
Response to Reviewers’ Comments on GMD-2021-253 

We would like to thank both reviewers for their thoughtful comments on our manuscript.  

 

Reviewer 1 

In this paper, the authors developed a deep-learning based method for fusing observational data 

into simulated air pollution concentration fields. The method requires considerable amount of 

efforts in preparation, but model execution is fast and the results are favorable, making it 

suitable for operational air quality forecasting platforms. Overall, this paper is well-structured, 

fluently written, and the topic fits the scope of this journal.  

Response: Thanks. 

 

I only have a few comments: 

1、Is there any reason why only RH and WS were included as meteorological variables, but 

other important variables such as precipitation and boundary layer height were not included? Is 

it because of limitations in computational resources? 

Response: We have investigated which specific meteorological variables could be potentially 

good predictors by calculating the correlations between each of the common meteorological 

variables and the PM2.5 concentrations, all from the CTM simulations. We found RH and WS 

are the most two important meteorological variables for predicting PM2.5 concentrations.  

Precipitation is found not well correlated with PM2.5 concentrations as exhibited in the 

following Figure S2. Boundary layer height (PBL) has relatively strong correlations with PM2.5, 

but PBL observation data are not commonly available like other meteorological variables such 

as RH and WS. Therefore, precipitation and PBL were not included in the model. Besides, air 

temperature is not included in the model either because it is often highly correlated with  

surface height of DEM. 

We added the related explanation in Lines 80~85: “We used the simulated daily mean surface-

layer PM2.5 concentrations, relative humidity (RH) and wind speed (WS) in the data fusion 

model. The two meteorological variables are selected because they exhibited stronger 

correlations with PM2.5 concentrations (Figure S2 in SI). Precipitation is found not well 

correlated with PM2.5 concentrations. Boundary layer height (PBL) has relatively strong 

correlations with PM2.5 concentrations, but PBL observation data are not commonly available 

like other meteorological variables such as RH and WS. Therefore, precipitation and PBL were 

not included in the model. The air temperature was not included in the model either because 

it’s highly correlated with surface elevations.”. The following figure was included in the 

supplementary material as Figure S2.  



 

Figure S2 Boxplots of correlation coefficients between PM2.5 concentrations and four select 

meteorological variables, all simulated by CTM   

 

2、In model training, actual observation data is not used, rather a random sampling of 1500-

2500 data points were used. In evaluation, actual observational data were used. It would benefit 

the readers if the authors could provide more justifications on: 1) Why 1500-2500 data points 

were chosen, and why the number of data points varies among years; 2) Why random samples 

of data points were used in training, instead of actual observational data; 3) Will the biases and 

errors in CTM simulation impact training results? 

Response:  

1) The sampling data points number 1500~2500 was determined according to the actual air 

quality monitoring station density in the middle and eastern China. There are around 700 grid 

cells with air quality monitoring stations in the middle and eastern China within an area of 

around 4 million square kilometers. Considering the total area of 9.6 million square kilometers 

in China, the sampling size was set to be random integers in a range of 1500~2500 to ensure 

sampling point densities are at a similar level as the density of actual monitoring stations. The 

sampling size was randomly determined for each training batch (i.e., each day), as such the total 

size of training data points did not vary much among different years.  

The related texts were revised in Lines 153~158 as follows, “The samping data points number  

1500~2500 was determined according to the actual air quality monitoring station density in 

the middle and eastern China. There are around 700 grid cells with air quality monitoring 

stations in the middle and eastern China within an area of around 4 million square kilometers. 

Considering the total area of 9.6 million square kilometers in China, the sampling size was set 



to be random integers in a range of 1500~2500 to ensure sampling point densities are at a 

similar level as the density of actual monitoring stations. The sampling size was randomly 

determined for each training batch (i.e., each day), as such the total size of training data points 

did not vary much among different years.”.  

2) The core of our fusion model is to learn spatial correlations from CTM model simulations to 

build connections between isolated data points with gridded data fields, all among simulated 

variables. Then the trained fusion model is applied to predict reanalysis/fused data fields from 

isolated station observations by adopting the learned spatial correlations among simulated 

variables. So, the training is done only among the simulated variables. Observational data are 

not used in the training procedure but only used in the prediction step. The real novelty of our 

method is to “interpolate” the isolated observations to achieve full spatial coverage by using 

the spatial correlations learned from the CTM simulations. The spatial correlations from CTM 

simulations are considered better than any other available spatial correlation information 

provided by distance inverse weighting, Kriging, or other means. 

