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Abstract. Perennial bioenergy crops are increasingly important for the production of ethanol and other renewable fuels, and1

as part of an agricultural system that alters the climate through its impact on biogeophysical and biogeochemical proper-2

ties of the terrestrial ecosystem. The Energy Exascale Earth System Model (E3SM) Land Model (ELM) does not represent3

perennial bioenergy crops, however. In this study, we expand ELM’s crop model to include perennial bioenergy crops whose4

production increases in modeled socioeconomic pathways owing to their potential for mitigating climate change. We focus on5

high-productivity miscanthus and switchgrass, estimating various parameters associated with their different growth stages and6

performing a global sensitivity analysis to identify and optimize these parameters. The sensitivity analysis identifies eight pa-7

rameters associated with phenology, carbon/nitrogen allocation, and photosynthetic capacity as the most sensitive parameters8

for carbon and energy fluxes. We calibrated the model against observations collected at the University of Illinois Energy Farm9

for carbon and energy fluxes, and found that the model closely captures the observed seasonality and the magnitude of carbon10

fluxes. The model accurately represents the seasonality of energy fluxes, but their magnitude is not well captured. This work11

provides a foundation for future analyses of the interactions between perennial bioenergy crops and carbon, water, and energy12

dynamics in the larger earth system and can also be used for studying the impact of future biofuel expansion on climate and13

terrestrial systems.14
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1 Introduction16

Agriculture occupies 11% of the global land (Klein Goldewijk et al., 2017; FAO, 2021) and can alter the regional and global17

climate through biogeochemical and biophysical impacts on the land surface (Seguin et al., 2007; Lombardozzi et al., 2020).18

Examples of biogeochemical impacts include large increase in CO2 emissions resulting from the replacement of native vegeta-19

tion with cropland (Seguin et al., 2007; Fargione et al., 2008). Although increased agricultural productivity results in enhanced20

CO2 uptake during the growing season, different management practices can result in net increase in CO2 and other greenhouse21

gas emissions such as methane and nitrous oxide (Verge et al., 2007; Searchinger et al., 2008). The biophysical impacts on22

the land surface include modification of the surface energy and water budget. For example, agricultural intensification and23

the resulting increase in evapotranspiration causes a decrease in extreme summer temperature and an increase in precipitation24

(Mueller et al., 2016) while the use of cover crops impacts regional temperature and causes warmer winters (Lombardozzi25

et al., 2018).26

Earth System Models (ESMs) that are used for climate projections should have adequate representation of crops due to the27

impact of agriculture on regional and global climate. However, most ESMs represent crops as generic-grass that fails to capture28

the various phenological phases of crops and differences across various crop species (Levis, 2010; McDermid et al., 2017;29

Moore et al., 2021). This simplistic representation of crops underestimates gross primary productivity and latent heat flux30

from agricultural-dominated regions (Lombardozzi et al., 2020). To address this shortcoming and to improve the simulation31

of carbon and water fluxes, several land model components of ESMs are now simulating major crops. For example species32

specific crops are now represented in the Community Land Model (Levis et al., 2012; Drewniak et al., 2013), E3SM Land33

Model (Burrows et al., 2020), Joint UK Land Environment Simulator (Osborne et al., 2015), Noah-MP-Crop (Liu et al., 2016),34

ORCHIDEE (Wu et al., 2016), and Simple Biosphere Model (Lokupitiya et al., 2009).35

Perennial bioenergy crops are not well represented in ESMs, despite large increases in bioenergy production projected in36

modeled socioeconomic pathways for meeting future energy demands and for mitigating climate change. Energy crops are37

expected to account for a significant portion of bioenergy in the U.S. by 2040 (Langholtz et al., 2016). The quantity of bioenergy38

production required in the future is highly uncertain and will depend on the future energy demand and radiative forcing level,39

among other factors. For example, it is estimated that to limit future warming to 1.5◦C, 40 – 310 EJ yr−1 of bioenergy will be40

required (IPCC, 2018). Another study estimates future land area required for bioenergy production to range between 120 – 47041

million ha for the RCP4.5 mitigation scenario and between 250 – 1500 million ha for the RCP2.6 mitigation scenario (Popp42

et al., 2017). To understand the impact of such increased biomass production on carbon, water, and energy fluxes, perennial43

