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Abstract. Since their first operational application in the 1950s, atmospheric numerical models have become essential tools

in weather prediction and climate research. As such, they are subject to continuous changes, thanks to advances in computer

systems, numerical methods, more and better observations, and the ever-increasing knowledge about the atmosphere of Earth.

Many of the changes in today’s models relate to seemingly innocuous modifications associated with minor code rearrange-

ments, changes in hardware infrastructure, or software updates. Such changes are meant to preserve the model formulation,5

yet the verification of such changes is challenged by the chaotic nature of our atmosphere – any small change, even rounding

errors, can have a significant impact on individual simulations. Overall this represents a serious challenge to a consistent model

development and maintenance framework.

Here we propose a new methodology for quantifying and verifying the impacts of minor atmospheric model changes or

its underlying hardware/software system by using ensemble simulations in combination with a statistical hypothesis test for10

instantaneous or hourly values of output variables at a grid-cell level. The methodology can assess the effects of model changes

on almost any output variable over time and be used with different underlying statistical hypothesis tests.

We present first applications of the methodology with the regional weather and climate model COSMO. While providing

very robust results, the methodology shows a great sensitivity even to very small changes. Specific changes considered include

applying a tiny amount of explicit diffusion, the switch from double- to single-precision, and a major system update of the15

underlying supercomputer. Results show that changes are often only detectable during the first hours, suggesting that short-

term ensemble simulations (days to months) are best suited for the methodology, even when addressing long-term climate

simulations. Furthermore, we show that spatial averaging – as opposed to testing at all grid points – reduces the test’s sensitivity

for small-scale features such as diffusion. We also show that the choice of the underlying statistical hypothesis test is not

essential and that the methodology already works well for coarse resolutions, making it computationally inexpensive and20

therefore an ideal candidate for automated testing.

1 Introduction

Today’s weather and climate predictions heavily rely on data produced by atmospheric numerical models. Ever since their

first operational application in the 1950s, the models have been improved thanks to advances in computer systems, numerical

methods, observational data, and the understanding of the Earth’s atmosphere. While such changes often may be only small25
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and incremental, accumulated they have a big effect which manifests itself in a significant increase in skill of weather and

climate predictions over the past 40 years (Bauer et al., 2015).

While some of the model changes are intended to extend and improve the model, others are not meant to affect the model

results but merely its computational performance and versatility. In software engineering, one often distinguishes between

"upgrades" and "updates" in such cases. For weather and climate models, an upgrade would, for example, be the introduction30

of a new and improved soil model, whereas a new version of underlying software or a binary that has been built with a newer

compiler version would only represent an update. Updates are often employed due to the necessity of keeping the software

up-to-date without any perceivable improvements in functionality. For a weather and climate model, the model results are not

supposed to be significantly affected by such an update. This also applies to other changes, such as moving to a different

hardware architecture or changing the domain decomposition for distributed computing. A robust behavior of the model with35

regard to such changes is crucial for a consistent interpretation of the results and the credibility of the derived predictions and

findings.

Weather and climate model results are generally not bit-identical when they are, for example, run on different hardware

architectures or have been compiled with a different compiler. This is because the associativity property does not hold for

floating-point operations (i.e., (x+ y)+ z = x+(y+ z) is not given), and the fact that the order of arithmetic operations40

is dependent on the compiler and the targeted hardware architecture. Schär et al. (2020) have achieved bit-reproducibility

for the regional weather and climate model COSMO between a CPU and a GPU version of the model by limiting instruction

rearrangements from the compiler and with the use of a preprocessor that automatically adds parentheses to every mathematical

expression of the model. However, this also came with a performance penalty where the CPU and GPU bit-reproducible

versions were slower by 37% and 13%, respectively, than their non-bit-reproducible counterparts. Due to this performance45

penalty and the effort involved in making a model bit-reproducible, bit-reproducibility is generally not enforced. It has to be

noted that this behavior of not producing bit-identical results across different architectures or when using different compilers

is common for most computer applications and not a problem per se. However, for weather and climate models, it represents

a serious challenge due to the chaotic nature of the underlying nonlinear dynamics, where small changes can have a big

effect (Lorenz, 1963). For example, a tiny difference in the initial conditions of a weather forecast can potentially lead to a50

very different prediction. Consequently, also rounding errors can affect the model results in a major way. In order to mitigate

this effect and to provide probabilistic predictions, forecasts often use ensemble prediction systems (EPS), where a model is

run several times for the same time frame with slightly perturbed initial conditions or stochastic perturbations of the model

simulations (see Leutbecher and Palmer, 2008, for an overview). The use of an EPS accounts for the uncertainty in initial

conditions and the internal variability of the model results.55

So in order to verify whether the properties of a weather and climate model executable are not significantly affected after

an update or a change to a different platform, we have to resort to ensemble simulations. Without ensemble simulations, we

would only be able to answer something we already know a priori: Any change in the model or its underlying software and

hardware will make the model slightly different and, therefore, might significantly affect the output due to the chaotic nature

of the underlying dynamics. However, with ensemble simulations, we can answer the much more important question: How do60
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the changes of model results compare to the internal variability of the underlying nonlinear dynamical system? If the effect of

the new model is significantly smaller than the one of internal variability, a statistical test will not be able to detect whether the

results of the new and the old model come from the same distribution or not.

In this paper, the detection of such changes will be referred to as “verification”. In the atmospheric and climate science

community, the terms “validation” and “verification” are not always used in a clearly defined way and sometimes even used65

interchangeably. An extensive discussion about different definitions of verification and validation can be found in Oberkampf

and Roy (2010). Sargent (2013) defines verification as “ensuring that the computer program of the computerized model and its

implementation are correct”. In contrast, validation is defined as “substantiation that a model within its domain of applicability

possesses a satisfactory range of accuracy consistent with the intended application of the model”. According to Carson (2002),

validation refers to “the processes and techniques that the model developer, model customer and decision makers jointly use to70

assure that the model represents the real system (or proposed real system) to a sufficient level of accuracy”, while verification

refers to “the processes and techniques that the model developer uses to assure that his or her model is correct and matches

any agreed-upon specifications and assumptions”. Clune and Rood (2011) define validation as “comparison with observations”

and verification as “comparison with analytic test cases and computational products”. Whitner and Balci (1989) state that

“whenever a model or model component is compared with reality, validation is performed”, whereas they define verification75

as “substantiating that a simulation model is translated from one form into another, during its development life cycle, with

sufficient accuracy”. Oreskes et al. (1994) and Oreskes (1998) recommend not to use the terms verification and validation

for models of complex natural systems at all. They argue that both terms imply an either-or situation for something that is not

possible (i.e., a model will never be able to accurately represent the actual processes occurring in a real system) or only possible

to evaluate for simplified and limited test cases (i.e., comparing with analytical solutions for simple problems). Nevertheless,80

both terms are commonly used in atmospheric sciences. Note that in this paper, we follow the terminology of Whitner and

Balci (1989). As our methodology’s goal is to ensure that there are no significant differences between two model executables,

we use the term verification for the methodology.

Using the definition from Whitner and Balci (1989), verification is a form of system testing in the area of software engi-

neering. This means that a complete integrated system is tested, in this case, a weather and climate model consisting of many85

different components that interact with each other. System tests are an integral part of testing in software engineering. An ob-

jective system test that can be performed automatically is also an excellent asset for the practice of continuous integration and

continuous deployment (CI/CD). CI/CD enforces automation in building, testing and deployment of applications and should

also be considered good practice in developing and operating weather and climate models.
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2 Background90

2.1 Current state of the art

Despite its importance for the consistency and trustworthiness of model results, verification has received relatively little atten-

tion in the weather and climate community. However, the awareness seems to have increased, as some recent studies tackle this

issue more systematically.

