
Modeling the small-scale deposition of snow onto structured Arctic
sea ice during a MOSAiC storm using snowBedFoam 1.0.
Océane Hames1,2,�, Mahdi Jafari2,�, David Nicholas Wagner1,2, Ian Raphael3, David Clemens-Sewall3,
Chris Polashenski3,4, Matthew D. Shupe5,6, Martin Schneebeli1, and Michael Lehning1,2

1WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
2CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
3Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
4USACE-CRREL Alaska Projects Office, Fairbanks, Alaska, USA
5NOAA Physical Science Laboratory, Boulder, Colorado, USA
6Cooperative Institute for the Research in Environmental Sciences, University of Colorado Boulder,
Boulder, Colorado, USA
�These authors contributed equally to this work.

Correspondence: Océane Hames (hames.oceane@gmail.com)

Received: 23 July 2021 – Discussion started: 27 August 2021
Revised: 7 April 2022 – Accepted: 12 July 2022 – Published:

Abstract. The remoteness and extreme conditions of the
Arctic make it a very difficult environment to investigate. In
these polar regions covered by sea ice, the wind is relatively
strong due to the absence of obstructions and redistributes
a large part of the deposited snow mass, which complicates5

estimates for precipitation hardly distinguishable from blow-
ing or drifting snow. Moreover, the snow mass balance in
the sea ice system is still poorly understood, notably due
to the complex structure of its surface. Quantitatively as-
sessing the snow distribution on sea ice and its connection10

to the sea ice surface features is an important step to re-
move the snow mass balance uncertainties (i.e., snow trans-
port contribution) in the Arctic environment. In this work we
introduce snowBedFoam 1.0., a physics-based snow trans-
port model implemented in the open-source fluid dynamics15

software OpenFOAM. We combine the numerical simula-
tions with terrestrial laser scan observations of surface dy-
namics to simulate snow deposition in a MOSAiC (Multidis-
ciplinary Drifting Observatory for the Study of Arctic Cli-
mate) sea ice domain with a complicated structure typical20

for pressure ridges. The results demonstrate that a large frac-
tion of snow accumulates in their vicinity, which compares
favorably against scanner measurements. However, the ap-
proximations imposed by the numerical framework, together
with potential measurement errors (precipitation), give rise25

to quantitative inaccuracies, which should be addressed in
future work. The modeling of snow distribution on sea ice
should help to better constrain precipitation estimates and
more generally assess and predict snow and ice dynamics in
the Arctic. 30

1 Introduction

Sea ice figures prominently in a broad range of environmen-
tal, socioeconomic and geopolitical applications (Huntington
et al., 2017; Yumashev et al., 2017; Matthews et al., 2019). In
the past few years, the interest in sea ice has grown substan- 35

tially as it seems to be strongly impacted by climate change:
from the late 1970s until the present, the monthly average of
the Arctic sea ice extent has undergone a significant reduc-
tion, with a downward trend of 13.1 % per decade relative to
the 1981–2010 average (Perovich et al., 2020). Being able to 40

predict the future evolution of this environment implies hav-
ing a sufficient knowledge of the mechanisms underlying the
ice generation and destruction dynamics.

Recently, different authors have stressed the need to have
a robust quantification of the snow distribution since it seems 45

to play a significant role in both the melt and growth of sea
ice (Leonard and Maksym, 2011; Webster et al., 2018). The
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insulating capacities of snow, as well as its high albedo, can
profoundly impact the internal energy budget of sea ice (Tru-
jillo et al., 2016). Snow furthermore modifies the topogra-
phy and the aerodynamic roughness of the sea ice surface,
which impacts the turbulent energy transfer with the atmo-5

sphere (Andreas and Claffey, 1995). Lastly, snow can con-
tribute to the ice mass as its weight reduces the freeboard,
which may result in snow ice formation (Ackley et al., 1990;
Sturm and Massom, 2017); the importance of this process is
expected to grow in the future with the thinning of the Arctic10

ice (Maslanik et al., 2007; Provost et al., 2017) and increas-
ing precipitation (Bintanja et al., 2020). Hence, snow is pre-
sented as an integral component of the ocean–sea ice–snow
–atmosphere system, and quantifying its distribution is a key
to a better understanding of the sea ice mass balance (Wever15

et al., 2020).
In addition, the strong winds encountered in the Arctic

environment lead to large uncertainties in both model pro-
jections and measurements of precipitation (Goodison et al.,
1998; Wong, 2012; Boisvert et al., 2018), partly due to blow-20

ing snow being falsely detected as precipitation by snowfall
sensors (Sugiura et al., 2003). Arctic precipitation estimates
could be significantly improved by an accurate assessment
of the snow transport and redistribution on sea ice, assum-
ing that the other snow mass sink terms (e.g., sublimation,25

condensation and runoff) are known or negligible. Outside
the melting season (polar night and adjacent months), the
erosion of snow has been identified as the largest sink term
and may cause up to a 50 % decrease of the total precipi-
tated snow mass on sea ice (Leonard and Maksym, 2011). In30

comparison, processes such as sublimation, melt or conden-
sation have shown to play small roles in the snow mass bud-
get for the same period (Webster et al., 2021). Quantifying
snow redistribution and connecting the snow mass balance
to snowfall is a way to better constrain the current precipita-35

tion estimates and improve meteorological models.
Despite its importance, the current knowledge on sea ice

snow depth distribution and its spatiotemporal evolution is
limited due to sparse observational evidence (Trujillo et al.,
2016; Sturm and Massom, 2017; Liston et al., 2018). The40

amount of snow that is accumulated, redistributed, subli-
mated and transported to the open water is determined by the
complex interaction between snowfall, wind, and the pres-
ence and spacing of open leads; the contribution of each of
these processes to the Arctic snow mass balance, however,45

is not yet fully resolved (Déry and Tremblay, 2004; Leonard
and Maksym, 2011; Chung et al., 2011; Webster et al., 2021).
In particular, surface features such as pressure ridges have
a substantial effect on the snow distribution: by serving as
aerodynamic obstacles, they enhance the deposition of drift-50

ing and blowing snow, which leads to the formation of de-
positional features such as drift aprons (Trujillo et al., 2016;
Liston et al., 2018; Sommer et al., 2018). However, detailed
quantitative spatial representations of the effect of such topo-
graphical structures are limited.55

Several authors have investigated the snow distribution on
sea ice in recent years. Spatial measurements over a small-
scale area of Antarctic sea ice (∼ 100× 100 m) with terres-
trial laser scanning by Trujillo et al. (2016) were used to
characterize the influence of a storm on snow distribution 60

patterns and their relation to the surface topography. Snow
drifts were found to form mostly behind the topographical
obstacles, elongated along the dominant wind direction. To
our knowledge, such spatial observations of snow deposition
are non-existent in the literature for Arctic sea ice. 65

From a numerical perspective, Liston et al. (2018) re-
cently applied a snow evolution modeling system (Snow-
Model, Liston and Elder, 2006) to simulate snowdrifts and
snow depth distributions around sea ice pressure ridges.
The authors ran a 1-year simulation over an Arctic sea ice 70

domain (1.5 km×1.5 km) containing a ridged topography,
which they tested against measurements. Results showed
strong snow deposition behind the pressure ridges and snow-
free sea ice at their top, with partial accumulation along the
upwind side of the ridges. The employed topographical data 75

were based on radar-derived images of ice as more precise
spatial observations were not available. The study suggested
that improvement could be made through the use of surface-
based and airborne light detection and ranging (lidar), which
we achieve in the present work. 80

Generally speaking, the wind-induced snow transport pro-
cesses near the ground (saltation) and at higher elevations
such as suspension and preferential deposition (Lehning
et al., 2008) are dominant drivers for the spatial variabil-
ity of snow distribution at small scales (few meters to hun- 85

dreds of meters) and shape the snow deposition patterns
across various environments (Mott et al., 2018). Multiple
studies describe and try to reproduce those small-scale snow
deposition patterns at high resolution through the model-
ing of snow transport processes with detailed terrain–flow– 90

particle interactions (Gauer, 2001; Mott and Lehning, 2010;
Groot Zwaaftink et al., 2014; Wang and Huang, 2017).

