meteorology and chemical reactions (Gelencsér et al., 2007; 

Jia et al., 2015; Wang et al., 2015; He et al., 2016; Sun et al., 2016). Thus, an effective PM2.5 control strategies should be 

formulated and adopted on the basis of an in-depth understanding of the effects of meteorology, emission, chemistry and their 

interactions on the formation of PM2.5. However, it is difficult to quantify and distinguish the roles of each factor from the 

others due to their complex mechanisms and varied conditions from case to case (Li et al., 2011). 40 

There have been some tools developed to analyse the effects of different factors on PM2.5 concentrations. The integrated 

process rate (IPR) considered in the Community Multiscale Air Quality (CMAQ) model can analyse the contribution of 

physicochemical processes in numerical models, thus providing a comprehensive understanding of the formation of air 

pollution (Jeffries and Tonnesen, 1994). IPR methods have been applied to study the formation process and mechanism of 

ozone and particulate matter in many cities (Liu et al., 2010; Li et al., 2014; Fan et al., 2014; Huang et al., 2016; Chen et al., 45 

2019a; Chen et al., 2019c; Fu et al., 2020). The source apportionment technique (SAT) can quantitatively estimate the 

contributions of certain air pollutant emissions originating from different regions to the target grid (Lv et al., 2021; Lu et al., 

2017; Li et al., 2017b). The above methods, however, cannot accurately reveal the influence of meteorological, emission and 

chemical effects on PM2.5 during heavy-pollution periods. Besides, the scenario analysis approach (SAA) has been employed 

to assess the response of PM2.5 by changing emissions under certain meteorological fields, For example the studies of Zheng 50 

et al. (2015b) found that the heavy pollution occurring in winter 2013 was mainly caused by the stable weather conditions in 

most parts of Northeast China rather than driven by a sudden increase in anthropogenic emissions. Zhang et al. (2019a) reported 

that although interannual meteorological changes may notably affect the PM2.5 concentration, the corresponding impact on the 

five-year trend is relatively limited. However, due to the nonrepeatability of individual pollution cases, sensitivity experiments 

considering meteorological conditions or emission changes cannot fully reproduce the individual cases. 55 

In addition to chemical transport model (CTM) simulations, certain other methods have also been adopted. For example, 

the PLMA (parameter linking air quality to meteorological conditions) index has been used to determine the contribution of 

meteorology and emission to air pollution (Zhang et al., 2015; Zhang et al., 2019b; Yang et al., 2016). Studies employing 

principal component analysis or those targeting the correlation between PM2.5 and meteorological elements suggested that a 

low wind speed and high humidity facilitate haze formation (Wang et al., 2013; Pang et al., 2009; Shu et al., 2017; Zhai et al., 60 

2019). Considering that a single meteorological element does not fully explain the relationship between meteorology and PM2.5, 
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an artificial neural network (ANN) model has been used to combine multiscale meteorological conditions, and the 

meteorological influence has thus been quantified by the explained variance (He et al., 2017). 

None of the above methods quantitatively analyses individual pollution cases nor provides a direct grasp of environmental 

management to decision makers. Although the basic relationship between PM2.5 and different influencing factors has been 65 

revealed, the quantitative influence of these factors on pollution episodes remains unclear. In view of these discrepancies, in 

this paper, we developed a novel quantitative decoupling analysis (QDA) method and for the first time assess the effects of 

emissions, meteorology, chemical reactions as well as their interactions on the PM2.5 concentration in a pollution case over 

BTH region. Briefly, the QDA method tracks the change in PM2.5 concentration in response to changes in emissions, 

meteorological conditions and chemical reactions in high-pollution cases. Based on QDA, the roles of the above three factors 70 

and their mutual coupling influence are quantified. Thus, this approach provides a useful tool to determine the air pollution 

control and emergency responses in pollution cases in typical urban areas. It can also help identify the key process and improve 

its representation in atmospheric models, for example, the physicochemical structure in boundary layer and formation 

mechanism of secondary air pollution (Chen et al., 2019a; Kang et al., 2019; Xing et al., 2017; Goncalves et al., 2009). 

2 Description of the quantitative decoupling analysis (QDA) method 75 

In this section, we provide a detailed description of the QDA method proposed in this study, including the general design 

of QDA method and its implementation, the chemical transport model used in this study and the experiment set up for the 

application of the QDA method into the case study over BTH region. 