Rosinski and Williamson (1997) were among the first to propose a strategy for verifying atmospheric models after they had95

been ported to a new architecture. They set the conditions that the differences should be within one or two orders of mag-

nitude of machine rounding during the first few time steps and that the growth of differences should not exceed the growth

of initial perturbations at machine precision during the first few days. The methodology of Rosinski and Williamson (1997)

was developed and used for the NCAR Community Climate Model (CCM2). However, the approach is no longer applicable

for its current successor, the Community Atmosphere Model (CAM), because the parameterizations are ill-conditioned, which100

makes small perturbations grow very quickly and exceed the tolerances of rounding error growth within the first few timesteps

(Baker et al., 2015). Thomas et al. (2002) performed 42-hour simulations with the Mesoscale Compressible Community (MC2)

model to determine the importance of processor configuration (domain decomposition), floating-point precision, and mathe-

matics libraries for the model results. By analyzing the spread of runs with different settings, they concluded that processor

configuration is the main contributor among these categories to differences in the results of their dynamical core. Knight et al.105

(2007) analyzed an ensemble of over 57,000 climate runs from the climateprediction.net project (www.climateprediction.net,

last access: 31 January 2022). The climate runs have been performed with varying parameter settings and initial conditions

on different hardware and software architectures. Using regression tree analysis, they demonstrated that the effect of hardware

and software is small relative to the effects of parameter variations and, over the wide range of systems tested, may be treated

as equivalent to that caused by changes in initial conditions. Hong et al. (2013) performed seasonal simulations with the global110

model program (GMP) of the Global/Regional Integrated Model system (GRIMs) on ten different software system platforms

with different compilers, parallel libraries, and optimization levels. The results showed that the ensemble spread caused by

differences in the software system is comparable to that caused by differences in initial conditions.

One of the most comprehensive recent studies on verification is from Baker et al. (2015), where they proposed the use of

principal component analysis (PCA) for consistency testing of climate models. Instead of testing all model output variables,115

many highly correlated, they only looked at the first few principal components of the model output and used z-scores to test if

the value from a test configuration is within a certain number of standard deviations from the control ensemble. If the test failed

for too many PCs, they rejected the new configuration. They confirmed their methodology using 1-year long simulations of

the Community Earth System Model (CESM) with different parameter settings, hardware architectures, and compiler options.

While the methodology showed high sensitivity and promising results, it had some difficulties detecting changes caused by120

additional diffusion due to its focus on annual global mean values. Baker et al. (2016) also used z-scores for consistency testing

of the Parallel Ocean Program (POP), the ocean model component of the Community Earth System Model (CESM). However,

instead of evaluating principal components on spatial averages, as in Baker et al. (2015), they applied the methodology at
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each grid point for individual variables and stipulated that this local test has to pass for at least 90% of the grid points to have

the global test pass. Milroy et al. (2018) extended the consistency test by Baker et al. (2015) by performing the test on spatial125

means for the first nine time steps of the Community Atmospheric Model (CAM) on a global 1◦ grid with a time step of 1800 s.

With this method, they were able to produce the same results for the same test cases as Baker et al. (2015). Additionally, they

were also able to detect small changes in diffusion, which were not detected in Baker et al. (2015).

Wan et al. (2017) used time-step convergence as a criterion for model verification, based on the idea that a significantly

different model executable will no longer converge towards a reference solution produced with the old executable. Their130

test methodology produced similar results as the one from Baker et al. (2015) and is relatively inexpensive due to the short

integration times. However, due to the nature of the test, it cannot detect issues associated with diagnostic calculations that do

not feedback to the model state variables.

Mahajan et al. (2017) used an ensemble-based approach where they applied the Kolmogorov-Smirnov (K-S) test on annual

and spatial means of 1-year simulations for testing the equality of distributions of different model simulations. Furthermore,135

they used generalized extreme value (GEV) theory for representing the annual maxima of daily average surface temperature

and precipitation rate. They then applied a Student’s t-test on the estimated GEV parameters at each grid-point to test the

occurrence of climate extremes. They showed that the climate extremes test based on GEV theory was considerably less

sensitive to changes in optimization strategies than the K-S test on mean values. Mahajan et al. (2019) applied two multivariate

two-sample equality of distribution tests, the energy test and the kernel test, on year-long ensemble simulations following140

Baker et al. (2015) and Mahajan et al. (2017). However, both these tests generally showed a lower power than the K-S test

from Mahajan et al. (2017), which means that more ensemble members were needed to reject the null hypothesis confidently.

Mahajan (2021) used the K-S test as well as the Cucconi test for annual mean values at each grid point for the verification of

the ocean model component of the US Department of Energy’s Energy Exascale Earth System Model (E3SM). Furthermore,

they used the False Discovery Rate (FDR) method by Benjamini and Hochberg (1995) for controlling the false positive rate.145

Both tests were able to detect very small changes of a tuning parameter, with the K-S test showing a slightly higher power than

the Cucconi test for the smallest changes.

Massonnet et al. (2020) recently proposed an ensemble-based methodology based on monthly averages (and an average over

the whole simulation time), followed by the comparison of these averages on a grid-cell level against standard indices used

in Reichler and Kim (2008). Finally, spatially averaging results in one scalar number per field, month, and ensemble member.150

These scalars were then used for the K-S test to detect statistically significant differences. Performing this test for climate runs

with the EC-Earth earth system model version 3.1 on different computing environments revealed significant differences for 4

out of 13 variables. However, the same test for the newer EC-Earth 3.2 version showed no significant differences. Massonnet

et al. (2020) suspect the presence of a bug in EC-Earth 3.1 and its subsequent fix for version 3.2 as the reason for this disparity.

2.2 Determining field significance155

A challenging question in the area of model verification is the role of statistical significance at the grid-point versus the field

level. A statistical hypothesis test’s significance level α is defined as the probability of rejecting the null hypothesis even though
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the null hypothesis is true (commonly known as false positive or type I error). So if we compare two ensembles and perform

the test at every grid point, the test may locally reject the null hypothesis even if the two ensembles stem from the same model.

When assuming spatial independence, the probability of having x rejected local null hypotheses out of N tests follows from160

the binomial distribution:

P (x) =
N !

x!(N −x)!
αx(1−α)N−x (1)

On average, we can expect αN local rejections over the whole grid when two ensembles come from the same model. However,

for N = 100 and α= 0.05, the probability of having 9 or more erroneous rejections is still 6.3%, which means that 10 or

more local rejections are required (probability 2.8%) to reject the global null hypothesis on field level with a 95% confidence165

interval. So, in this case, 10% of the local hypothesis tests would have to reject the local null hypothesis to get a significant

global rejection. For a larger grid with N = 10000, we would require 537 (5.37%) or more local rejections (probability 4.8%)

to reject the global null hypothesis with a 95% confidence interval (see Fig. 3 in Livezey and Chen, 1983, for a visualization

of this function).

However, local tests cannot be assumed to be statistically independent due to spatial correlation. Therefore, Eq. (1) is not170

valid in our case. While two identical models will still have αN false rejections on average, a higher or lower rejection rate is

more likely. Unfortunately, the exact distribution of rejection rates is unknown in such a case (Storch, 1982). Livezey and Chen

(1983) argued that spatial correlation reduces N , the number of independent tests, due to a clustering effect of grid points and

therefore also increases the percentage of local rejections needed to reject the global null hypothesis. To account for that, they

estimated the effective number of independent tests Neff with the use of Monte Carlo methods, which allowed them to use Eq.175

(1) for calculating the number of rejected local tests that are required to reject the global null hypothesis.

Wilks (2016) recommended the use of the False Discovery Rate (FDR) method by Benjamini and Hochberg (1995). This

method defines a threshold level pFDR, based on the sorted p-values. The threshold is defined as

pFDR = max
i=1,...,N

[
p(i) : p(i) ≤ (i/N)αFDR

]
, (2)

where p(i) are the sorted p-values with i= 1, . . . ,N and αFDR is the chosen control level for the FDR (note that αFDR must not180

be the same as α for the local test). The FDR method only rejects local null hypotheses if the respective p-value is no larger

than pFDR. This condition essentially ensures that the fraction of false rejections out of all rejections is at most αFDR on average.

While the FDR method by Benjamini and Hochberg (1995) is theoretically also based on the assumption that the different tests

are statistically independent, it has been shown to also effectively control the proportion of falsely rejected null hypotheses

for spatially correlated data (Ventura et al., 2004; Mahajan, 2021). An assessment of the FDR method in the context of our185

verification methodology will be presented in Sect. 4.11.
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3 Methods and data

3.1 Verification methodology

We consider ensemble simulations of two model versions, which for brevity will be referred to as “old” and “new”, respectively.

We start by stating our global null hypothesis:190

H0 (global): The ensemble results from the old and the new model are drawn from the same distribution.