In particular, the modeling framework developed by Co-
mola et al. (2019) combines large-eddy simulation (LES)
for the flow and a Lagrangian stochastic model (LSM) for 95

snow particle trajectories. Their model simulations demon-
strate that different deposition patterns can emerge from dif-
ferent combinations of scale- and velocity-dependent dimen-
sionless parameters. Thus, various factors can influence the
spatial variability of snow distribution on sea ice, and nu- 100

merical modeling can help with understanding the dominant
processes.

Herein we present snowBedFoam 1.0., a new Eulerian–
Lagrangian (E-L) snow transport solver implemented in the
computational fluid dynamics (CFD) software OpenFOAM 105

(or Open-source Field Operation And Manipulation, Weller
et al., 1998) that we employ to simulate the snow distribution
patterns in a numerical domain containing a second-year sea
ice topography with typical pressure ridges. Several data sets
from the recent MOSAiC (Multidisciplinary Drifting Obser- 110
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vatory for the Study of Arctic Climate) expedition (Shupe
et al., 2020) are used for this purpose. The first data set con-
sists of terrestrial laser scans (TLSs) that we employ as a
topographical base for the numerical domain in the simula-
tions. We secondly use meteorological measurements from5

MOSAiC to set up the wind and precipitation settings in the
model and simulate specific atmospheric events. Finally, we
compare the simulation output to real snow distribution mea-
surements obtained by differencing successive digital eleva-
tion models (DEMs) of the snow surface. The TLS technol-10

ogy permits the survey of snow depth variability in a very
high resolution (Prokop et al., 2008) and is particularly well
suited for studying snow transport processes at small scales.

The novelties of the numerical approach developed in this
study are multiple. First, to our knowledge, the OpenFOAM15

software has never been employed for the modeling of ae-
olian snow transport with such a detailed representation of
the snow particle–bed interactions. Second, we initiate the
use of the physical model of snow transport based on CFD
and LSM (Groot Zwaaftink et al., 2014; Sharma et al., 2018;20

Comola et al., 2019) for sea ice applications, in addition to
the integration of real snowfall and wind data as forcing pa-
rameters. Finally, the use of TLS elevation data as a base for
the sea ice surface in the simulation domain has not been
achieved yet in the literature (Liston et al., 2018). Our aim25

in the present work is to assess whether the snowBedFoam
model is able to reproduce the small-scale snow distribution
patterns found on Arctic sea ice in any qualitative or quanti-
tative way. Only pure mechanical fluid–particle interactions
are considered here, and thus we distinctively evaluate the30

impact of the horizontal snow transport on the sea ice snow
mass balance at a given location. Thermal processes such as
the sublimation of blowing snow and snow at the surface,
despite having a big role in the snow mass budget at cer-
tain spatiotemporal scales, are assumed to be negligible given35

the time period and location of interest (Chung et al., 2011;
Webster et al., 2021). Previous studies demonstrated that the
small-scale snow transport processes mainly drive the spatial
structure of snow distribution (Gerber et al., 2018), and it can
be expected that a strict Eulerian–Lagrangian snow transport40

model can reproduce the snow distribution patterns on sea
ice qualitatively. An accurate quantitative evaluation of the
snow mass distribution is less likely, however, given the mea-
surement uncertainties and modeling simplifications implied
by our numerical framework (see Sect. 2.4 for more details).45

This work is a first step towards the accurate modeling of
snow distribution on sea ice and could contribute in a larger
frame to the improvement of precipitation and sea ice mass
balance estimates in model projections.

This article begins with the presentation of the MOSAiC50

measurements that were employed to produce the results in
the subsequent parts. Next we describe the OpenFOAM snow
transport model and the associated equations that were im-
plemented to reproduce the snow erosion and deposition pro-
cesses on sea ice. Following this, we present the details re-55

lated to the simulations, including the modeling assumptions
and the numerical settings such as the forcing parameters.
The results from the simulations are then analyzed and com-
pared to real DEM measurements. Discussion and conclud-
ing remarks follow. 60

2 Data and methods

Several processing steps were required to generate the re-
sults presented in this work. In this section we successively
describe (1) the MOSAiC measurement campaign conducted
on Arctic sea ice and the related data sets used here, (2) the 65

implementation of the snow transport model in the Open-
FOAM software, and (3) the assumptions and general set-
tings of the simulations aiming to reproduce the snow distri-
bution on sea ice.

2.1 MOSAiC campaign 70

Detailed observations of snow surface topography were con-
ducted during the MOSAiC expedition, which took place in
the central Arctic from September 2019 to October 2020
(Shupe et al., 2020). Trapped in the Arctic ice for a nearly
full annual cycle, the research vessel Polarstern (Alfred- 75

Wegener-Institut Helmholtz-Zentrum für Polar- und Meeres-
forschung, 2017) operated by the Alfred-Wegener-Institut
Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)
served as the center for data collection on a drifting sea ice
floe: a kilometer-wide network of monitoring stations was set 80

up in its surroundings, allowing varied and extensive mea-
surements. In particular, observations of the snow and sea
ice properties and their governing processes were conducted
year round during the MOSAiC campaign (Nicolaus et al.,
2022). 85

This study focuses on repeated terrestrial laser scans of
snow on second-year sea ice that were successively mea-
sured on 6–13 November 2019 (Clemens-Sewall, 2021). The
TLS-scanned region after processing covers a total area of
390 m× 340 m, and its location relative to the MOSAiC sea 90

ice floe is shown in Fig. 1 (black frame). The topographi-
cal image in the background of Fig. 1 is derived from aerial
laser scan measurements taken on 12 November 2019 during
an helicopter flight. It is only used to illustrate the relative
sea ice floe location of the measurements used in this study. 95

Throughout this article the term “scans” only refers to the
TLS observations. A Riegl VZ-1000 scanner (RIEGL, 2017)
was positioned at several locations with sufficient scan over-
lap to generate a three-dimensional (3D) cloud of points over
the zone of interest. The emitter of the scanner was placed 100

as high as possible (approx. 2.7 m above level surface) to re-
duce shadowing, and the scan positions were recorded within
an intrinsic project coordinate system. General details about
the use of TLS for sea ice measurements can be found in
Polashenski et al. (2012). Before its use, the raw point cloud 105
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was post-processed with the RiSCAN PRO® v2.10. (RIEGL,
2020) software. Several corrections were made, which in-
cluded filtering, removal of outliers and non-static objects,
and the shift and rotation of tie points. The processed point
clouds were then spatially interpolated into digital snow sur-5

faces using the triangulated irregular network (TIN) (or De-
launay) interpolation method, available in the QGIS open-
source software (QGIS.org, 2022). Finally, the interpolated
data were exported at grid scales between 20 cm to 1 m with
QGIS. We chose to use the highest resolution to fully capture10

the small-scale structure of the surface. The two final DEMs
reveal the surface position of the snow at two distinct times,
and their difference yields snow accumulation patterns that
could be compared to the numerical results generated with
snowBedFoam 1.0. Changes in snow depth values were con-15

verted to comparative units of areal mass by multiplication
with a constant snow density value of 210 kg m−3 measured
simultaneously during the campaign. This density value is
derived from on-ground bulk measurements conducted in
situ with a snow tube and a snow density cutter (Haberkorn,20

2019). This approach fails to take into account the spatial
variability of snow density that is expected over the sea ice
floe due to the combined effects of wind-induced snow re-
distribution and compaction, especially in the vicinity of to-
pographical features affecting the wind flow field (Leonard25

and Maksym, 2011; Sturm and Massom, 2017). MOSAiC
research into this topic is currently ongoing, and we expect
some influence on the quantitative results presented in this
paper.

Besides the sea ice surface topography, wind data were30

also required to accurately represent the mean flow field
conditions in the numerical simulations. Wind information
was collected using a meteorological station that was per-
manently installed on the investigated ice floe as part of the
MOSAiC measuring network (Met City, green dot in Fig. 1).35

An overview of the available meteorological observations is
given in Shupe et al. (2022), and the data set with the raw
near-surface meteorological flux tower measurements is pub-
licly available (Cox et al., 2021). The meteorological station
included three 3D Metek uSonic-3 Cage MP anemometers40

(METEK GmbH, 2022) and three Vaisala HMT temperature
and humidity sensors (Vaisala, 2020) located at nominal 2, 6
and 10 m heights. In particular, hourly data for wind direction
and friction velocity were used to set up the flow parameters
in our snow transport model. The MOSAiC atmosphere sur-45

face energy flux team performed the post-processing of the
measurements, which included sonic data treatment (friction
velocity), quality control processes, calibrations and filters.
Corrective rotations of the winds to be relative to true north
were also performed. A data journal article outlining all of50

the finer details of the Met City data set (including quality
control procedures) should soon be published.

