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Abstract. Producing targeted climate information at the local scale, including major sources of climate change projection

uncertainty for diverse emissions scenarios, is essential to support climate change mitigation and adaptation efforts. Here, we

present the first chain of computationally efficient Earth System Model (ESM) emulators allowing to translate any greenhouse

gas emission pathway into spatially resolved annual mean temperature anomaly field time series, accounting for both forced

climate response and natural variability uncertainty at the local scale. By combining the global mean, emissions-driven em-5

ulator MAGICC with the spatially resolved emulator MESMER, ESM-specific as well as constrained probabilistic emulated

ensembles can be derived. This emulator chain can hence build on and extend large multi-ESM ensembles such as the ones

produced within the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The main extensions are threefold:

(i) A more thorough sampling of the forced climate response and the natural variability uncertainty is possible with millions of

emulated realizations being readily created. (ii) The same uncertainty space can be sampled for any emission pathway, which10

is not the case in CMIP6, where only a limited number of scenarios have been explored and where some of the most societally

relevant strong mitigation scenarios have been run by only a small number of ESMs. (iii) Other lines of evidence to constrain

future projections, including observational constraints, can be introduced, which helps to refine projected ranges beyond the

multi-ESM ensemble’s estimates. In addition to presenting results from the coupled MAGICC-MESMER emulator chain, we

carry out an extensive validation of MESMER, which is trained on and applied to multiple emission pathways for the first time15

in this study. By coupling MAGICC and MESMER, we pave the way for rapid assessments of any emission pathway’s regional

climate change consequences and the associated uncertainties.

1 Introduction

Earth System Models (ESMs) are the primary tools to study the impact of greenhouse gas emissions on regional climate

change (IPCC, 2013, 2021). While the insights they provide are invaluable to advance our understanding of the coupled20

Earth system to external influences, their projections are affected by three major sources of uncertainty: (i) internal variability
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uncertainty, i.e., unforced natural climate variability; (ii) forced climate response uncertainty, i.e., uncertainty in the response

of the climate system to both forced natural (solar and volcanic) and anthropogenic (greenhouse gases, aerosols, land-use

change, etc.) influences; and (iii) emission scenario uncertainty, i.e., which emission pathway the world chooses (Hawkins

and Sutton, 2009; Lehner et al., 2020). Each of these uncertainty classes again encompass a myriad of different contributions25

to the total uncertainty, e.g., carbon cycle uncertainty, aerosol forcing uncertainty, and climate sensitivity uncertainty are all

captured within the climate response uncertainty in the above categorization. Due to their high computational cost, ESMs can

only sparsely explore the full uncertainty phase space.

This sparse exploration is problematic since targeted climate information accounting for all major sources of climate change

uncertainty is urgently needed, especially because both Earth’s climate (IPCC, 2013, 2018, 2021) and the future emission30

pathway the world’s nations have pledged to follow (CAT, 2019, 2021a, b) are changing rapidly. When assessing the implica-

tions of a large number of emission pathways for future climate, it is neither computationally feasible nor efficient to create

full ESM ensembles for each emission pathway, especially ESM ensembles which thoroughly sample the natural variability

and climate response uncertainty space. Instead, computationally inexpensive ESM emulators can be useful tools to provide

targeted climate information for a few key variables, such as surface air temperatures.35

Here, we present the first chain of computationally efficient ESM emulators able to translate user-defined emission or con-

centration scenarios into spatially and temporally resolved temperature anomalies with respect to a pre-industrial baseline

accounting for all major sources of climate change uncertainty (Fig. 1). In this study, the global MAGICC emulator (Mein-

shausen et al., 2009, 2011, 2020) is used to turn greenhouse gas concentration pathways into constrained probabilistic forced

global temperature change time series by taking multiple lines of evidence into account. These are then translated into tempera-40

ture anomaly field time series, accounting for both regional forced climate response and internal natural variability uncertainty,

with the spatially resolved MESMER emulator (Beusch et al., 2020a), calibrated on a set of ESMs from the sixth phase of the

Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016) ensemble.

Figure 2 illustrates how the different sources of uncertainty accounted for in the MAGICC-MESMER chain accumulate at

the local scale by presenting time series for a single grid point in eastern North America as well as maps of example realizations45

in 2030 for a low emission scenario. In the most basic setup of the MAGICC-MESMER chain, a single forced global mean

temperature change time series can be coupled to a single set of local forced response parameters, resulting in a single spatially

resolved forced warming time series (Fig 2a). When accounting for global climate response uncertainty by using MAGICC’s

probabilistic distribution of forced global mean temperature time series in combination with the single local forced response

parameter set, a range of realizations are obtained but they all share the same spatial pattern (Fig 2b). Different spatial patterns50

become available once the uncertainty in the regional forced response is included and the forced global temperature time series

are combined with each of the different available ESM-specific local forced response parameter sets (Fig. 2c). The last source

of uncertainty is ESM-specific natural climate variability, which is added on top of the local forced response patterns (Fig. 2d).

In this low emission scenario, natural variability accounts for roughly half of the uncertainty at the local scale even at the end of

the 21st century. For a high emission scenario, the overall spread at the end of the century in terms of regional forced response55

would increase, and thus, natural variability would be less important compared to the other sources of uncertainty.
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a. Emission or concentration-driven scenarios

Modelling forced response (MAGICC)
+ unforced variabiity (MESMER)

Regional 
response 
incl. variability
(MESMER)

b. Global climate response incl. natural variability

c. Regional climate response 
incl. natural variability

Figure 1. Illustration of the MAGICC-MESMER emulator chain. (a) The sequence of the analysis starts from either an emission or a

concentration scenario, as highlighted here for the CO2 concentration time series of the historical time period and two Shared Socioeconomic

Pathway (SSP) scenarios (O’Neill et al., 2017), namely SSP1-1.9 and SSP3-7.0. (b) The probabilistic global mean temperature change

distributions – whose medians and 90 % ranges (5th – 95th percentile) are shown – consist of realizations which are a combination of

the scenario-specific forced global warming from MAGICC and emulated global natural variability from MESMER. (c) Based on this

information, MESMER can derive the associated spatially resolved temperature change distributions, with the maps shown here representing

the 5th percentile, the median, and the 95th percentile (each map trio from bottom to top) for 2014 (first column of maps), for 2050 for both

SSP scenarios (second column of maps), for and 2100 for both SSP scenarios (third column of maps).

