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Abstract. Well-estimated air pollutant concentration fields through data fusion are critically important to compensate the 

observations that are only sparsely available, especially over non-urban areas. Previous data fusion methods generally used 

statistical models to relate target observations and supporting data variables at known stations. In this study, we built a new 

data fusion paradigm by designing a dedicated deep learning framework to learn multi-variable spatial correlations from 

Chemical Transport Model (CTM) simulations, before using it to estimate PM2.5 reanalysis fields from station observations. 15 

The model was composed of two modules, which include an explainable PointConv operation to pre-process isolated 

observations and a regression grid-to-grid network to reflect correlations among multiple variables. The model was evaluated 

in two aspects of reproducing PM2.5 CTM simulations and generating reanalysis/fused PM2.5 fields. First, the fusion model 

was able to well reproduce CTM simulations from sampled station CTM data items with an average R2 = 0.94. Second, the 

fusion model achieved good performance with R2=0.77 and R2=0.83 respectively evaluated at the stringent city-level and 20 

station-level. The generated reanalysis PM2.5 fields have complete spatial coverage within the modelling domain and at daily 

time scale. One significant benefit of our fusion framework is that the model training does not rely on observations, which can 

be used to predict PM2.5 fields in newly-setup observation networks such as those using portable sensors. The fusion model 

has high computing efficiency (<1s/day) in predicting PM2.5 concentrations due to acceleration using GPU. As an alternative 

to generate chemical/meteorological reanalysis fields, the method can be readily applied for other simulated variables that with 25 

measurements available. 

1 Introduction 

Pollutant concentration fields with high accuracy are important for evaluating health effects, climate changes and agricultural 

studies (Bell et al., 2007; Donkelaar et al., 2015; Gao et al., 2017). Long-term and reliable air quality dataset could also be 

used to assess pollutant emission control measures (Wang et al., 2010). Data fusion method has been widely used to obtain 30 

accurate and spatially complete datasets, such as fusing air quality model simulations and station air pollutant observations to 

estimate fine-scale air pollutant concentration fields (Berrocal et al., 2012; Rundel et al., 2015).  

In previous studies, there exists a general paradigm to develop well-estimated air pollutant concentration fields. In this 

paradigm, complex statistical models were trained to depict non-linear relationships between observations and proxy data and 

other supporting variables at the locations of observation sites (Berrocal et al., 2012; Lyu et al., 2019; Chu et al., 2016). The 35 

widely used proxy data are Aerosol Optical Depth (Lv et al., 2016), chemical transport model (CTM) simulations (Lyu et al., 

2019) and other geophysical variables. Popular statistical models include machine learning models of linear mixed effect model 
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(Hao et al., 2015), random forest (Brokamp et al., 2018; Huang et al., 2021), deep neural networks (Qi et al., 2018), and 

ensembled models (Xiao et al., 2018). The fitted model was then used to predict concentration field of target variables in the 

whole area directly or through other spatial spreading techniques such as Bayesian estimation (Xu et al., 2016), partial linear 40 

regression (Wang et al., 2016) and distance-constrained interpolations (Chang et al., 2014; Friberg et al., 2016). 

Even though many high-quality datasets have been developed through deliberately designed statistical models and abundant 

explanatory variables, there are scientific gaps following this paradigm to develop air pollutant fields. First, these models 

usually rely on long-term and large-scale station observations for training, especially those complex time and space resolved 

models (Feng et al., 2020; Huang et al., 2021). For newly setup or temporally mobile observation networks, there would be 45 

limited datasets for training an effective model. Second, most of the previous methods cannot well fuse multi-variable 

observations from different monitoring networks. For example, stations in air quality and meteorology observation networks 

are usually not spatially aligned. The observations in two networks could not be well directly fused in current models. Instead, 

meteorology reanalysis data were often used as important explanatory variables in previous fusion model (Geng et al., 2015; 

Ma et al., 2015; Wei et al., 2021). However, in real-time operational data fusion applications, these reanalysis data would be 50 

unavailable or requiring intensive computations. Last but not the least, for most of the previous methods that fusing CTM 

simulations, they rely on relatively highly accurate and stable simulations to achieve good fusion performance (Tong and 