2.1 Design of the QDA method 

Emissions, meteorology and chemistry are the three main drivers of PM2.5 variation in the atmosphere. They also interact 80 

with each other due to the nonlinear characteristics of atmospheric systems, which should be considered in the quantification 

of their contribution to PM2.5 changes. Thus, in the QDA method, we considered that the PM2.5 concentration is a function of 

the above three driving factors, and explicitly considers the interactions among these three drivers by representing the PM2.5 

concentration as �(�⃗), and the variation in PM2.5 can be expressed as Eq. (1): 

∆���.� = ���⃗ + ∆�����⃗ � − �(�⃗);  �⃗ = (��, ��, ��)        (1) 85 

where �⃗ is a given influencing factor of PM2.5 and ��, ��, and �� denote the meteorological, emission and chemical factors, 

respectively. ���⃗ + ∆�����⃗ � is the PM2.5 concentration upon xi (i=1,2,3) variation. According to the Taylor equation we can obtain 

Eq. (2): 
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The terms only containing a single partial derivative to x1 (including any higher-order derivatives) are denoted as M, 

where M indicates the meteorological contribution without consideration of any coupling effects. In the same manner, the 

partial derivative terms of x2 are denoted as E, representing the emission contribution without consideration of any coupling 

effects. The partial derivative terms of x3 are denoted as C, representing the chemical contribution without coupling effect 95 

consideration. The other terms represent the interaction among the different drivers: the partial derivatives of x1 and x2 reflect 

the effect of emissions on meteorology (ME), the partial derivatives of x2 and x3 reflect the effects of emissions on chemistry 

(CE), the partial derivatives of x1 and x3 reflect the interactions between meteorology and chemistry (MC) and MCE denotes 

the interactions among the above three drivers. Therefore, Eq. (2) can be rewritten as Eq. (3): 

���⃗ + ∆�����⃗ � − �(�⃗) = � + � + � + �� + �� + �� + ���       (3) 100 

The relationship among the 7 terms of Eq. (3) can be expressed with the graph theory, as illustrated in the Fig. 1, in which 

the contributions of emissions, meteorology and chemistry are denoted by three circles and the interactions among the different 

processes are denoted by overlapping areas. The arrows indicate the directions of the coupling effects between any two drivers. 

Intuitively, the effect of emissions on meteorology or chemical processes is unidirectional, while the effect between 

meteorology and chemistry is bidirectional. 105 

According to these definitions, each term in Eq. (3) can be determined via scenario simulations. For example, the 

magnitude of M can be determined via scenario simulations without considering emission and chemical processes. Moreover, 

the magnitude of M+E+ME can be determined with the scenario simulation method without chemical processes. Based on this 

method, we designed six accompanying simulation scenarios and embedded them into the baseline simulation scenario (Table 

1) to calculate each term of Eq. (3). The baseline scenario (M1) represents the actual situation, which is employed to calculate 110 

the change in the PM2.5 concentration at hourly intervals. The six accompanying simulation scenarios represent simulations 

without one or two drivers that are performed to decompose the PM2.5 variation. Here, the accompanying means that the 

simulation scenarios are simultaneously run with the base simulation scenario at each time step. Thus, in contrast to the 

traditional scenario simulation approach wherein each simulation scenario is independently run with the baseline simulation 

scenario, the accompanying simulation scenarios are encoded in the baseline simulation scenario. With the use of the results 115 

of the baseline and different accompanying scenario simulations, the magnitudes of M, C, E, ME, CE, MC, and MCE at each 

time step can be easily calculated. 

The above QDA method can also be combined with the IPR method to resolve more detailed information, such as the 

contributions of advection, diffusion, dry and wet deposition processes in M or the contributions of the gas-phase chemistry, 

thermodynamic equilibrium processes and reactions involving secondary organic aerosols (SOAs) in C. Detailed descriptions 120 
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about these processes are available in Table 2. In addition, this technique enables us to derive the proportion of various 

physicochemical processes in the different coupling interactions, which can be considered to explore the causes of air pollution 

generation, maintenance and dissipation and determine the different characteristics of clean and polluted periods. 