While this study is, to our knowledge, the first to combine all of these uncertainties in a single emulator chain, rich back-

ground literature exists on emulating each individual uncertainty aspect. The uncertainty in the global climate response to

greenhouse gas emissions is modeled by a variety of global emulators, which usually have a physical core and use different

statistical approaches during calibration (Nicholls et al., 2021c). The uncertainty in the local forced response to global temper-60

ature is most frequently accounted for through different flavours of pattern scaling (Tebaldi and Arblaster, 2014; Lynch et al.,

2017; Beusch et al., 2020a). The last element of our emulation chain, local-scale natural variability, has been stochastically cre-

ated through re-sampling of either individual temperature field realizations (Alexeeff et al., 2018) or of principal components
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Figure 2. Visualization of the cumulative contribution of different uncertainty sources accounted for in the MAGICC-MESMER emulator

chain with time series for a single grid point in eastern North America and with maps of example realizations in the year 2030 for the low

emission scenario SSP1-1.9. The example emulations shown in the maps are also depicted in the grid-point-level time series by using the

colors displayed on top of the maps. Note that whenever several colors are depicted on top of a single map, the associated emulations all

exhibit an identical temperature change trajectory. Hence, the individual example emulations fully overlap both in the map and in the time

series plot. Light blue markers are employed to indicate the year 2030 in the time series plots and to show the location the time series

belong to on the maps. From top to bottom, the rows exhibit an increasing reflection of uncertainties: (a) Accounts for no uncertainty since

a single MAGICC forced global warming time series is combined with a single MESMER forced response pattern and thus, all emulations

are identical. (b) Accounts for the uncertainty in the global response by combining all of MAGICC’s forced global warming time series

with a single MESMER forced response pattern. In the time series plot, the solid black line indicates the median of the temperature change

distribution for that grid point and the gray shading the 90 % range (5th – 95th percentile). (c) Adds uncertainty in the regional response by

combining all of MAGICC’s forced global warming time series with all of MESMER’s forced response patterns. (d) Adds natural internal

variability provided by MESMER on top of the forced response patterns.

with perturbed phases (Link et al., 2019), and by sampling from autoregressive processes with spatially correlated innovation

terms (Beusch et al., 2020a). Additionally, there are two studies which directly translate emissions into spatially resolved tem-65

perature change realizations (Goodwin et al., 2020; Yuan et al., 2021). However, both of the available approaches lack one

major source of uncertainty. Goodwin et al. (2020) combine the global emulator WASP with a pattern scaling approach to
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obtain probabilistic mean warming realizations but do not account for internal climate variability. Yuan et al. (2021), on the

other hand, use a statistical emulator calibrated on a single ESM to create spatially resolved temperature realizations directly

from CO2 equivalence concentrations and thus neither account for forced climate response uncertainty nor uncertainty in the70

representation of unforced natural climate variability.

2 Data

2.1 Earth System Model data

We use climate information from 25 ESMs participating in the Scenario Model Intercomparison Project (ScenarioMIP; O’Neill

et al., 2016) of CMIP6 (Eyring et al., 2016) listed in Appendix Table A1. While our ESM ensemble does not contain all of75

the ESMs available within CMIP6, it does cover a wide range of temperature realizations and is broadly representative of the

overall warming spread and the relative fraction of simulations available for each scenario.

Data from 1850 – 2100 are employed, covering the historical time period (1850 – 2014) and the ScenarioMIP’s future (2015 –

2100) emission and land-use change scenarios, the Shared Socioeconomic Pathways (SSPs), i.e., SSP1-1.9, SSP1-2.6, SSP4-

3.4, SSP5-3.4-over, SSP2-4.5, SSP4-6.0, SSP3-7.0, SSP5-8.5. In this study, a special focus is set on SSP1-1.9, the most ambi-80

tious mitigation scenario of CMIP6, and SSP3-7.0, a physically plausible high-end emission scenario (Hausfather and Peters,

2020).

We primarily employ annual 2-m air temperature (T ) data but ocean heat uptake (OHU ) is additionally used for some

analyses. Both variables are re-gridded onto a common 2.5° x 2.5° spatial grid according to Brunner et al. (2020a). Anomalies

with respect to 1850 – 1900 are obtained at the grid-point level and used for all analyses.85

Regional averages refer to area-weighted averages and regional land averages to area- and land-fraction-weighted averages.

Grid cells with more than one third land fraction according to the land-sea mask of the regionmask package v0.8.0 (Hauser

et al., 2021b) are considered to be land grid points. The global land average does not include Antarctica, since no emulations

are created for Antarctica. The eastern North America region frequently employed throughout this study is one of the updated

Intergovernmental Panel on Climate Change (IPCC) climate reference regions (Iturbide et al., 2020) and is extracted from the90

gridded fields with the help of the regionmask package v0.8.0 (Hauser et al., 2021b).

2.2 Observational data

To calibrate MESMER, in addition to temperature data, a proxy for volcanic activity is needed (Beusch et al., 2020a). Here, we

use the globally averaged stratospheric aerosol optical depth time series employed in the recently published sixth assessment

report of the IPCC (Forster et al., 2021; Smith et al., 2021b) for this purpose. The time series is available in monthly resolution95

(Smith et al., 2021a) and thus, annual averages need to be created before using it.

For a qualitative visual validation of the MAGICC-MESMER emulations, annual blended temperature anomalies from the

Berkeley Earth data set are employed (Rohde and Hausfather, 2020), which consist of land and sea ice 2-m air temperature
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anomalies and ocean surface temperature anomalies. They are interpolated onto the same spatial grid as the ESM data, also

following the approach described in Brunner et al. (2020a). To account for differences in the global average of blended temper-100

ature anomalies and 2-m air temperature anomalies, the observational global blended averages ∆T glob,blend are transformed

into 2-m air global averages ∆T glob,air at every point in time t via ∆T glob,air
t = 1.098 ·∆T glob,blend

t −0.001°C, a relationship

derived by Beusch et al. (2020b) based on CMIP6 data. Additionally, the observational data need to be shifted from their native

1951 – 1980 baseline to the 1850 – 1900 baseline employed within this study. However, during the 1850 – 1900 time period,

the observational data are not spatially complete and the quality of the available data is lower. Hence, the MAGICC-MESMER105

emulated regional median warming between the 1850 – 1900 baseline and the native baseline of the observational data is added

to the observational data as a constant offset during plotting.

3 Methods

3.1 MAGICC (v7.5.1)

The Model for the Assessment of Greenhouse gas Induced Climate Change (MAGICC) is a reduced complexity climate110

model, which calculates – among other quantities – forced global warming and global ocean heat uptake. Its hemispherically-

resolved, multi-layer upwelling-entrainment-diffusion ocean and climate core (based on the energy balance equation with state-

and forcing-dependent climate sensitivity) are described in Meinshausen et al. (2011) and Meinshausen et al. (2020). It also

includes representations of the carbon cycle, non-CO2 greenhouse gas cycles and the relationship between aerosol prescursor

species emissions, and aerosol effective radiative forcing (Meinshausen et al., 2011, 2020) alongside a parameterization of the115

response of permafrost to global heating (Schneider von Deimling et al., 2012).