Mauzerall, 2006). Consistency in CTM parameters, configurations and inputs are also strictly required to achieve good data 

fusing performance. Especially in near-real-time operational data fusion applications, adjoint models are often required to be 

running simultaneously (Friberg et al., 2016).  55 

To address these scientific gaps, this study developed a new deep-learning-based model framework to estimate reanalysis from 

station observations by learning spatio-temporal correlations from deterministic models. Distinct from the existing data fusion 

models, we do not use CTM simulations in regression directly as proxy of the real pollutant concentrations. Instead, the deep 

learning network was trained with only CTM model simulations to learn the dynamic correlations, which is backed by the 

CTM’s first principals, between the simulations at the randomly selected grid points that mimic monitoring locations and at 60 

the whole grid cells. The data fusion/reanalysis is then achieved by applying the learned dynamic correlations with real 

observational data in the prediction procedure. The model framework is fundamentally an alternative of generating 

chemical/meteorological reanalysis fields but without rerunning CTMs with data assimilation.  

2 Data and Methods 

2.1 CTM Simulations 65 

In this study, our data fusion model was trained to learn spatial correlations of multiple variables from CTM simulations. The 

simulated PM2.5 and other meteorological variables in 2016~2020 were produced using a modeling system that consists of 

three major components: The meteorology component (WRFv3.4.1) provides meteorological fields, the emission component 

provides gridded estimates of hourly emissions rates of primary pollutants that matched to model species, and the CTM 

component (CMAQ v5.0.2(Byun and Schere, 2006)) solves the governing physical and chemical equations to obtain 3-D 70 

pollutant concentrations fields at a horizontal resolution of 12 km. We used the simulated daily mean surface layer predictions 

of PM2.5 concentrations, RH, and WS. The data covered the whole China with a size of 372×426 grid cells. Simulation data 

covering the 2016~2019 period was used as the training dataset, while the 2020 simulation data was used for evaluation. 
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2.2 Ground Observations 

 75 

Figure 1: The map of the study area with elevation in color. Dark red dots represent the national PM2.5 monitors and orange dots 

refer to national meteorological stations.  

The air quality and meteorology observations were only used in predicting fused data fields. PM2.5 observations in 2020 from 

the China National Environmental Monitoring Center (CNEMC) (http://106.37.208.233:20035/) were used, with the 

monitoring network as exhibited in Figure 1. Meteorological variables of daily mean relative humidity (RH) and wind speed 80 

(WS) for the same period at national meteorological observing stations were obtained from the China Meteorology Agency 

(CMA) network (Figure 1). The raw data of both PM2.5 and meteorology data were hourly, which were averaged to daily mean 

if there are more than 18 valid hourly observations in a day at the local time at each monitor. Each of these data items at each 

were assigned to a grid that was defined same as used in the aforementioned CTM simulations. For the sites that co-located in 

a same grid cell, their averages were also used. It should be noted that those grid cells, which do not have valid observations 85 

within them, were filled with zero.  

Geographical variables such as the surface height of Digital Elevation Model (DEM), land use and land cover (LULC) (Zhang 

et al., 2020) were also used in this study for fusion. These data variables were also resampled to the afore-mentioned grid.  

2.3 Deep Learning Data Fusion Framework 

The objective of obtaining spatially complete air pollutant field from point observations can be regarded as a downscaling 90 

problem, which indicates that values in gap areas among stations need to be optimally estimated from known sparse 

measurements based on physical or statistical constrains. Most previous studies use statistical methods to relate observations 

with other supporting variables at stations (Di et al., 2016; Beloconi et al., 2016). In this study, we built a point-to-grid model 

by learning from CTM simulations to generate gridded data fusion fields from station observations.  
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 95 
Figure 2: Data fusion framework using station observations of multiple variables to obtain gridded fields of PM2.5. 

A new deep learning model framework (Figure 2) was designed to fulfill the task of point-to-grid data fusion and downscaling. 

This model includes two successive point convolutional (PointConv) operations and a deep learning backbone fusion module. 