bioenergy crops should be adequately represented in ESMs. This has been achieved in select land components of ESMs. For44

example, Song et al. (2015) incorporated Miscanthus × giganteus (miscanthus) and two different varieties of switchgrass45

in ISAM model and used it to study the spatial and temporal patterns in biomass yield in the eastern United States. Zhu46

et al. (2017) parameterized and validated Community Land Model (CLM) version 4.5 for miscanthus and switchgrass and47

estimated carbon and surface energy balance from the growth of these crops across the Continental United States. Li et al.48
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(2018) implemented four major perennial bioenergy crops in the global dynamic vegetation model, ORCHIDEE, and utilized49

it to compare simulated vs. observed biomass yield. Cheng et al. (2020) incorporated two perennial bioenergy crops into CLM50

version 5 and found that compared to traditional bioenergy crops, perennial crops have higher carbon uptake and lower nutrient51

requirement that increases their suitability for future bioenergy production. Littleton et al. (2020) modified JULES land surface52

model to simulate the growth and harvest of perennial bioenergy crops and applied the updated model for estimating global53

annual yield of miscanthus under the future climate. Adequate representation of perennial bioenergy crops requires optimizing54

the various crop parameters and quantifying the parametric uncertainty.55

Calibrating ESMs crop parameters poses significant challenge due to the large number of parameters and considerable com-56

putational cost of calibration. ESMs simulate various terrestrial and biogeochemical processes by utilizing a vast array of57

parameters that can contribute large uncertainties in model predictions (Lambert et al., 2013; Qian et al., 2018). The ESM58

crop-models often use default global parameter values rather than crop- and region-specific values that results in large biases59

between model simulated and observed fluxes (Cheng et al., 2021). These biases can be reduced by calibrating the model and60

finding the optimal parameter ranges (Lu et al., 2018). Model calibration is often preceded by sensitivity analysis for identi-61

fying the most influential parameters for various model outputs (Ricciuto et al., 2018). However, model complexity and long62

simulation time required for achieving biogeochemical equilibrium makes sensitivity analysis and calibration computationally63

expensive. These challenges have caused several studies to either modify the crop parameters based on values in literature or64

field observations (Zhu et al., 2017; Li et al., 2018; Boas et al., 2021), or to calibrate the model by utilizing one-at-time (OAT)65

approach that varies a single model parameter at a time (Song et al., 2013, 2015; Cheng et al., 2020; Littleton et al., 2020).66

However, both these approaches fail to account for the impact of joint parameter variability on model outputs (Ricciuto et al.,67

2018; Qian et al., 2018). To overcome these challenges, studies are now constructing ESM surrogates followed up by global68

sensitivity analysis (GSA) and model calibration using these surrogates (Lu et al., 2018; Ricciuto et al., 2018; Lu and Ricciuto,69

2019).70

The objective of this study is to expand the crop model in the Energy Exascale Earth System Model (E3SM) land component71

(ELM) to include two perennial bioenergy crops - miscanthus (Miscanthus × giganteus) and switchgrass (Panicum virgatum72

L.). The model is calibrated to simulate carbon and energy fluxes by developing ELM surrogates, conducting a GSA, and73

performing Bayesian calibration using observational data. Miscanthus and switchgrass are perennial grasses with phenological74

stages distinct from annual crops. Therefore, in this study we expand the ELM crop model to include perennial grasses and75

parameterize the updated model for miscanthus and switchgrass.76

2 Model Development77

The E3SM land model version 1 (ELMv1) is branched from CLM version 4.5 (CLM4.5) (Oleson et al., 2013). The differences78

between ELMv1 and CLM4.5 are described in Burrows et al. (2020) and Ricciuto et al. (2018). For capturing the impact of79

agriculture on climate and vice-versa, ELM includes representation of annual crops, maize, soybean, and spring wheat in its80
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crop model (Levis et al., 2012; Drewniak et al., 2013). Recent updates to the crop model include the implementation of dynamic81

root modeling (Drewniak, 2019) and climate driven planting date estimation. The crop models in both CLM4.5 and ELMv182

do not include representation of perennial crops. Perennial crops are distinctly different from annual crops. For example,83

differences in albedo and rooting depth result in increased evapotranspiration in perennial crops that can have a cooling effect84