Finally, we used precipitation estimates recorded dur-
ing MOSAiC using ship-based Ka-Band ARM (atmospheric
radiation measurement) zenith radar (KAZR) reflectivities55

(Lindenmaier et al., 2019) at a 280 m range gate, along with a
reflectivity-based retrieval (Matrosov, 2007). KAZR devices
provide several intervals of range (or time delay from trans-
mission) in the vertical, within which returning radar signals
are measured. Gating is used to isolate the echoes from dif- 60

ferent regions of distributed targets (Widener et al., 2012).
Our steps proceed in the same way as Wagner et al. (2022),
whose analysis suggests that the 280 m ranged KAZR data
measured during MOSAiC are reliable on the whole. More
details concerning the choice of the radar range gate and 65

the derivation of snowfall from observations can be found
in their study. The radar recorded a 7 h long snowfall event
during the inter-TLS period (on 11 November 2019), which
was included in OpenFOAM by releasing particles with log-
normally distributed sizes in the domain at the average mea- 70

sured rate.

2.2 SnowBedFoam 1.0.: an OpenFOAM snow
transport model

2.2.1 Eulerian–Lagrangian solver

This section describes the three-dimensional Eulerian– 75

Lagrangian model we developed in the open-source platform
OpenFOAM (The OpenFOAM Foundation, 2022) to simu-
late snow transport. OpenFOAM is a C++ object-oriented
toolbox used to develop numerical solvers providing a solu-
tion to continuum mechanics problems (Weller et al., 1998), 80

which is based on the finite-volume method (FVM) for fluid
dynamics computations. A comprehensive review of this
field of research is beyond the scope of this paper. Further
details on the implementation of the FVM in the software
and on the various techniques developed over the years can 85

be found in works such as Moukalled et al. (2015).
The so-called DPMFoam solver originally implemented in

OpenFOAM version 2.3.0. was adapted to simulate the aeo-
lian transport of snow particles. This multiphase flow solver
handles coupled Eulerian and Lagrangian phases, which in- 90

volves a finite number of particles spread in a continuous
phase (OpenFOAM API Guide, 2020). It is based on the La-
grangian particle tracking (LPT) technique called discrete-
particle method (DPM), which models the system at the
micro-mechanical level and tracks the motions of all the par- 95

ticles or agglomerates of particles (parcels) (Richards et al.,
2004). LPT modeling is the most straightforward and effec-
tive approach to obtain the deposition and erosion locations
of snow (Wang and Huang, 2017). In DPMFoam, the Eu-
lerian continuum equations including particle volume frac- 100

tion are solved for the fluid phase, whereas Newton’s equa-
tions for motion are solved to determine the trajectories of
the particles (parcels). Fernandes et al. (2018) tested the
solver against various data types and found a good agreement
with results from the literature. The governing equations for 105

particle- and fluid-phase systems employed in DPMFoam are
described hereafter.
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Figure 1. Aerial laser scan (ALS) of the sea ice floe taken on 12 November 2019 during a helicopter flight. The black rectangle pinpoints
the zone covered by the terrestrial laser scans (TLSs) which were used in the simulations. More specifically, the sea ice area framed within
the red rectangle served as a base for the snowBedFoam 1.0. computational domain. The green dot highlights the position of the MOSAiC
meteorological station where wind measurements were taken. The red cross points out the position of the Polarstern icebreaker (Alfred-
Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 2017). The map in the top right corner shows the position of Polarstern
on the day of the ALS measurement.

Governing equations for the particle system

A particle in movement may exchange momentum and en-
ergy with other particles, domain surfaces (internal or exter-
nal) or with the surrounding fluid (Fernandes et al., 2018).
Most of the typical forces acting on a particle in a granular5

flow can be included within snowBedFoam 1.0. if required.
We chose to adopt a two-way coupling method for our sea
ice simulations considering reciprocal action between fluid
and particles, while other interactions (e.g., particle–particle)
were neglected. In this study, the snow particles were as-10

sumed to be subject to gravity and atmospheric drag, and
the governing equation for particle motion can be expressed
through Newton’s second law:

mi
dUp

i

dt
= mig+F d, (1)

where Up
i is the particle velocity, F d is the drag force, g is15

the gravity acceleration vector and mi is the mass of a spher-
ical particle. The latter is formulated as mi = 1

6πρpd
3
i , with

di the diameter and ρp the density of the particle. The drag
force stems from the particle–fluid interaction and is propor-
tional to the relative velocity between the phases. Numerous20

drag models are available in the OpenFOAM framework: we
chose to adopt the commonly used sphere drag model based
on the assumption of solid spheres (OpenFOAM API Guide,

2021b). If U f represents the fluid velocity, then the corre-
sponding drag force exerted on a spherical particle is defined 25

as

F d =
3miCDRepµ

4ρpd
2
i

(U f
−U

p
i ), (2)

where µ represents the dynamic viscosity and Rep is the par-
ticle Reynolds number

Rep =
di |U

f
−U

p
i |

ν
, (3) 30

characterizing the relative importance between the inertial
and viscous forces acting on a particle, with ν being the kine-
matic viscosity. CD is the so-called drag coefficient and is
defined as follows:

CD =

{
0.424 for Rep > 1000
24
Rep

(
1+ 1

6Re
2/3
p

)
for Rep ≤ 1000 , (4) 35

Information about the forces and coupling modes available
for particle modeling in OpenFOAM can be found in Open-
FOAM API Guide (2021a).

Governing equations for the fluid-phase system

The flow equations implemented in DPMFoam involve the 40

fluid-phase volume fraction εf in an Eulerian cell expressed
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as follows:

εf =max

1−
1
Vcell

Np∑
i=1

f
p
i Vi,εf min

 , (5)

where Vcell is the cell volume, f p
i is the fractional volume

of a particle i located in the cell under consideration, Vi is
the volume of particle i and εf min is a very small value that5

limits the cell from being fully occupied by a particle. Np
represents the total number of particles present in the com-
putational cell. The Navier–Stokes equations (Eq. 6) and the
volume-averaged continuity equation (Eq. 7) are solved for
an incompressible fluid phase in the presence of a secondary10

particulate phase:

∂(εfU
f)

∂t
+∇ · (εfU

fU f)=P−∇P +∇ · (εfτ f)

−F p+ εfg, (6)
∂εf

∂t
+∇ · (εfU

f)= 0, (7)

where P is the modified pressure (p/ρf, with ρf being the
fluid density) and τ f is the fluid-phase viscous stress ten-15

sor. P represents the imposed large-scale driving force in the
streamwise direction that was added by the authors within the
core code of the solver and used as driver for the flow in the
simulations presented hereafter. It is described as follows:

P=−
1
ρf

∂p̃∞

∂x
TS1 =

u2
∗

Lz
, (8)20

with Lz the vertical extent of the numerical domain and u∗
the surface friction velocity. The sink term F p in the mo-
mentum equation (Eq. 6) accounts for the two-way coupling
between the fluid phase and the particles. As the fluid drag
acting on each particle is known, this term is computed as a25

volumetric fluid–particle interaction force given by

F p =

∑Np
i=1F d,i

ρfVcell
, (9)

where F d,i is the drag force exerted on particle i. F p is here
presented in a discretized form.

2.2.2 Snow–wind interaction model30

Similarly to sand transport (Bagnold, 1941), the aeolian
transport of snow particles can be classified into three modes
(Pomeroy and Gray, 1995; Aksamit and Pomeroy, 2016):
(1) creeping, which consists of the rolling of particles along
the surface, (2) saltation, which occurs when particles follow35

ballistic trajectories and involves mechanisms such as aero-
dynamic lift, along with rebound and entrainment (splash)
of snow grains, and (3) suspension, which entails the same
mechanisms as saltation but applies to smaller grains trans-
ported at higher elevations and over larger distances. We de-40

veloped several utilities within the OpenFOAM Lagrangian

library to introduce the processes of aerodynamic lift, re-
bound and splash of snow particles. Thus, our new model-
ing tool simulates the redistribution of snow through saltation
(drifting snow) and suspension (blowing snow). 45

The governing equations that were implemented in the
solver stem from snow transport-related publications from
various authors (Anderson and Haff, 1991; Groot Zwaaftink
et al., 2014; Comola and Lehning, 2017). We employed
a similar set of equations for particle–flow interaction to 50

the one implemented in the solver combining large-eddy
simulation and a Lagrangian stochastic model (LES-LSM),
which was used to generate publications such as the ones
of Groot Zwaaftink et al. (2014), Comola et al. (2019), or
Sharma et al. (2018). The equations relevant for our snow 55

transport model are summarized subsequently.