2.2 Chemical transport model 

It should be noted that the QDA method designed in this study is a universal tool that can be embedded into any numerical 125 

model, which is another advantage of this method. In this study, we embedded the QDA method into the Nested Air Quality 

Prediction Modeling System (NAQPMS) model. NAQPMS is a three-dimensional regional Eulerian chemical transport model 

developed by the Institute of Atmospheric Physics, Chinese Academy of Sciences, which has been widely used in scientific 

research and air quality prediction practice (Wang et al., 2014) due to its good performance in simulating the emission, 

meteorological and chemical processes in the atmosphere. Within the model, the gas-phase chemistry was simulated by carbon 130 

bonding mechanism Z (CBM-Z) developed by Zaveri and Peters (1999) which includes 134 reactions and 71 species. For 

inorganic aerosols, the thermodynamic equilibrium module ISORRPIA v1.7 (Nenes et al., 1998) was used to simulate the 

ammonia-nitrite-sulfate-chloride-sodium-water system. Six secondary organic aerosols (SOA) were processed by a two-

product module in NAQPMS (Odum et al., 1997). The aqueous-phase chemistry and wet deposition are modelled using the 

Regional Acid Deposition Model (RADM) mechanism in the Community Multi-scale Air Quality (CMAQ) version 4.6. Dry 135 

deposition of gases and aerosols is simulated based on the scheme of Wesely (1989) and the advection is simulated with an 

accurate mass-conservative algorithm from Walcek and Aleksic (1998). More technical details on NAQPMS could be found 

in Li et al. (2012).  

2.3 Experiment setup 

To illustrate the feasibility of the QDA method and quantitatively resolve the magnitude of the emission, meteorological 140 

and chemical contributions to the PM2.5 variation during heavy-pollution episode, we applied it into a week-long heavy-haze 

episode in Beijing from 17 to 28 February. Figure 2 shows the modelling domain of this case, which covers the most parts of 

East Asia with a horizontal resolution of 45km. Vertically, the NAQPMS uses nonequally distributed 20 terrain-following 

layers from the surface to 20km. The anthropogenic emission inventories used in the simulation were obtained from the 

Chinese multi-resolution emission inventory (MEIC) developed by Tsinghua University (http://www.meicmodel.org). 145 

Biogenic emissions were obtained from the National Center for Atmospheric Research (NCAR), derived from the model of 

natural gas and aerosol emissions (MEGAN v2.0)(Guenther et al., 2006). The clean initial condition was used in the simulation 

with a 10-day free run of NAQPMS as a spin-up time. Top and boundary conditions of the outermost region were extracted 

from the global chemical transport model MOZART-v2.4 (The Model for Ozone and Related Chemical Tracers version 2.5) 

with 3-hour time resolution(Brasseur et al., 1998). Hourly meteorological fields were generated by Weather Research and 150 

Forecasting Model version 3.7 (WRFv3.7) (http://www.wrf-model.org/) driven by the National Centre for Environmental 

Prediction (NCEP) Final Analysis (FNL) data.  
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2.4 Observations  

The observational data used in this study include surface observations of PM2.5, fine particulate matter smaller than 10 

µm (PM10), NO2, O3, SO2 and CO obtained from the China National Environmental Monitoring Center, surface observations 155 

of the wind speed, wind direction, temperature, relative humidity and station pressure, and vertical observations of the wind 

speed, wind direction, temperature, and relative humidity retrieved from the China Meteorological Administration. Spatial 

distributions of the meteorological and air quality observation sites are shown in Fig. 2. To compare with the PM2.5 observations, 

The simulated PM2.5 concentrations comprised of primary PM2.5, including black carbon, primary organic aerosol, and other 

directly emitted PM2.5, and secondary PM2.5, including sulfate, nitrate, ammonium and SOA produced by chemical reactions. 160 

3 Results 

3.1 Observed pollution during the heavy-haze episode 

From 19–27 February 2014, a serious pollution event occurred in the Beijing area, with the average PM2.5 concentration 

observed at the different sites in Beijing reaching 222.4 µg m-3 (Fig. 3), nearly three times higher than the national secondary 

standard level (75 µg m-3). As shown in Fig. S1, this pollution episode also affected a wide area of the BTH region, with severe 165 

haze mostly located in the southern part of the BTH region before 23 February and gradually extending northward to 

encompass wider areas. The SO2, NO2 and O3 concentrations did not exhibit notable exceedances as the PM2.5 did, indicating 

that this case is a typical particulate-led pollution event. 

