
Authors’ Comments on GMD-2021-253 

We would like to thank both reviewers for their thoughtful comments on our study.  

 

Reviewer 1 

In this paper, the authors developed a deep-learning based method for fusing observational data 

into simulated air pollution concentration fields. The method requires considerable amount of 

efforts in preparation, but model execution is fast and the results are favorable, making it 

suitable for operational air quality forecasting platforms. Overall, this paper is well-structured, 

fluently written, and the topic fits the scope of this journal.  

Response: Thanks. 

 

I only have a few comments: 

1、Is there any reason why only RH and WS were included as meteorological variables, but 

other important variables such as precipitation and boundary layer height were not included? Is 

it because of limitations in computational resources? 

Response: We have investigated the meteorological variables which could be potentially good 

predictors by calculating the correlations between each of the common meteorological variables 

and PM2.5 concentrations, all the CTM simulations. We found RH and WS are the most two 

important meteorological variables for predicting PM2.5 concentrations. The precipitations are 

not well correlated with PM2.5 concentrations as exhibited in the following figure. Boundary 

layer height (PBL) has relatively strong correlations with PM2.5, but PBL observation data are 

not commonly available like other meteorological variables such as RH and WS. Therefore, 

precipitation and PBL were not included. Besides, air temperature is also not included in the 

model since it is often highly correlated with surface height of DEM. 

We added the following explanation in text: “The two variables are selected because they 

exhibited stronger correlations with simulated PM2.5 concentrations (Figure S2 in the SI). Even 

though planetary boundary layer is also relatively well correlated with PM2.5, it is not included 

in the model due to limited availability of observations.” The following figure was included in 

the supplementary material as Figure S2.  



 

Figure S2 Boxplots of correlation coefficients between PM2.5 concentrations and four select 

meteorological variables, all simulated by CTM   

 

2、In model training, actual observation data is not used, rather a random sampling of 1500-

2500 data points were used. In evaluation, actual observational data were used. It would benefit 

the readers if the authors could provide more justifications on: 1) Why 1500-2500 data points 

were chosen, and why the number of data points varies among years; 2) Why random samples 

of data points were used in training, instead of actual observational data; 3) Will the biases and 

errors in CTM simulation impact training results? 

Response:  

1) The sampling data points number 1500~2500 was determined according to the actual air 

quality monitoring station density in the middle and eastern China. There are around 700 grid 

cells with air quality monitoring stations in the middle and eastern China within an area of 

around 4 million square kilometers. Considering the total area of 9.6 million square kilometers 

in China, the sampling size was set to be random integers in a range of 1500~2500 to ensure 

sampling point densities are at a similar level as the density of actual monitoring stations. The 

sampling size was randomly determined for each training batch (i.e., each day), as such the total 

size of training data points did not vary much among different years.  

2) The core of our fusion model is to learn spatial correlations from CTM model simulations to 

build connections between isolated data points with gridded data fields, all simulated variables. 

Then the trained fusion model is applied to predict analysis/fusion data fields from isolated 

station observations by adopting the learned spatial correlations among simulated variables. So 

the training is done only among the simulated variables. Observational data are not used in the 



training procedure, but only used in the prediction step. The real novelty of our method is to 

“interpolate” the isolated observations to achieve full spatial coverage by using the spatial 

correlations learned from the CTM simulations. The spatial correlations from CTM simulations 

are considered better than any other available spatial correlation information provided by 

distance inverse weighting, Kriging, or other means. 

3) CTM model simulation errors usually come from three major sources, which include 

meteorology uncertainties, emission inventory uncertainties, and imperfect atmospheric 

physical and chemical parameterizations. However, as we have stated above, the training here 

is purely to learn the spatial correlations among simulated variables from CTM model 

simulations, so the biases and errors in CTM simulation don’t impact on the training results. 

The nearly perfect performance of evaluation using 2020 simulations has demonstrated this. 

The trained fusion model predictions (using withheld simulation points) have reproduced the 

2020 simulations perfectly at almost every day except for a small number of extreme days. The 

larger discrepancies on those extreme days are due to smaller pools of data for training, but not 

because of the biases and errors in the CTM simulations themselves.   

However, the quality of the CTM simulations still do affect the performance of the reanalysis 

results that using observations. This is shown by the worsen performance of the 2020 reanalysis 

fields compared with the reproduced 2020 simulation fields. The imperfection of the simulated 

spatial correlations provided by CTM compared to the actual spatial correlations has caused the 

worsen performance. But it’s not the absolute biases and errors in CTM simulations directly 

impacted on the reanalysis results, but instead the nonuniformity of the biases and errors in 

CTM simulations over space that twisting the actual gradients between observation spots to 

non-observations spots is the ultimate confounder. We now have assessed the impacts of CTM 

simulations’ uncertainties on performance of reanalysis fields as follows and found such 

influences are small.  

