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Abstract. The Carnegie-Ames-Stanford Approach (CASA) model is widely used to estimate vegetation net primary 

productivity (NPP) at regional scales. However, the CASA is still driven by multi-source data, e.g., satellite remote sensing 

(RS) data, and ground observations that are time-consuming to obtain.However, the CASA is still driven by multi-source 

data, e.g. satellite remote sensing (RS) data, and ground observations that are time-consuming to obtain. RS data can 

conveniently provide real-time regional information and may replace ground observation data to drive CASA model.RS data, 15 

can conveniently provide real-time surface information at the regional scale, thus replacing ground observation data to drive 

CASA model. We attempted to improve the CASA model in this study using the Moderate Resolution Imaging 

Spectroradiometer RS products, the GlobeLand30 RS product, and the Digital Elevation ModelDEM data derived from radar 

RS and RS products data generated from Moderate Resolution Imaging Spectroradiometer satellite sensor. . We applied it to 

simulate the NPP of alpine grasslands in Qinghai Lake Basin, which is located in the northeastern Qinghai-Tibetan Plateau, 20 

China. The accuracy of the RS data driven CASA, with mean absolute percent error (MAPE) of 22.1423.32% and root mean 

square error(error (RMSE) of 26.26 36 g C•m-2•month-1, was higher than that of the multi-source data driven CASA, with 

MAPE of 44.8049.08% and RMSE of 57.4365.21 g C•m-2•month-1. The NPP simulated by RS data driven CASA in July 

2020 shows an average value of 110.17108.01±26.25 31 g C•m-2•month-1, which is similar to published results and 

comparable with the measured NPP. The results of this work indicate that simulating alpine grassland NPP with satellite RS 25 

data rather than ground observations is feasible. We may provide a workable reference for rapidly simulating grassland, 

farmland, forest, and other vegetation NPP to satisfy the requirements of  precision agriculture, precision livestock farming, 

accounting carbon stocks, and other applications.  

1 Introduction 

Net primary productivity (NPP) is defined as the net accumulation of organic matter through photosynthesis by green plants 30 

per unit of time and space (Yu et al., 2009). NPP reflects the carbon sink, production, and food supply capacity of an 
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ecosystem (Jiao et al., 2018; Li et al., 2019), so it plays an important role in studying carbon cycles, ecosystem management, 

grassland productivity (Zhang et al., 2016), crop yields (Wang et al., 2019), climate change (Zhang et al., 2018), and other 

issues directly or indirectly at both local and global scales (Li et al., 2020). NPP has been the subject of a great deal of 

attention from academics and governmental agencies (Wang et al., 2017), which is . It is also a necessary input parameter for 35 

many models in the research of global change and ecology. Accordingly, it has been recognized as a key indicator by the 

International Biological Program (IBP) (IBP, Uchijima and Seino, 1985), the International Geosphere Biosphere Program 

(IGBP, Terrestrial Carbon Working Group, 1998), the Global Change and Terrestrial Ecosystem (GCTE) (, Fang et al., 

2003), and the Kyoto Protocol as a key indicator.  

Direct field measurements are time-consuming and costly, so simulation models are generally used to analyzeanalyse NPP 40 

(Hadian et al., 2019). Existing NPP simulation models can be roughly split into three categories: climate relative models, 

process models, and Light Use Efficiency (LUE) models. LUE models include the Carnegie-Ames-Stanford Approach 

(CASA) model (Potter et al., 1993; Field, et al., 1995), carbon fixation model (Veroustraete et al., 2002), and carbon flux 

model (Turner et al., 2006), etc. Among them, the CASA is a process-based mechanistic model that describes processes of 

carbon exchange between the terrestrial biosphere and atmosphere (Cramer et al., 1999); it has been widely used to simulate 45 

regional or continental NPP over hundreds of published studies (Jay et al., 2016). 

The parameters of CASA model are total solar radiation (SOL), water stress coefficient (WSC), fraction of absorbed 

photosynthetically active radiation (FPAR), water stress coefficient (WSC), temperature stress factors Tε1 (the temperature at 

which the plant can perform photosynthetic activities) and Tε2 (the temperature at which the plant can efficiently use the 

light), and the maximum possible efficiency (εmax). At regional scales, the FPAR is usually calculated by remote sensing (RS) 50 

data (e.g., Potter et al., 1993; Pei et al., 2018), and the εmax for vegetation types is usually determined by Land-use and land-

cover change (LUCC). Wang et al. (2017) used MODIS LUCC product (MCD12Q1) in the CASA model to determine the 

εmax for each vegetation type. At present, the FPAR and εmax have been driven by remote sensing (RS) data. Tε1 and Tε2 are 

usually calculated by the air temperature data from ground meteorological stations through spatial interpolation method. 

SOL, as a basic driver of CASA model, is usually calculated via Angstrom-Prescott equation or simulated by a solar 55 

radiation flux (SolarFlux) modeldue to lack of measured data, were usually calculated by Angstrom-Prescott equation, or 

were estimated by solar radiation flux (SolarFlux) model. The Angstrom-Prescott equation (Prescott, 1940) uses measured 

solar radiation data to determine empirical coefficients a (the ratio of surface solar radiation to astronomical radiation under 

completely cloudy conditions) and b (the transmission characteristics of clouds to solar radiation), then SOL can be 

calculated using sunshine duration data from ground meteorological station. The Angstrom-Prescott equation (Prescott, 1940) 60 

uses measured solar radiation data to determine its empirical coefficients a(the ratio of surface solar radiation to astronomical 

radiation under the completely cloudy condition) and empirical coefficients b(reflecting the transmission characteristics of 

clouds to solar radiation), and then calculates SOL using sunshine duration data from ground meteorological station. The 

empirical coefficients a and b will change as the time and territories change. In addition, this method lacks a meteorological 

basis that weather conditions such as cloudy sky or clear sky are determined by the total cloud cover, are not depended on 65 
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the number of sunshine duration. The SolarFlux model, can simulate SOL, and its simulation precision mainly depends on 

the accuracy of atmospheric conditions. The SolarFlux model simulates SOL using the key parameter of Digital Elevation 