We then consider the changes in the model to be insignificant if we are not able to reject the global null hypothesis. This

global test is based on a statistical hypothesis test applied on a grid-cell level with a local null hypothesis H0(i,j). The specific

definition of H0(i,j) will be given later, as it somewhat depends upon the chosen statistical hypothesis test; see Sect. 3.3. It

is also important to state that we will generally not evaluate the whole model output but compare a limited number of two-195

dimensional fields, such as the 500 hPa geopotential height or the 850 hPa temperature fields. For each selected field, the

two model ensembles will be tested at grid-scale against each other, using an appropriate statistical test. The probability of

rejecting H0(i,j) for two ensembles produced by an identical model is given by the significance level α (here, α= 0.05). As

discussed in Sect. 2.2, the main difficulty of using statistical hypothesis tests on a grid-cell level is the spatial correlation,

making the respective tests not statistically independent and thus prohibiting the use of the binomial distribution for calculating200

the probabilities of false positives. We chose to deal with this in a conceptually simple but effective way. The methodology

follows Livezey (1985) and combines Monte Carlo methods and subsampling to produce a null distribution of rejection rates,

which can be used to get the probability of having nrej rejections for two ensembles coming from the same model. An alternative

to generating the null distribution from a control ensemble is the use of Monte Carlo permutation testing, where one pools two

ensembles (from which one does not know yet whether they come from the same distribution), and then applies the test to205

randomly drawn subsets from the pooled ensemble. This approach allows bypassing the creation of a control ensemble and

therefore save compute time. Strictly speaking, the reference value for the number of rejections then comes from a distribution

not produced by one but by two models. Depending on the difference between the two models, this might lead to slightly

different results compared to a case where the reference distribution comes from two identical models. However, Mahajan

et al. (2017) and Mahajan et al. (2019) used both approaches and found only minor differences between permutation testing210

and subsampling from a control ensemble to generate the null distribution. Nevertheless, we still opted for the approach with a

control ensemble since the additionally needed compute time is relatively small for short simulations (see Sect. 3.5).

Figure 1 shows a schematic example of the procedure. The control and reference ensembles come from an identical model

(old model), whereas the evaluation ensemble comes from a model where we are unsure whether it produces statistically indis-

tinguishable results (new model). Each ensemble consists of nE members and we use m subsamples consisting of nS random215

members (nS < nE) drawn from each ensemble without replacement. We then test for field significance by comparing the

mean rejection rate from the evaluation ensemble to the 0.95 quantile from the control ensemble, rejecting the null hypothesis

if the mean rejection rate of the evaluation ensemble is equal to or above the 0.95 quantile of the control ensemble rejection

rate.
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Figure 1. Schematic sketch of the verification methodology. The control and the reference ensemble come from the same “old” model,

whereas the evaluation ensemble comes from a “new” model, where we do not know whether it is indistinguishable from the model that

created the control and reference ensemble. We draw many random subsamples from all three ensembles, perform the local statistical

hypothesis tests of the control and evaluation subsamples against the reference subsamples, and then calculate the rejection rate for each

subsample. This results in a distribution of the rejection rates for the control and evaluation ensemble, which can then be compared to

each other in order to decide whether the evaluation ensemble is different. In this work, we reject the global null hypothesis if the mean of

the evaluation ensemble rejection rate distribution is equal to or above the 0.95 quantile of the rejection rate distribution from the control

ensemble.

Next to accounting for spatial correlation, having a rejection rate distribution from a control ensemble also offers more220

flexibility in evaluating different variables. In atmospheric models, some variables, such as precipitation, inherently have a high

probability of zero values at many grid points. Therefore, a statistical test will often not reject the local null hypothesis even

though the two ensembles might come from two very different models. This can lead to a mean rejection rate well below α for

two different ensembles, and by just looking at α, we would conclude that the two ensembles are indistinguishable. However,

here we derive the expected rejection rate from the control ensemble, which yields an objective threshold that accounts for225

such behavior.

It is important to mention that the choice of α= 0.05 for the local statistical hypothesis test is arbitrary and does not

determine the confidence interval for field significance. Furthermore, comparing the mean rejection rate from the evaluation

ensemble with the 0.95 quantile from the control might also give a wrong idea of a confidence interval for the field significance.

If we assume that the evaluation ensemble comes from an identical model and only take one subsample from the evaluation230

ensemble, the probability of it having a rejection rate equal to or higher than the 0.95 quantile from the control rejection rate
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distribution is, in fact, 5%. However, the probability of the mean rejection rate of 100 subsamples from the evaluation ensemble

being higher than the 0.95 quantile of the control is significantly lower than 5%, but it is not easy to determine by how much.

Using the binomial distribution in Eq. (1) for a calculation of the number of necessarily rejected subsamples to reject the overall

null hypothesis is not valid, because the subsamples are not statistically independent from each other. Based on our experience235

and the results shown in this work, we consider the comparison of the mean to the 0.95 quantile a reasonable choice, even

though it is not really based on a confidence interval (unlike, for example, the FDR approach discussed in Sect. 2.2). However

the sensitivity of the methodology could of course be adapted by changing this field significance criterion.

The verification methodology in this work shares some similarities with verification methodologies presented in previous

studies, most notably Baker et al. (2015, 2016); Milroy et al. (2018); Mahajan et al. (2017, 2019); Mahajan (2021); Massonnet240

et al. (2020). However, most of these studies focus on mean values in space and time. From the previously mentioned studies,

only Baker et al. (2016), Mahajan et al. (2017), and Mahajan (2021) have used a similar methodology on a grid cell level,

either for monthly or yearly averages of variables from an ocean model component (Baker et al., 2016; Mahajan, 2021) or for

the identification of differences in annual extreme values (Mahajan et al., 2017). Moreover, except for Milroy et al. (2018), all

other studies focus on longer simulations (one year or more) and average values in time. We will focus on shorter simulations245

(days to months) with the idea that many small changes are often easier to identify at the beginning of the simulations. We

apply the methodology directly to instantaneous or, in the case of precipitation, hourly output variables from an atmospheric

model on a 3-hourly or 6-hourly basis. The rejection threshold is computed as a function of time and may transiently increase

or decrease in response to changes in predictability. In essence, the rejection rate distribution from a control ensemble allows

us to use an objective criterion for field significance. Another difference to most existing verification methodologies is that this250

methodology calculates the mean rejection rate from the evaluation ensemble and the 0.95 quantile from the control ensemble

using subsampling. It thus essentially performs multiple global tests to arrive at a pass or fail decision. Most existing method-

ologies use only one test with all ensemble members for the pass or fail decision. However, many of them use subsampling to

estimate the false positive rate.

3.2 Ensemble generation255

The ensemble is created through a perturbation of the initial conditions of the prognostic variables (in our case, horizontal

and vertical wind components, pressure perturbation, temperature, specific humidity, and cloud water content). The perturbed

variable φ̂ is defined as

φ̂= (1+ ϵR)φ, (3)

where φ is the unperturbed prognostic variable, R a random number with a uniform distribution between −1 and 1, and ϵ the260

specified magnitude of the perturbation. In this study, we have used ϵ= 10−4 for all experiments. Next to providing a good

ensemble spread already during the first few hours, the relatively strong perturbation also works well with single-precision

floating-point representation. Furthermore, the effect on internal variability with ϵ= 10−4 is very similar to the one from much

weaker perturbations (e.g., ϵ= 10−16) after a few hours, as shown in Appendix A.
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3.3 Statistical hypothesis tests265

In this study, we have applied three different statistical tests for testing the local null hypothesis H0(i,j): the Student’s t-test,

the Mann-Whitney U (MWU) test, and the two-sample Kolmogorov-Smirnov (K-S) test. This allows us to see whether some

statistical tests might be better suited for some variables than others and how sensitive the methodology is with regard to the

underlying test statistics. If not mentioned otherwise, the MWU test has been used as the default test for the results shown in

this study.270

3.3.1 Student’s t-test

The Student’s t-test was introduced by William S. Gosset under the pseudonym "Student" (Student, 1908) and has been origi-

nally used to determine the quality of raw material of stout for the Guinness Brewery. The independent two-sample t-test has

the null hypothesis that the means of two populations X and Y are equal. As we use it for the local statistical test, we therefore

have the following local null hypothesis:275

H0(i,j): The means φold(i,j) and φnew(i,j) are drawn from the same distribution.