(Georgescu et al., 2011). Additionally, perennial crops such as miscanthus and switchgrass require fewer fertilizer inputs85

and reduce nitrogen leaching compared with maize and soybean (Smith et al., 2013). This study implements perennial crop86

modeling in ELM and the subsections below describe the phenology, carbon and nitrogen allocation, and harvest for perennial87

crops.88

2.1 Phenology89

The perennial crop phenology consisted of three distinct phases: crop emergence, leaf onset, and leaf senescence. The perennial90

crops are planted once and the crops re-grow from underground lingotubers each year. In ELM the crop plantation in the first91

year and re-emergence in the following years occurs between the minimum and maximum plant emergence date when the92

temperature thresholds are met (Eq. 1 – 3).93

T10d < T p (1)94

Tmin
10d < T

min

p (2)95

d
min

plant ≤ jday ≤ d
max

plant (3)96

where T10d is the 10-day running mean of T2m (the simulated 2-m air temperature during each model time step) and Tmin
10d97

is the 10-day running mean of Tmin
2m (the daily minimum of T2m). T p and T

min

p are crop-specific coldest plant emergence98

temperatures. d
min

plant and d
max

plant are the crop-specific minimum and maximum plant emergence date, respectively, and jday is99

the julian day. All variables with an accent bar are model parameters and ones without an accent bar are model estimated values.100

The T
min

p parameter was set to 273.15K and d
min

plant and d
max

plant parameters were set to March 1st and May 1st, respectively for101

both miscanthus and switchgrass.102

The leaf onset starts when the growing degree days (GDD) accumulated (Eq. 4) since plant emergence exceeds the crop-specific103

minimum GDD requirement (Eq. 5).104

GDDn = GDDn−1 + (Ts,3−Tfrz)× fday (4)105

GDDn = GDD
min

(5)106

where GDDn is the GDD accumulated at time step n (◦day), Ts,3 is the temperature of the third soil layer (K), Tfrz is107

the freezing point of water (273.15 K), fday is the model time step (day), GDD
min

is the minimum GDD requirement108

(◦day).109
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The leaf senescence occurs when the temperature and leaf age criteria are met (Eq. 6 – 7).110

T10d < T s (6)111

ndays on > nmin (7)112

where T s is the crop-specific senescence temperature, ndays on is the leaf age in days, and nmin is the crop-specific minimum113

leaf age.114

2.2 C and N Allocation115

Similar to the annual crops being modeled in ELM, carbon and nitrogen assimilation in the perennial crops is based on phe-116

nological stages. The carbon/nitrogen (CN) allocation is simulated throughout the growing period; starting in the leaves, stem,117

and fine roots with leaf emergence, and ending at the time of the harvest. The CN ratios in the leaf, stem, and roots vary all118

through the growth period and are modeled based on CLM4.5 carbon and nitrogen allocation scheme (Oleson et al., 2013).119

Time varying allocation coefficients are used for estimating the fraction of carbon that is assigned to the leaf, steam, and fine120

roots (Eq. 8 – 10). These coefficients are similar to the allocation coefficients used for annual crop phase between leaf emer-121

gence and grain fill. The stem and fine root coefficients are the same as the annual crop coefficients while the leaf coefficient122

has GDDmat (growing degree days required for maturity) replacing the heat unit index of the annual crops.123

afroot = ai
froot− (ai

froot− af
froot)

GDDT2m

GDDmat

(8)124

aleaf = (1− afroot)
ai

leaf

(
e−b− e

−b
GDDT2m
GDDmat

)

e−b− 1
(9)125

alivestem = 1− afroot− aleaf (10)126

where, ai
froot , af

froot, and ai
leaf are initial and final values of root and leaf carbon allocation coefficients. b is an exponential127

factor used in leaf carbon allocation, GDDmat is the GDD required for the crop to reach maturity, and GDDT2m is the GDD128

for 2m air temperature.129

2.3 Harvest130

The perennial crop harvest occurs in a single time step after occurrence of the leaf senescence. During harvest, C and N stored131

in above-ground biomass comprised of leaf and live stem are removed. 70% of the available C and N contributes to food/biofuel132

production and the remainder is transferred to the litter pool (Zhu et al., 2017; Cheng et al., 2020).133