To investigate the variation in the contributions of emissions, meteorology and chemistry at the different stages of this 

haze event, we divided the whole episode into four stages based on the temporal characteristics of the PM2.5 concentration in 170 

Beijing (Fig. 3): (1) the pre-contamination stage (February 17/08:00–19/14:00 LST) when the PM2.5 concentration was low 

and its variation was limited, representing a relatively clean period; (2) the accumulation stage (February 19/15:00–23/08:00 

LST) when the PM2.5 concentration increased the most rapidly; (3) the pollution maintenance stage (February 23/09:00–

26/18:00 LST) when the PM2.5 concentration remained high with small fluctuations; and (4) the pollution removal stage 

(February 26/19:00–27/08:00 LST) when the PM2.5 concentration rapidly dropped. 175 

3.2 Evaluation of the meteorology and chemistry simulations 

To assess the accuracy of the model, simulated meteorological parameters and air pollutant concentrations were compared 

with observed values. We use several evaluation indicators to quantitatively assess model performance, including Simulated 

average (MM), Observed average (OM), correlation coefficient (R), mean fractional bias (MFB), mean deviation (MB), 

standard mean deviation (NMB), standard mean error (NME), root mean square error (RMSE), and index of agreement (IOA), 180 

which are defined in Table S1. The verification results of meteorological elements are shown in Table S2, and the correlation 

coefficient (R) of temperature (Temp), relative humidity (RH) and pressure are all above 0.85. The correlation between wind 
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speed (WS) and observation data (R=0.47) is better than that of wind direction (WD:R=0.24). Although the error of wind 

simulation is greater than that of other meteorological elements, NME and NMB are less than 1, which indicates that simulation 

and observation matches well on the whole, and the error may have little influence on the performance of aerosol simulation.  185 

The simulations based on the NAQPMS model generally reproduced the magnitude and temporal variation in the PM2.5 

concentration in the Beijing area well, with a correlation coefficient (R) of approximately 0.83 and a mean bias error (MBE) 

smaller than 1 µg m−3. The model simulation results exhibited relatively larger underestimations of the PM2.5 concentration 

from 20–23 February, which may be attributed to the overestimation of the simulated wind speed by the WRF model during 

this period (Fig. 4~5). In regard to the two important precursors of PM2.5, the simulated NO2 and SO2 concentrations also 190 

agreed well with the observations, with MBE values of approximately 7.1 and 5.3 µg m−3, respectively, and R values of 

approximately 0.75 and 0.74, respectively. In general, the simulated PM2.5, SO2 and NO2 concentrations all satisfactorily 

satisfied the mean fractional bias (MFB) and mean fractional error (MFE) prime performance standards (MFB:30%;MFE:50%) 

(Boylan and Russell, 2006). The simulated sulfate, nitrate and ammonium concentrations were also evaluated against the 

observations to evaluate the chemical processes in the NAQPMS model (Fig. 6). The model reproduced the variation in 195 

secondary inorganic aerosols (SIAs) well during this episode (R>0.79), although the model underestimated the sulfate 

concentration, possibly due to missing reaction pathways of sulfuric acid in the model, such as heterogeneous chemistry (Zheng 

et al., 2015a; Cheng et al., 2016). Underestimation of the sulfate concentration is a common problem in current CTMs (Chen 

et al., 2019b), which is beyond the scope of this study. However, this could lead to uncertainty in the estimation of the chemical 

contribution to the PM2.5 concentration in this study. In summary, the model can suitably reproduce the pollution evolution 200 

process from the cleaning period to the accumulation, maintenance and removal periods, which lays a good foundation for the 

subsequent analysis of the physical and chemical processes. 

3.3 Illustration of the QDA results 

3.3.1 Temporal variation in the QDA results 

Figure 7 shows the time series of the calculated contributions of emissions, meteorology, chemistry and their interactions 205 

to the hourly variation in the PM2.5 concentration using the QDA method. We can clearly observe that the sum of all resolved 

contributions is exactly equal to the hourly change in the PM2.5 concentration, indicating that the QDA method can fully resolve 

the variation in the PM2.5 concentration. According to the QDA results, the fluctuation in PM2.5 caused by the meteorological 

factor is the most significant, with calculated meteorological contributions (M) ranging from -42 to 8 µg∙m-3∙h-1. At the hourly 

scale, emissions are the second largest contributor to the PM2.5 variation. Since we did not consider the temporal variation in 210 

the emission inventory in this case, the calculated emission contribution (E) remains constant (0.9 µg∙m-3∙h-1) throughout the 

episode. The chemical contribution exhibits remarkable diurnal variation, which is notably larger during the daytime than that 

during the nighttime. This occurs because the atmospheric oxidation capacity during the daytime is higher than that during the 
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nighttime, which is more conducive to secondary PM2.5 formation (Huang et al., 2021; Chen et al., 2020a; Lu et al., 2019a), 

and similar conclusions have been reported in other model studies (Chen et al., 2019a; Li et al., 2014). 215 