Model (DEM) that derived from radar RS, whose simulation precision mainly depends on the accuracy of atmospheric 

conditions. When When aastronomical solar radiation passes through the atmosphere, it is weakened by atmospheric 

scattering and absorption, and finally transmits to earth surface (so-called so called surface solar radiation), which means 70 

that atmospheric conditions significantly affect surface solar radiation. The total cloud cover can greatly affect the 

atmospheric conditions, so it is helpful that introducing total cloud cover to simulate SOL. However, the SolarFlux model 

introducing total cloud cover has rarely reported so far. The WSC, another basic driver of the CASA model, is traditionally 

obtained using a ratio of the actual\estimated evapotranspiration (ET) to the potential evapotranspiration (PET). Initially, 

both ET and PET are determined from a soil moisture submodel.WSC, as another basic driver of CASA model, meaning the 75 

availability of water, in traditional studies, was obtained using a ratio of the actual\estimated evapotranspiration (ET) to the 

potential evapotranspiration (PET). Initially, both ET and PET came from soil moisture submodel. This model needs 

meteorological temperature and precipitation data as well as soil texture, soil depth, and other soil parameters typically 

obtained from a soil database or field investigation. ET and PET can also be calculated separately with different simulation 

models and data sources. PET is often calculated by the FAO Penman-Monteith equation (Allen et al., 1998), which needs 80 

meteorological observation data as input parameters; ET can be obtained with models based on the complementary 

relationship of evapotranspiration (Bouchetr,1963) or other approaches such as the Pike equation (Pike,1964)This model 

need the meteorological data of temperature and precipitation, and soil texture, soil depth, and other soil parameters usually 

obtained from soil database or field investigation. As the study progressed, ET and PET were calculated separately with 

different simulation model and data source. Usually, PET can be calculated by FAO Penman-Monteith equation (Allen et al., 85 

1998) that needs meteorological observation data such as minimum temperature, maximum temperature, air temperature, 

wind speed, relative humidity and sunshine duration. ET can be obtained with models based on complementary relationship 

of evapotranspiration (Bouchet, 1963) or other approaches such as Pike equation (Pike, 1964).  As such parameters are 

numerous, difficult to obtain, and complex to calculate, scholars have improved WSC by modifying ET or PET (e.g., Xu and 

Wang, 2016; Zhang et al., 2016; Pei et al., 2018). In view of numerous parameters, difficulty in obtaining, and complicated 90 

calculation, most scholars have improved WSC through modifying the calculation of ET or PET (e.g., Xu and Wang, 2016; 

Zhang et al., 2016; Pei et al., 2018). A few scholars attempted to introduce RS data for improving WSC, but their techniques 

still need the support of ground observation data. For examples, Bao et al. (2016) introduced RS data to establish a land-

surface water index and ScaledP (the ratio between monthly precipitation amounts and the maximum monthly precipitation 

within the growing season for individual pixels of precipitation) to improve WSC; Liu et al. (2018) improved WSC by the 95 

way of combining RS data and measured soil moisture dataA few scholars attempted to introduce RS data for improving 

WSC, but still need the support of ground observation data, e.g., Bao et al. (2016) introduced RS data and proposed the land-

surface water index and the ScaledP (the ratio between monthly precipitation amounts and the maximum monthly 

precipitation for individual pixels of precipitation) to improve WSC.. 
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In summary, CASA model is still driven by multi-source data, e.g., RS data and ground observations data. The parameter 100 

SOL can be simulated with radar RS data while it should be introduced total cloud cover to improve simulation accuracy. 

The parameters  Tε1, Tε2 and WSC are dependent on ground meteorological data, soil data and other ground observation 

points datasome parameters of the CASA model were still obtained from meteorological data, measured solar radiation, soil 

data and other ground observation points data. Usually. The spatial distributions of these ground observation points are 

usually scattered and far apart. In some regions, there may be scant or even no observation stations, which drives down the 105 

application of CASA model. Moreover, due to the CASA needing to input continuous raster data, it means that the data of 

discrete observation points must be converted into continuous raster data of study area, which inevitably takes errors, and in 

turn affects the accuracy of simulation NPP. In addition, soil field measurements are time-consuming, and the monthly 

meteorological data and measured solar radiation data from meteorological departments are often published at a time delay, 

which makes it impossible to estimate NPP in real time. These factors prevent CASA from satisfying the requirements for 110 

accounting carbon stocks or other applications. , the spatial distribution of these ground observation points are few and 

scattered, especially in a small region, there may be only a few or even no observation stations, which affects the application 

of CASA model. Moreover, due to the CASA need to input continuous raster data, it means that the data of discrete 

observation points must be convert into continuous raster data of study area, which inevitably takes errors, and in turn affects 

the accuracy of simulation NPP. In addition, soil field measurements are time-consuming, and the monthly meteorological 115 

data and measured solar radiation data from meteorological departments often were published in time-delay, which makes it 

impossible to estimate NPP in real time, and cannot meet the application requirements of precision agriculture, precision 

livestock farming, accounting carbon stocks, etc. Unlike ground observation points data, however, Hence the CASA model 

driven by multi-source data such as meteorology, soil, and RS has notable disadvantages. Compared to these ground 

observation points data, satellite RS can rapidly obtain regional land surface data at regional scale. Advancements in satellite 120 

sensor technologies and RS algorithms have yielded many LUCC data products (e.g., CCI-LC, MCD12, and GlobeLand30) 

and quality-controlled RS Moreover, with the development of satellite sensors and RS algorithms, many quality-controlled 

RS products have been produced and are available online. products, which are available online. GlobeLand30, a global 

LUCC data product, is widely used by scientists and users around the world (Chen et al., 2017). Moderate Resolution 

Imaging Spectroradiometer (MODIS) satellite sensor records cloud cover and land surface information. Some MODIS 125 

products, e.g., land surface temperature (LST) product, were evaluated in several previous studies (Wan et al., 2002; Zou et 

al., 2015) and applied in terms of air temperature estimation and other fields (Fu et al.,2011; Qie et al., 2020). Therefore, to 

drive a CASA model with an entire set of RS data, we hope to used entire RS data to drive CASA model. To achieve this, 

using the Moderate Resolution Imaging Spectroradiometer (MODIS ) RS products, GlobeLand30 product,  and Digital 

Elevation Model (DEM) data derived from radar RS, we attempts to  improve CASA model and its parameters as follows: 130 

(1)SOL was driven by total cloud cover data from MOD08_M3 product and the DEM data; (2) FPAR was driven by 

Normalized Difference Vegetation Index (NDVI) data from MOD13A1 product; (3)Tε1 and Tε2 were driven by land surface 
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temperatureLST data from MOD11A2 product; (4)(3)SWC was driven by shortwave infrared reflectance data from 

MOD09A1 product; (45)εmax was determined by vegetation types from GlobeLand30 productFPAR was driven by 

Normalized Difference Vegetation Index (NDVI) data from MOD13A1 product; . and (5)the RS data driven CASA model 135 

The improved CASA that is called RS data driven CASA in this paper, was compared with multi-source data driven CASA, 

and was tested with multi-source data driven CASA model and the measured NPP of alpine grassland in Qinghai Lake Basin, 

in the northeast of Qinghai Tibet PlateauQTP, China.  