The PointConv is designed for handling spatially isolated and irregular station observations. In traditional convolutional 

operations, the 3×3 moving sum kernels were often used, which would lose effectiveness when it handles station observations. 100 

For example, when convolutional kernels coincide with grid cells without observations, the result will be zero. However, if the 

kernels coincide with grid cells with dense observations, the results will become significantly larger (Qi et al., 2018). To solve 

the problem, we proposed a novel and interpretable operation PointConv to handle isolated station observations of multiple 

variables. The successive PointConv operation is defined as follows, 

𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣1 =
𝐶𝑜𝑛𝑣(𝑤𝑛1,𝑥)

𝐶𝑜𝑛𝑣(𝑤𝑛1,𝑥_𝑜𝑛𝑒)+⁡ 𝑒
−5 (1) 105 

𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣2 =
𝐶𝑜𝑛𝑣(𝑤𝑛2,𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣1−𝑥)

𝐶𝑜𝑛𝑣(𝑤𝑛2,𝑥_𝑜𝑛𝑒)+⁡ 𝑒
−5  (2) 

𝑃𝐶 = 𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣1 +⁡𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣2 (3) 

Where 𝑤𝑛 refers to a convolutional kernel with a size n. The Conv(𝑤𝑛 , 𝑥) in Eq. (1) refers to the traditional convolution on 

x, which is station observations assigned to pre-defined grid cells. The x_one was binarized from x by replacing grid cells with 

valid observation data in x as 1. The PointConv was conducted for the second time by mimicking successive analysis 110 

procedures as in Eq. (2). The PointConv kernel size in the two steps was determined to be 21 and 11 respectively for 𝑛1 and 

𝑛2. This model framework has the following features and advantages compared to conventional convolutions. 

1) The weighted average of isolated data is implemented rather than weighted sum, 

2) Large-size kernels are used to well reflect spatial correlations in a large area,  

3) Successive PointConv operations are implemented to reflect local variations, 115 

4) Multi-variable observations from different networks are handled simultaneously.  

The PointConv kernels in well-trained models are expected to have larger values in the center area and lower values in the 

outer area. With the PointConv module, the spatially complete gridded data set are constructed, denoted as PC in Eq. (3). By 

binding results of PointConv with other static supplementary data such as DEM and LULC, input data to data fusion module 

RegrUnetPP is built as exhibited in Eq. (4).  120 

𝑦̂𝑃𝑀2.5
= 𝑅𝑒𝑔𝑟𝑈𝑛𝑒𝑡𝑃𝑃 (𝐶𝑜𝑛𝑐𝑒𝑛𝑐𝑎𝑡(𝑃𝐶𝑃𝑀2.5

, 𝑃𝐶𝑅𝐻 , 𝑃𝐶𝑊𝑆 , 𝐷𝐸𝑀, 𝐿𝑈𝐿𝐶)) (4) 

𝑙𝑜𝑠𝑠 =
1

𝑁
∑ |𝑦𝑃𝑀2.5,𝑖 − 𝑦̂𝑃𝑀2.5,𝑖|
𝑁
𝑖=1  (5) 

The operation 𝐶𝑜𝑛𝑐𝑒𝑛𝑐𝑎𝑡 refers to appending different data variables as one multiple-layer data item. The 𝑦̂𝑃𝑀2.5
refers to 

the estimated PM2.5 concentrations,⁡𝑦𝑃𝑀2.5,𝑖 refers to the original CTM simulations of PM2.5 with N equals to the number of 

total grid cells.  125 

The fusion module can be any grid-to-grid deep learning model to estimate fused PM2.5 concentrations 𝑦̂𝑃𝑀2.5
. Here we used 
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a regression Unet++ (𝑅𝑒𝑔𝑟𝑈𝑛𝑒𝑡𝑃𝑃) model (Eq.4) which was revised from the original Unet++ model (Zhou et al., 2018). The 

Unet++ model was designed as an Encoding-Decoding type network developed from Unet (Ronneberger et al., 2015). Many 

skip-connection modules (Yamanaka et al., 2017) were added in the Unet++ to fully explore spatial correlations in different 

scales while keeping abundant details in output results. RegrUnetPP was constructed by replacing the SoftMax activation 130 

layers with the ReLU layers and adopting a mean absolute error (MAE) loss function (Eq.5) instead of the original MaxEntropy 

function. 

Model Training 

The model was trained with the WRF-CMAQ simulations of PM2.5, RH, and WS, together with geophysical covariates of 

DEM and LULC. In the training data, nominal point-wise ‘station’ data were constructed by randomly sampling 1500~2500 135 

data points from gridded simulation data separately for each variable at each time, while raw spatially complete PM2.5 

simulation data were used as the target gridded “truth” data. The spatial correlations of CTM simulations are backed by physical 

and chemical principles comprehensively represented in the WRF-CMAQ model. The fusion model was trained with the WRF-

CMAQ CTM simulations within China from 2016 to 2019 for 20000 iterations with a batch size of 10 when the loss function 

became stable running on a NVIDIA RTX GeForce 2080Ti GPU card. It should be highly noted that the observation data were 140 

not involved in the model training procedure at all. In the model prediction procedure, actual station observations will be used 

as input to generate fused PM2.5 concentration fields.  