The MAGICC output employed throughout this paper is the same as presented in Nicholls et al. (2020) and Nicholls et al.

(2021c). We use greenhouse gas concentration-driven simulations, following the CMIP6 ScenarioMIP approach (O’Neill et al.,

2016). A slightly wider output temperature distribution would be achieved, if MAGICC were run in emissions-driven mode

instead (Nicholls et al., 2021c).120

3.2 MESMER (v0.8.3)

3.2.1 Default configuration – Local temperature anomalies as a function of global temperature anomalies

MESMER, a Modular Earth System Model Emulator with spatially Resolved output, was introduced in Beusch et al. (2020a)

to emulate multi-ESM initial-condition ensembles for a specific emission pathway. This first MESMER configuration has thus

far been successfully applied to emulate temperature anomalies for the highest emission scenarios of both the CMIP5 (Beusch125

et al., 2020a) and the CMIP6 (Beusch et al., 2020b) ensembles.

MESMER is an ESM-specific emulator which needs to be calibrated for each emulated ESM separately, to capture the

unique characteristics of that ESM, both in terms of local forced warming and local variability around the forced warming

(Beusch et al., 2020a). Within MESMER, local temperature anomalies ∆T for a specific climate model m at every point in
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space s and time t are emulated as follows:130

∆Tm,s,t = f(∆T glob
m,t ) + ηm,s,t = βfr

m,s ·∆T
glob,fr
m,t +βiv

m,s ·∆T
glob,iv
m,t +βintercept

m,s + ηm,s,t. (1)

The local temperature anomaly is a direct function of global mean temperature change ∆T glob and a spatio-temporally

correlated noise term η. At every point in space, a multiple linear regression is employed to relate ∆T glob information to lo-

cal temperature anomalies. Forced global temperature change ∆T glob,fr and internal global temperature variability ∆T glob,iv

serve as predictors. The associated regression coefficients are βfr and βiv . βintercept constitutes the intercept term. ∆T glob,fr135

is obtained by first applying locally weighted scatterplot smoothing (LOWESS) to the ∆T glob time series and subsequently

adding volcanic spikes to the smooth forced temperature time series via a linear regression of the global temperature anomaly

residuals to stratospheric aerosol optical depth. The remaining internal global variability ∆T glob,iv and the residual local vari-

ability η are both modeled as autoregressive processes. For η, spatially correlated innovation terms are drawn to account for

local to regional cross-correlations between grid points. Beusch et al. (2020a) describe the full algorithm and additionally140

carry out a thorough evaluation of the resulting emulations. In short, their evaluation highlights that MESMER reliably em-

ulates grid-cell-level forced warming and internal climate variability. However, they also show that MESMER’s emulations

are increasingly underdispersive for larger regional averages since MESMER’s local residual variability module reduces the

magnitude of the empirical covariance between grid cells as a function of their geographical distance. At the global land level,

MESMER emulations become reliable again, due to the global scale variability captured through the βiv
m,s ·∆T

glob,iv
m,t term.145

In this work, MESMER is for the first time trained on and applied to the full range of emission scenarios covered within

the CMIP6 ScenarioMIP projections instead of a single emission pathway. The main additional assumption when extending

MESMER from emulating a single emission pathway to emulating a range of scenarios is that the estimated parameters are

scenario-independent. This assumption of universal scenario applicability of the calibrated parameters is also regularly made in

the well established pattern scaling literature (Tebaldi and Arblaster, 2014), although care is nonetheless required, particularly150

for strong mitigation scenarios (Goodwin et al., 2020).

To obtain robust MESMER parameter estimates for each ESM, MESMER is trained on all available ensemble members

of each available scenario and equal weight is given to each scenario. The scenarios employed for training are – subject to

availability – SSP5-8.5, SSP3-7.0, SSP4-6.0, SSP2-4.5, SSP5-3.4-over, SSP4-3.4, SSP1-2.6, SSP1-1.9, and Historical. Note

that we consider the historical time period as its own scenario during the MESMER training. Since projections for different155

SSPs usually branch from the same historical members, the historical years would receive more weight if the historical and the

future time period were concatenated during training.

Many ESMs have a different number of ensemble members (ne) for each scenario, and the scenarios (historical and pro-

jections) have a different number of time steps (nt), resulting in a different number of samples (ns = ne ·nt) per scenario.

Therefore, when estimating the coefficients of the multiple linear regression, all simulations from all scenarios are pooled and160

each sample (e.g., the temperature anomaly for a specific location, year, and scenario) is weighted by 1/ns, i.e., by the inverse

number of samples available for the respective scenario. The same approach is applied when estimating the empirical spatial

covariance matrix of the residual local variability.
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For the autoregressive processes, the coefficients are determined for each ensemble member individually and are subse-

quently averaged for each scenario before averaging across all scenarios. For the autoregressive process describing the global165

variability, the order of the process must additionally be selected before the parameters are fit. The order is first chosen for each

ensemble member individually based on the Bayesian Information Criterion and then, the median order is identified for each

scenario. Lastly, the median order over all scenarios is selected to describe the global variability of the ESM at hand.

The ESM-specific forced global warming time series for each scenario is obtained by using solely data from that scenario,

since the forced global warming module relies on a simple statistical smoothing and volcanic spikes approach (see Beusch170

et al., 2020a, for details). To facilitate the task of the forced global warming module, it operates directly on the average global

warming across all ensemble members for a given ESM and scenario, rather than on individual ensemble members.

3.2.2 Additional predictors configuration – Local temperature anomalies as a function of global temperature

anomalies and global ocean heat uptake

To account for potential non-linearities in the climate system (Mitchell, 2003) and for changing forced response warming pat-175

terns when moving from a transient to an equilibrium climate (King et al., 2020), we introduce two additional predictors into the

grid-point-level multiple linear regressions of MESMER (Eq. 1): (i) Squared forced global temperature change (∆T glob,fr)2

is used to represent non-linear feedbacks and (ii) the forced trend in global ocean heat uptake ∆OHUglob,fr as a proxy for

how close the climate system is to equilibrium. ∆OHUglob,fr is obtained with the same LOWESS approach used to derive

∆T glob,fr but no volcanic spikes are added, since they are already accounted for in the global temperature response. Hence,180

the grid-point-level temperature anomalies are emulated as follows:

∆Tm,s,t = βfr
m,s ·∆T

glob,fr
m,t +βfr2

m,s · (∆T
glob,fr
m,t )2 +βfr,ohu

m,s ·∆OHUglob,fr
m,t +βiv

m,s ·∆T
glob,iv
m,t +βintercept

m,s + ηm,s,t, (2)

where βfr2 and βfr,ohu are the newly introduced regression coefficients.