Here, φold(i,j) is the sample mean of the variable φ at grid cell (i, j) from the old model, and φnew(i,j) is the respective sample

mean from the new model. The t statistic is calculated as

t=
X −Y

sp

√
2
nS

, (4)

with X and Y being the respective sample means and assuming equal sample size nS = nX = nY . The pooled standard280

deviation is given as

sp =

√
s2X + s2Y

2
, (5)

where s2X and s2Y are the unbiased estimators of the variances of the two samples. The t statistic is then compared against a

critical value for a certain significance level α from the Student’s t-distribution. For a two-sided test, we reject the local null

hypothesis if the t statistic is smaller or greater than this critical value. The Student’s t-test requires that the means of the two285

populations should follow a normal distribution and assumes equal variance. However, the Student’s t-test has been shown to

be quite robust to violations of both the normality assumption and, provided the sample sizes are equal, the assumption of

equal variance (Bartlett, 1935; Posten, 1984). Sullivan and D’Agostino (1992) showed that the Student’s t-test even provided

meaningful results in the presence of floor effects of the distribution (i.e., where a value can be at minimum zero).

3.3.2 Mann-Whitney U test290

The Mann-Whitney U (MWU) test (also known as Wilcoxon rank-sum test) has been introduced by Mann and Whitney (1947)

and is a non-parametric test, in the sense that no assumption is made concerning the distribution of the variables. The null
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hypothesis is that for randomly selected values Xk and Yl from two populations, the probability of Xk being greater than Yl is

equal to the probability of Yl being greater than Xk. It therefore does not test exactly the same property as the Student’s t-test

(means of two populations are equal), even though it is often compared to it. In our case, the local null hypothesis test for the295

MWU test is the following:

H0(i,j): The probability of φk
old(i,j) > φl

new(i,j) is equal to the probability of φk
old(i,j) < φl

new(i,j).

Here, φk
old(i,j) and φl

new(i,j) are the values of the variable φ at location (i, j) from randomly selected members k and l of the

samples from the old and new model respectively. The MWU test ranks all the observations (from both samples combined in

one set) and then sums up the ranks of the observations from the respective samples, resulting inRX andRY . Umin is calculated300

as

Umin =min

(
RX − nX(nX +1)

2
, RY − nY (nY +1)

2

)
, (6)

where nX and nY are the respective sample sizes, which are assumed to be equal in our case (nX = nY = nS). This value is

then compared with a critical value Ucrit from a table for a given significance level α. For larger samples (nS > 20), Ucrit is

assumed to be normally distributed. If Umin ≤ Ucrit the null hypothesis is rejected. As a non-parametric test, the MWU test has305

no strong assumptions and just requires the responses to be ordinal (i.e., <, =, >). Zimmerman (1987) showed that, given equal

sample sizes, the MWU test is a bit less powerful than the Student’s t-test, even if variances are not equal. This means that

the probability of correctly rejecting the null hypothesis, when the alternative hypothesis is true, is assumed to be a bit lower.

Nevertheless, when comparing these tests, it is important to remember that they are based on different null hypotheses and thus

do not test the same properties.310

3.3.3 Two-sample Kolmogorov–Smirnov test

The two-sample Kolmogorov-Smirnov (K-S) test is a non-parametric test with the null hypothesis that the samples are drawn

from the same distribution. Our local null hypothesis is therefore the following:

H0(i,j): φold(i,j) and φnew(i,j) are drawn from the same distribution.

Here, φold(i,j) and φnew(i,j) are the samples of the variable φ at location (i, j) from the old and new model respectively. The315

K-S test statistics is given as

DnX ,nY
= sup

x
|FX,nX

(x)−FY,nY
(x)| , (7)

where sup is the supremum function and FX,nX
and FY,nY

are the empirical distribution functions of the two samples X and

Y , which is defined as

FX,nX
(x) =

1

nX

nX∑
i=1

I[−∞,x](Xi) (8)320
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with the indicator function I[−∞,x](Xi), which is equal to one if Xi ≤ x and zero otherwise. The null hypothesis is rejected if

DnX ,nY
> c(α)

√
nX +nY
nX ·nY

, (9)

where c(α) =
√
− ln(α2 ) ·

1
2 for a given significance level α. The K-S test is often perceived to be not as powerful as, for

example, the Student’s t-test for comparing means and measures of location in general (Wilcox, 1997). However, due to its

different null hypothesis, it might be a more suitable test testing a distribution’s shape or spread.325

3.4 Model description and hardware

The Consortium for Small-scale Modelling (COSMO) model (Baldauf et al., 2011) is a regional model which operates on a

grid with rotated latitude-longitude coordinates. It has been originally developed for numerical weather prediction but has been

extended to also run in climate mode (Rockel et al., 2008). COSMO uses a split explicit third-order Runge-Kutta discretiza-

tion (Wicker and Skamarock, 2002) in combination with a fifth-order upwind scheme for horizontal advection and an implicit330

Crank-Nicholson scheme for vertical advection. Parameterizations include a radiation scheme based on the δ-two-stream ap-

proach (Ritter and Geleyn, 1992), a single-moment cloud microphysics scheme (Reinhardt and Seifert, 2006), a turbulent

kinetic energy based parameterization for the planetary boundary layer (Raschendorfer, 2001), an adapted version of the con-

vection scheme by Tiedtke (1989), a subgrid-scale orography (SSO) scheme by Lott and Miller (1997), and a multi-layer soil

model with a representation of groundwater (Schlemmer et al., 2018). Explicit horizontal diffusion is applied by using a mono-335

tonic 4th-order linear scheme acting on model levels for wind, temperature, pressure, specific humidity, and cloud water content

(Doms and Baldauf, 2018) with an orographic limiter which helps avoiding excessive vertical mixing around mountains. For

the standard experiments in this paper, the explicit diffusion from the monotonic 4th-order linear scheme is set to zero.

Most experiments in this work have been carried out with version 5.09. While COSMO has been originally designed to run on

CPU architectures, this version is also able to run on hybrid GPU-CPU architectures thanks to an implementation described in340

Fuhrer et al. (2014), which was a joint effort from MeteoSwiss, the ETH-based Center for Climate Systems Modeling (C2SM),

and the Swiss National Supercomputing Center (CSCS). The implementation uses the domain-specific language GridTools for

the dynamical core and OpenACC compiler directives for the parameterization package. The simulations have been carried out

on the Piz Daint supercomputer at CSCS, using Cray XC50 compute nodes consisting of a Intel Xeon E5-2690 v3 CPU and a

NVIDIA Tesla P100 GPU. Except for one ensemble that has been created with a COSMO binary that exclusively uses CPUs,345

all simulations in this paper have been run in hybrid GPU-CPU mode where the GPUs perform the main load of the work.

3.5 Domain and Setup

The domains that have been used for the simulation and verification includes most of Europe and some part of Northern

Africa (see Fig. 2). The simulated periods all start on 28 May 2018 at 00:00 UTC and range from several days to 3 months

in length. The initial and the 6-hourly boundary conditions come from the European Centre for Medium-Range Weather350

Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al., 2011). For this work, we have chosen a 132× 129× 40 grid with 50
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km horizontal grid spacing and the 40 non-equidistant vertical levels reaching up to a height of 22.7 km. In order to reduce

the effect of the lateral boundary conditions, we excluded 15 grid points at each of the lateral boundaries from the verification,

resulting in 102× 99 grid points for one vertical layer. As the verification methodology is supposed to be used as a part of an

automated testing environment, we have chosen this relatively coarse resolution in order to keep the computational and storage355

costs low. Running such a simulation for 10 days requires about 4 minutes on one Cray XC50 compute node when using the

GPU-accelerated version of COSMO in double-precision. This means that an ensemble of 50 members requires 3 to 4 node

hours. However, as the runs can be executed in parallel, the generation of the ensemble is only a matter of minutes.

3.6 Experiments

In order to test and demonstrate the methodology, we have performed a series of experiments. Many of these experiments are360

for cases where we deliberately changed the model. However, we also have one real-world case where we verified the effect of

a major update of the supercomputer Piz Daint, on which we have been running our model.

3.6.1 Diffusion experiment

COSMO offers the possibility of applying explicit diffusion with a monotonic 4th-order linear scheme with an orographic

limiter acting on model levels for wind, temperature, pressure, specific humidity, and cloud water content. Diffusion is applied365

by introducing an additional operator at the right-hand side of the prognostic equation, similar to

∂ψ

∂t
= S(ψ)+D · cd · ∇4ψ , (10)

where ψ is the prognostic variable, S represents all physical and dynamical source terms for ψ, cd is the default diffusion

coefficient in the model, and D is the factor that can be set in order to change the strength of the computational mixing

(please refer to Sect. 5.2 in Doms and Baldauf, 2018, for the exact equations including the limiter). By default, we have370

set D = 0, which means that no explicit 4th-order linear diffusion is applied. However, for some experiments we have used

D ∈ {0.01, 0.005, 0.001}. Such small values should not affect the model results visibly or be easily quantifiable without

statistical testing. A value of D = 1.0 reduces the amplitude of 2∆x waves by about a factor 1/3 per time step. For such a high

value, the model results visibly change (Zeman et al., 2021).