3 Model Evaluation134

In order to identify the impact of model parameters on output QoIs, as well as to quantify and reduce predictive variance associ-135

ated with these uncertain parameters, we will first construct a surrogate approximation of the model across a range of variability136

of the parameters, followed by global sensitivity analysis, and Bayesian calibration of this pre-constructed surrogate.137
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3.1 Model Simulation and Surrogate Construction138

A total of twenty perennial crop parameters related to crop phenology, CN allocation, and photosynthetic capacity were selected139

for the surrogate construction, global sensitivity analysis and model calibration (Table 1). We identified the input range for these140

parameters through literature review. If an input range for a parameter was not available in the literature then it was set based on141

expert judgement. The twenty parameters were randomly varied within their input range for 2000 ELM simulations. We used142

the Offline Land Model Testbed for 2000 ensemble ELM runs, each of which ran for 200 years in the accelerated spin-up mode143

and 200 years in the nonaccelerated spin-up mode, followed by a transient run from 1850 to 2008. For the transient run Global144

Soil Wetness Project Phase 3 (GSWP3) data was used for the meteorological forcing. The model output was postprocessed145

by estimating daily average over the last ten years of the transient run for the four output quantities of interest (QoIs) —146

gross primary productivity (GPP), ecosystem respiration (ER), latent heat flux (LE), and sensible heat flux (H). The estimated147

daily average for all ensemble members was then used as training inputs for developing surrogates. We employed Polynomial148

chaos (PC) surrogate form for developing surrogates as it provides flexible representation of the inputs and outputs as random149

variables (Ghanem and Spanos, 1991), and, at the same time, allows for exact analytical extraction of global sensitivity indices150

via variance decomposition (Crestaux et al., 2009). In our case, where the inputs are randomly and uniformly sampled over151

their respective ranges, the surrogate construction reduces to a polynomial regression (Sargsyan, 2017). Finally, due to large152

number of input parameters, we employed Bayesian compressive sensing algorithm (Sargsyan et al., 2014; Ricciuto et al.,153

2018) to regularize the regression, arriving at a sparse polynomial set with only the relevant PC bases activated. The surrogate154

construction, the associated global sensitivity analysis as well as the surrogate-enabled model calibration are carried out using155

the UQ Toolkit (Debusschere et al., 2016).156

3.2 Global Sensitivity Analysis157

Sobol sensitivity indices were used to examine the impact of parametric uncertainty on model outputs (Saltelli et al., 2010;158

Sobol, 2001). These indices provide an estimate of the fraction of variance contributed by each parameter or group of parame-159

ters towards the total variance in the output variable (Ricciuto et al., 2018). A major convenience of using PC surrogates is that160

one can extract the sensitivity indices with analytically available formulae without any additional sampling (Crestaux et al.,161

2009). In this study, we evaluate the main effect sensitivity that examines the contribution of one parameter at a time on the162

total variance (Figure 2).163

3.3 Site Data164

The observational data utilized for model calibration was collected at the University of Illinois Urbana-Champaign (UIUC)165

Energy Farm located in the Midwest region of the United States. The mean annual precipitation at the UIUC Energy Farm166

is 1009 mm and the mean annual temperature is 10.9◦C with large seasonal variation ranging from monthly minimum below167

-5◦C in winter to monthly maximum above 25◦C in summer (Moore et al., 2021). The soil at the UIUC Energy Farm is168

deep and poorly drained silty clay loam. Both miscanthus and switchgrass plots were planted in the spring of 2008, however169
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supplementary miscanthus was planted in 2009 and 2010 due to to poor establishment in 2008 (Anderson-Teixeira et al.,170

2013). Nitrogen fertilizer was applied every year to switchgrass and from 2014 – 2018 to miscanthus at the rate of 56 kg ha−1.171