We added Lines 267~275 in Discussions to explain this: “In this study, PM2.5 fields are fused 

using multiple observational variables from different networks by developing a novel deep 

learning data fusion model framework. The core of our fusion model is to learn and encode 

spatial correlations from CTM model simulations to build connections between isolated data 

points with gridded data fields and among multiple variables. In other words, our method is to 

“interpolate” the isolated observations to achieve full spatial coverage by using the spatial 

correlations learned from the CTM simulations. The training is done only with the simulated 

data. Observational data are not used in the training procedure, but only used in the prediction 

step. Then the trained fusion model is applied to predict reanalysis/fused data fields from 

isolated station observations by decoding the learned spatial correlations. As we have 

demonstrated, the method can accurately reproduce the whole-domain PM2.5 concentration 

fields from only a small number of data points. ” 

3) CTM model simulation errors usually come from three major sources, which include 

meteorology uncertainties, emission inventory uncertainties, and imperfect atmospheric 

physical and chemical parameterizations. However, as we have stated above, the training here 

is purely to learn the spatial correlations among simulated variables from CTM model 

simulations, so the biases and errors in CTM simulation don’t impact the training results. The 

nearly perfect performance of evaluation using 2020 simulations has demonstrated this. The 

trained fusion model predictions (using withheld simulation points) have reproduced the 2020 

simulations perfectly at almost every day except for a small number of extreme days. The larger 

discrepancies on those extreme days are due to smaller pools of data for training, but not 

because of the biases and errors in the CTM simulations themselves. 



However, the quality of the CTM simulations still does affect the performance of the reanalysis 

results that using observations. This is shown by the worsening performance of the 2020 

reanalysis fields compared with the reproduced 2020 simulation fields. The imperfection of the 

simulated spatial correlations provided by CTM compared to the actual spatial correlations has 

caused the worsening performance. But it’s not the absolute biases and errors in CTM 

simulations that directly impacted the reanalysis results, but instead, the nonuniformity of the 

biases and errors in CTM simulations over space that twists the actual gradients between 

observation spots to non-observation spots is the ultimate confounder. We now have assessed 

the impacts of CTM simulations’ uncertainties on the performance of reanalysis fields as 

follows and found such influences are small.  

To evaluate/separate fusion errors caused by meteorological uncertainties, we trained two data 

fusion models using respectively the 1-day lead CTM forecasting simulations and the 5-day 

lead CTM forecasting simulations. The 1-day lead forecasts are expected to have different but 

usually smaller errors than the 5-day lead forecasts. As shown in Figure 6 and the following 

Figure S5, both trained models have similar performance to produce reanalysis fields. The 

RMSE values of reanalysis fields obtained by using the two trained models are respectively 

14.29 and 13.53 μg/m3 using the LCCV evaluation method, and 12.96 and 12.17 μg/m3 using 

the LSCV method. This indicated that CTM simulation errors coming from input 

meteorological fields has little influence on the performance of the obtained reanalysis fields.  

As for the errors raised by emission uncertainties, we compared the performance of the 

reanalysis fields in February, March, and April of 2020 against that in other months of 2020. In 

the three select months, air pollutant emissions have dramatically decreased to a very low-level, 

due to a large-scale national lockdown to prevent the spreading of Covid-19. Compared to the 

other months without national lockdowns, emissions inventories used in CTM simulations 

should have significantly increased uncertainties during these three months. However, the 

reanalysis performance in the lockdown period does not decrease comparing to that in other 

months as shown in Figure S6. The RMSE values of reanalysis fields for the two periods are 

respectively 13.07 and 14.67 μg/m3 using the LCCV evaluation method, and 11.76 and 13.33 

μg/m3 with the LSCV method. This performance comparison revealed that simulation errors in 

CTM simulations caused by emission inventories won’t have significant impacts on the 

performance of the reanalysis.  

The uncertainties of physical and chemical parameterizations in CTM could influence the 

reanalysis performance, as they determine the inherent spatio-temporal correlations among 

multiple variables. But their impacts on reanalysis performance here are expected to be small 

as well, provided the configurations in CTM simulations are not changed dramatically, because 

the nonuniformity of the biases and errors these parametrization uncertainties alone can cause 

in CTM simulations are expected to be in even less magnitude. We don’t recommend using 



totally different configurations in CTM simulations.  

We expanded the discussions by adding Lines 293~320 as follows, “It worth noting that high 

fusion accuracy has been achieved even though the CTM model simulations themselves have 

relatively low accuracies (Figure S1). CTM model simulation errors usually come from three 

major sources, which include meteorology uncertainties, emission inventory uncertainties, and 

imperfect atmospheric physical and chemical parameterizations. However, as we have stated 

above, the training here is purely to learn the spatial correlations among simulated variables 

from CTM model simulations, the biases and errors in CTM simulation don’t impact the training 

results. The nearly perfect reproduction of the 2020 simulations has demonstrated this.  