3.6.2 Architecture: CPU vs GPU375

Per default, the simulations shown in this work have been performed with a COSMO binary which makes use of the NVIDIA

Tesla P100 GPU on the Cray XC50 nodes (see Sect. 3.4 for details). For this experiment, we have produced an ensemble from

the identical source and with identical settings but compiled it to run exclusively on the Intel Xeon E5-2690 v3 CPUs in order

to see whether there is a noticeable difference between the CPU version and the GPU version of COSMO.
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3.6.3 Floating-point precision380

In this work, COSMO has been using the double-precision (DP) floating-point format by default, where the representation

of a floating-point number requires 64 bits. However, COSMO can also be run in 32 bit single-precision (SP) floating-point

representation. The SP version has been developed by MeteoSwiss and is currently used by them for their operational forecasts.

They have decided to use the SP version after having carefully evaluated its performance compared to the DP version, which

suggests that there are only very small differences. Nevertheless, a reduction of precision leads to greater round-off errors and385

thus could lead to a noticeable change in model behavior. In order to see whether our methodology would be able to detect

differences, we have applied it for a case where the evaluation ensemble has been produced by the SP version of COSMO

and the control and reference ensembles by the DP version. It has to be mentioned that for the SP version of COSMO, the

soil model and parts of the radiation model are still using double-precision, as some discrepancies were detected during the

development of the SP version.390

Running COSMO on one node in single-precision, where a floating-point number only requires 32 bits, gives a speedup

of around 1.1 for our simulations, most likely due to the increased operational intensity (number of floating-point operations

per number of bytes transferred between cache and memory). When running on more than one node, it is often possible

to reduce the total number of nodes for the same setup when switching to single-precision, thanks to a drastic reduction of

required memory. For example, a model domain and resolution that usually requires four nodes in double-precision (e.g., the395

same domain as in this paper, but with 12 km grid spacing instead of 50 km grid spacing), often only requires two nodes in

single-precision. This results in a coarser domain decomposition and thus fewer overlapping grid cells whose values have to

be exchanged between the nodes. Combined with the reduced number of bytes of the floating-point values that have to be

exchanged, a significant reduction of data transfer via the interconnect can be achieved, increasing the system’s efficiency.

While running in SP on only two nodes might be slower than running the same simulation in DP on four nodes, it requires400

fewer node hours. In this particular case (4 nodes for DP vs. 2 nodes for SP), the speedup in node hours was around 1.4, which

makes the use of single-precision an attractive option.

3.6.4 Vertical heat diffusion coefficient and soil effects

In order to test the methodology for slow processes related to the hydrological cycle, we have set up an experiment where

we induce a relatively small but still notable change. One parameter that has been deemed important to the COSMO model405

calibration by Bellprat et al. (2016) is the minimal diffusion coefficient for vertical scalar heat transport tkhmin. It basically

sets a lower bound for the respective coefficient used in the 1D turbulent kinetic energy (TKE) based subgrid-scale turbulence

scheme (Doms et al., 2018). By default, we have used a value of tkhmin = 0.35 for our simulations, but for this evaluation

ensemble we have changed it to tkhmin = 0.3. This is not a huge change, as for example the default value in COSMO is set to

tkhmin = 1.0, whereas the German Weather Service (DWD, Deutscher Wetter Dienst) uses tkhmin = 0.4 for their operational410

model with 2.8 km grid spacing (Schättler et al., 2018). The goal of this experiment is to see whether such a change becomes
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detectable in the slowly changing soil moisture variable, and if yes, how long it takes to propagate the signal through the

different soil layers.

3.6.5 No subgrid-scale orography parameterization

So far, the experiments have been set up for cases where there are only slight model changes. In order to see whether the415

methodology is able to reject results from significantly different models confidently, we have applied it on an evaluation

ensemble where the model had the subgrid-scale orography (SSO) parameterization by Lott and Miller (1997) switched off. At

a grid-spacing of 50 km, orography cannot be realistically represented in a model, which is why the parameterization should

be switched on in order to account for orographic form drag and gravity wave drag effects. Zadra et al. (2003) and Sandu

et al. (2013) both showed improvements in both short- and medium-range forecasts with a SSO parameterization based on420

the formulation by Lott and Miller (1997) for the Canadian Global Environmental Mutiscale (GEM) model and the ECMWF

Integrated Forecast System (IFS). Pithan et al. (2015) showed that the parameterization was able to significantly reduce biases

in large-scale pressure gradients and zonal wind speeds in climate runs with the general circulation model ECHAM6. So we

expect the test to clearly reject the global null hypothesis within the first few days, but also for a longer period of time, which

is why we use model runs of 90 days for this experiment.425

3.6.6 Piz Daint Update

The supercomputer Piz Daint at the Swiss National Supercomputing Center (CSCS) has recently received two major updates on

9 September 2020 and 16 March 2021. The major changes that affected COSMO were new versions of the Cray Programming

Toolkit (CDT), which changed the compilation environment for COSMO, with the new version being CDT 20.08 compared to

the old version CDT 19.08 before the first update in September 2020. Both changes were associated with the loss of bit-identical430

execution. Using containers, CSCS created a testing environment that replicated the environment before the first update on 9

September 2020 with CDT 19.08. With this environment, we could reproduce the results from runs before the update in a

bit-identical way. So by using this containerized version and comparing its output to the output from the executable that has

been compiled in the updated environment with CDT 20.08, we were able to apply our methodology for a realistic scenario

with typical changes in a model development context. Indeed, the system upgrade of the Piz Daint software environment was435

the motivation for the current study.

4 Results

4.1 Diffusion experiment

Here, we discuss the results from the diffusion experiment described in Sect. 3.6.1. Figure 2 shows why it is important to have

such a statistical approach for verification. By just looking at the mean values of the ensembles and their differences (in this440

case, 850 hPa temperature), it is impossible to say whether the two ensembles come from the same distribution. There are some
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Figure 2. The top row shows the ensemble-mean 850 hPa temperature (color shading) and 500 hPa geopotential height (white contours) for

the control (left) and diffusion ensemble with D = 0.01 (middle) after 24 hours, using nE = 50 members per ensemble. The difference in

mean temperature is shown in the top right panel. The bottom row shows the mean rejection rate for 850 hPa temperature (calculated with

the MWU test for m= 100 subsamples with nS = 20 members per subsample) for each grid cell for these two ensembles, as well as their

difference. The substantial differences in the mean rejection rates indicate clearly that the two ensembles come from different models.

small differences, but these could also be a product of internal variability, and the tiny amount of additional explicit diffusion

in the diffusion ensemble (D = 0.01) is not visible by eye. However, the mean rejection rates calculated with the methodology

are clearly higher for the diffusion ensemble in some places in comparison to the control, indicating that the ensembles do

not come from the same model. This becomes clear when we compare the mean rejection rate for 500 hPa geopotential of the445

diffusion ensemble with D = 0.005 to the 0.95 quantile of the control at the bottom of Fig. 3. The methodology can reject the

global null hypothesis for the first 60 hours. Afterward, it is no longer able to reject it, which indicates that from this point on,

the effect of internal variability is greater than the one from the additional explicit diffusion.

In Fig. 3 (top panel) , we can also see that the mean rejection rate of the control is very close to the expected 5%, which is the

significance level α of the underlying MWU test. However, the rejection rate of some samples in the control deviate by quite450

a bit from 5% even though the results come from an identical model. Generally, the spread of the rejection rates also becomes

bigger with time, which likely is related to changes in spatial correlation and/or decreasing predictability. While the initial

perturbations are random and therefore not spatially correlated, the statistical independence becomes already invalid after the

first time step, as a perturbation of a value in a grid cell will naturally affect the corresponding values in the neighboring
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Figure 3. Rejection rates and decisions for H0 (global) for 500 hPa geopotential using the MWU test as a underlying statistical hypothesis

test with an ensemble size of nE = 100 and m= 100 randomly drawn subsamples with a subsample size of nS = 50. The reference and

control ensemble were produced by COSMO running on GPUs in double-precision (top), and it was compared against (from top to bottom)

COSMO running on CPUs in double-precision, on GPUs in single-precision, and on GPUs in double-precision with additional explicit

diffusion (D = 0.005). We reject the null hypothesis if the mean rejection rate is above the 95th percentile of the rejection rate distribution

from the control ensemble (red dotted line). The test detects no differences for the CPU version in DP, but it detects differences for the other

two ensembles during the first few hours/days. The rejection for the initial conditions of the SP ensemble is most likely associated with

differences in the diagnostic calculation of the geopotential due to the reduced precision.

grid cells. This increasing spread emphasizes the importance of having such a control rejection rate for the decision on the455

evaluation ensemble.