Model Evaluation 

In general, the evaluation was conducted for 2020 as it is independent from the training data period of 2016~2019. Specifically, 

the fitted fusion model was evaluated in two aspects. Firstly, its capabilities to predict the fully gridded model simulations 145 

from isolated sampled grid cells were assessed with the CTM simulation data in 2020. In this aspect, the station-wise CTM 

PM2.5 simulations were constructed by sampling those grid cells with observations stations from raw gridded simulations. By 

feeding these point-wise simulations and supporting static variables into the fusion model, spatially completed grided data are 

obtained. The fused simulation data are then compared against the corresponding raw CTM PM2.5 simulations. The comparison 

was performed in each day, since there are sufficient data items in daily simulations. It should be noted that only those grid 150 

cells located in mainland China area were compared. Statistical metrics of coefficient of determinant (R2), root mean square 

error (RMSE) and normalized mean absolute error (NME) were calculated for performance evaluation. 

For the second aspects, data fusion model performance was evaluated with station observations using two cross validation 

methods. Specifically, Leave-Stations-Out cross-validation methods (LSCV)(Lv et al., 2016) and stringent ten-fold Leave-

Cities-Out cross-validation (LCCV) were used. In the LCCV method, all cities with PM2.5 stations were randomly split into 155 

ten groups, while in the LSCV method all stations were randomly split into ten groups. PM2.5 observations in one group of 

stations were used as independent evaluation data, while the data in remaining nine groups were used for data fusion. This 

process was iteratively performed ten times. Considering that the air quality stations are mostly clustered in cities’ urban area, 

the LCCV method will better reflect the model’s performance in predicting PM2.5 concentrations in the remote rural areas than 

the station-based LSCV method. Statistical metrics of R2, RMSE, and NME are also used for statistical measures. 160 
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3 Results and Discussions 

3.1 Model Parameters 

 

Figure 3: PointConv kernels for PM2.5, RH and WS. 

The PointConv was interpretable due to its dedicated design to implement a process like an interpolation from station 165 

observations to remove imbalanced sparsity and clustering effects of station data items. In other words, the kernel resembles 

to covariance function on distances. Larger values of PointConv kernels in the central area for different steps (Figure 3), 

indicate spatial correlations are stronger in neighboring stations (Shepard, 1968). The PointConv kernels values in the central 

area are respectively around 1.5, 1.1, and 1.4 for PM2.5, RH, and WS in both steps. The kernels’ distribution also revealed that 

the influencing distance for PM2.5 is around 6 grid cells, which was equivalent to 72 kilometers in terms of the 12 km resolution. 170 

For RH, the spatial correlations are weak considering that kernels were more spatially uniform as exhibited in Figure 3. For 

wind speed, it exhibited a stronger locality indicated by the smaller hot spot with a radius around 4 grid cells (~48 kilometers). 

The kernels were generally isotropic with slightly larger values in the northeast-southwest direction than in other directions, 

which could be caused by topographic and climatic patterns in China.  
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3.2 Model Performance for Reproducing Simulation Fields 175 

  

Figure 4: Daily a) R2, b) RMSE and c) NME values evaluated between prediction CTM PM2.5 simulations and raw gridded 

simulations.  

The data fusion model has very high accuracies in predicting/reproducing fully gridded CTM PM2.5 simulations as exhibited 

in Figure 4, even though data items in only ~800 grid cells in which with observation stations located were used to estimate 180 

data values in the nation-wide 158472 grid cells. The average of daily R2, RMSE and NME values were respectively 0.94, 

4.85 μg/m3 and 0.22 in 2020. The good evaluation metrics indicate the high accuracies of the trained deep learning data fusion 

model reproducing the spatial correlations of multiple variables in the CTM model. The model has stable performance in terms 

of R2 and NME values. There are occasional days where R2 values are at low levels of ~0.85. In these days, PM2.5 pollutions 

patterns generally changes fast (Figure S2 in the SI), which were generally less trained compared to those days with stable 185 

pollution patterns. 
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Figure 5: The seasonal average PM2.5 concentrations of the raw CTM simulations (a to d, first row), and the reproduced simulations 

using data fusion models (e to h, second row).  