2 Data sources 

2.1 Study area 140 

Qinghai Lake Basin Basin is located in the northeasternnorth-eastern part of the Qinghai-Tibetan Plateau (QTP) (Fig. 1). Its 

topography varies greatly over an altitude range of 3193-5114 m. It has a cold climate with an average annual air 

temperature of 1.2°C (1951-2007). Its main vegetation types are alpine grasslands and alpine meadows, which account for 

85.31% of all vegetation types. Qinghai Lake Basin Basin was taken here as aa typical empirical study area to test the 

proposed RS data -driven CASA model under conditions of varied topography and relative single vegetation types. 145 

2.2 Data sources 

2.2.1 DEM 

DEM data with 90 m spatial resolution was derived from the Shuttle Radar Topography Mission as provided by the 

Geospatial Data Cloud (http://www.gscloud.cn/). It was aggregated into 500 m spatial resolution on the ARCGIS ArcGIS 10 

software platform, then used to calculate SOL.  150 

2.2.2 Solar radiation measurements 

There is only one provincial ground solar radiation observation station in the study area. Observation data for the station in 

2020 were not yet published at the time of this study, so we obtained its monthly SOL data for 2005, 2010, and 2015 from 

China Meteorological Data Service Center (http://data.cma.cn/) to verify the SOL simulation. 

2.2.3 Ground meteorological data 155 

The meteorological data of twenty ground observation stations in the study area and surrounding areas, were obtained from 

China Meteorological Data Service Center (http://data.cma.cn/) and Qinghai Climate Center, Qinghai Province, China. The 

set contains average monthly data for years 2005, 2010, 2015, and 2020, including temperature (mean, minimum, maximum), 

sunshine duration (only for 2020), sunshine percentage, precipitation, wind speed, and relative humidity and served to 
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calculate traditional SOL, traditional WSC, and input parameters of the multi-source data driven CASA model.These 160 

2.2.4 Land-use and Land-cover changeLUCC data 

Land-use and land-cover change data with GlobeLand30 product at 30 m spatial resolution in 2020, as a Geo-information 

Public Product,  were was obtained from GLOBELAND30 (http://www.globallandcover.com/) to identify grassland types 

and then determine its εmax. 

 165 

 (http://www.globallandcover.com/) to identify grassland types. 

MODIS is a key sensor aboard the Terra and Aqua satellites. Terra MODIS and Aqua MODIS are covering the entire earth’s 

surface every one to two days. The Earth Science Data Systems Program generates 8-day, 16-day, monthly, and other time-

scaled quality-controlled MODIS products. The products MOD11A2, MOD09A1, MOD13Q1, and MOD08M3 were 

obtained from the National Aeronautics and Space Administration (NASA, https://ladsweb.modaps.eosdis.nasa.gov/search/). 170 

MOD 13Q1, MOD 09A1, and MOD 11A2, with spatial resolution ranging from 250 m to 1000 m, were resampled to 500 m 

spatial resolution via bilinear interpolation method, . Two images of 16-day products (MOD13Q1) and four images of 8-day 

products (MOD11A2, MOD09A1) were averaged separately to calculate the monthly CASA parameters. then used to 

calculate CASA model parameters. MOD08M3 was used to count total cloud cover unwithout necessarily adjusting its 

spatial resolution. 175 

AMSR2 products, a surface soil moisture data set, have been evaluated in several previous studies , and compared quite well 

with both observational and model simulation data sets from a variety of global test sites (Owe et al., 2008).We obtained the 

daily LPRM_AMSR2_DS_A_SOILM3 data of AMSR2 products in July 2020 from the Goddard Distributed Active Archive 

Center (DAAC, https://disc.gsfc.nasa.gov/) and averaged them to evaluate our WSC simulation results, and averaged 

together to evaluate the simulation results of WSC.  180 

2.2.6 Field observation data 

The field observation NPP data were surveyed via quadrat method. Referencing the Technical regulations Regulations for 

Survey and Collection Biomass of Forest Carbon Pools (SACINFO, 2021) and the technical specificationother approaches of 

for field observation of grassland ecosystemground survey of grass NPP (Ministry of Ecology and Environment, PRC, 2021), 

we designed three 1 m × 1 m quadrats were designed in the corner of square sample plots 25 m × 25 m in size. The average 185 

NPP values of these three quadrats was regarded as the NPP value of the sample plot. All vegetation above ground in the 

quadrat was cut with scissors and placed into self-sealing bags, then placed into an oven at 105°C, baked for 15 min, and 

dried at 65 ◦C until reaching a constant dry biomass value. The dry aboveground biomass (AGB) value was converted to 

NPP as follows (Zhang, 2016): 

𝑁𝑃𝑃 = 𝐴𝐺𝐵 × 𝐶(1 + 𝑆𝑅) ,            (1)           190 
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where C is carbon content coefficient converting biomass to NPP. It does not exceed 40% for herbaceous plants in the Tree-

River Headwaters Region, Qinghai-Tibetan PlateauQTP (Sun et al., 2017), and was set to 37.13% here according to the 

average carbon  content of herbaceous plants (Zheng et al., 2007). SR represents the ratio of above-ground biomass to below-

ground biomass. Liu et al. (2020) reported that the average root-shoot ratio (the ratio of below-ground and above-ground 

biomass) of alpine grassland is 6.87, so SR was set to 1.00/6.87, namely SR equals 0.146 in this case. 195 

From July 23 to July 27, 2020, we investigated a total of 30 quadrats and obtained ten samples of NPP data to validate the 

RS data -driven CASA model (Table 4). 

3 Methods 

3.1 CASA model 

The CASA model incorporates meteorology, environment, and soil factors to simulate the physiological process of 200 

vegetation absorbing photosynthetically available radiation and transforming it into organic carbon. The model is given as 

follows (Potter et al., 1993; Wang et al., 2017): 

𝑁𝑃𝑃(𝑥, 𝑡) = 0.5 × 𝑆𝑂𝐿(𝑥, 𝑡) × 𝐹𝑃𝐴𝑅(𝑥, 𝑡) × 𝑇𝜀1 × 𝑇𝜀2 × 𝑊𝑆𝐶(𝑥, 𝑡) × 𝜀𝑚𝑎𝑥  ,                                

(2)                                                                                  

where NPP is the net primary production (g C•m-2•month-1); 0.5 represents the proportion of the radiation which can 205 

absorbed by plants(0.4-0.7 um); SOL(x,t) is the total solar radiation incident on grid cell x in a given month (MJ•m-2•month-

1); FPAR(x,t) is the fraction of absorbed photosynthetically active radiation on grid cell x in a month; Tε1 and Tε2,  are the 

temperature stress factors, representingaccount for the effect of high and low temperature on light utilization efficiency, 

respectively; WSC(x,t) is the water stress coefficient on grid cell x in a month; and εmax is the maximum possible efficiency 

(g C•MJ-1) under ideal conditions (no-stress temperature, no-stress water). 210 

3.2 Improving CASA parameters with RS data 

The RS data utilized here to improve CASA parameters are listed in Table 1. We focused specifically on improving the 

parameters SOL and WSC. 