Figure 8 shows the QDA results at the different stages of the episode. The meteorological processes exhibited a notable 

negative contribution to PM2.5 at the first stage, which was enough to remove the newly emitted or formed PM2.5 from emissions 

and chemical reactions. Thus, the PM2.5 concentration was relatively low at the first stage. However, M shifted to a positive 

value at stage 2, and almost no removal processes occurred during this period, leading to rapid accumulation of the PM2.5 

concentration. M became negative and played a clearing role at stage 3, but it nearly offset the simultaneous increase in 220 

emissions and chemistry. Hence, the PM2.5 concentration remained at a relatively steady level. At stage 4, the meteorological 

removal effects were much larger than those at the previous stages due to the strong northwest nonpolluted wind, leading to a 

rapid decline in the PM2.5 concentration. According to the process analysis results, horizontal advection was the main process 

of pollution removal at stages 1 and 4, and a high horizontal wind speed during the cleaning period facilitated PM2.5 reduction 

(Chen et al., 2020b). Vertical advection was the main process of pollution accumulation at stages 1, 2 and 4, indicating the 225 

transportation of fine particles from upper to lower altitudes. High pollutant levels may originate from elsewhere via long-

distance transport (Du et al., 2020), leading to boundary layer turbulence weakening, which facilitates local pollution 

accumulation (Huang et al., 2020). The vertical diffusion contribution in M was less than zero at all stages, indicating that the 

considered pollutants continuously diffused from lower to upper altitudes and that this feature did not change at the different 

stages. In addition, the hourly contribution of deposition was small and played a negligible role in the observed variation at 230 

the different stages of pollution. The chemical processes yielded positive contributions at the first three stages (0.29-0.37 µg∙m-

3∙h-1) due to the generation of SIAs and SOAs. At stage 4, the chemical contribution became negative (-0.18 µg∙m-3∙h-1), as the 

environmental conditions at this stage were suitable for nitrate decomposition (Chen et al., 2020b). 

In summary, the QDA results suggest that the main sources of PM2.5 are primary emission processes (E) and chemical 

processes (C). Meteorological processes (M) act as the main removal pathway of PM2.5 in the atmosphere, and the different 235 

atmospheric motion states and pollutant concentrations in the atmosphere can cause positive or negative M contributions during 

the different periods, which exerts the largest impact on the hourly variation in the PM2.5 concentration. When M becomes 

positive, no PM2.5 removal process occurs, and combined with emissions and chemical processes, leading to a rapid increase 

in PM2.5. 

3.3.2 Coupling effect at the different stage 240 

There are also nonnegligible coupling effects at each stage according to the QDA method despite their contributions being 

smaller than those of meteorology, emission and chemistry (Fig. 7~8). For example, when the emission process increases the 

concentration of pollutants in air, the amount of pollutants carried by air masses also increases, which is conducive to pollutant 

transport, reflecting the coupled effect of EM (-0.14 ~ -0.06 µg∙m-3∙h-1). The emission process also increases the concentration 

of precursors in the atmosphere. Hence, more secondary aerosol particles are generated through chemical reactions, as reflected 245 

by CE>0 at each stage. Based on the above process analysis results, this coupling effect is largely associated with the generation 
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of SIAs via chemical reaction and equilibrium partition. The interaction between chemistry and meteorology (MC) consists of 

two parts: the first part is the influence of meteorology on chemistry, in which meteorological processes can increase chemical 

production by transporting more precursors or decrease chemical production by reducing the concentration of local precursors, 

while the second part involves the influence of chemistry on meteorology, since chemical processes can lead to an increase in 250 

the concentration of secondary pollutants in the atmosphere. This may lead to an increase in pollutants carried by air masses 

in the corresponding region. The coupling term MCE includes all meteorological, emission and chemical process interactions, 

which are complex but yield very small contributions. 

Based on these results, we investigated for the first time the influences of the coupling effects on the PM2.5 concentration 

by summing all the contributions of the interaction between the different physical and chemical processes 255 

(COUP=EM+CE+MC+MCE). The hourly value of COUP ranged from -1.83 to 2.44 µg∙m-3∙h-1 during this episode, with an 

average value of approximately 0.30 µg m-3 h-1. The coupling effect was shown to increase continuously from the relatively 

clean to polluted periods. From stages 1 to 3, the hourly average value of COUP increased from 0.13 to 0.5 µg∙m-3∙h-1, but its 

proportion in the hourly variation in PM2.5 decreased continuously (from 37% to -3%). This indicates that although the coupling 

effect increased with the PM2.5 concentration, the influence of the other effects increased faster than the coupling effect did. 260 

