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Abstract. This article studies the growth of the prediction error over lead time in a schematic model of atmospheric transport. 

Inspired by the Lorenz (2005) system, we mimic an atmospheric variable in 1 dimension, which can be decomposed into three 

spatiotemporal scales. We identify parameter values that provide spatiotemporal scaling and chaotic behavior. Instead of 10 

exponential growth of the forecast error over time, we observe a more complex behavior. We test a power law and the quadratic 

hypothesis for the scale dependent error growth. The power law is valid for the first days of the growth, and with an included 

saturation effect, we extend its validity to the entire period of growth. The theory explaining the parameters of the power law 

is confirmed. Although the quadratic hypothesis cannot be completely rejected and could serve as a first guess, the hypothesis’s 

parameters are not theoretically justifiable in the model. In addition, we study the initial error growth for the ECMWF forecast 15 

system (500 hPa geopotential height) over the 1986 to 2011 period. For these data, it is impossible to assess which of the error 

growth descriptions is more appropriate, but the extended power law, which is theoretically substantiated and valid for the 

Lorenz system, provides an excellent fit to the average initial error growth of the ECMWF forecast system. Fitting the 

parameters, we conclude that there is an intrinsic limit of predictability after 22 days. 

1. Introduction 20 

The improvement of the numerical weather prediction systems raised the question of the intrinsic atmospheric prediction limit, 

i.e., for the maximal lead time into the future, after which every forecast will be useless. While the notion of seamless prediction 

(Shukla, 2009) and of seasonal prediction implies that it will be only a matter of technology to make forecasts far into the 

future, in recent years, there have been several publications whose authors assume a strict upper bound in time for making 

useful predictions (Palmer et al., 2014; Brisch and Kantz, 2019; Zhang et al.,2019). Even if the numerical model were perfect, 25 

the uncertainty of the initial condition would give rise to prediction errors which grow over time. In the setting of classical low 

dimensional chaos, one would observe an exponential error growth whose exponent is given by the largest Lyapunov exponent 

of the system, with some saturation when the error reaches the magnitude of the standard deviation of the quantity to be 

predicted. Although exponential error growth has been associated with the fact that a detailed forecast is meaningful only up 
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to lead times of a few multiples of the Lyapunov time, which is the inverse of the Lyapunov exponent, in principle, with 30 

absolutely perfect knowledge of the initial condition, one could compute meaningful predictions up to arbitrary times. 

In contrast to this, it has been observed by several authors in the past (Toth and Kalnay, 1993; Lorenz, 1996; Aurell et al., 

1996; 1997; Boffetta et al., 1998) that the proper Lyapunov exponent of a dynamical system might not be relevant for the issue 

of predictability, in two ways. First, the Lyapunov exponent of, e.g., atmospheric dynamics is so large that no useful weather 

prediction were was possible. On the other hand, and this is the issue of the present paper, if the proper Lyapunov exponent is 35 

much larger than the error growth rate of large scale errors, it might render every gain in resolution and in better precision of 

the knowledge of the intiial condition useless and thereby impose a strict limit to the time into the future where prediction are 

is meaningful. Brisch and Kantz (2019) and Zhang et al. (2019) predicted a strictly finite prediction horizon, which is associated 

with a scale dependent error growth, where tiny errors grow much faster than larger ones errors. In an idealized model, this 

could even mean that the proper Lyapunov exponent of the system was infinite, and that finite size approximations of the 40 

Lyapunov exponent (Aurell et al., 1996; 1997) were the larger, the smaller the scale of this finite size. In a real physical 

systems, one would certainly expect some cut-off of such divergent small scale instability, e.g., in turbulence at the 

Kolmogorov length, the lower end of the interinal range, but the Lyapunov exponent of the system then would still be so big 

that it could never be compensated by more precise mearurements measurements. 

Palmer et al. (2014), referring to Lorenz (1969), call this growth the “real butterfly effect,” and it is not an exponential error 45 

growth defined by the largest positive Lyapunov exponent, but growth where the exponent is replaced by a scale dependent 

quantity (scale dependent error growth rate). 

The atmosphere exhibits multi-scale dynamics both in space and in time, and observations show a close linkage between spatial 

and temporal scales: the smaller some structure, the shorter its lifetime and the faster its time evolution. Planetary scale 

structures (e.g., semi-permanent pressure centers or the westerlies and trade winds) have sizes in the order of ten thousand km 50 

and live on time scales of weeks and longer. Synoptic scale structures (e.g., high and low pressure systems) have sizes of 

several thousands of km and live on time scales of several days. Mesoscale structures (e.g., thunderstorms and weather fronts) 

have sizes from a few kilometers to several hundred kilometers and live on a time scale of a day or less. Microscale structures 

(e.g., turbulence) have sizes smaller than 1 km and live on a time scale of minutes. In addition to different spatiotemporal 

scales, structures also have different error growth rates and predictability. Error growth is faster, and predictability is less for 55 

smaller scale structures. 

Lorenz (1996) gave a sketch of error growth in such a system: A typical quantity to be predicted is a superposition of the 

dynamics on different scales. After a fast growth of the small scale errors with saturation at these very same small scales, the 

large scale errors continue to grow at a slower rate until even these saturate. Therefore, Lyapunov exponents of structures of 

various spatiotemporal scales are taken as the previously mentioned scale dependent quantity, and they determine the error 60 

growth on their respective scales. 

Zhang et al. (2019) take a very different starting point and suggest the quadratic hypothesis to describe the scale dependent 

error growth. It was originally designed to describe initial and model error growth (Savijarvi, 1995; Dalcher and Kalney, 1987). 
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Zhang et al. (2019) newly used a parameter previously specifying the model error to describe upscale error propagation from 

small scale processes and showed the validity of this hypothesis on data of the numerical weather prediction systems of the 65 

European Centre for Medium Range Weather Forecasts (ECMWF) and the U.S. Next Generation Global Prediction System. 

A scale dependent error growth in the spirit of Lorenz (1996) was described by Brisch and Kantz (2019) using a power law, 

which successfully approximated the data of the National Center for Environmental Protect Global Forecast System (Harlim 

et al., 2005). Brisch and Kantz (2019) also introduced a theory connecting the power law exponent with the Lyapunov 

exponents and limit errors of the different scales, and its validity was demonstrated by a low-dimensional atmospheric system 70 

(Lorenz, 1996) extended to five spatiotemporal levels. However, the different scales in this model cannot be superimposed in 

order to gain a general signal in the real space, but the different scales were living in different subspaces of phase space. This 

lack of realism may limit the general acceptance of this theory and stimulated the present study. 

This article expands Lorenz’s (2005) system from two spatiotemporal levels to three and discusses the setting of parameters 

and its advantage over other systems. In this system, the scale dependent growth of the initial error is calculated and is 75 

approximated by the power law and the quadratic hypothesis. The results are discussed, the power law is modified, and the 

theoretical justifications of the approximations’ parameter values are sought and verified. The findings are then applied to the 

initial error growth of the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical weather prediction 

system over the 1986 to 2011 period (500 hPa geopotential height). 