Aerodynamic entrainment

The early work of Bagnold (1941) on sand transport insti-
tuted the concept of aerodynamic entrainment (or lift) of par-
ticles. It occurs when the wind flow has sufficient momen- 60

tum to lift up particles from the surface, namely when the
fluid surface shear stress τf,surf exceeds a certain threshold
value τth. Findings on wind-driven sand transport stay rele-
vant to snow and constituted the groundwork for many snow–
wind interaction studies (Schmidt, 1986; Pomeroy and Gray, 65

1990; Li and Pomeroy, 1997). Experimental results on snow
transport initiation by Clifton et al. (2006) showed a good
agreement with Bagnold’s initial formulation of shear stress
threshold, using A= 0.18 as an empirical constant:

τth = A
2g〈dp〉(ρp− ρf ), (10) 70

where 〈dp〉 is the mean particle diameter. In each grid cell,
the number of particles aerodynamically entrained by the
fluid at each time step, Nae, linearly increases with the ex-
cess shear stress according to the formulation of Anderson
and Haff (1991): 75

Nae =
Ce

8π〈dp〉2
(τf,surf− τth)1x1y1t, (11)

where Ce is an empirical parameter set to 1.5
(Groot Zwaaftink et al., 2014), 1x and 1y are the
grid dimensions in the streamwise and spanwise directions,
respectively, and 1t is the simulation time step. Once Nae is 80

determined, properties such as the particle diameter, initial
velocity magnitude and ejection angle are sampled from
statistical distributions according to Clifton and Lehning
(2008). More details can be found in their work.

Rebound and splash entrainment 85

Depending on its path, a snow particle present in the fluid
might hit the surface upon which it can not only rebound –
defined as rebound entrainment – but also eject other par-
ticles from the bed to the overlying fluid, defined as splash

Océane Hames
We would like to replace x by lambda in this equation because the x can be interpreted as "in the direction of the x-axis" but the driving force that we are applying is in not only in the x-direction, it has various orientations based on the direction of the wind event that we want to represent (e.g. Figure 5). For more clarity, we choose to replace x by lambda in Equation 8.



O. Hames et al.: Modelling the small-scale deposition of snow using snowBedFoam 1.0. 7

entrainment. The probability Pr that the snow particle re-
bounds when impacting the bed is given by Anderson and
Haff (1991) as follows:

Pr = Pm(1− e−γ vi ), (12)

where Pm is the maximum probability equal to 0.9 for snow5

(Groot Zwaaftink et al., 2013), γ is an empirical constant
equal to 2, and vi is the velocity magnitude of the impacting
particle. When rebounding, the particle is assumed to have
a velocity magnitude of vr = 0.5vi (Doorschot and Lehning,
2002), and the rebound angle is determined from a statistical10

distribution according to Kok and Renno (2009).
Concerning the splash entrainment, the number of parti-

cles ejected from the bed Nsplash is defined as the minimum
between NE and NM whose expressions are (Comola and
Lehning, 2017)15

NE =
(1−Prεr− εfr)d

3
i v

2
i

2〈v〉2(〈d〉+ σ 2
d
〈d〉
)3
(

1+ rE
√

5[1+ ( σd
〈d〉
)2]9− 5

)
+ 2 φ

ρp

, (13)

NM =
(1−Prµr−µfr)d

3
i vi cosαi

〈v〉2(〈d〉+
σ 2

d
〈d〉
)3
(
〈cosα〉〈cosβ〉rM

√
[1+ ( σd

〈d〉
)2]9− 1

) . (14)

NM and NE are the number of ejections predicted by the
momentum and energy balance, respectively. In Eq. (13), εfr
and εr are the fractions of impact energy lost to the bed and20

kept by the rebounding particle, respectively. µfr and µr are
their equivalent for momentum in Eq. (14). 〈d〉 and σd are
the mean and standard deviation of ejecta’s diameter, 〈v〉
its mean velocity and α and β the horizontal and vertical
ejection angles. φ is the cohesive bond exerted on a parti-25

cle by its neighboring particles. rM and rE are correlation co-
efficients linking mass and velocity. More details about the
derivation of these formulations can be found in the work of
Comola and Lehning (2017). Similarly to the aerodynamic
entrainment, the characteristics of the splashed particles are30

randomly sampled from statistical distributions. Overall, de-
tails about the equations of the snow surface–flow interaction
can be found in the supplementary material of the study by
Sharma et al. (2018).

2.3 Simulation settings35

2.3.1 Numerical domain

The mesh employed for our OpenFOAM simulations on sea
ice was generated based on the first set of TLS scans dat-
ing from 6 November 2019. The red-framed area in Fig. 1
pinpoints the part of the ice surface scanned with ground-40

based lidar that was used as a base for the numerical domain
(∼ 110 m×120 m). This zone was selected due to its central
position in the DEM along with the variation in height, shape
and orientation of its ridged ice. A 10 m wide buffer zone was
created between the area of interest and the lateral boundaries45

to limit the influence of the latter on the simulated flow. The

vertical extent of the domain was set to 15 m, with a max-
imum pressure ridge height of 3.1 m. We chose to limit the
dimensions of the numerical domain to perform less compu-
tationally intensive simulations. However, the snowBedFoam 50

1.0. solver could be run on larger-scale areas if required.
The numerical domain with gridded sea ice topography

was generated with input data in the stereo lithography (STL)
format. STL files describe the surface geometry of a three-
dimensional object without any representation of other at- 55

tributes (e.g., color, texture). Linear grid stretching was ap-
plied in the vertical direction to ensure sufficient grid points
in the saltation region while limiting the computational costs
in the upper part of the domain; the vertical grid spacing dz
ranges between dz= 0.5 m for the coarsest grid resolution 60

and dz= 0.1 m for the finest grid resolution near the surface.
In the streamwise and cross-stream directions, a uniform grid
was applied with an average resolution dx, dy = (0.5 m). The
cell size was made fine enough to accurately capture the to-
pographical features found at the sea ice surface, while keep- 65

ing a reasonable mesh size to perform the computations. The
final mesh is composed of 2 million hexahedral cells with
an average size of 0.125 m3, a minimum cell size value of
0.019 m3 and a maximum cell size of 0.277 m3.

2.3.2 Boundary conditions 70

The set of simulations in this work were ran by imposing pe-
riodic boundary conditions (PBCs) at the lateral sides of the
domain (Fig. 2). PBCs are based on the inter-connection of
the mesh elements on opposite faces: OpenFOAM treats the
flow at a periodic boundary as if the opposing periodic plane 75

was a direct neighbor to the cells adjacent to the first periodic
boundary. This has the advantage of keeping a reasonable do-
main size while guaranteeing fully developed velocity pro-
files within the domain. For Lagrangian applications, PBCs
imply that a particle reaching a lateral boundary is directly re- 80

injected in the domain through the corresponding cell of the
connected periodic plane. In other terms, this approach trans-
lates into snow being injected at the upwind domain bound-
ary. Regarding the sea ice boundary at the bottom, no-slip
and impermeability boundary conditions were imposed at its 85

surface for the horizontal and vertical velocity components,
respectively. Moreover, the region near the surface bound-
ary was modeled through standard wall functions. At the top
boundary the horizontal components of velocity were set to
Neumann zero-gradient BCs and the vertical component was 90

set to zero.

2.3.3 Numerics

The Reynolds-averaged Navier–Stokes (RANS) method and
k− ε closure model were employed to solve the set of equa-
tions for a flow with neutral stratification (Zhang, 2009). 95

We refer to the introductory paper by Launder and Spald-
ing (1974) and to flow dynamics reference books (e.g., Stull,
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Figure 2. Boundary conditions applied at the six domain patches in
the OpenFOAM snow transport simulations. Similar colors are used
to represent the corresponding periodic patches.