During the whole episode, CE exhibited the largest coupling effect (0.27 µg∙m-3∙h-1 on average) and increased with PM2.5 

concentrations, indicating that the coupling between emissions and chemistry plays an important role during periods of heavy 

haze. According to the vertical distribution of CE at stage 2 (Fig. 9), the contribution of CE decreased from the surface to the 

upper levels due to the vertical characteristics of the air temperature and emissions. The contribution of MC revealed the largest 

variation with a fluctuation range up to 4.24 µg∙m-3∙h-1 because both the meteorology and chemistry are greatly influenced by 265 

diurnal variation. As shown in Fig. 9, MC also indicated that meteorological processes could decrease the chemical formation 

process at the surface and increase chemical formation in the upper layers (L3~L8), which could be related to the phenomenon 

whereby meteorological action transports PM2.5 (M) and precursors from the bottom layer to the upper layer. EM suggests that 

local emissions could enhance vertical PM2.5 diffusion from the surface layer to the upper layer. Primary emitted PM2.5 particles 

mainly occurred in the near-surface layer, where the vertical wind speed was so low that vertical advection was very limited. 270 

Thus, PM2.5 emitted by pollution sources could only diffuse to the upper layers. MCE represents the interaction between 

emissions, meteorology, and chemical processes, which contributed little to the PM2.5 variation in this case. 

In previous studies, examination of coupling effects has usually been ignored in the analysis of heavy-haze episode. The 

QDA results demonstrated that ignoring these coupling effects may cause deviation when studying the contribution of 

meteorological, emission or chemical changes to PM2.5. For example, when discussing the effect of emission change on PM2.5, 275 

if the variations in CE, EM and MCE were ignored, an uncertainty ranging from -0.86~1.86 µg∙m-3 could occur in the hourly 

results, especially during the most polluted period, and this uncertainty may accumulate with time. This suggests that 

quantitative analysis of the coupling effect is necessary to the evaluation of the pollution control effect. 
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3.4 Evaluation of the QDA results at different pollution stages 

The emission contribution (E) calculated with the QDA method is just directly determined by the emission inventory used 280 

in the simulations. Thus, we mainly evaluated the calculated contributions of meteorological and chemical processes in this 

study. However, there were no observation data directly linked to the emission or chemical contribution that could be used to 

verify the QDA method directly. Hence, the method was evaluated with indirect results. Since the chemical contribution to 

PM2.5 is mainly related to the formation of secondary aerosols, the conversion rates of nitrate (NOR) and sulfate (SOR), as 

defined in Eqs. (5–6), are calculated to evaluate the temporal variation in the chemical contribution obtained with the QDA 285 

method. Daily PM2.5 mass composition data measured by the Beijing Ecological Environment Monitoring Center are used to 

calculate NOR and SOR values at the different stages of this episode: 

��� =
���

�

���
�����

            (5) 

��� =
���

��

���
������

            (6) 

It should be noted that according to the definitions of NOR and SOR, these two indicators are easily affected by regional 290 

transportation, as exterior precursors or SIAs may affect the concentration of air pollutants measured locally and reduce the 

representativeness of NOR and SOR in local chemical transformation. In this case, NOR and SOR increased by 0.09 and 0.02, 

respectively, from stages 2 to 1. NOR and SOR both reached their maximum values of 0.54 and 0.38 at stage 3. At stage 4, 

NOR and SOR experienced a significant decrease. Other haze cases have also revealed that SOR and NOR greatly increase 

with PM2.5 concentration (Song et al., 2019; Xu et al., 2017; Yan et al., 2015a). The proportion of secondary particulate matter 295 

often increases with worsening haze (Xu et al., 2019; Li et al., 2017a). Process analysis has also shown that the chemical 

reaction of PM2.5 in the WRF-Chem model is stronger during the day than that at night, which is consistent with the QDA 

results (Chen et al., 2019a). This evidence combined with the QDA analysis results explains the important role of chemical 

reactions in severe smog (Huang et al., 2019). 

The contributions of meteorological processes were quantitively evaluated via the analysis of weather conditions. Figure 300 

S2 in supporting information clearly shows that at stage 1, Beijing and its surrounding areas were influenced by a high-pressure 

system in northeastern Inner Mongolia and a low-pressure system in the southwest with a high wind speed, which promoted 

PM2.5 advection across the Beijing area. With the low-pressure system in Inner Mongolia slowly moving eastward and finally 

disappearing under the influence of westerly winds, Beijing was increasingly controlled by a uniform pressure field and 

affected by weak south winds, which facilitated the transportation of air pollution from the southern BTH region to Beijing. 305 

The small-scale high-pressure center to the north of Beijing also blocked the airflow originating from the south, leading to the 

accumulation of air pollutants in Beijing, which is consistent with the positive meteorological contribution (M) at stage 2. 