3.2.1 Calculation SOL by introducing RS total cloud cover 

SolarFlux models (Hetrick et al., 1993; Kumar et al., 1997; Fu and Rich, 2002), which input DEM parameters and compute 215 

solar radiation over large areas, have been implemented for commercially available GIS software such as ARC/INFO, 

ARCGISArcGIS, and Genasys. The solar radiation module of ARCGIS ArcGIS software takes into account the influence of 

atmospheric conditions, latitude, altitude, solar zenith angle and azimuth angle, terrain shade, slope, and aspect. The 

atmospheric conditions relevant to the present study were determined by the parameters diffuse_proportion and 
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transmittivity. The diffuse_proportion is the fraction of global normal radiation flux that is diffused, which is expressed as a 220 

values from 0 to 1. Transmittivity, the fraction of radiation that passes through the atmosphere, ranges from 0 (no 

transmission) to 1 (all transmission) (ESRI, 2021). 

There are distinct differences between diffuse_proportion and transmittivity on in both clear and cloudy days (i.e., dependent 

on total cloud cover). The accurate determination of atmospheric conditions is the key to accurately estimating SOL. We 

introduced satellite total cloud cover to classify weather conditions, then determined the corresponding diffuse_proportion 225 

and transmittivity values. The total cloud cover data from the MOD08_M3 product, ranging from 0 (where the sky is 

completely clear) to 10,000 (where the sky is completely covered by clouds), was divided by 1,000 to create ten levels. For 

each level, the diffuse_proportion and transmittivity were determined according to a simple linear relationship (Table 2).. 

3.2.2 Improvement WSC using shortwave infrared reflectance 

WSC reflects the effect of available water content on the solar radiation utilization efficiency of plants, ranging from 0.5 230 

(extreme drought conditions) to 1.0 (extreme humidity). According to the relation RS principle that shortwave infrared 

reflectance is negatively correlated with surface water content, scholars have proposed many water content RS indices. 

Referring to the form and connotation of the shortwave infrared soil moisture index (SIMI) proposed by Yao et al. (2011), 

we rewrote the WSC formula as follows: 

𝑊𝑆𝐶 = 0.5 + 0.5(1 − 𝑁𝑆𝐼𝑀𝐼) ,                                                                                                                       (3)                                                                                 235 

𝑁𝑆𝐼𝑀𝐼 = (𝑆𝐼𝑀𝐼 − 𝑆𝐼𝑀𝐼𝑚𝑖𝑛)/(𝑆𝐼𝑀𝐼𝑚𝑎𝑥 − 𝑆𝐼𝑀𝐼𝑚𝑖𝑛) ,                                                                                                        (4)       

𝑆𝐼𝑀𝐼 = 0.7071√𝑆𝑊𝐼𝑅1
2 + 𝑆𝑊𝐼𝑅2

2 ,                                                                                                         (5)       

where WSC is the water stress coefficient; NSIMI represents the normalized SIMI, which values (range ranging from 0 to 1); 

SIMImax and SIMImin are the maximum and minimum value of SIMI values, respectively; SWIR1 and SWIR2 are the shortwave 

infrared reflectance values of band 6 and band 7 from MOD09A1, respectively. 240 

4 Results 

4.1 SOL 

4.1.1 SOL simulated by Angstrom-Prescott equation 

Angstrom-Prescott equation, a traditional approach for simulation SOL, was used to calculate tThe SOL of ground 

meteorological stations. Itsstations were obtained using ground meteorological data and Angstrom-Prescott equation (Table 245 

1).  empirical coefficients a and b were adopted the monthly coefficients of Liu et al. (2021), and its input parameters S 

(sunshine percentage) from ground meteorological stations. Natural NeighborNeighbour spatial interpolation approach was 

applied to convert the SOL of ground stations into grid WSC SOL over study area (Fig. 2-A).  
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4.1.2 SOL simulated by improved approach 

The DEM, diffuse_proportion, and transmittivity determined by MODIS total cloud cover were input into the Solar 250 

Radiation module of ARCGIS10 ArcGIS10 software, then the SOL in July of 2020. The SOL in July of 2020 was simulated 

in Qinghai Lake Basin (Fig. 2-B). The simulated SOL ranging from 655.42 MJ•m-2•month-1 to 878.03 MJ•m-2•month-1 with 

an average value of 738.80 MJ•m-2•month-1.The surface of Qinghai Lake shows the lowest SOL of , 695.50 MJ•m-2•month-1. 

On the whole, SOL gradually increases along Qinghai Lake from southeast to northwest and are is basically consistent with 

the actual total solar radiation. in Qinghai Lake Basin. 255 

4.1.3 Comparison of two SOL simulation approaches  

We analysed the accuracy of simulation SOL from Angstrom-Prescott equation and improved SOL approach with the 

measured SOL monthly data in 2005, 2010, and 2015 (at present, only the measured SOL data in these period could be 

collected for the purposes of this study, Table 3). We simulated SOL in the same period and analysed its accuracy 

accordingly (Table 3). The root mean square error (RMSE) of Angstrom-Prescott equation and our improved approach 260 

respectively are 162.24 MJ•m-2•month-1 and 95.38 MJ•m-2•month-1.Correspondingly, the mean absolute percent error 

(MAPE) of two approaches are 24.56% and17.78%, the July RSME are 274.34 MJ•m-2•month-1 and 70.66 MJ•m-2•month-1, 

and the July MAPE are 39.53% and 9.25%, respectively. F Obviously, or simulating SOL, the improved approach 

significantly increased the accuracy in the study area.for simulating SOL in study area, our improved approach is superior to 

Angstrom-Prescott equation. 265 

4.2 WSC 

4.2.1 Traditional WSC 

TTraditionally, the WSC was obtained using a ratio of ET to PET. Using ground meteorological data for July 2020, we 

applied FAO Penman-Monteith equation (Allen et al., 1998) to calculate PET and adopted Pike equation (Pike, 1964) to 

calculate ET, and then obtained the WSC of ground observation stations were obtained using ground meteorological data for 270 

Natural NeighborNeighbour approach was used to convert the WSC of ground stations into grid WSC over study area (Fig. 