1988) for additional details on these particular CFD tech-
niques. To discretize the equations, the Gauss linear and
bounded Gauss upwind schemes, respectively, were used for
the terms with gradient and divergence operations, while the
Euler scheme was chosen for the discretization of the tran-5

sient terms (Moukalled et al., 2015). To assure a faster nu-
merical convergence and minimize the computational effort,
the model was initialized with a standard logarithmic wind
profile within the boundary layer.

For the flow time step, we make use of an automatic10

control called adjustableRunTime available in OpenFOAM,
which adapts the time step based on a maximum Courant
number value defined by the user (set to 1 in our case). The
Courant number as the stability criterion is defined as the
product of fluid velocity and time step divided by the numer-15

ical cell length scale. Thus, the Eulerian time step changes
with the grid size and local flow velocity. More informa-
tion regarding the adjustable time step method for the flow is
available in Moukalled et al. (2015) and Jafari et al. (2022).
Within one Eulerian time step, there are several smaller La-20

grangian time steps, which allows for adequate capturing of
the parcel motion. The so-called “face-to-face tracking al-
gorithm” (Peng, 2008; Macpherson et al., 2009) adapts the
Lagrangian time step depending on the crossed boundaries
and automatically limits its value to appropriately capture25

microscale processes such as the rebound and splash of snow
grains at the surface.

The Eulerian quantities were estimated at the particle lo-
cation using the so-called cellPoint interpolation method in
OpenFOAM, which performs linear interpolation with in-30

verse distance weighing based on the closest cell point values
(Moukalled et al., 2015; Leonard et al., 2021).

It should be mentioned that the particle mass balance was
checked for each of the implemented submodels (including
the injection model for precipitation). Moreover, a valida-35

tion study against the well-established LES-LSM was con-

ducted after the implementation of the new snowBedFoam
1.0. model (not shown here). The results for wind field and
particle mass flux were in good agreement despite fairly dis-
tinct grid structure and boundary conditions. This has fur- 40

ther strengthened our confidence in the validity of the Open-
FOAM model.

2.3.4 Particle and flow properties

The flow properties were set in the simulations to approx-
imate the mean field conditions for the period between the 45

two MOSAiC scans of interest. For this purpose, the meteo-
rological time series were decomposed into four distinct pe-
riods corresponding to dominating phases of wind velocity
for which the wind speed and direction were averaged (col-
ored areas I–IV in Fig. 3), following a successful strategy 50

introduced by Lehning et al. (2008). This approach limits
the amount of computations needed to be performed. These
specific intervals were selected based on the friction veloc-
ity and duration: any time period with a minimum span of
3 h and a friction velocity higher than 0.2 m s−1 was con- 55

sidered as having a substantial influence on the snow depo-
sition patterns. The friction velocity threshold was chosen
based on the publications from various authors who found
that snow transport was initiated above this value (He and
Ohara, 2017; Clifton et al., 2006; JDoorschot et al., 2004). 60

The model was initialized with wind fields characteristic for
the respective events to reproduce as accurately as possi-
ble the measured snow distribution. Regarding precipitation,
the MOSAiC meteorological instruments recorded a 7 h long
snowfall on 11 November (Fig. 3, event IV), which we re- 65

produced in the model.
A total of four simulations mimicking the selected time pe-

riods were run with OpenFOAM, whose forcing parameters
and time spans are summarized in Table 1. Symbols I to IV in
the first column connect with the characters displayed at the 70

top of Fig. 3. In the last two columns the values for friction
velocity and wind direction correspond to the averages over
each event. In order to limit the computational effort, the total
mass deposition values were extrapolated to the duration of
the measured wind events using the particle deposition rates 75

after 1000 s of simulation, which represents an approxima-
tion to a steady-state situation (i.e., small variations of the
surface friction velocity and total snow mass aloft in the do-
main, which indicate a flow–particle system at equilibrium).

In this context, we verified that the cell deposition rates 80

and distribution patterns do not show strong trends for longer
runs. Based on the variations of the total snow mass aloft in
the domain, the time step at which a steady-state is reached is
identified (stable saltation flux) and the deposition and ero-
sion rates in each cell are derived based on the snow mass 85

distribution results for the steady-state period until the end of
the simulation. The estimated snow distribution at the end of
a given wind period are further obtained by multiplying the
rates with the total duration of the simulated event.
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Table 1. Snow transport and precipitation events identified during the period between the successive laser scans (2019).

Event Start time End time Friction velocity Wind direction
– dd.mm HH:MM dd.mm HH:MM m s−1 ◦

I 06.11 12:00 07.11 00:00 0.24 85

II 08.11 16:00 09.11 13:00 0.27 321

III
10.11 23:00 11.11 11:00

0.30 183
11.11 18:00 13.11 07:00

IV 11.11 11:00 11.11 18:00 0.48 179

Figure 3. Time series for wind direction (top) and surface friction velocity at 2 m (bottom) measured in the period between the successive
TLS measurements. The values displayed are an average of measurements taken at 2, 6 and 10 m height. The green-colored areas (I to III)
correspond to the time periods for which snow movement was assumed to occur. The darker area (IV) shows the time span during which
precipitation was measured by the radar. Source: Cox et al. (2021).

The snow properties in the simulations (Table 2) were se-
lected on the basis of previous values reported in the litera-
ture. All particles were assumed to be spherically shaped and
constituted of pure ice. From a dimensional point of view,
the mean grain size is equivalent to the one defined in Co-5

mola and Lehning (2017) in their snow splash entrainment
model; it is also in line with the findings of Nemoto and
Nishimura (2004) and Gromke et al. (2014), who measured
dimensions of transported snow grains. The particle size dis-
tribution of snowflakes is approximated using the log-normal10

law, although this parameter proved not to affect the deposi-
tion patterns (Wang and Huang, 2017). For simulation IV in
particular, the average precipitation rate was set according to

KAZR snowfall retrievals (280 m range gate) from the de-
tected storm event (Wagner et al., 2022). 15

The last two parameters relate to the surface interaction
equations of the model. A is a constant used in the shear
stress threshold formulation (Eq. 10), which we set equal
to 0.2 for snow based on wind-tunnel experiments (Clifton
et al., 2006). The bed cohesion parameter φ involved in the 20

ejection entrainment (Comola and Lehning, 2017) represents
the mean bounding energy between the grains of the snow
bed and is usually found in the range 10−10

−10−8 J (Gauer,
2001). A sensitivity analysis showed that this parameter does
not substantially influence the results for the range of fric- 25

tion velocities employed in this work; therefore, an interme-
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Table 2. Particle properties employed in the sea ice OpenFOAM
simulations.

Variable Symbol Value Unit

Mean diameter dm 0.2 mm
Minimum diameter dmin 0.05 mm
Maximum diameter dmax 0.5 mm
Standard deviation of diameter dstd 0.05 mm
Particle density (ice) ρp 900 kg m−3

Snowfall rate I 0.39 mmwater h−1

Shear stress threshold constant A 0.2 –
Bed cohesion φ 10−9 J
Time of saltation initiation tinit 100 s

diate value (10−9 J) in the above-mentioned range was se-
lected. Details regarding the effect of the particle diameter
involved in the shear stress threshold formulation (Eq. 10)
can be found in the work of Melo et al. (2022), who studied
the impact of mean grain size on saltation fluxes using LES-5

LSM simulations. All the simulations were initiated without
particles for the first 100 s to ensure a fully developed flow-
field.

2.4 Modeling assumptions

To reduce the computational complexity while still enabling10

relevant modeling, several assumptions were made. First,
only gravity and fluid–particle drag were considered in the
force balance to solve the grain trajectories (Eq. 1). As com-
monly done in snow transport applications (e.g. Gauer, 2001)
we neglect the other small particle-fluid interaction forces15

commonly found in nature (e.g. buoyancy, pressure gradient)
as well as the inter-particle collisional forces. Second, the
mass loss due to snow sublimation, either from the surface or
from blowing snow particles, is not taken into account in our
model. The flow–particle interactions are purely mechanical20

and do not encompass temperature and moisture feedbacks.
Snow sublimation may be of significant importance for the
snow mass distribution depending on the observed spatial
and temporal scales (Mott et al., 2018). However, given the
location and timescale of interest of this study, we assume the25

sublimation mass sink to be negligible (Chung et al., 2011;
Webster et al., 2021; Wagner et al., 2022). Third, we adopted
a parcel-based approach meaning that the particle population
was represented by clouds of particles (parcels) with homo-
geneous properties. This technique does not take into account30

the clustering effect of particles represented by a single par-
cel (Radl and Sundaresan, 2013) and tends to minimize the
variety in particle properties.