To evaluate/separate fusion errors caused by meteorological uncertainties, we trained two data 

fusion models using respectively the 1-day lead CTM forecasting simulations and the 5-day 

lead CTM forecasting simulations. The 1-day lead forecasts are expected to have different but 

usually smaller errors than the 5-day lead forecasts. As shown in the following Figure S5, both 

trained models have similar performance to produce reanalysis fields. The RMSE values of 

reanalysis fields obtained by using the two trained models are respectively 14.09 and 13.53 

μg/m3 using the LCCV evaluation method, and 13.04 and 12.17 μg/m3 using the LSCV method. 

This indicated that CTM simulation errors coming from input meteorological fields has little 

influence on performance of obtained reanalysis fields.  

As for the errors raised by emission uncertainties, we compared the performance of the 

reanalysis fields in February, March, and April of 2020 against that in other months of 2020. In 

the three select months, air pollutant emissions have been significantly decreased to a very low-



level, due to a large-scale national lockdown to control the Covid-19 spreading. In other words, 

comparing to the other months without national lockdowns, emissions inventories used in CTM 

simulations should have significantly increased uncertainties during these three months. 

However, the reanalysis performance in the lockdown period does not decrease comparing to 

that in other months as shown in Figure S6. The RMSE values of reanalysis fields for the two 

periods are respectively 13.07 and 14.57 μg/m3 using the LCCV evaluation method, and 11.76 

and 13.33 μg/m3 with the LSCV method. This performance comparison revealed that 

simulation errors in CTM simulations caused by emission inventories won’t have significant 

impact on the performance of the reanalysis.  

The uncertainties of physical and chemical parameterizations in CTM could influence the 

reanalysis performance, as they determine the inherent spatio-temporal correlations among 

multiple variables. But their impacts on reanalysis performance here are expected to be small 

as well, provided the configurations in CTM simulations are not changed dramatically, because 

the nonuniformity of the biases and errors these parametrization uncertainties alone can cause 

in CTM simulations are expected in even less extent. We don’t recommend to use totally 

different configurations in CTM simulations.  

We expanded the related discussions in the manuscript and added supplementary material as 

follows, “Considering that the model training process is to fully learn the general spatial 

correlations among different variables, CTM simulations errors will not influence on training 

results. In fact, input changes of pollutant emissions and meteorological fields within the CTM 

simulations are allowed and should be encouraged to cover a wider range of emissions and 

meteorological scenarios to help improve the robustness of the trained model. To evaluate 

influences by meteorology input uncertainties on reanalysis results, two deep learning models 

are trained using simulations in different forecasting lead time. They exhibited same-level 

accuracies (Figure S5), indicating simulation errors from meteorology have small influences 

on reanalysis performance. Besides, the reanalysis fields also have similar accuracy levels in 

lockdown period due to Covid-19 and in non-lockdown period (Figure S6), revealing emission 

inventory uncertainties will not influence much on model performance either. However, 

substantial changes of atmospheric physical and chemical principles in CTM models can 

deteriorate the deep learning model performance because it modifies the simulated correlations 

between different variables. Comparatively in other observation-simulation regression methods, 

both model configurations and meteorology/emission inputs are required to be unchanged and 

relatively accurate in training data sets (Xue et al., 2017; Hao et al., 2015).”.  

 



 

Figure S5 The evaluation performance for deep learning models trained using the 1-day lead 

forecasting simulations (panel a, c) and the 5-day lead forecasting simulations (b, d) respectively using 

the LCCV (a, b) and LSCV (c, d) methods. 

 



  

Figure S6 The evaluation performance for deep learning models in the national lockdown period of 

February to March (panel a, b) and in remaining periods (c, d) respectively using LCCV (a, c) and 

LSCV (b, d) methods. 

 

3、In lines 173-174, the authors mentioned that the kernels are generally isotropic but some 

anisotropic characteristics are evident. What are the expected impacts of such anisotropicity? 

Does including additional training variables such as wind direction help addressing this 

anisotropic issue? 

Response: The anisotropy of the kernel indicated the PointConv’s capability to characterize 

relatively complex spatial correlations comparing to traditional distance-related interpolation 

methods. In fact, it is not a problem needing to be addressed. Instead, it will help improve model 

performance. To test wind direction, we used U and V component in the model instead of 

feeding wind speed into the model. As shown in the following Figure S3, the isotropic effects 

also exist to reflect spatial correlations of these variables in order to optimally minimize model 

prediction errors.  

The related discussion in the manuscript was added as follows, “The isotropic pattern still exists 

if wind direction considered (Figure S3). Comparing to previous only distance-dependent 



methods (Friberg et al., 2016), the isotropic kernels will have improved representations of 

varying spatial correlations with directions being also considered.”. 

 

Figure S3 PointConv kernels for PM2.5, RH, wind u-component and v-component.  