The first two columns of Fig. 4 show the global decisions for 16 output fields for the diffusion experiment with D = 0.005

and D = 0.001. We believe that such a set of variables offers a good representation of the most important processes in an

atmospheric model (i.e., dynamics, radiation, microphysics, surface fluxes) and, considering the often high correlation between

different variables, is therefore likely sufficient to detect all but the tiniest changes in a model. While all variables seem to460

be affected for the ensemble with a larger diffusion coefficient, the smaller diffusion coefficient leads to a smaller but still

noticeable number of rejections for many variables.
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Figure 4. Global decisions for several variables for two ensembles with additional explicit diffusion with D = 0.005 and D = 0.001, the

single-precision ensemble, and an ensemble from the CPU version of COSMO using the MWU test with nE = 100, nS = 50, and m= 100.

A smaller diffusion coefficient clearly leads to fewer rejections. The CPU ensemble shows no rejections of the tested variables, meaning that

the GPU and CPU executables cannot be distinguished.

4.2 Architecture: CPU vs GPU

The COSMO executable running on CPUs does not lead to any global rejections compared to the executable running mainly

on GPUs, which is exemplified in Fig. 3 for 500 hPa geopotential and for all 16 tested variables in the fourth column in Fig. 4.465

So while the results are not bit-identical, we consider the difference between these two executables negligible. This confirms

that the GPU implementation of the COSMO model is of very high quality, as in terms of execution, it cannot be distinguished

from the original CPU implementation. This bespeaks an impressive achievement given that the whole code (dynamical core

and parameterization package) had to be refactored.

4.3 Floating-point precision470

The results of the verification of the single-precision (SP) version of COSMO against the corresponding double-precision (DP)

version can be seen in Fig. 3 for the 500 hPa geopotential and in Fig. 4 for all 16 tested variables. Before discussing the results,

we remind the reader that some of the variables, notably in the soil model and the radiation codes, are retained in double-

precision, as some discrepancies were detected during the development of the SP version. When looking at Fig. 3 (third panel),

it should be noted that the geopotential is a plain diagnostic field in the COSMO model, so it is not perturbed initially but475

diagnosed at output time from the prognostic variables. However, as the geopotential is vertically integrated, it encompasses

information from many levels and variables and can thus be considered a well-suited field for testing. One of the most striking
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features in Fig. 3 is that the methodology rejects the SP version already at the initial state of the models. At this state, the

perturbation has already been applied according to Eq. (3), but the model has performed only one time step. This one time step

before the initial output has to be performed in COSMO to compute the diagnostic quantities. Typically, one time step is not480

enough time for small differences to manifest themselves, as can be seen by the lack of rejections at hour zero for the diffusion

ensemble in Fig. 3 and Fig. 4. It is not entirely clear why the 500 hPa geopotential rejection rate is that high after one time

step for the SP ensemble, but we assume a small difference in its calculation due to increased round-off errors for the vertical

integration. Considering that the small perturbations did not have much time to grow, there is no real internal variability that

could “hide” that difference. After 3 hours, the mean rejection rate of the SP ensemble is substantially lower but still higher485

than the 0.95 quantile from the control. Afterward, the rejection rate increases again and follows a similar trajectory as the

diffusion ensemble’s but with a higher magnitude. In order to rule out differences in perturbation strength due to rounding

errors (see also Sect. 3.2), we have performed the same experiment for a modified double-precision version of COSMO, where

the to-be perturbed fields are cast to single-precision, the perturbation is applied in single-precision, and the fields are then

cast back to double-precision. However, this had no effect on the results, and the SP ensemble was still rejected with the same490

magnitude for the initial conditions.

The third column of Fig. 4 shows the global decisions for 16 output variables of the single-precision ensemble during the

first 100 hours. Overall, the number of rejections is similar to the one of the diffusion ensemble with D = 0.005 (first column).

However, while most variables show a similar rejection pattern for the diffusion ensemble, the switch to single-precision does

not affect all variables to the same extent. Next to 500 hPa geopotential, the test also rejects other variables after only one495

time step. The rejections of the diagnostic surface pressure, total cloud cover, and average top-of-atmosphere (TOA) outgoing

longwave radiation are probably also caused by differences in the diagnostic calculations due to the reduced precision. The

precipitation variable represents the sum of precipitation during the last hour. After the first time step, the model has only

produced very little precipitation. In this case, the maximum precipitation amount per grid point is below 0.09 mm h−1 in

all ensemble members of the DP and SP ensemble. Therefore, it is possible that the increased round-off error by the single-500

precision representation of very small numbers may lead to the rejection for precipitation at hour zero.

4.4 Statistical hypothesis tests

We have tested our methodology with the different statistical hypothesis tests described in Sect. 3.3 for the test case with

additional explicit diffusion (see above). Figure 5 shows the respective rejection rates and decisions for several variables. The

rejection rates from the Student’s t-test and the MWU test are almost identical for all variables shown here. This confirms the505

robust behavior of the Student’s t-test, despite violations of the normality assumptions. The results especially exemplify this for

precipitation, where the means of the distribution do not follow a normal distribution and are floored (no negative precipitation).

Like the MWU test, the K-S test is non-parametric and therefore does not rely on assumptions about the distribution of the

variables. However, its rejection rate is generally lower than that of the MWU test and the Student’s t-test. This effect can

also be seen in the 0.95 quantile of the control rejection rate, which is generally lower than for the other two hypothesis tests.510

The lower rejection rate is most likely associated with the lower power of the K-S test (see Sect. 3.3.3). However, the decision
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Figure 5. Rejection rates and decisions similar to Fig. 3 for different variables and with the use of different underlying statistical hypothesis

tests for the diffusion ensemble with D = 0.01 and nE = 50, nS = 20, and m= 100. While the rejection rates show some differences, the

global decisions are very similar throughout all tests for the corresponding variables. The rejection rates with the K-S test are usually lower

than for the other two tests, but this does not affect the global decisions, as the respective 0.95 quantiles from the control ensemble are also

lower. The Student’s t-test shows very similar rejection rates as the non-parametric MWU test, even for precipitation, which is clearly not

normally distributed.

(reject or not reject) is always the same in this case for all tests. This indicates that any of these tests is suitable as an underlying

statistical hypothesis test and that the choice of the statistical test is not very critical for our methodology. Nevertheless, we

have decided to use the MWU test for most of the subsequent experiments, as it offers a slightly higher rejection rate than the

K-S test and, as a non-parametric test, its use is easier to justify than the use of the Student’s t-test, even though these two515

produce almost identical results.

4.5 Vertical heat diffusion and soil effects

Figure 6 shows the rejections rates and global decisions for the 2 m temperature and soil moisture at different depths for the

model setting with a modified minimal diffusion coefficient for vertical scalar heat transport (tkhmin = 0.3 instead of 0.35).

Note that this change will only affect a subset of the grid points, as tkhmin represents a limiter. The rejection rate is quite520

high for the 2 m temperature during the first few days. For the soil moisture at different depths, we can see that the magnitude

of the rejection rate decreases the deeper we go. Furthermore, the initial perturbation and the subsequent internal variability
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Figure 6. Rejection rates and decisions similar to Fig. 3 for 2 m temperature and soil moisture at different depths for an ensemble where

the minimal diffusion coefficient for vertical scalar heat transport has been slightly changed (tkhmin = 0.3 instead of 0.35) with nE = 50,

nS = 20, and m= 100. The initial random perturbation of the atmosphere needs some time to travel to the deeper soil layers. While the

magnitude of the rejection rate is significantly lower for the deeper soil layers, the difference is noticeable for a longer period of time.

of the atmosphere need some time to travel to the lower layers, which is most obvious in the layer at 2.86 m depth. In this

layer, the rejection rate remains close to zero for the first few days because there is almost no difference visible between the

different ensemble members. As a consequence of the not yet “arrived” perturbation, the global decision for this layer should525

be interpreted with caution during these first few days. However, while the magnitude and the variability of the rejection rate

decrease for the lower soil layers, the effect is visible for longer, which is most probably related to the slower processes in the

soil. For 2 m temperature, there are still some rejections after 50-60 days. However, the test is usually not able to reject the

global null hypothesis for 2 m temperature after 25 days, which indicates that from this point on, the effect from the change

of tkhmin has been overshadowed by internal variability or that the test might no longer be sensitive enough to detect the530

difference with such a small ensemble and subsample size (nE = 50, nS = 20, m= 100).
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Figure 7. Rejection rates and decisions similar to Fig. 3 but for the 500 hPa geopotential, 850 hPa temperature, and 850 hPa water vapor

amount and for an evaluation ensemble where the subgrid-scale orography (SSO) parameterization has been switched off (nE = 50, nS = 20,

m= 100). The methodology rejects the null hypothesis throughout all 90 days, except in three instances for the 500 hPa geopotential. The

difference between the mean rejection rate of the evaluation ensemble and the 0.95 quantile of the control is quite large and persistent (also

considering the relatively small ensemble and subsample sizes), which indicates that such a big change in the model is detectable for an even

longer time.