This article is divided into five sections. The second describes the system with three spatiotemporal scales based on Lorenz 80 

(2005). In Sec. 3, we present the numerical error growth behavior and fit it with previously suggested laws such as a power 

law growth and the so called quadratic law, where we also introduce extensions into the saturation regime at large errors. In 

Sec. 4, we trace back the empirically found parameters of the power law error growth to properties of the system and show 

that we can explain these findings self-consistently with the different error growth rates at different scales. In the fifth section, 

we perform a similar analysis for data from the ECMWF forecast system data. Conclusions and discussions are then presented 85 

in the final section. 

2. Multi-hierarchical system L05-3 

The designed system with three spatiotemporal levels (L05-3) is based on systems created by Lorenz (2005). The first and 

simplest of this type is the low-dimensional atmospheric system (L96) presented by Lorenz (1996). It is a nonlinear model, 

with N variables connected by governing equations 90 

 
2 1 1 1/ = ,n n n n n ndX dt X X X X X F− − + −− + − +  (1) 

 =1, ,n N . 
2 1 1, , ,n n n nX X X X− − +

 are unspecified (i.e., unrelated to actual physical variables) scalar meteorological 

quantities (units), F  is a constant representing external forcing, and t  is time. The index is cyclic so that = =n N n N nX X X− +
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and variables can be viewed as existing around a latitude circle. Nonlinear terms of Eq. (1) simulate advection. Linear terms 

represent mechanical and thermal dissipation. The model quantitatively, to a certain extent, describes weather systems, but, 95 

unlike the well-known Lorenz model of atmospheric convection (Lorenz, 1963), it cannot be derived from any atmospheric 

dynamic equations. The motivation was to formulate the simplest possible set of dissipative chaotically behaving differential 

equations that share some properties with the “real” atmosphere. One of the model’s properties is to have 5 to 7 main highs 

and lows that correspond to planetary waves (Rossby waves) and several smaller waves corresponding to synoptic-scale waves. 

For Eq. (1), this is only valid for = 30N . Lorenz (2005), therefore, introduced spatial continuity modification (L05). Eq. (1) 100 

is then rewritten to the form: 

  
,

= , ,n

nL n

dX
X X X F

dt
− +  (2) 

 where 

   ( ) 2

2,
= =

, = ' ' /
J

J

n L i n L j n L j i n L jL n
j J i J

X X X X X X L− − − − − + − + +

− −

− +   

 If L  is even, '  denotes a modified summation, in which the first and last terms are to be divided by 2. If L  is odd, '  105 

denotes an ordinary summation. Generally, L  is much smaller than N  and = / 2J L  if K  is even and = ( 1) / 2J L−  if L  is 

odd. To keep a desirable number of main highs and lows, Lorenz (2005) suggested a ratio / = 30N L  and =15F . The choice 

of parameters F , along with and the setting of time unit = 5 days, is also made to obtain a similar value of the largest Lyapunov 

exponent as the ECMWF forecasting system (Lorenz, 2005). 

A two-level (scales) system (L96-2) was introduced by Lorenz (1996) by coupling two such systems, each of which, aside 110 

from the coupling, obeys a suitably scaled variant of Eq. (1). There are N  variables 
nX  plus JN  variables 

,j nY  defined for 

=1, ,n N and =1, ,j J . Governing equations are: 

 ( )2 1 1 1 ,

=1

/ = / ,
J

n n n n n n j n

j

dX dt X X X X X F c b Y− − + −− + − + −   (3) 

 ( ), 2, 1, 1, 1, ,/ = / ,j n j n j n j n j n j n ndY dt cbY Y cbY Y cY c b X− − + −− + − +  (4) 

 where c  sets the rapidness of small scale compared to large scale, b  sets the small scale amplitude size compared to large 115 

scale. , , ,= =j n N j n N j nY Y Y− +  while , , 1=j J n j nY Y+ + and , , 1=j J n j nY Y− − . 
nX  represent the values of some quantity in N  sectors of 

latitude circle, while the variables ,j nY  ( 1,1 2,1 ,1 1,2 2,2 ,2 3,1, , , , , , , , ,J JY Y Y Y Y Y Y ) can represent some other quantity in JN  
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sectors. In this system, one could construct a more general variable that is defined on all of the JN  sectors, namely 

, ,=j k j j kZ X Y+ . 

Similarly to the L96-2 systems, Britch and Kantz (2019) created L levels systems (L96-H). Their model, however, lacks an 120 

essential property of atmospheric variables: The different levels of their hierarchy are different variables, occupying different 

subspaces of the phase space, as if it were different Fourier modes of some system, but were defined in real space. Therefore, 

we introduce here a model which is closer to reality. 

We start from a system L05-2 like L96-2 (Lorenz, 2005): 

  
,

/ = , ,n n nL n
dX dt X X X cY F− − +  (5) 125 

  2

1,
/ = , .n n nn

dY dt b Y Y bY cX− +  (6) 

 Eq. (6) is identical to Eq. (1), and Eq. (5) is identical to Eq. (2) (aside from the coupling where c  is the coupling coefficient, 

and that 
nY  fluctuates b  times as rapidly, and their amplitude is reduced by the factor b ). L05-2 or L96-2 system, however, 

has an unrealistic property compared to the numerical weather prediction systems. The large-scale and small-scale features are 

represented by separate sets of variables X  and Y  instead of appearing as superimposed features of a single set Z . Lorenz 130 

(2005) wanted to keep the system as simple as possible, so instead of, for example, Fourier analysis, a procedure for expressing 

variables 
nZ  as sums of 

nX  and 
nY  was introduced: 

 ( )
=

= ' ,
I

n n i

i I

X i Z  +

−

−  (7) 

 = .n n nY Z X−  (8) 

 135 

Parameters  ,  , and I  are chosen so that X  is a low-pass filtered version of Z , and Y  represents the difference between 

the full signal Z  and the filtered signal. By this procedure, Y  has a much smaller amplitude than X , and also its time 

evolution should be faster since the temporal derivative is related to the spatial derivative via the difference 
1 2( )n nX X+ −− , 

which for the low pass filtered signal X  typically is smaller than for the signal Y . 

More precisely, Lorenz’s (2005) idea is that the parameters  ,   are chosen so that X equals Z whenever Z changes 140 

quadratically over the longitudes (variables) n −  I through n + I. It is when ( )
=

' = 1
I

i I
i 

−
−  and ( )2

=
' = 0

I

i I
i i 

−
− . 

By solving these equations, we get: 

 ( ) ( )2 3= 3 3 / 2 4I I I + +  (9) 
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 ( ) ( )2 4 2= 2 1 / 2 .I I I + +  (10) 

 The procedures (Eqs. (7) and (8)) are functions of the length of the interval  ,I I− . When creating a system /dZ dt  as the 145 

sum of /dX dt  and /dY dt  (sum of Eqs. (5) and (6)), the coupling term 
ncX  in Eq. (6), which enables short waves to develop, 

is combined with the dissipation term 
nX−  in Eq. (6). Therefore the coupling term can be completely canceled, or it can appear 

in X  rather than Y  when Z is analyzed, and there might be nothing to enable the short waves in Y  to grow. Lorenz (2005) 

reformulated the coupling process by adding a small fraction of X  to Y  so small waves in Y  can amplify and proved that 

this is done by replacing  2

1,
, nn

b Y Y cX+  by  
1,

, '
n

Y Y cX+  in Eq. (6) and a new form of L05-2 system would be: 150 

      2

, 1, 1,
/ = , , , ,n n nL n n n

dZ dt X X b Y Y c Y X X bY F+ + − − +  (11) 

 where 
2= 'c cb . 