3.2.3 Evaluating both MESMER configurations

Before continuing with the methods, we evaluate the two proposed MESMER configurations. Specifically, we assess if the185

additional predictors configuration offers considerable benefits over the default configuration. When analyzing climate infor-

mation, it is often helpful to distinguish between forced response and natural variability. Here, we evaluate both MESMER

configurations in terms of their performance in emulating single ESMs with respect to these two quantities. The two can be

separated in a straightforward fashion within the additive MESMER framework (Eqs. 1 and 2).

The forced local temperature anomaly ∆T fr of the default MESMER configuration consists of the following terms:190

∆T fr
m,s,t = βfr

m,s ·∆T
glob,fr
m,t +βintercept

m,s . (3)

In the additional predictors configuration of MESMER, the contribution of the additional predictors enters the forced local

temperature anomaly too, resulting in:

∆T fr
m,s,t = βfr

m,s ·∆T
glob,fr
m,t +βfr2

m,s · (∆T
glob,fr
m,t )2 +βfr,ohu

m,s ·∆OHUglob,fr
m,t +βintercept

m,s . (4)
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Figure 3. Latitudinally-averaged grid-point-level mean of emulated local forced warming and performance with respect to ESM simulations

for both MESMER configurations over the last 30 years of each scenario. The error shown here represents the absolute deviation between

the mean of the emulated forced warming and the mean temperature anomaly value across all available ESM initial-condition members for

the scenario at hand and is normalized by the absolute value of the mean of the emulated forced warming.

Figure 3 visualizes the latitudinally-averaged mean of the local forced warming over the last 30 years for each individual195

ESM and scenario for both MESMER configurations. For a given scenario, the ESMs’ latitudinal patterns exhibit considerable

differences. For example, the magnitude of the Arctic amplification (Serreze and Barry, 2011) differs clearly between the ESMs.
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These regional differences are additionally visualized in maps for select high and low emission scenarios for each ESM in the

Supplement (Figs. S1 – S5). Overall, the patterns of forced warming are very similar in the default and additional predictors

configurations (Fig. 3) and inter-ESM differences are considerably larger than inter-MESMER-configuration differences.200

Nevertheless, with the additional predictors configuration, consistent but small improvements are achieved for most ESMs

(Fig. 3). The magnitude of the improvements depends on the ESM, the scenario, and the latitude. The improvements mostly

occur in the highest emission scenario SSP5-8.5 and in the strong mitigation scenarios SSP5-3.4-over, SSP1-2.6, and SSP1-

1.9. This is an expected consequence of the additional predictors targeting non-linearities and the transition to an equilibrium

climate.205

Overall, the performance is excellent for both MESMER configurations (Fig. 3): the latitudinally-averaged absolute error

with respect to the local warming signal rarely reaches 10 % in the future projections. The SSP1 scenarios have a tendency

for higher percentage errors, because of their lower overall forced warming signal. This is amplified in the historical period,

since its low regional warming leads to small absolute deviations translating into large percentage errors. In the Supplement

(Figs. S1 – S5), error maps can be found which further highlight regional differences in the errors for select high and low210

emission scenarios.

Sensitivity experiments are additionally carried out to quantify the impact on emulation performance when using a reduced

number of scenarios during training. For MESMER’s default configuration, a generally very similar although slightly reduced

performance is achieved by only training on a single high (SSP5-8.5) and low (SSP1-2.6) emission scenario (Fig. S6). If only

a single future scenario and the historical time period are used for training, a high emission future scenario results in a better215

overall performance. This is because training on a low emission scenario requires MESMER to extrapolate to warm climates

when emulating higher emission scenarios. Overall, the SSP5-8.5 trained default MESMER configuration often performs

comparably to MESMER trained on all scenarios but experiences minor performance reductions in strong mitigation scenarios

whose climate moves towards equilibrium conditions. The SSP1-2.6 trained emulator, on the other hand, struggles to emulate

high emission scenarios. Hence, for MESMER’s default configuration even a single (high emission) scenario largely suffices220

to emulate a wide range of different emission pathways as long as their emissions do not exceed the ones used for training. The

best emulation performance across all scenarios is, however, achieved if both high and low emission scenarios are included in

the training.

If the additional predictors configuration of MESMER is applied instead, it is more important that at least one high and

one low emission scenario are available during training because training on a single emission pathway leads to overfitting on225

the scenario type and thus poor emulation skill in other scenarios (Fig. S7). This mainly occurs because the cross-correlations

between the three predictors (T glob,fr
m,t ,(∆T glob,fr

m,t )2, and ∆OHUglob,fr
m,t ) are fundamentally different in the high emission

transient climate change scenarios compared to the low emission equilibrium-approaching scenarios.

After considering the forced response in detail, we now turn our attention to the local temperature variability for MESMER

trained on all available scenarios. The ESM-specific emulated local temperature variability around the forced warming consists230

of the combination between the local response to the global variability and the residual local variability for both MESMER
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configurations:

∆T iv
m,s,t = βiv

m,s ·∆T
glob,iv
m,t + ηm,s,t. (5)

Figure 4 shows the latitudinally-averaged standard deviation of the emulated local variability analogously to Fig. 3 for each

ESM and scenario available for that ESM. However, the standard deviations are computed over the full scenario length instead235

of only over the last 30 years, to obtain more robust estimates. Additionally, the standard deviation of the emulated variability

is identical for every scenario since no scenario dependence is integrated in the variability emulation. Differences in the error

between different scenarios for individual ESMs hence solely occur because the ESMs’ variability differs from simulation to

simulation.

Generally, the emulated variability is smallest in the tropics and largest in the northern high latitudes, but considerable240

inter-ESM differences in the magnitude and spatial distribution exist (Fig. 4). In the Supplement Figs. S8 – S12, spatially

resolved maps of the standard deviation of the emulated local variability are shown, which further highlight region-specific

characteristics. Inter-MESMER-configuration differences are minimal, also in terms of improvements with respect to capturing

the characteristics of the local variability of the actual ESM simulations (Fig. 4). However, the spatially resolved maps can help

pinpoint differences in the errors of the two configurations in some regions (Figs. S8 – S12).245

The percentage errors in the emulated local variability (Fig. 4) are generally a bit larger than the forced local warming ones

(Fig. 3). In part, the larger errors are caused by the fact that percentage differences are considered and that standard deviation of

local variability is mostly a small quantity. This impression is reinforced by the fact that the largest percentage differences occur

most often in the low variability tropics. A possible physical explanation of the remaining errors is revealed by consulting maps

of the error in the standard deviation (Figs. S8 – S12). For certain ESMs and regions, the standard deviations are overestimated250

in the high-end scenario but underestimated in the low-end scenario (or the other way round), indicative of changes in local

variability across climate states (Olonscheck and Notz, 2017), which are not accounted for in either MESMER configuration. In

line with this finding, the highest deviations are generally observed for SSP5-8.5 which experiences the most extreme climatic

change and thus also the largest changes in variability (Fig. 4). Given that SSP5-8.5 is designed to represent an unlikely high-

risk future (Hausfather and Peters, 2020), one could justify considering excluding it from the local variability training to further255

improve the local variability emulations for the other scenarios. However, since the absolute differences in standard deviations

are nevertheless rather small, we continue to use all scenarios for training.