Switchgrass was harvested at the end of the growing season in November or December, while miscanthus was harvested in172

the winter months of February or March. Eddy covariance flux towers at the center of the plots measure carbon, water, and173

energy fluxes at 30-min intervals, along with common meteorological variables (Zeri et al., 2011; Moore et al., 2020). Gross174

primary productivity (GPP) and ecosystem respiration (ER) were calculated from flux tower net ecosystem exchange values175

as per Moore et al. (2020). The flux tower derived GPP and ER are referred to as observed GPP and ER, respectively, in176

the remainder of the manuscript. GPP, ER, LE, and H values from 2008 – 2019 for miscanthus and from 2008 – 2016 for177

switchgrass were used for calibrating the ELM-Crop model.178

3.4 Bayesian calibration via Markov chain Monte Carlo179

Bayesian inference was utilized for calibrating model parameters to improve the model performance with respect to site180

data (Tarantola, 2005). Specifically, we employ Markov chain Monte Carlo (MCMC) which samples input parameter space181

with an acceptance/rejection mechanism relying on the match of the model with the observational data encapsulated by a182

likelihood function. However, MCMC typically requires infeasibly large number of model evaluations before it arrives to a183

representative set of parameter samples. For this reason, we employ the pre-constructed, computationally inexpensive surro-184

gate models in the MCMC loop. For each QoI, a calibration window was first identified for both perennial bioenergy crops185

since all four QoIs had low or negligible values during the non-growth period. We tested four different calibration windows for186

GPP that excluded the winter months with minimal crop growth (Table A1). We found that a calibration window of 60 – 330187

for miscanthus and 60 – 270 for switchgrass resulted in both low RMSE and percent bias between observations and mean of the188

posterior simulations. For both miscanthus and switchgrass, the same calibration window was used for all four QoIs.189
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Table 1. Descriptions, input ranges, and sources of information used for the eighteen input parameters varied in this study.

Parameter ELM variable Units Description Minimum Maximum Source

T p planting_temp K
Average 10-day temperature re-

quired for plant emergence
275 285 1

GDD
min

gddmin ◦day Minimum growing degree days 50 320 2

T s senescence_temp K
Average 10-day temperature for

leaf senescence
280 290 1

nmin min_days_senes days
Minimum leaf age to allow for leaf

senescence
90 120 3

ai
froot arooti - Root CN allocation coefficient 0.05 0.3 4

af
froot arootf - Root CN allocation coefficient 0.05 0.2 4

ai
leaf fleafi - Leaf CN allocation coefficient 0.5 0.95 4

b bfact -
Exponential factor for leaf CN allo-

cation
0.05 0.15 2

GDDmat hybgdd ◦day
Growing degree days required for

maturity
1600 2000 2

leafcn gC gN−1 Leaf CN ratio 15 35 2

livewdcn gC gN−1 Live wood CN ratio 40 60 2

frootcn gC gN−1 Fine root CN ratio 20 50 5

graincn gC gN−1 Grain CN ratio 25 60 6

laimx -
Maximum leaf area index used in

CNVegStructUpdate
5 12 4

slatop m2 gC−1
Specific leaf area (SLA) at top of

canopy, projected area basis
0.01 0.07 4

i_vc umol CO2 m−2 s−1

Intercept of the relationship be-

tween leaf N per unit area and vc-

max

3 35 4

s_vc umol CO2 m−2 s−1
Slope of the relationship between

leaf N per unit area and vcmax
6 70 4

br_mr umol CO2 m−2 s−1
Base rate for maintenance respira-

tion (MR)
1.26E-06 3.75E-06 7

q10_mr - Temperature sensitivity for MR 1.3 3.3 7

mbbopt - Ball–Berry model equation slope 4 12 8

Note: The ranges are based on 1) observations 2) expert judgement (in the case where there is insufficient literature, but within 50% would be inappropriate) 3) Li et al. (2018) 4)

Cheng et al. (2020) 5) Dietzel et al. (2017) 6) Ma and Dwyer (2001) 7) Ricciuto et al. (2018) 8) Personal communication with Dr. Dan Ricciuto
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4 Results190

4.1 Ensemble Evaluation191

The ensemble captures observed seasonality and peak GPP values for both perennial bioenergy crops (Figure 1 A and B). The192

seasonality of the perennial bioenergy crops, marked by the start and end of the growing season, is around 50 days longer193

than that of traditional maize grown in the midwestern USA (Cheng et al., 2020). The modified ELM model captures this194

longer growing season. Leaf onset for both perennial bioenergy cropping systems starts at approximately the same time but195

switchgrass GPP increases and declines earlier than miscanthus. The resulting slightly shifted growing seasons for the two196

perennial bioenergy crops was well captured by the ELM ensemble runs. Similar to seasonality, the model closely captures197

GPP values during the peak growing season, including the large observed interannual variability (light red lines in Figure 1 A198

and B).199

The model simulates ecosystem respiration well for both crops, during both growth and non-growth periods (Figure 1 C and200