Based on the L05-2 system (Eqs. (7) - (11)), We designed a three levels (scales) system (L05-3): 

          2 2

, 1 1 1 2 2 2 3 3 1 2 1 2 3 2 1, 1 2, 2 3,, 1, 1, 1, 1,
/ = , , , , , ,tot n n n nL n n n n n

dX dt X X b X X b X X c X X c X X X b X b X F+ + + + − − − + (12) 

 where 
1c , 

2c , 
1b , 

2b  are parameters and the procedure for expressing the variables: 155 

 ( ) ( )( ) ( ) ( )( )( )
1

2 3 2 4 2

1, 1 1 1 1 1 1 ,

=
1

= ' 3 3 / 2 4 2 1 / 2 ,

I

n tot n i

i I

X I I I I I I i X +

−

+ + − + +  (13) 

 ( ) ( )( ) ( ) ( )( )( )( )
2

2 3 2 4 2

2, 2 2 2 2 2 2 , 1,

=
2

= ' 3 3 / 2 4 2 1 / 2 ,

I

n tot n j n j

j I

X I I I I I I j X X+ +

−

+ + − + + −  (14) 

 
3, , 2, 1,= ,n tot n n nX X X X− −  (15) 

 where I
1

 and I
2
 set the length of the intervals  ,I I− . 

The parameters of any multi-level Lorenz’s system (L96-2, L96-H, L05-2, L05-3) should be set so that all levels behave 160 

chaotically (the largest Lyapunov exponent of each level is positive) and that all levels have a significant difference in 

amplitudes and fluctuation rates. For the L-96 system (Eq. (1)), the chaotic behavior is determined by the value of F , and the 

number of variables N . Lorenz (2005) states that as long as 12N   chaos is found, when > 5F  (for = 4N  it is when 

>12F  and for > 6N  when > 8F ). In cases such as the L96-2 system ((3) and (4)), where the forcing F  acts only on the 

largest scale, the chaotic behavior of smaller scales is created by coupling. The size of the coupling is cascaded from the largest 165 
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scale to the smaller ones. Because the values of the largest scale variables are determined by the forcing F , the F  value 

indirectly affects the smaller scales’ chaotic behavior and must be chosen large enough to ensure chaotic behavior through 

coupling for all scales (levels). For the L05-2 system (Eq. (11)), variables are superposed features of a single set calculated by 

Eqs (7) and (8). In addition to those mentioned above, this procedure affects the chaotic behavior, amplitude, and fluctuation 

rate of the levels, and the choice of I between 10 and 20 may be optimal (Lorenz, 2005). In order to maintain the required 170 

properties of the two scales L05-2 system, Lorenz (2005) chose N = 960, L = 32, I = 12, F = 15, b = 10, and c = 2.5 (note that 

for L05-2 and L05-3 systems it is not possible to directly determine the amplitude and fluctuation rate of smaller scales using 

spatiotemporal scaling factors b, because these values are mainly determined by the procedure for expressing variables and 

the length of the intervals  ,I I− ). 

For the L05-3 system (Eqs. (12) – (15)), it is necessary to specify eight parameters. We tested that the values of coupling 175 

coefficients c
1

 and c
2

 do not affect the L05-3 system compared to the values of other parameters, and therefore for 

simplification 
1 =1c  and 

2 =1.c  The parameter =15F  is set the same as for other L05 systems. In order For the medium 

scale amplitude to be approximately ten times smaller than the large scale amplitude and the small scale amplitude to be 

approximately ten times smaller than the medium scale amplitude and for the scales to have different oscillation rates (Fig. 1), 

the spatiotemporal scale factors are chosen b
1

 = 1 and b
2
 = 10 and interval lengths I

1
 = 20, and I

2
 = 10. N = 390 turned out 180 

to be most suitable for the chaotic behavior of all three levels. In the following, we will present numerical results of the L05-

3 system (Eqs. (12) – (15)) with the parameters N = 390, L = 13, J = 6, F = 15, b
1

 = 1, b
2
 = 10, c

1
 = 1, c

2
 =1, I

1
= 20, I

2
 

=10, and calculated by a fourth-order Runge-Kutta method with a time step  t = 1/240 or 0.5 hours. Initial conditions (
,0,tot nX

, 
1,0,nX , 

2,0,nX , 
3,0,nX ), which should be free of transient effect, are chosen as final values of arbitrary values integrated for 

175200 steps or 10 years. Initial conditions and values of variables at days one, two, and three can be seen in Fig. 1. 185 

3. Error growth in the L05-3 system 

3.1. Concepts to characterisze scale dependent error growth 

In the pioneering papers of Aurell et al. (1996; 1997), a mathematical concept and a numerical scheme for the calculation of 

scale dependent error growth was introduced, called the "finite size Lyapunov exponent". Actually, already Aruell et al. (1996) 

refer to the atmospheric predictability problem and name this as one motivation for their work. These papers triggered a set of 190 

follow-up publications where it was studied how scale dependent error growth manifests itself in different models with intrinsic 

hierarchies such as models for fully developed turbulence like the shell model (Aurell et al., 1996) or how they can be used to 

study the issue of predictability (Boffetta et al., 1998; for a review see Cencini et al., 2013). In brief, a finite size Lyapunov 

exponent can be defined as the ergodic average over phase space of the growth rate of perturbations of a given magnitude, 

where the growth rate is defined as the inverse of the time needed for the error magnitude to increase by a pre-defined factor. 195 
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In order to be able to investigate the data from the ECMWF forecasts as well, we use here a less rigorous approach: We 

measure the error amplitude after fixed time intervals. We then calculate the mean error amplitudes after fixed times, we 

calculate the average growth rates during the last time interval, and we can report the mean growth rates versus mean error 

magnitudes. Due to the fact that the conditioning is different, this is not the same as the calculation of the finite size Lyapunov 

exponent, but it reports similar properties of the system. However, our quantity is more appropriate to the forecast problem: 200 

The initial condition of a forecast has some small error compared to the unknown truth, and assuming a perfect model, we 

therefore calculate the average forecast error after a finite time. 

3.2. Numerical scheme for scale dependent error growth rates 

In the following, we describe in more detail our numerical approach. By “error growth,” we denote the growth of errors in the 

initial conditions, which limit predictability if a system is chaotic. A numerical error growth experiment in a model system, 205 

therefore, consists of generating repeatedly a reference trajectory, which is considered to be the “truth” or verification, and a 

perturbed trajectory which is the numerical solution of the system for a perturbed initial condition (perfect model assumption). 