By comparing the raw CTM simulations of daily average PM2.5 and the reproducedPM2.5 fields from station-wise simulations, 190 

it can be easily concluded that they exhibited high correlations and similarities as shown in Figure 5. The fusion model fully 

reproduced the raw CTM simulations in terms of concentration levels, spatial patterns, and fine-scale hot spots, indicting the 

data fusion model’s capabilities to encode high-level and detailed spatial correlations. By giving the fusion model only a small 

portion of simulations that at sparsely scattered points, it can reproduce the entire whole domain simulation dataset accurately. 

3.3 Model Performance for Generating Reanalysis Fields 195 

 
Figure 6: Scatter plots of predictions versus observations evaluated respectively by the method of a) LCCV and b) LSCV. 

We implemented the data fusion model with the observations in 2020 to generate the fused fields for evaluation. The evaluation 

results exhibited good performance with R2=0.77 for the LCCV method and R2=0.83 for the LSCV method (Figure 6), with 

the RMSE values respectively 16.32 and 14.25 μg/m3. Considering that most grid cells were located within city urban areas, 200 

actual model performance should be in between the metrics evaluated by LCCV and LSCV, which is 0.77~0.83 for R2, 

14.25~16.32 μg/m3 for RMSE and 0.27~0.32 for NME. Previous studies tend to underestimate PM2.5 concentrations in high 

pollution scenarios (Di et al., 2016; Senthilkumar et al., 2019). Our data fusion method predicted high level PM2.5 

concentrations very well, with NME for PM2.5 concentration higher than 150 μg/m3 being small of 0.19 and 0.14 respectively 
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for LCCV and LSCV. It worth noting that there exist increased errors from reproducing CTM simulations (R2=0.93) to 205 

generating reanalysis fields (R2=0.77~0.83). The difference of 0.1~0.16 should be mainly attributed to CTM simulation 

uncertainties of PM2.5 spatial correlations compared to actual observed correlations.  

Our model has good performance comparing to the previous studies that used the spatial cross-validation method. For example, 

Lyu et al. (2019) used an ensemble deep learning model to build relations between CTM simulations and observations of PM2.5 

in China with a performance of R2=0.64 and RMSE=24.8 μg/m3 using a station-level evaluation method (2019). Xue et al. 210 

(2020) fused AOD, CTM simulations and ground observations with a complex multi-stage model and achieved a good 

performance of R2=0.81 with LSCV method (2017). Xiao et al. (2018) built up an ensemble machine learning model to predict 

PM2.5 at 0.1° resolution with an accuracy of R2=0.76 (2018). Huang et al. (2021) used a multi-stage random-forecast-based 

model to predict very high-resolution data set and achieved R2 = 0.92 with the LSCV method (2021).  

 215 

Figure 7: Reanalysis PM2.5 concentration fields in four seasons in 2020. Circles with filled colors represent monitoring sites and 

corresponding observations. 

Daily fused PM2.5 fields for 2020 were obtained with the model framework. Considering the fused/reanalysis fields are 

complete in space, the high pollution levels in winter are well revealed in details in the North China Plain (NCP), and in the 

long-narrow basin areas of Shanxi and Shaanxi provinces (Figure 7). Besides, unlike most previous studies (Huang et al., 220 

2021), PM2.5 concentrations in high-altitude clean Tibetan Plateau region are predicted low, same as observed. High pollution 

levels in the middle-west Inner Mongolia area of Hohhot, Baotou, and Yinchuan were also well captured in four seasons.  
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Figure 8: Comparison between MODIS AOD and PM2.5 fusion data on October 26 and November 13 in 2020. 

To further evaluate the spatial distributions of the fused PM2.5 fields, we compare them with the MODIS AOD distributions at 225 

the days with large spatial coverages (Figure 8 and Figure S1 in the supplementary material). Spatial distributions of the fused 

PM2.5 and AOD show high similarity to each other. For example, on October 26, high PM2.5 concentrations coincide with high 

AOD values in NCP, especially in the areas along the east edge of the Taihang Mountains. In detail, PM2.5 concentrations and 

AOD values are both relatively low in the Yimeng Mountains that located in the middle south of Shandong province. The high 

PM2.5 concentrations in the basin area of Shanxi province are also higher than the surrounding area, consistent with that of 230 

AOD. On November 13, PM2.5 concentrations are extremely high in NCP and high in central China areas of Hubei and Hunan 

provinces, same as that of AOD values. Besides, in the northeast regions of Yunnan province, both PM2.5 and AOD values are 

high. The spatial coincidence of high PM2.5 concentrations and AOD values supported the high accuracy of the fused data.  