D). During the growing season, the ensemble captures the full range of ER values. However, during the non-growth period201

the low observed ER values were simulated only by a small fraction of the ensemble members with the majority of ensemble202

members over predicting the ER during this period. The model simulated large negative spikes in late fall, is a caveat of the203

crop model eliminating excess maintenance respiration pool at harvest time (Oleson et al., 2013). This excess maintenance204

respiration pool is maintained by the model to supply carbon to plants during periods of low photosynthesis but is not required205

after harvest.206

The ensemble captures the seasonality and observed extent of the energy fluxes during the growth phase (Figure 1 E – H).207

Similar to ER, the full range of both LE and H during the growing season are captured by the ensemble. However, during the208

non-growth period the model ensemble underestimates both the observed mean and interannual variability in LE. For H, the209

ensemble simulation is close to the observed mean during the non-growth period but does not capture the large interannual210

variability during this period.211

4.2 ELM Surrogate Performance212

The ELM surrogates provided fairly accurate representation of ELM simulations. We utilized 1600 of the 2000 ELM simula-213

tions for developing the surrogates using PC surrogate form and 400 simulations for testing the accuracy of the surrogates. The214

training data points were close to center diagonal line, representing agreement between surrogate and ELM simulations (green215

dots in Figure A1 and A2). The daily root mean squared error (RMSE) and relative RMSE between surrogate and ELM simu-216

lations for testing data points was relatively low during the growing season for all four QoIs for both perennial bioenergy crops,217

with few outliers during the non-growth period (Figure A3 and A4). These outliers during non-growth season however, did218

not impact the results of calibration as they fell outside of the calibration window and were therefore not utilized for GSA and219

calibration (Section 3.4). The average daily RMSE for miscanthus was 0.67 (gC m−2 day−1) for GPP, 0.5 (gC m−2 day−1)220
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for ER, 2.92 (W m−2) for LE, and 2.21 (W m−2) for H while the relative RMSE for the same QoIs was 0.16, 0.12, 0.32, and221

0.2, respectively. For switchgrass the average daily RMSE was 0.63 for GPP, 0.52 for ER, 2.82 for LE, and 2.32 for H while222

the relative RMSE for the same QoIs was 0.34, 0.13, 0.31, and 0.36, respectively.223

4.3 Parameter Sensitivity224

The most sensitive parameters for GPP, LE, and H vary with phenological state (Figure 2 A, B, and E – H) while for ER225

they remain the same throughout the year, although their relative sensitivity changes with phenological stage (Figure 2 C and226

D). For both perennial bioenergy crops, the parameter associated with stomatal conductance (mbbopt) and specific leaf area227

(slatop) were the most sensitive parameters for all four QoIs while parameter associated with leaf CN allocation (leafcn)228

was influential for GPP and ER. These parameters were most influential for GPP only during the growth phase but for ER,229

LE, and H they remain sensitive for most of the year. The parameter controlling leaf senescence (senescence_temp) was230

one of the most influential parameters during the leaf senescence period for all four QoIs. During the non-growth period, the231

temperature sensitivity for maintenance respiration (q10_mr) parameter was the most sensitive parameter for ER. For GPP,232

LE, and H, during the leaf emergence phase, the parameters controlling leaf onset (gddmin and planting_temp) exhibit233

high sensitivities.234

4.4 Model Calibration235

The optimized parameter values for select parameters were similar across the four QoIs (Table 2). These values represent236

the maximum a posteriori (MAP) estimates of the optimized parameter range obtained after conducting GSA for the five237

most sensitive parameters (Figure A5 – A8). Since all four QoIs for miscanthus and switchgrass were calibrated separately,238

sightly different optimized parameter values were predicted for the different QoIs. For miscanthus, the optimal range of239

planting_temp, gddmin, senescence_temp, and mbbopt and for switchgrass the optimal range of planting_temp,240

gddmin, and leafcn are relatively close across the four QoIs. A reliable range for optimal senescence_temp for switch-241

grass is not obtained since senescence_temp is only sensitive during the last few months of the year that fall outside the242

calibration window for switchgrass. Additionally, the optimized value of leafcn for miscanthus GPP, mbbopt for miscant-243