The time evolution of the difference vector between these two trajectories averaged over many repetitions then gives insight 

into the growth of prediction errors. In order for this scheme to be meaningful, we have to ensure that the reference trajectory 

is on the attractor of the system, that the repetition of this scheme samples the whole attractor with correct weights (the invariant 210 

measure), and that initial perturbations point already into the locally most unstable direction since otherwise, errors might even 

shrink on short times (this is also a relevant issue in ensemble forecasts and there find its solutions in using bred vectors (Toth 

and Kalnay, 1997)). We solve these issues in the following way: We first integrate the system over 10 years, starting from 

arbitrary initial conditions, and assume that after discarding this transient, the trajectory is on the attractor. We continue to 

integrate this single trajectory and consider segments of it as reference trajectories for error growth, i.e., the many reference 215 

trajectories are simply segments of one very long trajectory, which ensures not only that all these segments are located on the 

attractor, but that in addition, they sample the attractor according to the invariant measure. For the perturbed trajectories, we 

start with a random perturbation of the reference trajectory of very small amplitude and let this trajectory evolve over time 

before we start to determine its distance towards the reference trajectory. In other words, we discard some initial time interval 

of error growth from our study since this is affected by some complicated transient behavior before it starts to grow with the 220 

maximum Lyapunov exponent. However, due to the hierarchical nature of our model, the error growth with the maximal 

Lyapunov exponent will saturate already for rather small error amplitudes and will be replaced by slower error growth on 

larger scales, an effect which we will study in detail. The above described scheme was originally introduced by Lorenz (1996). 

In our system, the three spatial scales 
1X , 

2X , and 
3X  cannot be separated in terms of a coordinate transform but are 

intrinsically coupled and superimposed in the variables 
totX  of the system. The initial conditions of the “reality” are called 225 

,0,tot nX , from which one finds 
1,0,nX , 

2,0,nX ,and 
3,0,nX  through Eqs. (13), (14) and (15). The initial values of the “prediction” 

are then ,0, 1,0, 2,0, 3,0, 3, ,0, 3,= =tot n n n n n tot n nX X X X e X e + + + + , where 
3, (0)ne  are the initial errors randomly selected from the 



9 

 

normal distribution ( = 0; = 0.01)ND   . Hence, these initial conditions differ only by the small perturbation 
3, (0)ne . Since 

the state of the model 
totX  is the sum over the three components, any arbitrary but small error with spatially uncorrelated 

components affects only 
3,0,nX . Only a spatially correlated initial error would appear in another component, but since this error 230 

would immediately propagate into the small scale variables and then grow fastest in these, a perturbation with initial errors in 

3,0,nX  is the only practical choice. From 
,0,tot nX  and 

,0,tot nX   Eqs. (12) are integrated forward for 41.7 days ( = 2000K  steps). 

In each time step k  of the numerical integration, 
, ,k nX , and 

, ,k nX
  are obtained. The size of the error at a given time k t  is 

, , , , ,( ) =n k n k ne k t X X  
 − , where =1, ,k K , =1, ,n N  and = ,1,2,3tot . We perform = 400M  runs in order to 

calculate the average error growth. In each new run, the initial values 
,0,nX  are the last values 

, ,K nX  of the previous run. The 235 

average initial error growth ( )E t  is defined as the geometric mean of the runs of the Euclidean distances between “reality” 

and “prediction”: 

 ( ) ( )2
2

, ,

=1=1

1
= ,

M N

M
n m

nm

E k t e k t
N

 

 
  

 
  (16) 

 where = ,1,2,3tot . The initial transient behavior (0.7 days) of the average error growth ( )E t  is discarded. We do this since 

the random initial errors perturb the initial state off the attractor. On very short times, the perturbed trajectory relaxes back to 240 

the attractor (Brisch and Kantz, 2019; Bednar et al., 2014) so that the error does not grow. Only after this transient one observes 

the characteristic error growth of the system. In real weather forecasts, the data assimilation scheme 4D-VAR usually ensures 

that the (error prone) analysis which is used as the initial condition of the forecast is on the attractor, and also in ensemble 

forecasts, the perturbations to the analysis are, e.g., by the usage of bred vectors, done in a way that all ensemble members 

start on (or at least very close to) the attractor. As a result, we have numerical averages for the error growth as a function of 245 

time steps after perturbing the reference trajectories in the full phase space and for =1,2,3 . We can convert these results 

into the error growth rate as a function of time, and into the error growth rate as a function of the error magnitude. Inspired by 

the Referee Comment 1, we performed for our model system also an analysis in terms of the Finite Size Lyapuniov Exponent 

FSLE (Aurell et al. 1996). The results are qualitatively the same as found by our analysis, with small quantitative differences 

in the magnitude of the error growth rates (not shown here). As we discussed before, the ECMWF data can be only analyszed 250 

using our approach, and our approach is also more consistent with the performance of forecasts., but we have convinced 

ourselves that the conclusions to be drawn from the next section are fully consistent with the FSLE analysis. 
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3.3. Functional forms for error growth rates 

Let us first consider a classical low dimensional chaotic system. If the initial errors were infinitesimal, one could follow their 255 

growth for infinite times and define the maximal Lyapunov exponent of the system as 

( )0

1
= ln | ( ) ( ) |lim limtmax X t X t

t
 → →  − , with a time and error independent growth rate  . This exponential growth is 

associated with single scale systems, infinitesimal initial error, and the early part of the error growth (Bednar et al., 2014). In 

reality, since the initial perturbation is non-infinitesimal, the exponential error growth will cross over to a constant: the distance 

between the “true” and the perturbed trajectories cannot become larger than the largest distance on the attractor. Hence, for 260 

large times. the average “error” is then the average distance of two arbitrary points on the attractor, averaged over the invariant 

measure. In order to take this saturation effect into account, we use the extended exponential law for the error growth rate: 

( ) = (1 )E E E  − , where E
 is the saturation value of the respective error. Notice that this extension does not involve any 

free parameter other than the measurable saturation value E
. 

We calculate the error growth rate in our L05-3 system using the method of Sprott (2006) (
10

, (0) =10ne
−

, =10k  and =100k265 

, 
5=10M ). In the following, ( )E t

 denotes mean over many initial conditions of the Euclidian distances between the “true” 

and the perturbed trajectories at a time t  after initializing the perturbation, measured in the subspace of the coordinates  , 

where { ,1,2,3}tot  . Numerically, we find 
, = 7.4totE 

, 
1, = 6.6E 

, 
2, =1.4E 

, 
3, = 0.3E 

 (units). We determine the 

maximal Lyapunov exponents in all 4 cases and find the values 
1

, 3,= = 2.5 ( )theor tot theor theor days −     and 

1

1, 2,= 2 ( )theor theor days −   . The similarity of the values ,tau theor  for all levels =1,2,3  indicates that they are coupled, so 270 

that the maximal Lyapunov exponent when calculated in the double limit 
0 0E →  and t →  shows up in arbitrary 

subsystems. These values must not be confused with the Lyapunov exponents characterizing the different levels which we will 

calculate later: The evolution of the errors E  can always be studied in a way to see the largest exponent of the system (done 

here), but also in a way to see a value which would be the exponent of the corresponding sub-system if one were able to isolate 

this. In the context of the coupled system, these sub-system exponents as just some other positive exponents of the full system, 275 

since Eq. (12) in total has, as every dynamical system, as many Lyapunov exponents as it has degrees of freedom (here: N

=390), were several of these can be positive. 

The L05-3 system is designed with three spatial and temporal scales, so the error growth rate 
1

( ) ln( ( ) / ( ))E E t t E t
t

  + 


 is 

expected to be a function of the error magnitude E : after the small scale errors are no longer growing, the large scales errors 

continue to grow at a lower rate. Brisch and Kantz (2019) described this dependence by a power law: 280 

 ( )
( )ln

:= = = ,p

d E E
E aE

dt E

 −  (17) 
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 with an exponent   and a coefficient > 0a . By integrating Eq. (17) over time, the power law dependence of the error growth 

rate on the error magnitude translates into a power law growth of errors over time: 

 ( )
1/

0( ) = .pE t E a t


 +  (18) 

Similar to the exponential law, this power law does not take the saturation of errors at their largest scale into account. We, 285 

therefore, multiply the right hand side by (1 / )E E−  amnd arrive at the extended power law: 

 
ln

( ) := = = 1 .w

d E E E
e aE

dE E E

 −



 
− 

 
 (19) 

 Unfortunately, the time integration in order to arrive at an expression of ( )wE t  cannot be done analytically but numerically 

once the parameters are fixed. 