This detailed MESMER evaluation reveals that the additional predictors bring systematic but small improvements. The

main forced warming signal can already be successfully extracted based on forced global temperature change alone and local

variability is generally emulated similarly well in both MESMER configurations. In the following, we thus use the default260

MESMER configuration instead of the additional predictors one. This minimizes the risk of poorly calibrated parameters when

only a limited number of scenarios is available for training in which different predictors are strongly correlated.
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Figure 4. Latitudinally-averaged grid-point-level standard deviation of emulated local variability and performance with respect to ESM

simulations for both MESMER configurations over the full scenario period. The standard deviation of the emulated local variability is

computed based on 600 variability emulations for each ESM. To obtain local variability from ESM simulations, the emulated local forced

warming is subtracted from every ESM simulation. Subsequently, the standard deviation of these estimates of ESM simulations’ local

variability is computed while employing all ESM initial-condition ensemble members available for the scenario at hand. The error shown

here represents the absolute deviation between the standard deviation of the emulated variability and the standard deviation of the ESMs’

variability normalized by the standard deviation of the emulated variability.
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3.3 Coupling MAGICC and MESMER

After determining the MESMER configuration to use throughout the rest of the paper, we now describe the employed MAGICC-

MESMER coupling approach. MAGICC and MESMER are calibrated individually before using them jointly to create ensem-265

bles of spatially resolved emulations. In the coupled MAGICC-MESMER emulation mode, MESMER’s own statistical esti-

mates of ∆T glob,fr in Eq. 1 are replaced with MAGICC’s ∆T glob,fr estimates (Sect. 3.2.1), making it possible to also provide

spatially resolved emulations for emission scenarios which were not available during the MESMER training.

3.3.1 Earth-System-Model-specific emulations

When emulating a specific ESM with MAGICC, a single forced global temperature anomaly ∆T glob,fr time series is obtained270

for every emission scenario. Here, we employ ESM-specific MAGICC output published as part of the Reduced Complexity

Model Intercomparison Project (RCMIP) Phase 1 (Nicholls et al., 2020) for two ESMs, CanESM5 and CNRM-CM6-1. Note

that this output was generated with MAGICC v7.1.0-beta but that very similar results would be obtained with MAGICC v7.5.1,

which is employed throughout all other parts of our study.

To obtain full global realizations ∆T glob for these ESMs, the stochastically-generated, ESM-specific global variability of275

MESMER ∆T glob,iv is added to MAGICC’s ESM-specific ∆T glob,fr time series. For this study, 600 ∆T glob,iv emulations are

created with MESMER for each ESM. Hence, the MAGICC-MESMER ∆T glob ensemble contains 600 realizations per ESM.

The spatially resolved forced warming fields ∆T fr are obtained by combining MAGICC’s ∆T glob,fr time series with the

associated ESM’s local forced response parameters provided by MESMER (Eq. 3). The resulting ∆T fr field time series is

combined with 600 local variability emulations ∆T iv for that ESM provided by MESMER (Eq. 5), leading to a 600 member280

ESM-specific MAGICC-MESMER ensemble of ∆T (Eq. 1).

The ESM-specific MAGICC-MESMER ensembles can be regarded as a direct approximation of very large ESM initial-

condition ensembles (Deser et al., 2012, 2020), which can be provided at a negligible computational cost for any emission

scenario of interest.

3.3.2 Globally-constrained probabilistic emulations285

To derive trustworthy probabilistic climate projections, which thoroughly sample the climate response and natural variability

uncertainty space for any emission scenario, observational constraints are often required. At each point of the MAGICC-

MESMER emulation chain, an observational constraint could theoretically be introduced.

Several studies employing fundamentally different approaches have all demonstrated that the CMIP6 ESMs which exhibit the

strongest future forced global warming are not consistent with observationally-constrained forced global warming estimates290

(Forster et al., 2019; Beusch et al., 2020b; Brunner et al., 2020b; Tokarska et al., 2020; Nicholls et al., 2021c; Ribes et al.,

2021). In terms of regional forced warming response to the global forced warming, i.e., in terms of regionally-averaged βfr
m,s

(see Eq. 1), however, most CMIP6 ESMs perform in an observationally-consistent manner in most regions (Beusch et al.,
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2020b). Therefore, the MAGICC-MESMER constrained probabilistic projections are constrained solely at the global level and

span the full regional ESM response uncertainty in this study.295

The probabilistic MAGICC output used in this study follows the HadCRUT5 (Morice et al., 2021) calibration of MAGICC

presented in Nicholls et al. (2021c) and consists of 600 forced global temperature change ∆T glob,fr time series per scenario.

It is assumed that global- and regional-scale performance are sufficiently decoupled to allow for combining MAGICC’s prob-

abilistic output with each of MESMER’s ESM-specific local parameter sets. This assumption is supported by Beusch et al.

(2020b) demonstrating that there is no direct relation between an ESM’s performance skill for global-scale forced warming300

response to emissions and regional-scale forced warming response to forced global warming. Hence, similarly to the ESM-

specific emulation approach, a full initial-condition ensemble is created for each combination of the 600 ∆T glob,fr time series

with the 25 ESM-specific parameter sets. For the global temperature realizations ∆T glob, this means that each of the 600

MAGICC ∆T glob,fr time series are combined with 600 global variability ∆T glob,iv realizations of 25 ESMs resulting in a

total number of nine million ∆T glob realizations. For the local temperature anomaly field realizations ∆T , each of MAGICC’s305

∆T glob,fr time series is combined with the ESM-specific local parameter sets of MESMER (Eq. 1). This results in 600 local

forced temperature change ∆T fr field time series for each ESM-specific parameter set (Eq. 3). Each of these local forced

temperature field time series is subsequently combined with 600 local variability ∆T iv realizations from MESMER (Eq. 5)

yielding 600 different initial-condition ensembles with 600 members each (Eq. 1). Thus, 360’000 probabilistic ∆T realiza-

tions are contributed from each set of ESM-specific local parameters and the full probabilistic ensemble contains nine million310

emulations.