4.2.2 Improved WSC 

Using RS shortwave infrared reflectance  of band 6 and band 7 from MOD09A1from product MOD09A1, We applied 

formula Eq(3)-, Eq(4) and Eq(5) and obtained the WSC in July, 2020(Fig. 3-C).The WSC values in July, 2020, were 

relatively high (>0.86) around Qinghai Lake and in river valleys as well as in the river source areas at higher 275 

altitudesaltitudes, which  indicatinges that the ecosystemthese places has have sufficient water supply (Fig. 3-B). The desert 

ecosystem in the east of the Qinghai Lake showed the lowest WSC (0.54-0.68) , which indicatesindicating that the 

ecosystem has insufficient water supply.  
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4.2.3 Comparison of two WSC simulation approaches 

WSC, a measure of the availability of water to plantsmeasuring the availability of water by plants, essentially in essence, 280 

reflects the impact of environmental water content on plants. For grassland ecosystem, to a certain extent, surface soil 

moisture (SM) can indirectly reflect environmental water content. As a general rule, a higher value of WSC indicates a 

higher environmental water content. We use tThe surface SM data set (LPRM_AMSR2_DS_A_SOILM3, as mentioned in 

section 2.2.5, its accuracy have been tested in several previous studies)) was used to evaluate the WSC results simulated by 

different approaches. 285 

The SM is high in north of Qinghai Lake (Region N), and it is the lowest in the desert ecosystem (Fig. 3-B). 

The improved WSC simulation results compared well with compared well with the surface SM in above two regions, . 

Theirits spatial distribution are approximately consistent with the actual water contents in study area, so it is feasible to 

estimate WSC using RS shortwave infrared reflectance. 

4.3 NPP 290 

4.3.1 Comparison of multi-source and RS data driven CASA 

We used tThe measured NPP obtained in July of 2020 was used to verify the accuracy of multi-source and RS data driven 

CASA models (Table 4). For the NPP simulated by multi-source data driven CASA (Fig. 4-A), its parameters SOL, SWC, 

Tε1, and Tε2 come from ground meteorological data, and the FPAR and 𝜀𝑚𝑎x are as same as the parameters of RS data driven 

CASA, the relative error (RE) ranges from 30.9820.20% to 85.8868.43%, the MAPE is 44.8049.08%, the absolute error (AE) 295 

ranges from -112.8824.55 g C•m-2 •month-1 to -16.01141.66 g C•m-2•month-1, and the RMSE is 57.4365.21 g C•m-2•month-

1.For the NPP simulated by RS data driven CASA, the RE ranges from 2.495.66% to 47.8050.02%, the MAPE is 

22.1423.32%, the AE ranges from -34.54-49.08 g C•m-2•month-1 to 46.9023.89 g C•m-2•month-1, and the RMSE is 26.26 36 

g C•m-2•month-1. The simulation results of RS data driven CASA are more in accordance with the measured NPP, RS data 

driven CASA significantly increased the accuracy of grassland NPP in the study area., RS data driven CASA is superior to 300 

the multi-source data driven CASA.  

4.3.2 NPP spatial distribution 

The values of NPP simulated by RS data driven CASA The NPP values in July, 2020, are lower in the northwest parts of the 

basin and east of Qinghai Lake than elsewhere in the study area (Fig. 4-B). The main vegetation in the northwest is Alpine 

Kobresia humilis meadow plants such as Saussurea pumila and Saussurea alpina, which have low vegetation productivity 305 

and NPP values ranging from 1.090.33 g C•m-2•month-1 to 87.85 52 g C•m-2•month-1. The main vegetation in the southwest 

coast of Qinghai Lake and the middle part of the basin are is Stipa purpurea Griseb and Carex infuscata Nees alpine 

grasslands, which have higher vegetation productivity and NPP values greater than  87.85 52 g C•m-2•month-1. NPP appears 

to decrease from southeast to northwest, which is consistent with the distribution patterns of vegetation type.  
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5 Discussion and recommendations 310 

5.1 SOL 

When astronomical solar radiation passes through the atmosphere, it is weakened by atmospheric scattering and absorption, 

and finally transmits to earth surface (so called surface solar radiation), which means that atmospheric conditions 

significantly affect surface solar radiation. Various approaches for simulation SOL consider the atmospheric effects on solar 

radiation from different perspectives. The Angstrom-Prescott equation uses the sunshine duration (or sunshine percentage) to 315 

quantify atmospheric effects on solar radiation. We use the parameters of diffuse_proportion and transmittivity determined 

by total cloud cover to quantify thesethis effects. The total cloud cover determines the weather conditions and, it also affects 

the atmospheric conditions. Total cloud cover information can be used to directly determine weather conditions and 

indirectly determine atmospheric conditions. In this study, weather conditions were classified into ten levels according to the 

satellite total cloud cover. The two important parameters of the SolarFlux model, diffuse_proportion and transmittivity, were 320 

determined for each level on the basis of a linear relationship. The atmospheric conditions could be further divided into 100 

or more refined levels to determine the values of diffuse_proportion and transmittivity under different cloud cover conditions 

to improve the SOL simulation accuracaccuracyy.  

It is important to note that the SolarFlux model is is designed only for local landscapes\regional scales, so it is generally 

acceptable to use one latitude value for the whole DEM. It is necessary to divide larger areas into zones of varying latitude as 325 

the latitudes exceed 1 degree (ESRI, 2021). 

5.2 WSC 

Environmental water content can regulate vegetation NPP by affecting the photosynthetic capacity of plants. WSC reflects 

the influence of environmental water content on vegetation NPP. Traditional WSC simulation approach apply a ratio of ET 

to PET to measure the availability of environmental water content. ET and PET were can be obtained by different 330 

approaches and data sources, resulting in substantial differences in ET and PET even if the same data is used, thus creating 

differences in WSC.. It means that there are great differences in ET and PET, even if the same data is used, which result in 

differences in WSC. The WSC result of our improved approach is uniquecertain , as long as the same RS data is input in 

formula (3), (4), and- (5). In addition, the proposed our improved WSC approach has the RS retrieval mechanism of 

environmental water content. Soil and vegetation water contents are closely related to their shortwave infrared spectral 335 

reflectance; small changes in these contents can cause substantial changes in shortwave infrared spectral reflectance. Thus, 

the RS shortwave infrared band is sensitive to environmental water content and can be used to calculate WSC. Many satellite 

sensors have are designed with shortwave infrared bands that are extremely sensitive to water content, such as MODIS 

(1.628-1.652 μm, 2.105-2.155 μm), LandSat 8 (1.560-1.660 μm, 2.100-2.300 μm), Sentinel-2(1.565-1.655 μm, 2.100-2.280 

μm), and HJ-1-A, B (1.550-1.750 μm). Scholars have developed many RS water content indexes such as SIMI, MSIWSI 340 

(Dong et al., 2015) and SWCI (Du et al., 2007). We modified the WSC using SIMI and the two shortwave infrared bands of 
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MODIS in this study. The shortwave infrared bands of satellite sensors mentioned above, as well as the MSIWSI, SWCI, or 

other RS water content indices, can also be considered to calculate WSC. 