A different description of scale dependent error growth rate was proposed by Zhang et al. (2019), namely a quadratic model 290 

which we write down directly in its extended form containing the saturation effect: 

 ( )1ln
( ) := = = 1 ,q

d E E E
E E

dt E E
   −



 
+ − 

 
 (20) 

 where  is a synoptic scale error growth rate and   is an upscale error growth rate from small scale processes, which was 

originally designed to describe model error (Savijarvi, 1995; Dalcher and Kalney, 1987). By integrating Eq. (20) over time, 

we find 295 

 ( )
( )

( ) ( ) ( )0 0

/
= .

1 / exp / /
q

E
E t E

E E t E E

 

   





 

−
−

− + + −  
 (21) 

 When removing the saturation factor (1 / )E E−  in Eq. (21), then it is what was called the quadratic model, 

 1ln
( ) := = = ,r

d E E
E E

dt E
   −+  (22) 

 with the time evolution of the error 

  ( )0 0( ) = exp 1 ,rE t E E t





 
+ + − 
 

 (23) 300 

 which is suitable for the first few days of the error growth. 
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To summarize, we can test the validity of the following laws for scale dependent error growth rates and for the error growth 

over time: a constant Lyapunov exponent and hence an exponential error growth, as it is expected for the initial time of very 

small initial errors in a low dimensional chaotic system; the extension of this behavior with a saturation factor (1 / )E E−  

expected to be valid for all times in a low dimensional chaotic system; the (extended) quadratic law proposed in (Zhang et al. 305 

2019), and the (extended) power law growth proposed in Brisch and Kantz (2019). 

In Figs. 2, 3, and 4, we present the numerical results of the error growth over time of the errors ( )E t
 for { ,1,2,3}tot  , and 

the corresponding error growth rates as a function of the error magnitude. 

The power law ( )p E  (Eq. (17)) approximates the L05-3 system error growth rate ( )tot E  in the interval ,0( ) ,1.5tot totE t E     

(Fig. 2a). For larger errors, there is no “next level” of the hierarchy any more, so that the power law evidently cannot be valid. 310 

For ( ) ,1.5,tot totE t E 
    , the empirical error growth rate ( )tot E (Fig. 2a) decreases much faster than the power ( )p E , due 

to saturation of the errors at E
. Hence, the power law ( )pE t  (Eq. (18)) yields a good approximation of L05-3 system error 

growth ( )totE t  only in the early part of the growth within six days (Fig. 2b), where we find the numerical values = 0.5  and 

= 0.41a (units 0.5 /day). This power law needs to be corrected on times beyond 6 days in order to be able to model the saturation 

of errors, called the extended power law above. Inserting the numerically observed saturation value = 7.4E
, a fit of ( )w E  315 

Eq. (19) yields = 0.47 , = 0.46a  (units 0.47 /day). With this extension, we are able to suitably approximate the L05-3 system 

error growth ,0 ,( ) ,tot tot totE t E E 
     (Fig. 2a) on the entire range of errors. The numerical time integration of Eq. (19) 

correspondingly well approximates the L05-3 system error growth ( )totE t  from the initial conditions 
0E  to the limit (saturated) 

value 
,totE 

 (Fig. 2b). 

We also fit the quadratic model ( )r E , Eq. (22), to the numerically obtained L05-3 system error growth rate ( )tot E . It can 320 

reproduce the error growth rate in the interval ( )  0 , 1.5totE t E  as well, but not as accurately as the power law (Fig. 3a). For 

larger errors In the interval ,( ) 1.5,tot totE t E 
    , the quadratic model ( )r E  decreases more slowly than the L05-3 system 

error growth rate ( )tot E  and the power law ( )p E  (Fig. 3a and 2a). The solution of the quadratic model for the time 

evolution of the error, ( )rE t  (Eq. (23)), with = 0.25  (day 1− ) and = 0.13 (units/day) determined from the approximation 

is similar to ( )pE t  with a given coefficient and exponent, but it does not approximate the data as accurately (Fig. 3b). The 325 

factor (1 )E−  with = 7.3E
 in the extended quadratic model, Eq. (20), yields a much better approximation along the entire 

time interval, ( ) ,0 ,,tot tot totE t E E 
     (Fig. 3a), but it is slightly less accurate than the extended power law in the interval 

( ) ,0 , 1.5tot totE t E    . This inaccuracy is significant for the solution of the extended quadratic model ( )qE t  (Eq.(21)) with 
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= 0.2  (day 1− ) and = 0.19 (units/day) determined from the approximation, where the early part of growth is the least 

similar to error growth ( )totE t  (Fig. 3b). 330 

3.4. Self-consistent explanation of the observed approximate power law 

Britch and Kantz (2019) derived the value of the exponent   of the power law Eq. (17) from other system properties. They 

argue that the power law is a result of the superposition of the error growth on different spatial scales with different growth 

rates. Translated into our L05-3 system it should work as follows: The small scale error growth 
3( )E t  should follow the 

(extended) exponential growth (solution of = (1 )E E E E − ), with 
3  and a saturation scale 

3,E 
. After its saturation, the 335 

medium scale error continues to grow, but with a lower rate 
2 , and will saturate at a larger scale 

2,E 
. Beyond that, the total 

error growth can only be driven by the growth of the large scale errors with an even slower growth rate 
1  and saturation scale 

1,E 
. If the model is designed such that 

2 1= c   and 2

3 1= c  , while 
2, 1,= /E E b 

 and 
2

3, 1,= /E E b  , then it was 

argued that the exponent of the power law should be = ln / lnc b . 

The model of Britch and Kantz (2019) was constructed of weakly coupled identical sub-systems, with additional scaling 340 

parameters for the amplitude and time of the different subsystems. Therefore, there were rather well defined error growth rates 

 , =1,2,3 , and it was easily possible to tune these so that 2

1 2 3= =c c    and 
2

3, 2, 1,= / = /E E b E b   . In our L05-3 

model, all this is not the case. The advantage of our model, however, is that it is much closer to the phenomenology of an 

atmospheric model: In a single field 
totX , we observe both large scale and small scale structures, and we observe both fast and 

slow motion. 345 

In the L05-3 model, we have determined the error growth of a given level by the study of the distance between reference 

trajectories and perturbed trajectories in the corresponding coordinates X , =1,2,3 , see Fig. 4. It is straightforward to 

identify the saturation values 
,E 

. We describe here how we find approximate values for the growth rates   in the extended 

exponential law ( ( ) = (1 )E E E  − ) from our numerics. We can then determine c  and b  and hence a theoretical value for 