The complete-sampling approach we employ here ensures a thorough sampling of the full uncertainty space, but may quickly

lead to computer memory issues. Alternatively, a broad – albeit sparser – sampling of the full climate response and natural

variability uncertainty space could also be achieved by randomly combining single MAGICC time series with single ESM-

specific parameter sets.315

4 Results

4.1 Earth-System-Model-specific temperature projections

To illustrate the MAGICC-MESMER chain’s ability to capture the distinct behavior of individual ESMs in its ESM-specific

configuration, we approximate the behavior of two example ESMs, CanESM5 and CNRM-CM6-1, for two example scenarios,

SSP3-7.0 and SSP1-1.9 (Fig. 5). In both scenarios, the emulations serve to fill the gaps in the natural variability uncertainty320

space, by successfully capturing the characteristic ESM-dependent forced warming and climate variability around that warming

for the different spatial scales. The increasing magnitude of natural variability for smaller spatial scales results in an increasing

overlap between the temperature anomaly distributions spanned by the two ESMs. In the low emission scenario, the emulations

additionally fill a gap in the climate response uncertainty space, since no SSP1-1.9 simulations are available for CNRM-CM6-

1. Hence, in this configuration, our emulator chain approximates the full climate change uncertainty phase space spanned by325

the considered ESMs since it can create very large emulated intial-condition ensembles for any given scenario.
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Figure 5. Temperature anomaly time series of ESM-specific MAGICC-MESMER emulations (in color) and actual ESM simulations (in

gray), for CanESM5 and CNRM-CM6-1, averaged across different spatial scales: global, global land, eastern North America, and a single

grid point within eastern North America for a high (SSP3-7.0) and a low (SSP1-1.9) emission scenario. For illustrative purposes, 50 out of

the 600 available emulations are shown for both ESMs in color, and a single emulation is highlighted in darker color. For the ESMs, two

initial-condition ensemble members are shown for each scenario for which simulations are available.

It should be noted that the success of these ESM-specific emulations is strongly dependent on MAGICC’s ability to match

a given ESM’s behavior over a range of scenarios. While we satisfactorily emulate the example ESMs shown here, there are

other ESMs which are less well-captured by MAGICC in this emulation mode (see Nicholls et al., 2020). On the other hand,

the regional features of single ESMs given the forced global warming trajectories are generally well captured by MESMER330

(Sect. 3.2.3). Overall, in the context of ESM-specific emulation, more work on emulating ESMs’ forced global temperature

change is required compared to the relative success seen in emulating an ESM’s natural variability and regional response to

forced global warming.

4.2 Globally-constrained probabilistic temperature projections

When sampling the full globally-constrained climate response and internal variability uncertainty space with the probabilistic335

MAGICC-MESMER ensemble, the emulations no longer coincide with individual ESM simulations (Fig. 6). Instead, the

globally-constrained emulated ensemble encompasses a smaller range of temperature anomalies than the raw CMIP6 ensemble,

and also samples this space much more thoroughly with nine million emulations. This thorough sampling means that even
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Figure 6. Temperature anomaly projection distributions for the emulated globally-constrained probabilistic MAGICC-MESMER ensembles

and actual ESM simulations averaged across different spatial scales: global, global land, eastern North America, and a single grid point within

eastern North America for a high (SSP3-7.0) and a low (SSP1-1.9) emission scenario. For the MAGICC-MESMER ensemble, the median

and the 90 % range (5th – 95th percentile) of the temperature anomaly distribution are shown in color. For the ESMs, a single simulation per

available ESM for that emission pathway is shown in gray.

extreme quantiles at individual grid cells can be statistically robustly estimated in any year. An additional advantage with

respect to the CMIP6 ensemble is that the same forced climate response and natural variability uncertainty space can be340

sampled for each scenario, whereas there are strong differences in the number of ESMs providing simulations for each scenario

as well as in the number of available simulations of a single ESM for a specific scenario. This is especially relevant, because

SSP1-1.9, which is of great interest for society as it comes closest to the 1.5 °C Paris Agreement temperature limit (UNFCCC,

2015), is one of the scenarios which has only been run by a rather small – and warm – subselection of ESMs. In our CMIP6

ensemble, only six ESMs provide SSP1-1.9 simulations two of which warm unrealistically fast during the historical period in345

terms of global mean and continue to do so in the future (see e.g., Tokarska et al., 2020; Beusch et al., 2020b). The global

warming of these two ESM simulations is clearly incompatible with the globally-constrained emulated ensemble (Fig. 6).

The two ESMs’ global and global land mean temperature anomalies are almost constantly above the 95th percentile of the

emulated ensemble. Also at the regional and the grid-point level, the constrained ensemble warms distinctly less than these

high warming simulations, but the larger internal variability result in a partial overlap between those ESMs’ realizations and350

the climate change uncertainty space (5th – 95th percentile) of the emulated ensemble.
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Figure 7. Temperature anomaly distribution for the emulated globally-constrained probabilistic MAGICC-MESMER ensemble, actual

CMIP6 simulations, and observations averaged across different spatial scales: global, global land, eastern North America, and a single

grid point within eastern North America for the period covered by observations, i.e., the historical time period extended with the middle of

the road future scenario (SSP2-4.5). For the MAGICC-MESMER ensemble, the median and the 90 % range (5th – 95th percentile) of the

temperature anomaly distribution is shown in color. For the ESMs, a single simulation per available ESM for that scenario is depicted in

gray. The observations are shown in black.

To qualitatively validate the probabilistic MAGICC-MESMER ensemble and to highlight further differences to the raw

CMIP6 ensemble, we additionally turn back to the time period covered by observations (Fig. 7). For the spatial scales and

locations shown here, the MAGICC-MESMER ensemble captures the key characteristics of the observations both in terms

of forced warming and spatial-scale-specific variability around the forced warming. In line with observations and in contrast355

to CMIP6, the emulated ensemble does not contain any extreme outlier realizations which exhibit a drastic cooling after the

1950s. Hence, the emulated ensemble filters out physically implausible ESM simulations which affect the overall distribution

of the CMIP6 ensemble.