5.3 Temperature stress factors 

5.4.1 Rationality of simulation results 345 

5.4.2 Rationality of RS mechanism 

5.5. 5 4 Uncertainty 

According to equation (1), the uncertainty of measured NPP originates from uncertainties income from uncertainty of 

obtaining AGB, C, and SR. There is randomness in which three quadrats are selected from the four corners of square sample 

plot, resulting in the uncertainty of collection AGB collection. In our case, C and SR are adopted the values reported in the 350 

thaninstead of the measured values, which inevitably causedbrings errors. 

The uncertainty of multi-source data driven CASA and its parameters is mainly caused by spatial interpolation methods. For 

instance, tThe WSC interpolation results from Spline and Kriging method have significantly different values and spatial 

patternsshowed significantly different values and spatial patterns (Fig. 5). The sample 7 has the maximum errors of 

estimation NPP (Table 4). Its SOL simulated by traditional approach is 271.39 MJ•m-2 •month-1, which is obtained by 355 

interpolating the SOL of observation stations. The average simulated and measured SOL of Gangcha observation station is 

434.59 MJ•m-2 •month-1 and 692.71 MJ•m-2 •month-1 respectively (Table 3). The distance of this station from the sample 7 is 

about 43 km. Hence for sample 7, the errors of multi-source data driven CASA is mainly caused by the parameter SOL and 

the spatial interpolation method. 

The uncertainty of RS data driven CASA mainly stem from RS product data quality and uncertainty propagation acrossfrom 360 

parameters. RS product usually have corresponding data quality assurance describing the uncertainty of each pixel (e.g., the 

uncertainty of production MOD11A2, ; details regarding quality assurance can be found online atfor details, please see its 

instruction for quality assurance at: https://icess.eri.ucsb.edu/modis/LstUsrGuide/usrguide_index.html).The combined 

uncertainty of simulation NPP is determined by the uncertainty propagation from parameters. In our case, the combined 

uncertainty of grassland NPP is 108.01±26.31110.17±26.25 g C•m-2•month-1. The combined uncertainty uncertainty 365 

contribution ofof alpine meadow and other grassland types, as well as and uncertainty propagation and quantification, will 

be carried out systematically in future work. 
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6. Conclusions 

The traditional CASA model driven by multi-source data such as meteorology, soil, and RS has notable disadvantages. In 

this study, we attempted to drive the a CASA entirely by RS data. We conducted a case study of alpine grasslands in Qinghai 370 

Lake Basin Basin to find that it is feasible to calculate the CASA parameters SOL, WSC, Tε1, and Tε2 using RS data. The 

estimated NPP results were reliable. The main conclusions of this work can be summarized as follows. 

• Cloud cover was used to quantify the atmospheric effects on solar radiation. It ’sis only necessary to use DEM and RS 

total cloud cover data for to simulating simulate SOL. The improved SOL simulation approach has monthly RMSE and 

MAPE of 95.38 MJ•m-2•month-1 and 17.78%, respectively. 375 

The improved SOL simulation approach (the monthly RMSE and MAPE respectively were 95.38 MJ•m-2•month-1 and 

17.78%) is superior to Angstrom-Prescott equation (a traditional approach for simulation SOL, its monthly RMSE and 

MAPE respectively were 162.24 MJ•m-2•month-1 and 24.56%). 

• The RS data driven CASA, without the support of ground observation data (e.g., soil or meteorology), yields simulations 

in closer accordance with measured NPP valuesis superior to the multi-source data driven CASA, and  its simulation results 380 

are more in accordance with the measured NPP. The RE ranges from 2.495.66% to 47.8050.02%, the MAPE is 22.1423.32%, 

the AE ranges from -34.54-49.08 g C•m•month-1 to 46.9023.89 g C•m-2•month-1, and the RMSE is 26.26 36 g C•m-2•month-1. 

The simulated NPP values of Kobresia parva in the grazing area and Stipa purpurea are higher than and lower than the 

respective real values.The NPP simulation values of Kobresia parva in grazing area and Stipa purpurea respectively are 

higher than and less than its real values . The combined uncertainty of grassland NPP is 108.01±26.31110.17 ±26.25 g C•m-385 

2•month-1. The uUncertainty propagation and quantification will be the focus of our future workcarried out in future work. 
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Figure 1. Location of Qinghai Lake Basin, sample and ground observation points.  

Note: the land cover is the GlobeLand30 product in 2020, which was obtained from GLOBELAND30 (http://www.globallandcover.com/). 
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Figure 2. Spatial distribution of total solar radiation (SOL) in July, 2020. A, SOL simulated by Angstrom-Prescott equation. B, SOL 575 
simulated by improved approach. 
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Figure 3. Spatial distribution of water stress coefficient (WSC) in July, 2020. A, WSC simulated by traditional method. B, Surface soil 

moisture of AMSR2 products. C, WSC calculated with RS shortwave infrared band. 
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 595 

Figure 4. Spatial distribution of grassland net primary productivity (NPP) in July, 2020. A, NPP simulated by multi-source data driven 

CASA. B, NPP simulated by RS data driven CASA. 
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Figure 5. Comparison map of water stress coefficient (WSC) interpolation results in July, 2020. A, WSC from Spline method. B, WSC 600 
from Kriging method. 
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Table 1. Calculation method and Input input data and calculation method for RS-driven CASA model parameters 

 

Parameter RS data driven CASA Input data\calculation method Multi-source data driven CASA 

SOL SolarFlux model. DEM data and MOD08M3 product. 

Angstrom-Prescott equation (Prescott, 1940). The 

empirical coefficients a (0.24) and b (0.46) were 

adopted the July coefficients from Liu et al. (2021). 

Sunshine duration data from ground meteorological 

station. 

WSC 
Band 6 (1.628-1.652 μm) and band 7 (2.105-2.155 μm) from 

MOD09A1 product. 