Turning now to Eulerian-phase modeling, the RANS
method that we employed is based on ensemble-averaged35

governing equations and cannot predict the local unsteadi-
ness (eddies) in the flow (e.g. Stull, 1988). This approach
only approximates the temporal dynamics observed in tur-
bulent flows and thus the representation of the intermittent

snow transport is only partial, which can introduce bias in 40

the modeled snow mass flux and ultimately in the distribu-
tion patterns.

Additional limitations arise from the forcing of the model.
A 1-week period with heterogeneous wind is represented by
four discrete events only based on a constant friction veloc- 45

ity threshold (Sect. 2.3.4). Although long for the evaluation
of blowing snow, we defined our simulation period based on
the terrestrial laser scans measurements available during the
MOSAiC campaign. To be able to compare the model re-
sults to snow distribution data obtained in the field, we had 50

no choice but to simulate a full week of snow redistribution
on sea ice. The onset of snow transport is in reality time- and
environment-dependent, and the periods with saltation may
have been poorly estimated. We are aware that these restric-
tive representations of natural phenomena may have limited 55

the performance of the results presented hereafter. However,
they remain acceptable for a semi-quantitative comparison
such as the one performed in this work.

3 Results

3.1 Snow distribution patterns per event 60

Figures 4 and 5 report the results, respectively, of the ex-
trapolated areal snow mass distribution and surface friction
velocity produced by our OpenFOAM snow model for the
four selected atmospheric events (I–IV). The term “extrap-
olated” refers to the snow mass distribution values obtained 65

after multiplying the simulated snow transport rates by the
total duration of each snow transport event. The wind direc-
tion is represented in each panel by an arrow. For all the nu-
merical simulations, the effect of the sea ice topography on
the snow surface distribution was clearly captured: the snow 70

particles appear to deposit on the lee-ward side of the pres-
sure ridge, whereas they get eroded on its wind-ward side
and at the top. This spatial pattern agrees with previous ob-
servations suggesting that snow drift aprons mostly form in
the lee of sea ice blocks and pressure ridges (Sturm et al., 75

2002; Massom et al., 2001). In addition, it is in line with
snow distribution measurements on an Antarctic sea ice floe
that revealed strong deposition behind topographic obstacles
according to the predominant wind direction (Trujillo et al.,
2016). 80

Increased snow deposition is found in zones of highly tur-
bulent, decelerated flow, which typically appear behind the
topographical obstacles; such wake regions are colored in
blue in the surface friction velocity plots (Fig. 5). Alterna-
tively, a fluid that is deviated by the terrain usually accel- 85

erates, which strengthens its forces on the ground and en-
hances snow erosion, as observed over the ridge and along
steep slopes. This connection between surface friction ve-
locity and snow mass distribution is highlighted through the
comparison of their corresponding surface patterns. The sur- 90
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Figure 4. Extrapolated snow deposition results (kg m−2) for the four atmospheric events (I–IV) identified in the period between the two
successive laser scans. The arrows in the bottom-right corner indicate the direction of the fluid forcing.

face friction velocity results in Fig. 5 show elongated, low-
velocity streaks for events I to IV. They are especially appar-
ent in Fig. 5I due to the lower range of surface shear stress.
Similar structures were identified in previous RANS mod-
eling studies (Hesp and Smyth, 2017; Ivanell et al., 2018;5

Wagenbrenner et al., 2019). A thorough analysis of our sim-
ulated wind fields revealed the presence of counter-rotating
vertices in the lee-ward side of our sea ice topography, whose
convergence could be at the origin of such streaks (Hesp and
Smyth, 2017). Our supposition is that these streaks are natu-10

rally induced by the sea ice ridge but that they may be over-
represented in our simulations due to the type of boundary
conditions and discretization scheme employed. A second-
order linear upwind discretization scheme was used for the
divergence term in the momentum equation (convection),15

which has shown to produce broader and longer low-velocity
streaks compared to other discretization schemes (Wagen-

brenner et al., 2019). Moreover, periodic boundary condi-
tions imply that an object reaching the downwind bound-
ary of the domain is transferred to the upwind side at the 20

next time step, thus reproducing a zone of low velocity at
the windward side of the sea ice topography. This could re-
semble the real sea ice terrain, where the simulated ridge is
located downwind of other ridges impacting the flow. Such
numerical uncertainties can hardly be avoided and are diffi- 25

cult to quantify, as there is very little guidance in terms of
the realistic representation of these streamwise flow features
(Wagenbrenner et al., 2019).

The snow distribution results (Fig. 4) and the average (ex-
treme) values for snow deposition and erosion (Table 3) are 30

variable between the simulations: factors such as the slope
angle encountered by the flow, the duration of the wind
events and the magnitude of the fluid forcing can explain
these differences. The mean snow deposition and erosion are
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Figure 5. Friction velocity results (m s−1) for the four atmospheric events (I–IV) identified in the period between the two successive laser
scans. The arrows in the bottom-right corner indicate the direction of the fluid forcing.

specifically enhanced for the event with precipitation (IV).
The precipitation particles combined with strong flow seem
to favor the uplift of the snow grains when hitting the sur-
face. Figure 4IV shows that deposition is ubiquitous over the
domain (93.4 % of the area) but remains stronger at the lee5

of the ridge. Quantitatively speaking, the extent of the areal
snow mass range indicates that event I is the least influen-
tial on the snow distribution as it represents at most 50%
of the redistribution values obtained in the other cases. This
most probably stems from the lower duration and friction ve-10

locity characteristic of that period. Contrastingly, simulations
III and IV have the largest erosion and deposition values, and
therefore they also have the most influence on the combined
snow distribution results.

3.2 Comparison to MOSAiC measurements 15

After evaluating the numerical results for each event individ-
ually, the left of Fig. 6 displays the snow distribution pat-
terns obtained by their combination; the right-side illustra-
tion shows the snow mass distribution changes measured dur-
ing MOSAiC over the period of interest (6–13 November). 20

A qualitative analysis reveals that a nearly uniform layer
of deposited snow attributable to event IV has formed over
the numerical domain, which contrasts with measurements
where snow mass changes are close to zero in flat areas. This
discrepancy put aside, the model results satisfyingly agree 25

with the measurements on the location of enhanced snow de-
position: circles A to D in Fig. 6 highlight zones of accu-
mulated snow that appear in both the model and measure-
ments. However, there are features that were not reproduced
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Table 3. Numerical quantitative results for the OpenFOAM sea ice simulations per identified event (I–IV) between 6 and 13 November 2019.
Average values, maxima, and relative areal proportion for snow deposition and erosion are presented.

Event Snow deposition Snow erosion

mean maximum area mean maximum area
kg m−2 kg m−2 % kg m−2 kg m−2 %

I 0.2 9.4 45.4 −0.2 −15.9 41.0
II 0.3 17.0 53.2 −0.4 −45.2 46.7
III 1.3 109.8 51.3 −1.3 −122.8 48.7
IV 3.5 126.4 90.3 −4.2 −56.5 9.7

Figure 6. (a) Numerical snow deposition patterns (kg m−2) after the combination of the extrapolated snowBedFoam 1.0. simulation results
from the four individual atmospheric events (I–IV). (b) Snow mass differences obtained by differencing two successive elevation models
measured during MOSAiC.

by OpenFOAM: the northern side of the ridge (above B) and
the zone between C and D show enhanced snow accumula-
tion, which is almost absent in the combined simulation out-
put. The closest similarity in deposition patterns (neglecting
the homogeneously higher deposition) is found with simula-5

tion IV (Fig. 4), which shows snow accumulation between C
and D and more elongated patches parallel to the predomi-
nant wind direction. Thus, a strong flow together with pre-
cipitation seems to mostly account for the measured distri-
bution. Regarding erosion, the wind-ward side and top of10

the ridge show snow depletion in both simulated and mea-
sured data, albeit to different extents. The measured erosion
is more accentuated, especially in between the fragments of
the ridged ice (B–C, C–D) and in the southern area of the
domain. We also find that some deposition patterns revealing15

the micro-relief of the ice surface were modeled in the flat
areas around the ridge but are not as apparent in the measure-
ments: they emerge only in localized sections (e.g., southeast
of the domain). The relative proportion of erosion to the total

area represents 13.0 % and 62.7 % in the model and measure- 20

ments, respectively.
Quantitatively, our model appears only partially success-

ful in predicting the snow mass changes over the numeri-
cal domain. Figure 7 shows the probability distribution of
both measurements (blue) and simulation results (green). 25