5 Discusssion: Potential further extensions

5.1 Going beyond global mean temperature as a predictor for spatially resolved forced response360

The careful evaluation in Sect. 3.2.3 showed that even when emulating multiple emission scenarios, a representation of local

forced warming as a linear function of forced global warming and global natural variability is sufficient. Nevertheless, the

current MESMER implementation can ingest additional predictors, as highlighted for the squared forced global temperature

and forced global ocean heat uptake in Sect. 3.2.2. Future work could furthermore explore the added value of employing ver-

tically resolved global heat uptake from MAGICC to separately represent mixed-layer and deeper-layer processes. Alternative365

predictors could be emission time series of short-lived climate forcers, such as aerosols and greenhouse gases, which have

been documented to influence regional warming too (Persad and Caldeira, 2018; Lund et al., 2020). Also these predictors

could readily be integrated into the MAGICC-MESMER emulator chain, since greenhouse gas and aerosol concentrations are
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direct outputs of the MAGICC emulator. However, such additional predictors are expected to be most useful when emulating

variables whose regional forced response signal can be less successfully approximated as a function of solely global mean370

temperature than it is the case for annual mean temperature. For example, annual mean forced precipitation changes are known

to clearly depend on the greenhouse gas and aerosol compositions of the emission pathway, both at global (Ramanathan et al.,

2001; Frieler et al., 2012; Pendergrass et al., 2015; Richardson et al., 2018) and at regional (Frieler et al., 2012; Samset et al.,

2016) scales.

However, great care should be taken when deciding to introduce additional predictors into MESMER. The additional predic-375

tors need to be sufficiently decoupled from the original predictors in the range of emission scenarios used for training to avoid

artifacts in the calibrated parameters stemming from cross-correlations in the training data and leading to poor emulation skill

in different scenarios. For example, if ocean heat uptake is included as a predictor, it is vital that the training data contains both

a high-end and low-end emission scenario. If MESMER is trained only on a high emission scenario, the calibrated parameters

are not well defined because global temperature and ocean heat uptake are strongly correlated throughout the full scenario.380

Hence, the emulation skill is poor if this MESMER calibration is used in a low emission scenario, in which the two predictors

are no longer correlated (see Fig. S7). The more predictors are included, the higher the risk that the current approach, in which

the linear regression parameters are fit for each grid cell independently, could result in noisy calibrated parameter fields. This

would in turn negatively impact the residual local variability module, since the residual local variability fields employed for

training would exhibit less spatial coherence. Hence, if MESMER were to move towards a larger set of predictors, additional385

strategies would need to be explored to encourage physically meaningful spatial coherence in the regression coefficients.

Additionally, when using the full MAGICC-MESMER emulator chain, instead of MESMER alone, it should be verified

that MAGICC successfully emulates each of the additional predictors and that MAGICC’s internal cross-correlations between

the predictors are similar to the ones found within the ESMs used to train MESMER. Naturally, deviations from these inter-

predictor relationships are acceptable for physically-justified reasons, such as too strong feedbacks within individual ESMs.390

However, this would raise the question of whether these ESMs’ regional forced climate response uncertainty should be excluded

from the climate change uncertainty space sampled by the MAGICC-MESMER ensemble.

Lastly, predictors do not need to be limited to the forced response module. They could additionally be introduced in the local

variability module to account for non-stationarities in internal climate variability. Since the overall emulation performance for

annual mean temperature anomalies is satisfactory in most regions and for most ESMs with MESMER’s stationary emulated395

internal variability approach (Sect. 3.2.3), no other approaches have been explored in this study. However, the monthly version

of MESMER, MESMER-M, has already been extended to capture non-stationarities in month-to-month temperature variability

(Nath et al., 2021). MESMER-M’s local variability module starts with a month-specific, yearly-temperature-dependent power

transformation of the non-stationary and skewed monthly temperature variability to obtain a Gaussian distribution. Subse-

quently, the same sampling approach as in MESMER is employed to create additional realizations before backtransforming400

the variability emulations into the original distribution. Such an approach could also be of interest for annual mean quantities

of variables like precipitation which exhibit more pronounced skewness and non-stationarities across different climate states

than annual mean temperature (Pendergrass et al., 2017).
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5.2 Constraints on regional scale

In this study, we solely constrain the quantity best documented to be in need of a constraint in CMIP6: the forced global tem-405

perature response to changes in greenhouse gas concentrations and anthropogenic aerosol precursor emissions (see Sect. 3.3.2).

In Sect. 4.2, we show that the resulting emulated MAGICC-MESMER ensemble exhibits a smaller spread than the raw CMIP6

ensemble, especially reducing the high-end global warming estimates in line with published literature (e.g., Brunner et al.,

2020b; Tokarska et al., 2020), and that it can successfully approximate observed warming at various spatial scales.

However, to further improve the regional accuracy of the emulated ensemble’s projections, a regional constraint could be410

applied in addition to the global constraint. Beusch et al. (2020b) have proposed a first regional-scale observational constraint

by identifying ESMs which have a regional response to forced global warming which can be regarded as consistent with

observations and by only including those ESMs’ climate response and natural variability uncertainty when deriving regionally-

optimized projections. To account for inter-ESM dependencies (Abramowitz et al., 2019; Knutti, 2010), Beusch et al. (2020b)

have chosen the simplest possible way and only considered one ESM per "ESM name family", e.g., only one of the CNRM415

ESMs. Their constraint could be further refined to account for inter-ESM dependencies and consistency with observations in

a more elaborate way, potentially moving towards a Bayesian constraining framework and introducing Monte-Carlo sampling

of parameters like in MAGICC (Meinshausen et al., 2009). Additional thoughts should be put into explicitly constraining

natural variability, which differs substantially between different ESMs (Beusch et al., 2020a; Deser et al., 2020) but has thus

far received considerably less attention than the forced response.420

5.3 Exploring regional climate change uncertainty beyond the MAGICC-MESMER coupling

With the MAGICC-MESMER coupling we are able to thoroughly sample climate response and natural variability uncertainty

for arbitrary emission scenarios from global to spatially resolved local scales. However, the MAGICC-MESMER coupling is

still confined in its representation of local-scale climate change uncertainty by MAGICC’s representation of the forced global

response to greenhouse gas emission uncertainty and by MESMER’s representation of the forced local response to global425

climate information and its local variability uncertainty. A straightforward way to address this issue, would be to additionally

combine different global and spatially resolved ESM emulators with each other to ultimately create multi-emulator-based

probabilistic emulations.