Although the potential source contribution function (PSCF) index can only reflect the potential contribution of the inflow 

trajectory, Baoding, Shijiazhuang and Cangzhou in Hebei in southern Beijing were the main sources of PM2.5 transmission 

(Yan et al., 2015b). Research revealed the transportation process in this case under the influence of weak southerly winds from 310 
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February 19-20, and the PLAM index indicated a positive correlation between PM2.5 and atmospheric stability (Zhong et al., 

2018b). An inversion layer occurred due to the radiative cooling effect of the transported particles, which further aggravated 

aerosol accumulation (Zhong et al., 2018a) (Fig. 10). In other smog events, the key role of transmission in the formation of 

high concentrations of PM2.5 has also been found (Sun et al., 2016; Huang et al., 2020; Zhang et al., 2019b). 

At stage 3, the northern high-pressure system was compressed by the northwest low-pressure air system and moved to 315 

the southeast sea area. The isobaric lines in Beijing became increasingly dense, and the wind speed increased, which was 

beneficial to the diffusion of pollutants (M<0). However, due to the positive contribution of emissions and chemistry, the air 

quality did not improve. At stage 4, the northeast low-pressure system continued to develop and intensified, confronting the 

Mongolian high-pressure system, resulting in a strong northwest airflow in North China, which transported air pollutants to 

the southeast sea area and greatly improved the air quality in Beijing. Therefore, the hourly contribution of M at this stage was 320 

the largest, reflecting a strong cleaning effect. This is also consistent with the analysis of this pollution case in other studies 

(Zhong et al., 2018b; Zhong et al., 2018a). 

4 Conclusions and discussions 

In this study, a new QDA method targeting PM2.5 is proposed and applied to the analysis of a typical heavy-pollution case 

in Beijing. By quantitatively decomposing the meteorology, chemical reactions, emission and their coupling interactions in 325 

the hourly change in the PM2.5 concentration, the formation process of heavy haze can be analyzed from a new perspective.  

Through the application of this method into a typical haze episode in Beijing, we found that the meteorological 

contribution (M) during the accumulation stage (stage 2) was 0.21 µg m-3 h-1, indicating that M favors the accumulation of 

PM2.5. While M in the removal period (stage 4) plays a strong role in clearance of PM2.5. This means meteorological activities 

play different roles in different periods, M mainly acts as a sink (negative value) for PM2.5 most of the time. When M becomes 330 

positive, PM2.5 loses its prime sink and is tend to grow rapidly under the superimposed influence of emissions and chemical 

processes. The contributions of C and CE play a significant role in stage 3, indicating that chemical reactions are more 

important in the polluted period than in the cleaner period. The contribution of E of PM2.5 is independent of other chemical 

and meteorological factors, because this study did not consider the time variability of the PM2.5 primary emission. More 

realistic conclusions would be expected in future studies if the temporal variation of emission sources were available.  335 

The method proposed in this study can be applied to different cases with heavy haze characteristics in various cities, 

which can contribute to the formulation of more effective treatment measures. In addition, the consideration of coupling effects 

provides a useful way to handle the nonlinear characteristics of the atmosphere, thus fills the gap in traditional methods in 

terms of nonlinear uncertainty. The QDA method can not only be applied to any three-dimensional atmospheric chemistry 

model but can also be employed to study any atmospheric pollutant, including PM2.5, which yields a strong general applicability 340 

and practical application prospects. This technique provides not only new reference ideas for the governance of air pollution 
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but also an important tool for the further study of the formation processes of heavy particulate pollution and the influence of 

different physicochemical mechanisms. 

 

Code and data availability 345 

The observation data used in this paper and the source codes of QDA are available online via ZENODO (http://doi.org/10.5281/ 

zenodo.5292895). Please contact Junhua Wang (wangjunhua@mail.iap.ac.cn) to obtain the model data for QDA method used 

in NAQPMS. 
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Figures & tables: 575 

 

Table 1. Grouping mode simulation settings and variable descriptions 

 Simulation 
name 

Processes included in the 
simulations 

Target acquisition 

Base simulation M1 Base simulation with all 
physicochemical processes 

To quantify the change in the PM2.5 
concentration at each time step and 

MCE 

Accompanying 
simulations 

M2 Only meteorological process M 

M3 Only emission processes E 

M4 Only chemical process C 

M5 Meteorological and chemical 
processes 

M+C+MC 

M6 Emission and chemical 
processes 

C+E+CE 

M7 Emission and meteorological 
processes 

M+E+ME 

 

 

 580 

 

 

 

 

 585 

 

 

 

 

 590 

 

 

 

https://doi.org/10.5194/gmd-2021-259
Preprint. Discussion started: 1 September 2021
c© Author(s) 2021. CC BY 4.0 License.