 , which we will compare to the numerical fit. 350 

By Sprott’s method (Sprott 2006) we calculate the error growth rates of the three levels separately and the total error growth 

rate. As one can see in Fig. 4, ( )E  can be well described by the extended power law ( )w E  on the whole range of E  for 

all  . The individual contributions of the levels (scales) X , =1,2,3  to the error growth rates ( )E  are then identified as 

parts that fulfill the extended exponential growth ( )e E . Numerically, we identify the following values: The extended growth 

rates are 
3 = 3.6  (day 1− ), 

2 = 0.8  (day 1− ), and 
1 = 0.28  (day 1− ). The corresponding saturation scales are determined as 355 

3, = 0.06
e

E   (units), 2, = 0.55
e

E   (units), and 1, = 6.1
e

E   (units). The values for levels = 2  are extracted from the range 
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where the effect of ( )3 E  is no longer present (Fig 4b), while for =1  we consider the late stage of the error growth rate 

( )1 E  (Fig 4c). Following the arguments from above, we derive   as 
1 1= ln / ln = 0.47b c  where 1 2, 3,= /

e e
b E E   and 

1 2, 1,= /e ec   . We get the same value of 
2 2= ln / ln = 0.47b c  where 2 1, 2,= /

e e
b E E  , and 

2 3, 2,= /teor ec   , even though 

that 
1 2b b  and 

1 2c c . Note that 
2c  uses 

3,teor  instead of 
3 . This is because 

3  should be computed from the ranges 360 

where E  and t  are small/short but which include some transient behavior (Fig. 4a), and therefore 
3,teor  is a more appropriate 

value. 

These derived values for   are in perfect agreement with the empirical fit of the extended power law ( )w E , which yields 

= 0.47 , and it is close to the value = 0.50  of the power law ( )p E  without the saturation effect. 

The coupling of the levels has the consequence that one cannot define the Lyapunov exponents for the individual levels in a 365 

mathematically rigorous way. We calculated them as 1 2,( ) = 0.28 = .
e

E const  (day 1− ) at 2, = 0.55
e

E   and 

( )2 3, = 0.8 = .
e

E const  (day 1− ) at 3, = 0.06
e

E   using the extended exponential law. It is well justified to use these to 

determine the exponent  . However, they do not fit the error growth rate ( )tot E ( ( )2, 1tot
e

E    , ( )3, 2tot
e

E    , Fig. 

4d). Instead, a fit to ( )tot E  yields ( )2, 1= = 0.28tot E    (day 1− ) in the limit value of medium scale error growth 
2, =1.4E 

 

and ( )3, 2= = 0.8tot E    (day 1− ) in the limit value of small scale error growth 
3, = 0.3E 

 (Fig. 4d). If we approximate the 370 

values 1 2,( )
e

E   and ( )2 3,
e

E   by the power law ( )p E  with the exponent = 0.5 , we get the coefficient = 0.2a (units

0.5 /day), and by the power law ( )p E  with the exponent = 0.47 , we get = 0.21a  (units 0.47 /day). These power laws should 

describe the error growth of the system without coupling (the extended power law was not used because ( )1 /E E−  is 

negligible in this area) and if we compare these values with the values of the power laws ( ( ),tot p E : = 0.5 , = 0.41a (units

0.5 /day), ( ),tot w E : = 0.47 , = 0.46a (units 0.46 /day) ) that approximate the error growth rate of the L05-3 system ( )tot E  375 

(the system with coupling), we find that the value of the coefficient a  changed. We, therefore, conclude that the coefficient 

a  is subject to the degree of coupling of the system. 

Values = 0.25  (day 1− ) for the quadratic model ( )r E  (Eq. (22)) and = 0.2  (day 1− ) for the extended quadratic model 

( )q E  (Eq. (20)) should describe synoptic scale error growth rate (Zhang et al., 2019; Zhang and Sun, 2020). For the L05-3 

system, it is 
1 = 0.28 (day 1− ) obtained from the approximation by the extended exponential growth ( ( ) = (1 )E E E  − ) 380 

for 
1X . We can see that 

1  is closer to   from the quadratic model ( )r E  , but none of   describes 
1  exactly. Values 
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= 0.13 (units/day) and = 0.19 (units/day) that by Zhang et al. (2019) and  Zhang and Sun (2020) should describe upscale 

error growth rate from small scale processes could not be identified or described in the L05-3 system. 

4. Error growth in the ECMWF forecast system 

The error growth ( )EFSE t  of the ECMWF forecasting system’s 500 hPa geopotential height values (Magnusson, 2018) is 385 

calculated (Magnusson and Kallen, 2013) as annual averages over the Northern Hemisphere (20 –90 ) obtained daily from 

1 January 1986 to 31 December 2011. As “errors” one uses the differences between two operational forecasts issued with one 

day lag for the same day, in order to eliminate the effects of model errors. Specifically, we evaluaete these for 27 different lead 

times and used the following time intervals in hours: 0–24, 6–30, 12–36, 18–42, 24–48, 30–54, 36–60, 42–66, 48-72, 54–78, 

60–84, 66–90, 72–96, 78–102, 84–108, 90–114, 96–120, 108–132, 120–144, 132–156, 144–168, 156–180, 168–192, 180–204, 390 

192–216, 204–228, 216–240. Detailed information about calculating the error growth of the ECMWF forecasting system can 

be found in Lorenz (1982). The error growth rate ( ) := ln / ln( ( ) / ( )) /EFS E d E dt E t t E t t  +   with = 6t  hours for the 

first seventeen time steps and =12t  hours for the remaining ten time steps and the error growth ( )EFSE t  are is calculated 

between the first and tenth day. The differences 0–24, 6–30, 12–36 are discarded because ( )EFS E  for these differences is 

either increasing or constant due to transient behavior, see Fig. 5. 395 

Despite these missing parts of the error growth ( )EFSE t , Bednar et al.(2020) showed that the extended quadratic model ( )qE t  

Eq. (21) is more accurate than the extended exponential growth (solution of = (1 )E E E E − ). Because ( )EFSE t  calculated 

in the above mentioned way should be insensitive to any model error which therefore can not affect the error growth, the 

extended quadratic model parameter   describes the effect of small scale processes, which justifies to consider the error 

growth rate ( )EFS E  for all annual averages as scale-dependent and to approximate it also by the extended power law ( )w E  400 

Eq. (19). The quadratic model ( )r E  (Eq. (22)) and the power law ( )p E  (Eq. (17)) cannot be used due to the lack of an 

early part of the error growth ( )EFSE t . The extended power law ( )w E  (Eq. (19)) matches well with the annual averages of 

the error growth rate ( )EFS E  of the ECMWF forecasting system (Fig. 5) with the values of the exponent 
EFS  displayed in 

Fig. 6b ( = 0.21 0.07EFS  ), the value of the coefficient a
EFS

 shown in Fig. 6a ( = 0.93 0.18EFSa  m  /day) and with the limit 

(saturated) values ,EFS
w

E   displayed in Fig. 8 ( , = 114 7EFS
w

E    m). Exponents 
EFS , coefficients 

EFSa , and limit values 405 

,EFS
w

E   do not have significant trends over the years (Fig. 6 and 8). The extended quadratic model ( )q E  Eq. (20) 

approximates annual averages of the error growth rate ( )EFS E  of the ECMWF forecasting system (Fig. 5) with the values of 

the parameter 
EFS  shown in Fig. 7a ( = 0.35 0.04EFS   day 1− ), the value of the parameter 

EFS  displayed in Fig. 7b (
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= 2.8 0.9EFS  m/day) and with the limit (saturated) values ,EFS
q