 

 

Reviewer 2 

 

General Comments 

In the manuscript, a new data fusion paradigm is developed to estimate PM2.5 reanalysis fields 

from station observations by a deep learning framework to learn multi-variable spatial 

correlations from Chemical Transport Model (CTM) simulations. The model includes an 

explainable PointConv operation to pre-process isolated observations and a regression grid-to-

grid network to reflect correlations among multiple variables. Compared with previous data 

fusion methods of PM2.5 reanalysis, the proposed fusion framework can fuse multi-variable 

observations from different monitoring networks (even when they are not spatially aligned at 

collocations) and the model training does not rely on observations. The deep learning data 

fusion model framework is novel and can reasonably generate spatio-temporally complete 

fused fields of PM2.5 using observations at sparse locations. I would recommend publication 

in Geoscientific Model Development after consideration of the following comments. 

Response: Thanks. 

Specific comments 

1. For the proposed fusion framework, why are only the predictions of PM2.5 concentrations, 

relative humidity (RH) and wind speed (WS) together with the surface height of Digital 



Elevation Model (DEM) and land use and land cover (LULC) used to train the deep learning 

network? 

Response: The correlations between PM2.5 concentration and common meteorological 

variables have been assessed to determine predictors for training the deep learning network. 

The correlation coefficients were calculated each day from 2016~2019. The boxplots of 

coefficients for select important variables exhibited in Figure S2 indicated that relative 

humidity and wind speed have relatively close correlation higher than other variables. Even 

though the boundary layer height (PBL) also has relatively strong correlations with PM2.5 

concentration, PBL observation data are not commonly available like other variables. Therefore, 

the PBL was not included as a predictor in the model either. Besides, air temperature is also not 

included in the model since it is often highly correlated with surface height of DEM.  

We add the related explanations in the manuscript as follows “The two variables are selected 

because they exhibited relatively stronger correlations with PM2.5 concentrations (Figure S2 in 

the SI). Even though planetary boundary layer also well correlated with PM2.5, it is not included 

in the model due to its limited availabilities”. The following figure was included in the 

supplementary material as Figure S2.  

 

Figure S2 Boxplots of correlation coefficients between PM2.5 and four meteorological variables. 

The correlations are calculated with CTM simulations. 

2. Line 247: “This model was fitted with model simulation data by learning daily spatial 

patterns from long-term CTM simulations.” When applying the fusion model, how long period 



of CTM simulated data is required at least for the network training to obtain the simulated 

spatial correlations? 

Response: The deep learning model was designed to learn the spatial correlations and daily 

patterns of PM2.5 from CTM simulations. While the spatial patterns of PM2.5 concentration 

distributions are mainly determined by daily weather patterns, the daily weather patterns repeat 

themselves annually with quite small interannual fluctuations. Within the same season, weather 

patterns often repeat themselves too, but some extreme patterns occur rarely withing a year. We 

believe, to better cover the spectrum of PM2.5 spatial patterns, at least 2-3 years data should be 

used to train the deep learning model, though the longer the better. We have 5-year CTM data 

and have used 4-year CTM data for training. We used CTM simulations from an operational 

forecasting system which each day produces PM2.5 simulations for five days ahead. Therefore, 

corresponding to each day, there are 5 CTM simulations with different forecasting lead time. 

Note that each of these 5 CTM simulations are driven by different weather forecasts, with 1~5 

days lead time respectively. These special datasets we used has increased the robustness of our 

training results, by increasing the quantity of weather patterns going into training by 4 times. 

3. Although, as it is said in lines 258-260, CTM simulation theoretically do not need to be very 

accurate in the model inputs, an accurate or reasonable spatial correlations (or spatial patterns) 

simulated by the CTM models is necessary for the model deep-learning. There are very limited 

information on the CTM simulation data used in the study. Have the simulated PM2.5 spatial 

patterns been evaluated? How about the performance? Please give some necessary introduction 

or relevant reference. 

Response: We used CTM simulations from an operational forecasting system which each day 

produces PM2.5 simulations for five days ahead. Therefore, corresponding to each day, there are 

5 CTM simulations with different forecasting lead time. The CTM simulation performance at 

each lead time was added in the supplementary material as Figure S1. Related descriptions were 

added in the manuscript as follows, “The CTM simulations of PM2.5 concentrations have 

reasonable performance when evaluated against surface measurements, with root mean square 

error (RMSE) being 29.28~31.08 μg/m3 and coefficient of determination (R2) being 0.31~42 

(Figure S1 in the SI).”. 



 

Figure S1 The CTM simulation/forecast performance at different lead time. The R2 and RMSE values 

are calculated at each station for each lead time in 2019.  

 

Technical comments 

1. Lines 83-84: “Each of these data items at each were assigned…”, the word of “site” or 

“station” is missed after “at each”. 

Response: Revised.  

2. Line 185: “(Figure S2 in the SI)”, Figure S2 is not found in the SI. Please check it. 

Response: The figure numbers in the manuscript and supplementary materials were checked 

and adjusted. 

 