On the global emulator side, first progress towards this direction has already been achieved with the Open Simple Climate

Models (OpenSCM) initiative, which aims to bring different global emulators together and to provide standardized output430

for them. A uniform interface for emissions-driven runs, OpenSCM Runner (Nicholls et al., 2021b), is available and the

implementations for MAGICC (Meinshausen et al., 2011, 2020), FaIR (Smith et al., 2018; Leach et al., 2021), and CICERO-

SCM (Skeie et al., 2017, 2021) are fully functional. Additionally, more global emulators have expressed their interest in joining

this initiative. In this study, MAGICC output was accessed through OpenSCM tools and thus, from a technical viewpoint, it

would be straightforward to assess the implications of differences in forced global warming distributions from multiple global435

emulators for regional-scale temperature change realizations.
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For spatially resolved emulators, no such common framework exists to date. However, in addition to MESMER, the fldgen

emulator (Link et al., 2019; Snyder et al., 2019) is publicly available and could be coupled to the same global emulators. With

this, the local-scale uncertainty introduced by different spatially resolved emulators’ representation of regional climate change

could be quantified.440

Depending on the scientific question, different emulation strategies are called for. If the aim is to sample as broad an un-

certainty space as possible, several global and spatially resolved emulator combinations should be included when deriving

probabilistic emulated ensembles. On other occasions, it may be more beneficial to try and identify the best performing emu-

lator pair for the question at hand. After all, each emulator comes with its own set of assumptions and thus most appropriate

domain of applicability. For example, the MAGICC-MESMER emulator chain presented in this paper is a suitable tool to445

quantify grid-point-level to regional temperature changes for any emission pathway but – due to the design of MESMER’s

currently implemented internal climate variability module (Beusch et al., 2020a) – cannot be used to reliably assess the risks

associated with concurrent warm anomalies across the globe.

6 Conclusions

In this paper, we present the MAGICC-MESMER emulator chain. To the best of our knowledge, this is the first emulator chain450

that can be directly used to rapidly assess the implications of different emission scenarios for annual temperature changes

at global to local spatial scales while accounting for both forced climate response and natural variability uncertainty. With

illustrative examples, it is demonstrated that the MAGICC-MESMER chain is able to successfully provide ESM-specific as well

as globally-constrained probabilistic emulations, for a range of emission pathways. While MAGICC is run here in greenhouse

gas concentration-driven mode for different SSP scenarios, following the CMIP6 ScenarioMIP approach, MAGICC could455

alternatively directly translate any emission pathway into the predictors needed by MESMER. The default configuration of

MESMER, which is employed for most of our analyses, only requires forced global temperature change as a predictor from

MAGICC. However, MESMER can also ingest additional predictors. This feature could become especially useful in future

work aiming to extend the MAGICC-MESMER chain to emulate additional variables such as precipitation.

To increase the accessibility of our emulator chain and thus the use of such targeted climate information, MESMER (https:460

//github.com/MESMER-group/mesmer) and the MAGICC-MESMER coupler (https://github.com/MESMER-group/mesmer

-openscmrunner) are already publicly available under the GNU General Public License version 3 (GPL-3.0), while MAGICC is

in the process of becoming open source. In the meantime, MAGICC output for various emission scenarios has been published

as part of RCMIP Phase 1 (Nicholls et al., 2020) and 2 (Nicholls et al., 2021c) and could be translated to the local scale with

the currently publicly available parts of the MAGICC-MESMER chain.465

Code and data availability. MESMER (https://github.com/MESMER-group/mesmer) and the MAGICC-MESMER coupler MESMER-

OpenSCM Runner (https://github.com/MESMER-group/mesmer-openscmrunner) are publicly available on GitHub and the versions
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Table A1. List of the 25 employed CMIP6 models and the modeling groups providing them.

Model Modeling Center (or Group)

ACCESS-CM2
Commonwealth Scientific and Industrial Research Organisation, Australia; Australian Research Council Centre of Excellence for Climate

System Science, Australia

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organisation, Australia

AWI-CM-1-1-MR Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany

CanESM5 Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change, Canada

CESM2 National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, USA

CESM2-WACCM National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, USA

CMCC-CM2-SR5 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy

CNRM-CM6-1 Centre National de Recherches Météorologiques, France / Centre Européen de Recherche et Formation Avancée en Calcul Scientifique, France

CNRM-CM6-1-HR Centre National de Recherches Météorologiques, France / Centre Européen de Recherche et Formation Avancée en Calcul Scientifique, France

CNRM-ESM2-1 Centre National de Recherches Météorologiques, France / Centre Européen de Recherche et Formation Avancée en Calcul Scientifique, France

E3SM-1-1 E3SM-Project and RUBISCO National Laboratories, USA

FGOALS-f3-L Chinese Academy of Sciences, China

FGOALS-g3 Chinese Academy of Sciences, China

FIO-ESM-2-0
First Institute of Oceanography, Ministry of Natural Resources, China; Qingdao National Laboratory for Marine Science and Technology,

China

HadGEM3-GC31-LL Met Office Hadley Centre, UK; Natural Environment Research Council, UK

HadGEM3-GC31-MM Met Office Hadley Centre, UK

IPSL-CM6A-LR Institut Pierre Simon Laplace, France

MCM-UA-1-0 Department of Geosciences, University of Arizona, Tucson, USA

MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany; Deutscher Wetterdienst, Germany; Deutsches Klimarechenzentrum, Germany

MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany

MRI-ESM2-0 Meteorological Research Institute, Japan

NESM3 Nanjing University of Information Science and Technology, China

NorESM2-LM NorESM Climate modeling Consortium, Norway

NorESM2-MM NorESM Climate modeling Consortium, Norway

UKESM1-0-LL
Met Office Hadley Centre, UK; Natural Environment Research Council, UK; National Institute of Meteorological Sciences/Korea Meteorolog-

ical Administration, Climate Research Division, Republic of Korea; National Institute of Water and Atmospheric Research, New Zealand

employed in this study are archived on Zenodo (Hauser et al., 2021a; Nicholls et al., 2021a). The documentation for both repositories is hosted

on Read the Docs (https://mesmer-emulator.readthedocs.io/en/stable/; https://mesmer-openscm-runner.readthedocs.io/en/main/). The scripts

to create the figures in this paper can be found on GitHub (https://github.com/MESMER-group/Beusch_et_al_GMD_2021_MAGICC-ME470

SMER_coupling) and are additionally archived on Zenodo (Beusch, 2021). The MAGICC data used in this study is available via Nicholls

et al. (2020) and Nicholls et al. (2021c). The stratospheric aerosol optical depth data employed during MESMER training can be obtained

from Smith et al. (2021a). The CMIP6 data are available from the public CMIP archive at https://esgf-node.llnl.gov/projects/esgf-llnl/.

Appendix A

Author contributions. L.B. initiated the study, wrote the initial implementation of MESMER, carried out all analyses, and wrote the first475

draft of the paper. Z.N. provided all the MAGICC data, supported the use of the data, wrote the initial implementation of the MAGICC-
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MESMER coupler, and wrote the first draft of the MAGICC description section. L.B., M.H., and Z.N. currently co-develop the MESMER

and MAGICC-MESMER code bases. All authors designed the study together, discussed the results together, and contributed to improving

the manuscript.
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