SnowBedFoam 1.0. underestimates the erosion found in the
measurements and yields a higher proportion of cells with
moderate snow deposition (between 0 and 10 kg m−2). In
general, the measured snow mass change has more extreme
values than in the model: it has a standard deviation of 30

10.7 kg m−2 compared to 7.25 kg m−2 for snowBedFoam.
The mean snow mass change value is positive for the com-
bined output (2.77 kg m−2), due to the addition of precipi-
tation particles in simulation IV: the periodic setup implies
that any added mass is systematically re-injected through 35

the lateral patches of the domain and ends up depositing on
its surface. Note that this mean value approximately corre-
sponds to the mass per surface computed using the aver-
age precipitation rate and the surface area of the domain



14 O. Hames et al.: Modelling the small-scale deposition of snow using snowBedFoam 1.0.

Figure 7. Statistical distribution of snow deposition (kg m−2) for
the combined extrapolated snowBedFoam 1.0. simulation results
(green) and the terrestrial laser scan measurements (blue). The av-
erage snow mass change values for TLS and OpenFOAM are dis-
played in the corresponding colors.

(2.73 kg m−2). The measurements reveal an overall slight
erosion (−0.6 kg m−2): the snow has been transported out-
side of the domain. A number of reasons may have caused
these dissimilarities, which will be discussed in the next sec-
tion.5

4 Discussion

Figure 6 reveals that the main zones of snow deposition and
depletion were captured by snowBedFoam, even though it
simulates a higher snow deposition on average in the flatter
area of the domain. The deposition patterns scanned during10

MOSAiC show some satisfying agreement with the simula-
tions, except for a few patches of enhanced accumulation,
which are missing in the numerical results. Regarding ero-
sion, the model underestimates it in most locations, although
spatial erosion patterns are qualitatively well captured at the15

ridge. The locations with lower erosion appearing in Fig. 4
were likely damped by the precipitation particles settling on
the surface (Event IV). The measurements more frequently
observed larger snow mass changes compared to the simula-
tions. There may be multiple reasons for these results.20

1. Simplification of wind transport. The snow transport by
the wind may be oversimplified due to a limited repre-
sentation of the real aeolian conditions. For the selected
events, the ratio of the standard deviation between the
measurements to the average value shows a range of25

6 %–24 % for the wind direction and 10 %–21 % for the
wind speed (1 min interval). We used four averaged val-
ues for wind speed and direction in OpenFOAM to rep-
resent a 1-week period of measurements. This implies
that many specific wind conditions causing snow redis-30

tribution such as periodic turbulent gusts were not repre-

sented in the simulations, along with their associated ef-
fect on the snow patterns. Aksamit and Pomeroy (2016)
showed that these turbulent, short-timescale wind struc-
tures have a great influence on the particle entrainment 35

and transport. The blowing snow structures are known
to be at higher temporal scales, but it was not compu-
tationally affordable to simulate the complete time pe-
riod framed by the laser scan measurements. The full
directional variability of the wind forcing is likely not 40

well represented by our approach. For the underrepre-
sented deposition patches between circles C and D in
particular, Fig. 4IV demonstrates that a stronger flow
enables their reproduction by the model at the precise
spots. Taking mean wind speed values for forcing tends 45

to damp the intermittent variations of the atmospheric
flow, which could have lead to this unmodeled snow ac-
cumulation present in the TLS data. Given the various
uncertainties linked to the forcing measurements (pre-
cipitation, friction velocity) it does not appear relevant 50

to fully simulate the 1-week period with snowBedFoam.
A quantitative comparison between the results obtained
with a fully resolved simulation and our steady-state
rate approach proved to be sufficiently accurate (not
shown) in the context of a simplified modeling frame- 55

work such as the one performed in this work.

2. Evolution of ice surface structures. Besides the forcing
parameters, some topography-related aspects could ex-
plain missing snow features in the model. It is expected
that the aeolian redistribution of snow gradually modi- 60

fies the roughness and topography of the sea ice surface,
leading to variations in the flow field and thus in the
snow transport processes (Andreas and Claffey, 1995).
The invariant mesh that we employ in our simulations
neglects this temporal evolution. This could explain 65

why the measurements do not contain the microscale
distribution patterns found in the north of the modeled
ridge: they may have been gradually flattened in real-
ity. In addition, the more elongated features of deposi-
tion found in the scans could result from the build-up of 70

snow bedforms at the lee of the ridge, which gradually
displaced the deposition maximum downwind. Future
work will explore the dynamic meshing of the sea ice
surface within OpenFOAM as a solution to this model-
ing limitation. 75

3. Atmospheric stability. Furthermore, the non-
consideration of meteorological conditions such as
atmospheric stability may have an effect. Various
authors have shown that atmospheric stability can have
a strong influence on the development of the local 80

near-surface flow field and the associated deposition
patterns, together with topography and wind speed
(Wang and Huang, 2017; Gerber et al., 2017; Comola
et al., 2019). Atmospheric stability influences the
vertical motion of the flow, which can in turn affect 85
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the settling of snow particles. The neutrally stable
flow imposed in OpenFOAM overlooks this aspect
and may introduce inaccuracies in the simulated snow
distribution.

4. Dimensionless parameters – summary. Overall, we can5

reasonably assume that the (limited) qualitative dispar-
ities in snow distribution between numerical and TLS
data are due to a combination of causes. Recent findings
of Comola et al. (2019) suggest that different distribu-
tion patterns can emerge from different combinations of10

dimensionless parameters expressing atmospheric sta-
bility, particle inertia, and length and velocity scales
(Froude and Stokes numbers). The simplifications for
flow, grain shape, atmospheric conditions and topog-
raphy imposed by our modeling framework inevitably15

bring errors; taking this into consideration, the agree-
ment appears to be very satisfying.

Besides the qualitative comparison, we observe that the
quantitative performance of our snow model is not optimal.
Erosion is underestimated by snowBedFoam both at the ridge20

and in flatter areas, while deposition is underpredicted in the
main snow accumulation patches. We identified sources of
error in both the model and measurements that could poten-
tially explain the mismatch.

1. Precipitation and other measurements. There are sev-25

eral limitations related to the MOSAiC measurements
that could explain the quantitative disagreement with
the model. First, an influential source of unreliability
lies in the KAZR-derived snowfall estimates. The lat-
ter showed a tendency to overestimate precipitation dur-30

ing the MOSAiC campaign (Wagner et al., 2022), which
may be the case for event IV. Precisely quantifying this
overestimation is challenging, however, as the uncer-
tainty of the KAZR snowfall estimates can be as large
as 50 % (Matrosov et al., 2022). Exaggerated snowfall35

rates in the simulations would generate an excess of
particles canceling the erosive effect of the other sim-
ulations and leading to more “damped” snow distribu-
tion patterns in the combined output. To illustrate, for
event IV, simulations run with half of the input rate I40

= 0.18 mm h−1 (compared to I = 0.39 mm h−1 in Ta-
ble 2) resulted in a difference of about 1 kg m−2 in the
average snow deposition. This shows that the snowfall
rate has a significant impact on the average snow depo-
sition value obtained in the snowBedFoam simulations45

and should be adjusted with care. However, difficulties
arise in obtaining reliable precipitation estimates in the
Arctic region (Goodison et al., 1998; Boisvert et al.,
2018), and it cannot be determined with certainty which
precipitation device was the most accurate during MO-50