20 
 

 

 595 

Table 2. Descriptions of different processes considered in the QDA method 

Abbreviation Descriptions Category 

emit emission E 

advhor horizontal advection M 

advvert vertical advection M 

difhor horizontal diffusion M 

difvert vertical diffusion M 

wetdep wet deposition M 

drydep dry deposition M 

gaschem gas chemistry C 

ISORR inorganic aerosol chemistry C 

SOA secondary aerosol chemistry C 

 

 

Table 3 Hourly QDA results in different stages (unit: µg m-3 h-1) 

 Stage 1 Stage 2 Stage 3 Stage 4 

M -2.92 0.21 -1.68 -11.82 

E 0.90 0.90 0.90 0.90 

C 0.29 0.29 0.37 -0.18 

EM -0.07 -0.06 -0.07 -0.14 

CE 0.14 0.15 0.43 0.50 

MC 0.05 0.13 0.10 0.0 

MCE 0.02 0.02 0.05 -0.13 

 600 
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 605 

 

Table 4. The results of the different-stage process analysis (unit: µg m-3 h-1) 

 emit advhor advvert difhor difvert gaschem drydep ISORR wetdep SOA 

Stage 1 0.90 -3.71 1.06 0.00 -0.31 0.00 -0.02 0.47 0.00 0.02 

Stage 2 0.90 0.15 0.39 -0.01 -0.38 0.00 -0.03 0.60 0.00 0.02 

Stage 3 0.90 0.13 -1.31 -0.01 -0.55 0.00 -0.03 0.93 0.00 0.04 

Stage 4 0.90 -12.40 0.63 0.00 -0.20 0.00 -0.03 0.23 0.00 0.00 

 

 

 610 

Figure 1. Graph theory of the QDA method (the total area of colorful graphics represents the change of PM2.5 concentration between 
t and t+1, which can be disassembled into 7 parts, see the Table 2 for abbreviation informations). 
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Figure 2. (a) Model domain and (b) stations for the evaluation used in this study. 615 

 

 

Figure 3. Observations and simulation results for PM2.5, NO2 and SO2 in Beijing (all simulation and observation results are averaged 
over the Beijing area. The three gray dotted lines indicate 35, 75 and 115 µg m−3). 
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 620 

 

Figure 4. Comparisons of observed (grey lines) and simulated (red lines) values of different meteorology elements in Beijing from 
11th Feb to 28th Feb 2014. 

 

Figure 5. Comparisons of simulated and observed values of meteorological elements in Beijing in February 2014.  625 
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Figure 6. Evaluation of simulated PM2.5 chemical composition concentrations against ground-based observations. The solid line 
corresponds to the 1:1 line, and the dashed lines correspond to the 1:2 and 2:1 line. 
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Figure 7. Decoupling of the PM2.5 hourly change (a) and scatter plot (b) of the sum of all contributions versus the hourly change in 640 
PM2.5. Hourly variation of PM2.5 denote the difference in concentration between adjacent hours, and the scattered points all fall on 
the diagonal line, indicating that the concentration change can be fully resolved. 
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Figure 8. Averaged hourly contribution of each component in QDA (a-d) and  process analysis results for the different components 650 
that influence the hourly mean PM2.5 change in the total model height at different stages (e-h). (Corresponding values are available 
in Table 3~4). Take the ‘M’ bar in (a) for example, the bar of ‘M’ is composed of six different parts as that displayed in the bar of 
(e), i.e., ‘advhor’, ‘advvert’, ‘difhor’, ‘difvert’, ‘drydep’ and ‘wetdep’, respectively.  
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 660 

Figure 9. Vertical process decomposition of the QDA results at stage 2 (the black arrow and colored lines indicate the average change 
in the PM2.5 concentration, results for other stages showed in Fig. S3-S5; unit: µg m-3 h-1). 
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Figure 10. Vertical distribution of (a)RH, (b) temperature and (c) wind field from 17th Feb to 28th Feb 2014 over Beijing area. The 670 
white dotted box in (b) represents a temperature inversion. Vector diagram in (c) represents horizontal wind field, and the shading 
represents wind speed). 
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