To evaluate/separate fusion errors caused by meteorological uncertainties, we trained two data 

fusion models using respectively the 1-day lead CTM forecasting simulations and the 5-day 

lead CTM forecasting simulations. The 1-day lead forecasts have different but usually smaller 

errors than the 5-day lead forecasts (Figure S1). As shown in Figure S5 (see in SI), both trained 

models have similar performance to produce reanalysis fields. Considering that errors of 

simulations at different lead time are mainly caused by meteorological inputs, it revealed that 

CTM errors from meteorology don’t have much influences on reanalysis performance.  

As for the errors raised by emission uncertainties, we compared the performance of the 

reanalysis fields in February, March, and April of 2020 against that in other months of 2020. 

In the three select months, air pollutant emissions in China have dramatically decreased to a 

very low-level, due to a large-scale national lockdown to prevent the spreading of Covid-19. 

Compared to the other months without national lockdowns, emissions inventories used in CTM 

simulations should have significantly increased uncertainties during these three months. 

However, the reanalysis performance in the lockdown period does not decrease comparing to 

that in other months as shown in Figure S6 (see in SI). In fact, input changes of pollutant 

emissions and meteorological fields within the CTM simulations are allowed and should be 

encouraged to cover a wider range of emissions and meteorological scenarios to help improve 

the robustness of the trained model.  

However, the uncertainties of physical and chemical parameterizations in CTM could influence 

the reanalysis performance, as they determine the inherent spatio-temporal correlations among 

multiple variables. But their impacts on reanalysis performance here are expected to be small 

as well, provided the configurations in CTM simulations are not changed dramatically, because 

the nonuniformity of the biases and errors these parametrization uncertainties alone can cause 

in CTM simulations are expected to be in even less magnitude. We don’t recommend using 

totally different configurations in CTM simulations. Comparatively in other observation-

simulation regression methods, both model configurations and meteorology/emission inputs are 

required to be unchanged and relatively accurate in training data sets (Xue et al., 2017; Hao 

et al., 2016).”.  



 

 

 

Figure S5 Performance evaluation of the fused PM2.5 fields in 2020 using the model trained with the 5-

day lead CTM simulations respectively using the LCCV (a) and LSCV (b) methods. 

  

Figure S6 Performance evaluation of the fused PM2.5 fields in the national lockdown period of 



February to April in 2020 (panel a, b) and in the remaining periods (c, d) respectively using the LCCV 

(a, c) and LSCV (b, d) methods. 

3、In lines 173-174, the authors mentioned that the kernels are generally isotropic but some 

anisotropic characteristics are evident. What are the expected impacts of such anisotropicity? 

Does including additional training variables such as wind direction help addressing this 

anisotropic issue? 

Response: The anisotropy of the kernel (we changed the term “kernel” to “filter”) indicated the 

PointConv’s capability to characterize relatively complex spatial correlations compared to 

traditional distance-related interpolation methods. In fact, it is not a problem needing to be 

addressed. Instead, it will help improve model performance. To test wind direction, we used U 

and V components in the model instead of feeding wind speed into the model. As shown in the 

following Figure S3, the anisotropic effects also exist to reflect spatial correlations of these 

variables in order to optimally minimize model prediction errors.  

The related discussion in the manuscript was added in Lines 202~205 as follows, “The slightly 

anisotropic pattern still exists if wind direction was considered (Figure S3 in SI). Comparing to 

traditional distance-related interpolation methods such as Kriging and IDW etc. (Friberg et al., 

2016), the anisotropy of the filters indicated the PointConv’s capability to characterize relatively 

complex spatial correlations.”. 

 

Figure S3 PointConv filters for PM2.5, RH, wind u-component and v-component.  

 

 

 

Reviewer 2 

General Comments 

In the manuscript, a new data fusion paradigm is developed to estimate PM2.5 reanalysis fields 

from station observations by a deep learning framework to learn multi-variable spatial 



correlations from Chemical Transport Model (CTM) simulations. The model includes an 

explainable PointConv operation to pre-process isolated observations and a regression grid-to-

grid network to reflect correlations among multiple variables. Compared with previous data 

fusion methods of PM2.5 reanalysis, the proposed fusion framework can fuse multi-variable 

observations from different monitoring networks (even when they are not spatially aligned at 

collocations) and the model training does not rely on observations. The deep learning data 

fusion model framework is novel and can reasonably generate spatio-temporally complete 

fused fields of PM2.5 using observations at sparse locations. I would recommend publication 

in Geoscientific Model Development after consideration of the following comments. 

Response: Thanks. 