WSC=ET/PET, ET was calculated with Pike 

equation (Pike, 1964), and PET was calculated with 

FAO Penman-Monteith equation (Allen et al., 

1998). Ground meteorological data. 

Tε1 ,Tε2 

𝑇𝜀1 = 0.8 + 0.02𝑇0𝑝𝑡 − 0.0005(𝑇0𝑝𝑡 )
2 

𝑇𝜀2 = 1.1814/[1 + 𝑒0.2(𝑇𝑜𝑝𝑡−10−𝑇)] × [1/(1 +

𝑒0.3(−𝑇𝑜𝑝𝑡−10+𝑇))]Temperature (T) and optimum temperature (Topt) are 

necessary for calculating Tε1 and Tε2; MOD11A2 provides day temperature 

(Tday) and night temperature (Tnight); T is calculated as T=0.5 (Tday+ Tnight); 

Topt is the average value of T in July.  

(Potter et al., 1993). 

Temperature T=0.5(Tday+Tnight), day temperature (Tday) and night 

temperature (Tnight) from MOD11A2 product. The optimum 

temperature Topt is the average value of T.The equations of Tε1 and 

Tε2 can be found in Potter et al. 1993. 

The equations of Tε1 and Tε2 are as same as that of 

RS data driven CASA. Monthly average 

temperature from ground meteorological data as T, 

and Topt is the average value of T. 
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εmax 
εmax= 0.608g C•MJ-1,  maximum possible efficiency of grassland 

(Running et al., 2000). 

The value of εmax is as same as that of RS data 

driven CASA. 

FPAR 

𝐹𝑃𝐴𝑅 =
(𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛)×(𝐹𝑃𝐴𝑅𝑚𝑎𝑥−𝐹𝑃𝐴𝑅𝑚𝑖𝑛)

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
+ 𝐹𝑃𝐴𝑅𝑚𝑖𝑛 Myneni and 

Williams (1994) found a linear relationship between FPAR and 

NDVI. NDVI from MOD13A1 is used to calculate FPAR (Wang et 

al., 2017) 

NDVImin and NDVImax is the minimum and maximum of NDVI values 

from MOD13A1 product. FPARmax and FPARmin are constants, with 

values of 0.95 and 0.001, respectively (Wang et al., 2017).  

FPAR is the same as that of RS data driven CASA. 
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Table 2. Diffuse_ proportion and transmittivity values under different total cloud cover levels  

 

MODIS total cloud 

cover level 
Weather conditions 

Diffuse_proportionDiffuse 

proportion 
Transmittivity 

0 Very clear sky conditions (no clouds) 0.2 0.6 

1 Cloud cover accounts for 1/9 of the whole sky 0.255 0.545 

2 Cloud cover accounts for 2/9 of the whole sky 0.31 0.49 

3 Cloud cover accounts for 3/9 of the whole sky 0.365 0.435 

4 Cloud cover accounts for 4/9 of the whole sky 0.42 0.38 

5 Cloud cover accounts for 5/9 of the whole sky 0.475 0.325 

6 Cloud cover accounts for 6/9 of the whole sky 0.53 0.27 

7 Cloud cover accounts for 7/9 of the whole sky 0.585 0.215 

8 Cloud cover accounts for 8/9 of the whole sky 0.64 0.16 

9 Sky is completely covered by clouds 0.695 0.105 

 625 

According to the scientific  rule  that diffuse_proportion has an inverse relation with transmittivity, the diffuse_proportion and 

transmittivity values were set to 0.2 and 0.6, respectively, in the case of a very clear sky conditions. Under other cloud cover conditions, 

their values were determined according to a simple linear relationship: diffuse_proportion =0.2+ 0.055level, transmittivity=0.6-0.055level.. 

The step length of 0.055 was determined by repeatedly testing. 
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Table 3. Measured versus simulated SOL 650 

Date 
Measured SOL Simulated SOL 

Absolute error (AE) (MJ•m-2•month-1) Relative error (RE) (%) 
(MJ •m-2•month-1) (MJ•m-2•month-1) 

Jan-05 374.19 240.95(477.62) 133.24 (-103.43) 35.61 (-27.64) 

Feb-05 427.29 319.23(469.44) 108.06 (-42.15) 25.29 (-9.86) 

Mar-05 573.16 489.16(528.34) 84.00 (44.82) 14.66 (7.82) 

Apr-05 638.45 634.05(465.35) 4.40(173.10)  0.69 (27.11)  

May-05 736.19 731.24(449.60) 4.95 (286.59)  0.67 (38.93) 

Jun-05 663.70 742.68(394.28) -78.98 (269.42) -11.90 (40.59) 

Jul-05 626.92 710.94(385.94) -84.02 (240.98) -13.40 (38.44) 

Aug-05 603.86 623.86(423.19) -20.00 (180.67) -3.31 (29.92) 

Sep-05 493.09 500.53(407.90) -7.44  (85.19) -1.51 (17.28) 

Oct-05 486.07 378.72(521.19) 107.35 (-35.12) 22.09 (-7.22) 

Nov-05 398.73 257.36(481.56) 141.37 (-82.83) 35.46 (-20.77) 

Dec-05 353.71 197.43(456.82) 156.28 (-103.11) 44.18 (-29.15) 

SOL in 2005 6375.36 5826.15(5461.24) 549.21 (914.12)  8.61 (14.34) 

Jan-10 354.87 262.42(484.86) 92.45 (-129.99) 26.05 (-36.63)  

Feb-10 409.77 295.56(457.35) 114.21 (-47.58) 27.87 (-11.61)  

Mar-10 555.98 456.14(509.99) 99.84 (45.99) 17.96(8.27)  

Apr-10 647.71 634.05(496.56) 13.66(151.15)  2.11 (23.34) 

May-10 705.07 731.24(449.60) -26.17 (255.47) -3.71 (36.23) 
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Jun-10 616.64 649.32(368.04) -32.68 (248.60) -5.30 (40.32) 

Jul-10 741.78 756.37(436.54) -14.59(305.24)  -1.97 (41.15) 

Aug-10 679.30 705.02(443.55) -25.72 (235.75) -3.79 (34.71) 

Sep-10 524.02 500.53(428.95) 23.49 (95.07) 4.48  (18.14) 

Oct-10 496.53 378.72(499.47) 117.81 (-2.94) 23.73 (-0.59)  

Nov-10 450.87 299.47(507.51) 151.40 (-56.64)  33.58 (-12.56)  

Dec-10 371.24 181.71(446.67) 189.53 (-75.43)  51.05  (-20.32) 

SOL in 2010 6553.78 5850.55(5529.07) 703.23 (1024.71) 10.73  (15.64) 