4.6 No subgrid-scale orography parameterization

Disabling the SSO parameterization is a substantial change, and our methodology can detect this for the whole three months

simulation time. Despite the relatively small ensemble size of nE = 50 and subsample size of nS = 20, the mean rejection rate

for the three variables shown in Fig. 7 is very high and seems to remain at a relatively constant level after the first month. This535

indicates that the difference would also be detectable after a longer simulation time, even though the variability on a grid cell

level must be very high.

4.7 Piz Daint Update

Figure 8 shows that we do not detect any differences after the update of the supercomputer Piz Daint. This test was one of the

first cases where the methodology has been used and it was performed with a relatively low number of ensemble and subsample540

members (nE = 50, nS = 20). However, considering how closely the 0.95 quantile from the control ensemble follows the 0.95

quantile from the evaluation ensemble and how close the mean rejection rate from the evaluation ensemble is to 0.05, we

believe that also a test with a higher number of ensemble and subsample members would either show no rejections or, for much
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Figure 8. Rejection rates and decisions similar to Fig. 3 for the 500 hPa geopotential, 850 hPa temperature, and surface pressure from the

verification of a major system update of the underlying supercomputer Piz Daint. The methodology cannot reject the null hypothesis (at least

not for the used ensemble size of nE = 50, subsample size of nS = 20, and m= 100 subsamples), which suggests that the update did not

significantly affect the model behavior.

larger ensemble and subsample sizes, a number of rejections that is comparable to the expected number of false positives (see

Sect. 4.10).545

4.8 Sensitivity to ensemble and subsample sizes

In order to test the sensitivity of the methodology to the number of ensemble members nE , the number of subsample members

nS , and the number of subsamples m, we have performed the test for the diffusion experiment with D = 0.005 for a com-

bination of different values for nE , nS , and m. Figure 9 shows the effect of different ensemble and subsample sizes on the

evaluation of 500 hPa geopotential. More ensemble and subsample members increase the test’s sensitivity, whereas a higher550

number of subsamples (m= 500 instead of m= 100) has a negligible effect (not shown in the figure), which indicates that

using 100 subsamples is sufficient for this methodology.

4.9 Influence of spatial averaging

Most existing verification methodologies for weather and climate models involve some form of spatial averaging of output

variables (see Sect. 2.1). Our methodology evaluates the atmospheric fields at every grid point on a given vertical level. The555

idea behind this more fine-grained approach is that it should allow us to identify differences in small-scale features that may
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Figure 9. Rejection rates and decisions for 500 hPa geopotential as in Fig. 3 for the diffusion ensemble (D = 0.005) with different numbers

of ensemble members nE , subsample members nS , and m= 100 subsamples. Larger values for nE and nS increase the sensitivity of the

methodology.

not affect spatial averages. In order to evaluate this, the model output from some of the previous experiments has been spatially

averaged into tiles consisting of an increasing number of grid cells (1× 1, 2× 2, 4× 4, 8× 8, and 16× 16 grid cells per tile).

Figure 10 shows the rejection rates for two diffusion ensembles (D = 0.005 and D = 0.001), the CPU ensemble, and an

ensemble that was obtained from an identical model the same way as the control ensemble. The rates represent the fraction of560

global rejections from the 16 variables during the first 100 hours (i.e., the fraction that is red in Fig. 4), and they have been

calculated for different tile sizes and numbers of ensemble and subsample members. For the diffusion ensembles, the spatial

averaging reduces the test’s sensitivity for all ensemble and subsample sizes. These results strongly indicate that a test on a

grid cell level might detect differences that would not be detected by methods that compare domain mean values or use some

other form of spatial averaging.565

For the CPU ensemble, we only see a rejection rate that is significantly higher than zero for the largest subsample size in Fig.

10. However, since the rejection rate is similar to the corresponding false positive rate, one cannot reject the null hypothesis. It

is also interesting to see that spatial averaging does not affect the rejection rate of the CPU ensemble and the ensemble that has

been used to calculate the number of false positives.
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Figure 10. Global rejection rates of the 16 variables during the first 100 hours, as in Fig. 4, for the diffusion ensemble with D = 0.005. A

rate of 1.0 would mean that all global decisions would show a rejection (i.e., only red in Fig. 4). The rates have been calculated for different

ensemble and subsample sizes with m= 100 randomly drawn subsamples. They are grouped by tile size, where one tile represents the spatial

average value of n×n grid cells. Spatial averaging clearly reduces the sensitivity of the test for all ensemble sizes. The red lines indicate

thresholds that could be used for an automated testing framework. For example, based on the false positive rate for nE = 200 and nS = 150,

one could define a rejection rate of 0.1 as a threshold for this combination of ensemble and subsample size (i.e., the model has significantly

changed if the rejection rate is greater than 0.1). The threshold should be lower for smaller ensemble and subsample sizes (e.g., 0.02 for

nE = 200 and nS = 100).

4.10 False positives and determining a threshold for automated testing570

Looking at the rejection rates of the ensemble with no change in Fig. 10 (bottom right), we can see that we have almost no false

positives except for nE = 200 and nS = 150. The reason for this is likely a combination of a lower variability of the result

for larger subsample sizes (i.e., the test becomes more accurate) as well as the fact that with nS = 150 and nE = 200 many

subsamples will consist of a set of very similar ensemble members, which also reduces the variability of the result. This effect

can also be seen in Fig. 9, where the 0.95 quantile is quite close to the mean rejection rate for nE = 200 and nS = 150. This575

“narrow” distribution of rejection rates likely increases the probability of the mean rejection rate of the false positive ensemble

being higher than the 0.95 quantile of the rejection rate of the control ensemble.

While the false positive rate for the smaller ensemble and subsample sizes is very close to zero with our methodology, we

still have to expect a certain amount of false positives. An automated testing framework requires a clear pass/fail decision,

and ideally, the test should not fail because of false positives. The false positive rate depends on the ensemble and subsample580
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Figure 11. Comparison between our methodology, using subsampling (nE = 100, nS = 50, m= 100) and a control ensemble, and an

approach that uses only one comparison between all members of the two ensembles with nE = 100 in combination with the FDR correction

and αFDR = 0.05. The Student’s t-test has been used for the local hypothesis testing in both cases. The first two columns show the global

rejections for the diffusion ensemble (D = 0.005), whereas the last two columns show the respective rejections for an ensemble from an

identical model (no change) to compare the false positive rate. Both methods show similar rejections with a slightly higher number of false

positives for the FDR approach.

size, the evaluated variables, and the evaluation period. In order to determine a reasonable rejection rate threshold for the given

parameters, the test should be first performed on an ensemble from a model that is identical to the reference and the control

ensemble. Based on the results in Fig. 10 for the output without spatial averaging, we would for example set the threshold

to 0.1 (dashed red line) for nE = 200 and nS = 150. For nE = 200 and nS = 100, a threshold of 0.02 would probably make

sense (dotted red line), and we could go even lower for smaller ensemble and subsample sizes.585

4.11 Comparison with the FDR method

The approach in our methodology, which is based on subsampling and a control ensemble, is an effective way to determine field

significance while accounting for spatial correlation and reducing the effect of false positives. As already discussed in Sect.