SAiC (Wagner et al., 2022; Matrosov et al., 2022). It
should be mentioned that the net snow mass loss found
in the measurements despite the recorded snowfall sug-

gests that the precipitation overestimation is not the only
source of differences. Besides the meteorological forc- 55

ing, a source of unreliability in the DEMs can originate
from the positions of individual points within the scan
along with the errors in elevation difference between
the two successive surveys: some snow depth changes
could be subject to a measurement error. However, this 60

is expected to be small. In addition, the snow mass val-
ues presented in Fig. 6 derive from the multiplication
of height data with a constant snow density, which is
in reality variable from location to location. Hence, the
snow mass results presented here have errors in repre- 65

senting the actual mass distribution. At last, it is prob-
able that the wind-related measurements brought addi-
tional uncertainty into the particle and flow settings of
our model; all of these errors combined are expected to
have influenced the numerical results. 70

2. Temporal variability of the snow cover. In snowBed-
Foam, the aerodynamic entrainment of snow is mod-
eled through a fixed threshold value that neglects the
temporal changes in the environmental conditions and
snow bed properties (metamorphism). The sintering of 75

grains has been identified in the literature as a key com-
ponent of the equilibrium between erosion and deposi-
tion of snow (Blackford, 2007): strong bonds between
snow particles might prevent their subsequent erosion
and generate stationary bedforms (Filhol and Sturm, 80

2015). Freshly fallen snow particles are not bound and
are thus highly erodible; their transport usually occurs
at lower wind speeds than for ice or compacted snow
(Guala et al., 2008), resulting in higher mass flux and
deposition at the lee side of the ridge. Such conditions 85

likely correspond to the period following the precipita-
tion event on 11 November (Fig. 3) but were not ac-
counted for in the simulations. Moreover, thermal pro-
cesses such as sublimation were considered to be neg-
ligible, and this may have impacted the snow mass de- 90

position in the measurements by lowering the overall
snow deposition in flatter areas. These observations sug-
gest that the potential coupling to a snow modeling tool
evaluating the snow transport threshold based on me-
teorological time series such as SNOWPACK (Lehning 95

et al., 1999) could bring great improvement to the re-
sults of the CFD model alone.

3. Spatial heterogeneity of sea ice surface properties. A
uniform snow cover (unvarying parameters over the
domain) was considered in our numerical simulations, 100

which contrasts with real snow layers. The latter are
usually complex, and under natural conditions, they ex-
hibit irregular boundaries and a wide range of grain
and bond characteristics when traced laterally (Sturm
and Benson, 2004). The same observations apply to the 105

sea ice system, where the snow cover characteristics
vary widely from the top of the ridge (non-erodible ice)
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to flatter areas (weakly bound snow grains). Modeling
challenges are here twofold. First, it is difficult to char-
acterize the snow cover properties over space due to a
lack of data at the level of detail needed for our sim-
ulations. Second, the mathematical parametrization of5

the snowpack properties has not been fully established
yet. Constants such as A (Bagnold’s shear stress thresh-
old constant, Eq. 10) or φ (grain cohesion parameter,
Equ. 13) are a way to include the snowpack proper-
ties in snowBedFoam 1.0., but the exact connection be-10

tween their value and the grain characteristics is still un-
clear. We are aware that the restricted inclusion of the
spatial variability in snow properties may have lowered
the accuracy of our results; however, further research is
needed to investigate the parametrization of the snow15

surface properties, which will not be addressed in the
present work.

4. Turbulence scheme. Furthermore, the use of RANS as
a turbulence scheme implies the modeling of averaged
flow fields only, which simplifies the fluctuating na-20

ture of snow transport and likely introduces a bias
(Groot Zwaaftink et al., 2013). Turbulent eddies inter-
mittently enhance snow erosion and deposition; such
atmospheric structures could have incrementally pro-
duced sheltered stationary bedforms in the lee of the25

ridge and lead to the higher accumulation measured by
TLS.

5. Periodic boundary conditions. Finally, the periodic
boundary condition imposed at the lateral edges of the
domain treats them as if they were physically connected30

(OpenCFD Ltd, 2019). This approach is usually em-
ployed for repeated geometries that only partially apply
to sea ice. Figure 1 shows that a relatively flat area pre-
cedes the gridded ridge in reality, according to the pre-
dominant wind direction (south). The absence of aero-35

dynamic obstacles in the actual terrain could potentially
lead to a higher snow transport flux than in OpenFOAM
where the PBCs imply the artificial repetition of the
simulated topography on all sides of the numerical do-
main. In other words, the accumulation of snow parti-40

cles in reality may occur over vaster areas than in the
model where we artificially create successive deposi-
tion over the ridges. The higher snow erosion and subse-
quent deposition observed in the scans could come from
larger-scale variations in the horizontal mass flux. In ad-45

dition, PBCs imply that the eroded particles necessarily
deposit somewhere in the numerical domain as they are
constantly re-injected through the connected patches.
The same applies to injected (precipitation) particles:
this explains why there is an important amount of cells50

(90 % of the surface) with a positive snow mass change
in the model (Fig. 7). Comparing snow measurements
on sea ice to a numerical model, which is conservative

in terms of mass, highlights the effect of wind redis-
tribution in this environment and can help to understand 55

the snow mass fluxes going in and out of the real system.
SnowBedFoam 1.0. appears here as an useful tool to as-
sess the snow mass loss (gain) on a given piece of sea ice
and to identify potential snow mass sinks (sources). For
example, Déry and Tremblay (2004) showed that the to- 60

tal amount of blowing snow loss into the Arctic Ocean
may reach between 60 %–100 %, but difficulties are en-
countered in measuring such values; numerical models
can help refine these quantitative estimates when com-
paring their mass-conservative results to real snow dis- 65

tribution measurements.

The limitations identified here highlight the current chal-
lenges encountered in the modeling of snow deposition over
complex terrain. The spatial variability of the snow cover
is caused by physical processes acting at different spatial 70

scales (Mott et al., 2018), and the contribution of each is
hardly distinguishable in the field measurements (Gerber
et al., 2017). Thus, this field of research relies to a great ex-
tent on mathematical modeling (Comola et al., 2019), which
inevitably simplifies the complex snow–wind interaction due 75

to both numerical and computational constraints. In the case
of sea ice, the inhomogeneous snow distribution mostly re-
sults from the wind and precipitation interacting with the
snow surface, similarly to what is observed in alpine terrain
(Mott and Lehning, 2010). Our snowBedFoam 1.0. model of- 80

fers the potential to separately simulate the preferential depo-
sition of precipitation (Lehning et al., 2008) and the transport
of previously deposited snow, as observable in Fig. 4. Thus,
the role played by each in the spatial variability of snow de-
position can be singled out to better understand its underlying 85

mechanisms.

5 Conclusions

In this study we introduce snowBedFoam 1.0., a snow trans-
port model developed on the basis of the standard Lagrangian
particle tracking library of the computational fluid dynam- 90

ics (CFD) software OpenFOAM. We implemented a physics-
based splash model, which describes particle mass exchange
at the lower boundary. We applied it to simulate the snow ac-
cumulation patterns on Arctic sea ice using terrestrial laser
scan observations from MOSAiC. To our knowledge this is 95

the first publication on a Eulerian–Lagrangian snow transport
model combined with sea ice topographical data from lidar
measurements. Qualitatively, results show that most of the
snow distribution patterns were accurately captured by the
numerical simulations. This demonstrates that small-scale 100

snow transport processes are dominant drivers of the spatial
structure of snow distribution over complex terrain. From a
quantitative point of view, however, the erosion and deposi-
tion were underrepresented by the model in the vicinity of
the sea ice ridge, while an ubiquitous enhanced snow depo- 105
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sition was simulated in flatter areas. This limited quantita-
tive performance is attributed to various sources such as the
CFD numerics, the oversimplification of the real conditions
in the model (wind, snowpack properties and related pro-
cesses) or to the measurements themselves. Further improve-5

ments should be incorporated into our modeling approach,
notably by coupling snowBedFoam to snowpack models or
by including other factors influencing snow transport such as
the atmospheric stability. The manifold snow–wind interac-
tions ask for very complex modeling, which is computation-10

ally expensive and remains challenging despite the recent de-
velopments in computer science.

Although its quantitative performance was not perfect,
our model development still represents a significant step to-
wards the accurate modeling of snow deposition on sea ice.15

This tool could further be used in the assessment of snow
mass balance components to improve precipitation estimates
through measurements. Overall, considerable progress has
been made towards the small-scale study of snow distribution
as the model may be further applied to other topographies,20

with the advantage of incorporating elevation data stemming
from laser scans.
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