Jan-15 383.84 240.95(477.62) 142.89 (-93.78) 37.23 (-24.43) 

Feb-15 435.62 319.23(453.32) 116.39 (-17.70) 26.72 (-4.06) 

Mar-15 602.04 489.16(509.99) 112.88(92.05)  18.75 (15.29) 

Apr-15 677.3 634.05(469.81) 43.25 (207.49) 6.39 (30.64) 

May-15 664.51 731.24(408.32) -66.73(256.19) -10.04 (38.55) 

Jun-15 621.22 699.14(375.53) -77.92 (245.69) -12.54 (39.55) 

Jul-15 709.44 797.23(432.64) -87.79 (276.80) -12.37 (39.02) 

Aug-15 617.12 705.02(431.33) -87.90 (185.79) -14.24 (30.11) 

Sep-15 483.73 463.64(407.90) 20.09 (75.83) 4.15 (15.68) 

Oct-1015 509.48 432.73(538.56) 76.75 (-29.08) 15.06 (-5.71) 

Nov-15 370.52 257.36(459.33) 113.16 (-88.81) 30.54 (-23.97)  

Dec-15 338.99 197.43(456.82) 141.56 (-117.83) 41.76 (-34.76) 

SOL in 2015 6413.81 5967.18(5421.18) 446.63(992.63)   6.96 (15.48) 

Jul-20 / 709.20 / / 

Note: The digits in parentheses "()" are the values of SOL simulated by Angstrom-Prescott equation and the correspondingly 

error values. 

 

 

Table 4. Measured versus simulated NPP 655 

Samples Main vegetation Longitude Latitude 
Measured NPP 

(g C•m-2•month-1) 

Simulated NPP 

(g C•m-2•month-1) 

AE 

(g C•m-2•month-1) 

RE 

(%) 

1 
Kobrecia 

Kobresia parva 
99.87586 37.34791 91.66 

125.12131.77 

(56.5857.40) 

33.46-40.11 (-

35.0834.26) 

36.5043.76 

(38.2737.38) 

2 
Kobrecia 

Kobresia parva 
99.84530 37.37877 98.12 

145.02147.20 

(62.6863.75) 

46.9-49.080 (-

35.4434.37) 

47.8050.02 

(36.1235.03) 

4 
Kobrecia 

Kobresia parva 
99.30971 37.07243 110.54 

116.92128.25 

(66.8664.92) 

6.38-17.71 (-

43.6845.62) 

5.7716.02 

(39.5241.27) 

6 
Kobrecia 

Kobresia parva 
100.3727 37.42001 108.33 

141.13135.46 

(65.6752.68) 

32.80-27.13 (-

42.6655.65) 

30.2825.05 

(39.3851.37) 

9 
Stipa purpurea 

99.67833 37.20655 121.76 
107.31108.80 

(53.0851.45) 

-14.4512.96 (-

68.6870.31) 

11.8710.64 

(56.4157.74) 

8 Stipa purpurea 99.63823 37.17360 126.86 117.57114.80 -9.2912.06 (- 7.329.50 
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Note: The digits in parentheses "()" are the values of NPP simulated by multi-source data driven CASA and the 

correspondingly error values. 
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Table 5. Published versus simulated NPP 

 

Vegetation type Study area Study period 
Mean NPP 

(g C•m-2•a-1) 

Model\ 

product 
Reporter 

Grassland Three-River Headwaters Region 1988–2004 160.90 
GLOPEM-

CEVSA 
Wang et al., 2009 

Grassland Three-River Headwaters Region 2010 146.66 CASA Wo et al., 2014 

Grassland Qinghai-Tibetan PlateauQTP 2005–2008 135.00 GLO-PEM Chen et al., 2012 

Grassland QTPQinghai-Tibetan Plateau 2001–2017 221.16 MODIS product Zhang et al., 2021 

(57.6659.34) 69.267.520) (54.5553.22) 

3 
Carex 

pamirensis 
99.48503 37.01362 111.22 

113.99117.51 

(55.0849.44) 

2.77-6.29 (-

56.1461.78) 

2.495.66 

(50.4855.54) 

10 
Achnatherum 

splendens 
100.73520 36.54971 79.25 

101.8699.27 

(63.2454.70) 

20.02-22.61 (-

16.0124.55) 

25.2628.53 

(20.2030.98) 

5 
Achnatherum 

splendens 
100.70610 36.93822 74.82 

49.9950.93 

(41.4143.09) 

-24.8323.89 (-

33.4131.73) 

33.1931.93 

(44.6542.41) 

7 
Blysmus 

sinocompressus 
99.89820 36.97944 164.95 

130.41145.07 

(52.0723.30) 

-34.5419.88 (-

112.88141.66) 

20.9412.05 

(68.4385.88) 

RMSE=26.26 36 g C•m-2•month-1, MAPE=23.3222.14% (RMSE=65.2157.43 g C•m-2•month-1, MAPE=4944.0880%) 带格式的: 字体: (中文) 宋体, 小五
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(MOD17A3) 

Alpine grassland Three-River Headwaters Region 2004–2008 129.41 CASA Cai et al., 2013 

Alpine grassland Qinghai-Tibetan Plateau 1982–2009 120.80 CASA Zhang et al., 2014 

Alpine grassland Qinghai-Tibetan Plateau 1982–1999 80.00 CASA Piao and Fang, 2002 

Alpine meadow Three-River Headwaters Region 2004–2008 188.95 CASA Cai et al., 2013 

Alpine steppe 
Source Regions of Yangtze and 

Yellow Rivers 
2000–2004 79.34 

MODIS product 

(MOD17A3) 
Guo et al., 2006 

Alpine steppe-meadow China 2004–2005 109.03  CASA Wang et al., 2017 

Alpine meadows and tundra China 1982–1999 137.00 CASA Fang et al., 2003 

Alpine meadows and tundra China 1997 131.00 CASA Piao et al.,, 2001 

All vegetation Source Region of Yangtze River 2000–2014 100.00 CASA Yuan et al., 2021 

All vegetation QTPQinghai-Tibetan Plateau 2012–2014 175.10 Biome-BGC Sun et al., 2017 

All vegetation QTPQinghai-Tibetan Plateau 2012 208.20 Biome-BGC Li et al., 2020 

All vegetation QTPQinghai-Tibetan Plateau 1982–1999 125.00 CASA Piao et al., 2006 

All vegetation Qinghai Lake Basin 2000–2012 161.01 CASA Zhang et al., 2015 

All vegetation Qinghai Lake Basin 2001–2011 168.03 CASA Qiao and Guo, 2017 
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