E   displayed in Fig. 8 (
, = 111 7EFS

q
E    m). Again, 

parameters 
EFS , 

EFS , and limit values ,EFS
q

E   do not have significant trends over the years (Fig. 7 and 8). The 410 

approximations by the extended quadratic model ( )q E  and the extended power law ( )w E  differ in parts where data are 

not available (Fig. 5). The limit values ,EFS
w

E   and initial errors ,0EFS
w

E  of the extended power law are greater than the limit 

values ,EFS
q

E   and initial errors ,0EFS
q

E  of the extended quadratic model (Fig. 5 and 8). If we set the initial errors of both 

approximations to the same value, the error growth of the extended quadratic model ( ),EFS qE t  approximation would grow 

faster and would reach the limit value 
,EFSE 

 earlier than the error growth of the power law ( ),EFS wE t . This difference is more 415 

significant when 
0 0E → . Of particular interest is the limit of predictability. We, therefore, study the time when the error ( )E t  

reaches 95% of the limit error E
 for the size of the initial error 

0 3E   m, which is an accepted value for current global 

operational NWP models (Zhang et al., 2019). The limit time is 14 days for the extended quadratic model , ( )EFS qE t  when using 

the above mentioned parameter values for 
EFS , 

EFS , and 
,EFS

q
E 

 (Fig. 9a). For the extended power law ( ),EFS wE t , using 

the above listed values for the exponent 
EFS , coefficient 

EFSa , and limit values ,EFS
w

E  , it is 15 days (Fig. 9b). When the size 420 

of the initial error 
0E  is reduced to 

0 0.1E   m which is realistic for the current global experimental NWP models (Zhang et 

al., 2019), this limit time is 15 days for the extended quadratic model ( ),EFS qE t  (Fig. 9a), and 18 days for the extended power 

law ( ),EFS wE t  (Fig. 9b). Both models have an intrinsic predictability limit even if the size of the initial error 
0 0E → , which 

is 15 dayts for the extended quadratic model (Fig. 9a) and 22 days for the extended power law , ( )EFS wE t  (Fig. 9b). 

5. Conclusion and discussion 425 

We designed a three levels (scales) system (L05-3, Eqs. (12) – (15)) with the parameters = 390N , =13L , = 6J , =15F , 

1 =1b , 
2 =10b , 

1 =1c , 
2 =1c , 

1 = 20I , 
2 =10I . These parameters were chosen in such a way that all levels behave 

chaotically, i.e., the largest Lyapunov exponents of each level is positive, and that all levels have a significant difference in 

amplitudes and fluctuation rates (Fig. 1). In this system, the error growth rates ( )E  and the error growths as a function of 

time ( )E t  were calculated for the system as a whole ( = tot ) and for the different levels ( =1,2,3 ). We fitted the 430 

numerically obtained results by the power law ( )p E  (Eq. (17)), the extended power law ( )w E  (Eq. (19)), the quadratic 

hypothesis ( )r E  (Eq. (22)), the extended quadratic hypothesis ( )q E  (Eq. (20)) and their corresponding time integrations 

( )E t . Without the saturation terms (1 / )E E−  both the power law and the quadratic hypothesis fail to provide good fits for 
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larger errors or longer times (Fig. 2 and 3) but are reasonable for the early parts of error growth when the initial error is small. 

Indeed, with our type of numerical analysis, we are unable to reach the very small scales where the error growth rate saturates 435 

at the proper Lyapunov exponent of the system which we estimate to be about 2.5 per day, but instead are faced by an 

overshooting of the inititial error growth. 

The quadratic hypothesis does not provide an as good fit as the extended power law does. Its parameter   that by Zhang et 

al. (2019) and Zhang and Sun (2020) should describe the upscale error growth rate from small scale processes could not be 

identified or described in the L05-3 system. In contrast, the extended power law ( )w E  and ( )wE t  with the exponent = 0.47440 

, the coefficient = 0.46a  (units 0.47 /day), and = 7.36E
 best describes the error growth rate ( )tot E  and the error growth 

( )totE t  of the L05-3 system on the whole range of times and error magnitudes. Britch’s and Kantz’s (2019) definition of the 

exponent   was confirmed and extended to cases when 
1 2c c  ( c  is the ratio of the rapidness of a smaller scale compared 

to the rapidness of a larger scale) and 
1 2b b  ( b  is the ratio of a smaller scale amplitude compared to a larger scale amplitude) 

for 
1 1 2 2= ln / ln = ln / lnc b c b . It was shown that the coefficient a  determines the degree of the system’s coupling because 445 

the same value of the exponent   is valid for the same system with and without coupling. 

We also checked the appropriateness of the extended quadratic hypothesis and the extended power law to describe the error 

growth rate ( )EFS E  and the error growth over time ( )EFSE t  of the ECMWF forecasting system’s 500 hPa geopotential height 

values over the 1986 to 2011 period. Their behaviors differ in parts where data are not available (Fig. 5), while they agree 

quite well and both describe the numerical observations on the main part of the data. Therefore, it is not possible to assess 450 

which approximation is the more appropriate one for the description of the entire length of ( )EFS E  and ( )EFSE t  from the 

initial to the limit (saturated) error. One might argue, however, that the study of the L05-3 system whose behavior is best 

described by the extended power law ( )w E , where it is theoretically substantiated and because we can observe the similarities 

of the differences between the data and the approximations in both systems (
, , ,> >EFS EFS EFS

teor w q
E E E  

 (Fig. 8) and 

, , ,> >tot tot tot
w q

E E E   ; 
, ,>teor w EFS w   (Fig. 7) and 

1 ,> tot w ), that the extended power law ( )w E  is also a valid 455 

description of the ECMWF forecasting system. From the average of the fit parameters over many years we calculate that the 

intrinsic limit to predictability is 22 days in the idealized case of perfect initial conditions, which is in nice agreement with 

Krishnamurthy (2019). 

Code and data availability 

The ECMWF forecasting system dataset was obtained from the personal repository of Linus Magnusson (Magnusson, 2013). 460 

L05-3 system dataset, products from the ECMWF forecasting system dataset, codes, and figures were conducted in Wolfram 

Mathematica, and they are permanently stored at http://www.doi.org/10.17605/OSF.IO/2GC9J. 
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 520 

Figure 1(a) Initial conditions (after discrding a transient of 10 years) and values of variables (Xtot, X1, X2, X3) at days  (b) one,  (c) two, 

and  (d) three of the L05-3 system (Eqs. (13) – (15)) with the parameters N = 390, L = 13, J = 6, F = 15, b1 = 1, b2 = 10, c1 = 1, c2 =1, I1 

= 20, I2 =10  calculated by a fourth-order Runge-Kutta method with a time step ∆t = 1/240 or 0.5 hours. 
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 Figure 2. (a) Error growth rate ( )tot E of the L05-3 system (black). Power law ( )p E  (Eq. (19)) with the exponent 0.5 = and the 525 

coefficient 0.41a = (units0.5/day) ( ( ),tot p E , blue, dashed) and extended power law ( )w E  (Eq. (26)) with the exponent 0.47 = , 

the coefficient 0.46a = (units0.47/day), and 7.36E =  (units) ( ( ),tot w E , red, dashed) that approximate ( )tot E . (b) Error growth 