Specific comments 

1. For the proposed fusion framework, why are only the predictions of PM2.5 concentrations, 

relative humidity (RH) and wind speed (WS) together with the surface height of Digital 

Elevation Model (DEM) and land use and land cover (LULC) used to train the deep learning 

network? 

Response: The correlations between PM2.5 concentration and common meteorological 

variables have been assessed to determine predictors for training the deep learning network. 

The correlation coefficients were calculated each day from 2016~2019. The boxplots of 

coefficients for select important variables exhibited in Figure S2 indicated that relative 

humidity and wind speed have relatively close correlations higher than other variables. Even 

though the boundary layer height (PBL) also has relatively strong correlations with PM2.5 

concentration, PBL observation data are not commonly available like other variables. Therefore, 

the PBL was not included as a predictor in the model. Besides, air temperature is also not 

included in the model either since it is often highly correlated with surface height of DEM.  

We add the related explanations in the manuscript in Lines 80~85 as follows, “We used the 

simulated daily mean surface-layer PM2.5 concentrations, relative humidity (RH) and wind 

speed (WS) in the data fusion model. The two meteorological variables are selected because 

they exhibited stronger correlations with PM2.5 concentrations (Figure S2 in SI). Precipitation 

is found not well correlated with PM2.5 concentrations. Boundary layer height (PBL) has 

relatively strong correlations with PM2.5 concentrations, but PBL observation data are not 

commonly available like other meteorological variables such as RH and WS. Therefore, 

precipitation and PBL were not included in the model. The air temperature was not included in 

the model either because it’s highly correlated with surface elevations.”. The following figure 

was included in the supplementary material as Figure S2.  



 

Figure S1 Boxplots of correlation coefficients between PM2.5 concentrations and four select 

meteorological variables, all simulated by CTM. 

2. Line 247: “This model was fitted with model simulation data by learning daily spatial 

patterns from long-term CTM simulations.” When applying the fusion model, how long period 

of CTM simulated data is required at least for the network training to obtain the simulated 

spatial correlations? 

Response: The deep learning model was designed to learn the spatial correlations and daily 

patterns of PM2.5 from CTM simulations. While the spatial patterns of PM2.5 concentration 

distributions are mainly determined by daily weather patterns, the daily weather patterns repeat 

themselves annually with quite small interannual fluctuations. Within the same season, weather 

patterns often repeat themselves too, but some extreme patterns occur rarely within a year. We 

believe, to better cover the spectrum of PM2.5 spatial patterns, at least 2-3 years' data should be 

used to train the deep learning model, though the longer the better. We have 5-year CTM data 

and have used 4-year CTM data for training. We used CTM simulations from an operational 

forecasting system which each day produces PM2.5 simulations for five days ahead. Therefore, 

corresponding to each day, there are 5 CTM simulations with different forecasting lead time. 

Note that each of these 5 CTM simulations is driven by different weather forecasts, with 1~5 

days lead time respectively.  

3. Although, as it is said in lines 258-260, CTM simulation theoretically do not need to be very 

accurate in the model inputs, an accurate or reasonable spatial correlations (or spatial patterns) 

simulated by the CTM models is necessary for the model deep-learning. There are very limited 

information on the CTM simulation data used in the study. Have the simulated PM2.5 spatial 



patterns been evaluated? How about the performance? Please give some necessary introduction 

or relevant reference. 

Response: We used CTM simulations from an operational forecasting system which each day 

produces PM2.5 simulations for five days ahead. Therefore, corresponding to each day, there are 

5 CTM simulations with different forecasting lead time. The CTM simulation performance at 

each lead time was added in the supplementary material as Figure S1.  

Related descriptions were added in the manuscript in Lines 73~77 as follows, “The system was 

operated at forecasting mode which each day produces CTM simulations for five days ahead. 

Therefore, corresponding to each day, there are 5 CTM simulations with different forecasting 

lead time. The CTM simulations of PM2.5 concentrations have reasonable performance when 

evaluated against surface measurements, with root mean square error (RMSE) being 

29.28~31.08 μg/m3 and coefficient of determination (R2) being 0.31~0.42 (Figure S1 in the 

supporting information, SI).”. 

 

Figure S2 The performance measures as R2 and RMSE of CTM simulations of PM2.5 concentration 

against station measurements at different forecasting lead time in 2019. 

 



Technical comments 

1. Lines 83-84: “Each of these data items at each were assigned…”, the word of “site” or 

“station” is missed after “at each”. 

Response: Corrected.  

2. Line 185: “(Figure S2 in the SI)”, Figure S2 is not found in the SI. Please check it. 

Response: The figure numberings in the manuscript and supplementary material were 

checked and adjusted. 