4 Discussions 

In this study, PM2.5 fields are fused from multiple observational variables using a novel deep learning data fusion model 235 

framework. As we have demonstrated, the method can accurately reproduce the whole domain CTM simulations from a small 

portion of simulations selected at sparse locations. By fully utilizing such learned spatial correlations that simulated by the 

CTM models, it can accurately generate spatio-temporally complete fused fields from using observation at sparse locations as 

well.  

In previous studies, all variables need to be spatially paired at stations first to train regression models (Lyu et al., 2019; Ma et 240 

al., 2016; Xue et al., 2019). To use data from different networks, interpolation and analysis/reanalysis need to be carried out 
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which is disconnected from the data fusion model. Here with the two PointConv modules, it can fuse station data variables 

from different observation networks, even when they are not spatially aligned at collocations. The successive PointConv 

modules were able to process station data for each variable independently before the fusion. The PointConv modules were 

trainable as part of the whole deep learning data fusion model. Without data pairing procedure, the model training and 245 

prediction procedure became straightforward that only requires a same spatial grid setting for all input variables.  

This model was fitted with model simulation data by learning daily spatial patterns from long-term CTM simulations. It has 

two benefits. First, the trained deep learning data fusion model can represent and reflect spatial correlations between PM2.5 

(and any other model species/variables as well) and its supporting variables, by retaining physical and chemical principles in 

the WRF-CMAQ model. Hence, the method can be readily applied for other CTM simulated species that with measurements 250 

available. Second, it doesn’t need any observation data sets to train the model. This is quite beneficial for data fusion 

applications, especially when station networks are newly set up or observations are from mobile or portable sensors. The data 

fusion models used in previous studies are very complex requiring long-term observations (Wei et al., 2021; Huang et al., 2021; 

Xue et al., 2019), which make it difficult to be reproducibly used in new applications. Conversely, our method is straight-

forward to use and can be easily examined by inter-comparison with other methods. It provides a pre-trained deep learning 255 

model for its application in other studies. To run this model, users only need air quality observations, meteorological 

observations, and static variables.  

Considering that the model training process is to fully learn the general spatial correlations among different variables, CTM 

simulations theoretically do not need to be very accurate in model inputs but need to be consistent in model configurations of 

physical and chemical processes. For example, input changes of pollutant emissions and meteorological fields within the CTM 260 

simulations are allowed and should be encouraged to cover a wider range of emissions and meteorological scenarios for better 

training. Comparatively in other observation-simulation regression methods, both model configurations and inputs are usually 

required to be unchanged in training data sets (Xue et al., 2017; Hao et al., 2015). In fact, in our method, larger variations of 

input emissions and meteorological conditions can be even more beneficial to help improve the robustness of the trained model 

in applications with the dramatical change of emissions or extreme climate conditions. However, substantial changes of 265 

atmospheric physical and chemical principles in models can deteriorate the model performance because it modifies the 

simulated correlations between different variables. The fused output data sets have high accuracy while following the known 

spatio-temporal principles represented in the state-of-the-art air quality models, which will be beneficial for further studies of 

downscaling, nowcasting and model forecast post-processing based on fused data set. 

The model framework in this study has very high computational efficiency, with computing time for one-time fusion far less 270 

than 1s running on a consumer GPU card of NVIDIA 2080Ti. The calculation time will not increase much by enabling 

processing near-real-time data in a large area.  

 

Data and code availability. The CTM simulation data and fused datasets can be accessed by contacting the corresponding 

authors Baolei Lyu (baoleilv@foxmail.com) and Ran Huang (ranhuang2019@163.com). The land use and land cover data are 275 

available at Data Sharing and Service Portal of Chinese Academy of Science 

(http://data.casearth.cn/en/sdo/detail/5ebe2a9908415d14083a4c24). The source code and a pre-trained model file of the exact 

version used to produce the results used in this paper is available at https://doi.org/10.5281/zenodo.5152567 on Zenodo (Lyu, 

2021). The configuration files for running models of WRF v3.4.1 and CAMQ v5.0.2 are also available at 

https://doi.org/10.5281/zenodo.5152621 (Hu, 2021). 280 
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