( )totE t  (Eq. (17)) (black), solution ( ),tot pE t  (blue, dashed) of ( ),tot p E  (Eq. (19)), and numerical solution of ( ),tot w E (red, dashed). 
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 Figure 3. (a) Error growth rate ( )tot E of the L05-3 system (black). Quadratic model ( )r E  (Eq. (22)) with 0.25 = (day-1) and 530 

0.13 = (units/day) ( ( ),tot p E , blue, dashed) and extended quadratic model ( )q E  (Eq. (20)) with 0.2 =  (day-1), the coefficient 

0.19 = (units/day), and 7.3E =  (units) ( ( ),q w E , red, dashed) that approximate ( )tot E . (b) Error growth ( )totE t  (Eq. (17)) 

(black), solution ( ),tot rE t  (blue, dashed) of ( ),tot r E  (Eq. (22)), and solution ( ),tot qE t  (blue, dashed) of ( ),tot q E  (Eq. (21)) (red, 

dashed). 
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 535 

 Figure 4. (a) Error growth rate ( )3 E of the L05-3 system's 3X  scale (black). Extended exponential growth ( )e E  (Eq. (24)) with

3 3.6 =  (day-1) and 
3, 0.06

e
E  =  (units) ( ( )3,e E , red, dashed) and extended power law ( )w E  (Eq. (26)) with the exponent 

0.75 = , the coefficient 0.13a = (units0.75/day), and 
3, 0.3

w
E  =  (units) ( ( )3,w E , blue, dashed) and 

, 3, 2.5teor tot teor teor =  =   (day-

1) (Sprott's (2006) method, orange, dotted). (b) Error growth rate ( )2 E of the L05-3 system's 2X  scale (black). Extended 

exponential growth ( )e E  (Eq. (24)) with 2 0.8 =  (day-1) and 
2, 0.55

e
E  =  (units) ( ( )2,e E , red, dashed) and extended power law 540 

( )w E  (Eq. (26)) with the exponent 0.44 = , the coefficient 0.25a = (units0.44/day), and 
2, 1.4

w
E  =  (units) ( ( )2,w E , blue, dashed) 

and error growth rate ( )3 E of the L05-3 system's 3X  scale (orange). (c) Error growth rate ( )1 E of the L05-3 system's 1X  scale 

(black). Extended exponential growth ( )e E  (Eq. (24)) with 1 0.28 =  (day-1) and 
1, 6.1

e
E  =  (units) ( ( )1,e E , red, dashed) and 

extended power law ( )w E  (Eq. (26)) with the exponent 0.5 = , the coefficient 0.43a = (units0.5/day), and 
1, 6.6

w
E  =  (units) (

( )1,w E , blue, dashed). (d) Error growth rate ( )E  where τ = tot (black, thin), τ = 1 (red, thin), τ = 2 (orange, thin), τ = 3 (blue, 545 

thin). Extended power law ( ),w E  where τ = tot (black), τ = 1 (red), τ = 2 (orange) with 
2, w

E 
(orange, dashdotted) , τ = 3 (blue) with 

3, w
E 

(blue, dashdotted). Power law ( ),tot p E  (black, dashed). Extended exponential growth ( ),e E  where τ = 1 (red, dashed) with 

1  (red, dotted), τ = 2 (orange, dashed) with 2  (orange, dotted), τ = 3 (blue, dashed) and teor  (black, dotted). 
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Figure 5. The error growth rate ( )EFS E  and error growth ( )EFSE t  of the ECMWF forecasting system’s 500 hPa geopotential height 550 

values (Northern Hemisphere (20°–90°)) calculated as differences between two operational forecasts issued with one day lag but 

valid on the same day (black), approximation by the extended power law ( )w E  (Eq. (26)) and ( )wE t  (Eq. (27)) (red, dashed), and 

approximation by the extended quadratic model ( )q E  (Eq. (20)) and ( )qE t  (Eq. (21)) (blue, dashed). (a,b) Annual average of 2000, 

( ),EFS w E and ( ),EFS wE t  with 0.28 = , 1.1a = (m0.28/day), and 115E =  (m), ( ),EFS p E  and ( ),EFS pE t  with 0.32 =  (day-1) and 

3.2 = (m/day) and 110E =  (m). (c,d) Annual average of 2010, ( ),EFS w E and ( ),EFS wE t  with 0.17 = , 0.8a = (m0.17/day), and 555 

114E =  (m), ( ),EFS p E  and ( ),EFS pE t  with 0.4 =  (day-1) and 2 = (m/day) and 111E =  (m). 
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Figure 6. Values of coefficients a (a) and exponents  (b) of the extended power law ( )w E (Eq. (26)) approximated from annual 

averages of the error growth rate ( )EFS E  of the ECMWF forecasting system’s 500 hPa geopotential height values (Northern 

Hemisphere (20°–90°)) calculated as differences between two operational forecasts issued with one day lag but valid on the same day 560 
(black) and the average value of coefficients 0.93 0.18EFSa =  mσ/day and exponents 0.21 0.07EFS =   over all years (black, 

dashed). 
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 Figure 7. Values of parameters  (a) and  (b) of the extended quadratic model ( )q E  approximated from annual averages of the 

error growth rate ( )EFS E  of the ECMWF forecasting system’s 500 hPa geopotential height values (Northern Hemisphere (20°–565 

90°)) calculated as differences between two operational forecasts issued with one day lag but valid on the same day (black), the 

average value of parameters 0.35 0.04EFS =   day-1 and 2.8 0.9EFS =  m/day over all years (black, dashed) and theoretical value 

of teor  (blue) and its average value 0.37 0.02teor =   day-1  (blue, dashed) over all years determined by Bednar et al. (2020). 
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Figure 8. Values of limit (saturated) values 
, wEFSE 

 of the extended power law ( )w E  (red), 
, qEFSE 

 of the extended quadratic model 570 

( )q E  (blue), and theoretical value 
, teorEFSE 

 determined by Bednar et al. (2020) (black) approximated from annual averages of the 

error growth rate ( )EFS E  of the ECMWF forecasting system’s 500 hPa geopotential height values (Northern Hemisphere (20°–

90°)) calculated as differences between two operational forecasts issued with one day lag but valid on the same day. The average 

value of 
, 114 7

wEFSE  =   m (red, dashed), 
, 111 7

qEFSE  =  m (blue, dashed), and 
, 118 7

teorEFSE  =  m (black, dashed).  
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 575 

Figure 9. (a) The solution of the extended quadratic model ( )qE t  with parameters 0.35EFS =  day-1 and 2.8EFS = m/day, limit 

(saturated) value
, 111

qEFSE  = m and with initial errors 0 3E =  m (blue),  0 0.1E =  m (black), and 0 0E →  (red). (b) The solution of 

the extended power law ( )wE t  with the coefficient 0.93EFSa = mσ/day, exponent 0.21EFS = , limit (saturated) value
, 114

qEFSE  = m 

and with initial errors 0 3E =  m (blue),  0 0.1E =  m (black), and 0 0E →  (red). 
_

 means averages over approximations of ( )q E  

and ( )w E  from annual averages of the error growth rate ( )EFS E  of the ECMWF forecasting system’s 500 hPa geopotential 580 

height values (Northern Hemisphere (20°–90°)) calculated as differences between two operational forecasts issued with one day lag 

but valid on the same day. 

 

 