2.2, the FDR approach by Benjamini and Hochberg (1995) serves a similar purpose by limiting the fraction of false rejections

out of all rejections. The big advantage of the FDR approach is that we only need two ensembles (no control ensemble)590

and no subsampling, which reduces the computational costs. Figure 11 shows the global rejections of our methodology (with

nE = 100, nS = 50, andm= 100) and the FDR approach that only performs one comparison with nE = 100 (no subsampling)

and αFDR = 0.05. We use the Student’s t-test as a local null hypothesis test for both methods. The FDR approach shows a similar
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result for the diffusion ensemble with D = 0.005 as our approach with a control ensemble and subsampling. With the FDR

approach, the number of false positives is larger by a factor of 3 to 4, but one could account for this by using a slightly higher595

threshold for the global rejection rate (see previous section). This would slightly reduce the test’s sensitivity, but considering

the FDR approach’s lower computational cost, it seems to be an attractive alternative to our approach, especially for frequent

automated testing.

5 Discussion

As opposed to most existing verification methodologies described in Sect. 2, our methodology does not rely on any averaging600

in either space or time. This approach offers several advantages. The verification on a grid-cell level allows us to identify

differences in small-scale and short-lived features that may not affect spatial or temporal averages. Furthermore, it provides

fine-grained information in space and time and therefore gives helpful information for investigating the source of the difference.

A good example of this is the initial rejection of some diagnostic fields, such as 500 hPa geopotential, for the single-precision

experiment. The test rejects the null hypothesis already after one single time step, which indicates that there are already605

detectable differences in the diagnostic calculation of the respective field (see Sect. 4.3 for further detail). The focus on instan-

taneous values or averages over a small time frame is also a way to consider internal variability. Minor differences can often

only be detected during the first few hours or days before the increasing internal variability outweighs the effect of the change.

Therefore, we think short simulations of a few days should generally be preferred to longer, computationally more expensive

simulations.610

It is not entirely clear how sensitive such a methodology is in detecting differences in long climate simulations. For the

verification of very slow processes, longer simulations with either spatial or temporal averaging might appear to be the better

choice. However, the current methodology using short integrations can also detect changes in slower variables such as soil

moisture within the first few days, which indicates that it might also be suited for climate simulations. Moreover, given that

differences from the frequent changes (e.g., compiler upgrades, library updates, and minor code rearrangements) typically615

manifest themselves already early in the simulation (see Milroy et al., 2018), we think that this is a reasonable approach with

low computational costs. Nevertheless, it is worthwhile to rethink our methodology in the case of a global coupled climate

model that may represent very fast (e.g., the atmospheric model) and very slow (e.g., an ice sheet model) components. In

such a case, it might be advantageous to test the different model components in stand-alone mode, possibly using different

integration periods, before evaluating the fully coupled system focusing on the variables heavily affected by the coupling (e.g.,620

near-surface temperature for ocean-atmosphere coupling). However, further studies on this topic would be needed.

The methodology clearly shows some sensitivity with regard to the ensemble and subsample size. A larger number of

ensemble and subsample members generally increases the test’s sensitivity but will also lead to higher computational costs.

Similarly, the choice of the tested variables also has to be considered. Testing all possible model variables at all vertical levels

would guarantee the highest degree of reliability. However, this is unfeasible due to the high computational costs it would625

demand. Moreover, since the atmosphere is such a complex and interconnected system, many variables are highly correlated.
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Therefore, and based on our results, we think that testing a few standard output variables on selected vertical levels (as in Fig.

4) is already sufficient for all but the tiniest changes.

6 Conclusions and outlook

We presented an ensemble-based verification methodology based on statistical hypothesis testing to detect model changes630

objectively. The methodology operates on a grid-cell level and works for instantaneous and accumulated/averaged variables.

We showed that spatial averaging lowers the chance to detect small-scale changes such as diffusion. Furthermore, the study

suggests that short-term ensemble simulations (days to months) are best suited, as the smallest changes are often only detectable

during the first few hours of the simulation. Combined with the fact that the methodology already works well for coarse

resolutions (here 50 km grid spacing), the methodology is a good candidate for a relatively inexpensive automated system test.635

We showed that the choice of the underlying statistical hypothesis test is secondary, as long as the rejection rate is compared

to a rejection rate distribution from a control ensemble that has been generated with an identical statistical hypothesis test.

While the methodology could theoretically be applied to all model output variables at all vertical levels and thus be exhaus-

tive, we think that this would be overkill. Based on our results using a limited-area climate model and the high correlations

between many atmospheric variables, we think that a set of key variables that reflect the most important processes in an at-640

mospheric model might already be sufficient to cover most of the atmospheric and land-surface processes. However, for a

fully-coupled global climate model, further considerations will be needed.

The verification methodology detected several configuration changes, ranging from very small changes, such as tiny in-

creases in horizontal diffusion or changes in the minimum vertical heat diffusion coefficient, to more substantial changes, such

as disabling the subgrid-scale orography (SSO) parameterization. The test was not able to detect any differences between the645

regional weather and climate model COSMO running on GPUs or on CPUs on the same supercomputer (Piz Daint, CSCS,

Switzerland). However, the test detected differences between single- and double-precision versions of the model for almost all

tested variables. In the case of single versus double precision analysis, rejections occur already after one single time step for

some diagnostic variables, suggesting precision-sensitive operations in the diagnostic calculation. Furthermore, the methodol-

ogy has already been successfully applied for the verification of the regional weather and climate model COSMO after a major650

system update of the underlying supercomputer (Piz Daint, CSCS, Switzerland).

Nonetheless, the results of such a test have to be interpreted with caution and might give a false sense of security. On

the one hand, there are potential issues with any statistical hypothesis test, as the inability to reject the null hypothesis does

not automatically mean that it is true. On the other hand, even though verification is termed a “system test”, it is hardly

possible to test the whole model. There are countless configurations for such models, and testing all these configurations (i.e.,655

different physical parameterizations, resolutions, numerical methods) is almost impossible and would require a substantial

computational effort. The methodology also has some potential limitations if a certain part of the code is only very rarely

activated (as potentially with threshold-triggered processes). First results also show that the FDR approach seems to be a

suitable and computationally less expensive alternative to using a control ensemble and subsampling to determine the field
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significance of spatially correlated output data. However, the FDR approach has a somewhat higher rate of false rejections, and660

thus a somewhat lower sensitivity.

For future work, we intend to apply the methodology for more test cases, such as the compilation of the model with dif-

ferent optimization levels or running the model on different supercomputers. It would also be interesting to directly compare

our verification methodology to other already existing methodologies to understand better the differences in sensitivity and

applicability.665

Code and data availability. The source code that has been used to calculate the rejection rates shown in this paper is available under https:

//doi.org/10.5281/zenodo.6355694. The corresponding model output data from the shorter ensemble simulations (5 days) is available under

https://doi.org/10.5281/zenodo.6354200 and https://doi.org/10.5281/zenodo.6355647. The COSMO model that has been used in this study

is available under license (see http://www.cosmo-model.org/content/consortium/licencing.htm for more information, last access: 15 January

2022). COSMO may be used for operational and for research applications by the members of the COSMO consortium. Moreover, within670

a license agreement, the COSMO model may be used for operational and research applications by other national (hydro-)meteorological

services, universities, and research institutes. ERA-Interim reanalysis data, which has been used for initial and lateral boundary conditions,

is available at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (last access: 15 January 2022).

Appendix A: Influence of perturbation strength

As described in Sect. 3.2, we have chosen a relatively strong initial perturbation for ensemble generation with a magnitude675

in the order of 10−4. Most other existing verification frameworks use a weaker perturbation with a magnitude in the order of

10−14 (e.g. Baker et al., 2015; Mahajan et al., 2017; Milroy et al., 2018). For us, the chosen perturbation magnitude proved

to be a good compromise between not disturbing the initial conditions too much but still providing a good enough ensemble

spread for the statistical verification during the first few hours. Furthermore, choosing such a relatively strong perturbation also

allows us to examine the effects of single versus double-precision floating-point representation, as the choice minimizes the680

chance of undesirable rounding artifacts already for the perturbation.

Figure A1 shows that the mean coefficient of variation averaged over all grid points of 850 hPa temperature, which is one of

the directly perturbed variables, is not substantially higher with ϵ= 10−4 than with ϵ= 10−16 during the first few days. After

around 300 hours, the influence of the perturbation strength seems to be negligible.
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ensemble simulations and developed the code for the verification of the model results. CZ wrote the paper with contributions from CS.
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Figure A1. Mean coefficient of variation averaged over all grid points of 850 hPa temperature from ensembles (50 members per ensemble)

with different initial perturbation magnitudes according to Eq. (3). The relatively strong perturbation used in this work (ϵ= 10−4) only leads

to a slightly higher variance during the first few days than a perturbation at machine precision (ϵ= 10−16).
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