hus LE, slatop for switchgrass GPP and ER, and mbbopt for switchgrass ER are less reliable as the probability density244

function (pdf) of the optimized parameter are skewed towards either side of the input range (Figure A5, A7), indicating a degree245

of overfitting or a need to increase the parameter range. The optimized value of slatop for both perennial bioenergy crops and246

the optimized value of mbbopt for switchgrass are spread across most of the input range, signifying potential over-calibration247

given that the QoIs are extremely sensitive to slatop and mbbopt parameters.248

The calibrated GPP closely matches the observations for the timing of leaf onset, timing of peak GPP, the sharp increase before249

peak GPP, the peak GPP, and the timing of leaf senescence for both perennial bioenergy crops (Figure 3 A and B black line250

and green shading). Overall, the posterior GPP estimates explained more than 90% of the observed daily variance within the251

calibration window and for all year round for both miscanthus and switchgrass (Table 3). The percent bias for miscanthus was252
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less than 2% and for switchgrass was less than 7%. During late fall, the posterior estimate of switchgrass GPP have a large253

spread due to the optimal range for switchgrass senescence_temp not being identified that in turn spreads leaf senescence254

over the entire input range in the posterior ensemble.255

The calibrated ER closely matches the observations during the growing period and is slightly higher than the observations256

during the non-growing season for both crops (Figure 3 B and D). Similar to GPP, the posterior ER estimates explained close257

to 90% of the observed daily variance. The higher observed percent bias during the calibration window for both perennial258

bioenergy crops, despite closely matching the observations, can most likely be attributed to the daily variations.259

The posterior estimates of both energy fluxes capture the seasonality in the observations, although a larger fraction of daily260

variation is explained by the latent heat flux (80%) than by the sensible heat flux (10 – 40%) (Table 3). The higher explanatory261

power of LE for observed daily variation is likely due to increased amount of moisture available during summer for evapo-262

transpiration that results in LE dominating the energy balance. Similar to ER, the large percent bias for LE despite closely263

matching the observations is likely due to difference in values at a daily timescale. Although, the posterior H estimates cap-264

ture the seasonality in the observations they fail to capture the observed magnitude during the growing season, especially for265

switchgrass. It is also noteworthy that the observed daily average used for calibration has a higher signal to noise ratio for both266

the energy fluxes than for the carbon fluxes, likely contributing to lower calibration accuracy for the energy fluxes.267

5 Discussion268

Only a handful of parameters dominate the sensitivity of carbon and energy fluxes for the two perennial bioenergy crops.269

The ELM crop model utilizes a large number of parameters each with its own uncertainty that results in a large spread in270

the simulated fluxes. The sensitivity analysis performed in this study shows that eight out of more than 100 parameters used271

for the ELM crop model, dictate the uncertainty in modeled carbon and energy fluxes. This finding can assist in streamlining272

future model calibration efforts. Similar findings were also made for ELM simulated carbon cycle outputs from multiple plant273

functional types (Ricciuto et al., 2018). We find that for both carbon and energy fluxes parameters controlling the timing of leaf274

senescence (senescence_temp), onset of leaves (gddmin), photosynthetic capacity (slatop), and stomatal conductance275

(mbbopt) are among the most sensitive parameters. Additionally, for GPP and ER the parameter controlling leaf CN allocation276

(leafcn), for ER the parameter controlling maintenance respiration (q10_mr), and for LE and H the parameter controlling277

plant emergence (plantemp) were also highly sensitive.278

Some of the most influential parameters identified in this study had been previously identified while others had not been previ-279

ously recognized. Another study modeling miscanthus and switchgrass using CLM5, also identified slatop and fleafi as280

sensitive parameters for GPP, ER, and LE (Cheng et al., 2020) . However, Cheng et al. (2020) also identified parameters asso-281

ciated with photosynthetic capacity (s_vc and i_vc) as sensitive parameters. These two parameters were considered in our282

analysis but were not found to be sensitive for carbon or energy fluxes. The parameters associated with phenology (gddmin,283
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plantemp, senescence_temp), stomatal conductance (mbbopt), and maintenance respiration (q10_mr) had not been284

identified before as influential for modeling carbon and energy fluxes for perennial crops. These difference are likely due to285

one or more of three major differences in these two studies. First, ELM and CLM5 both have several differences between286

them despite branching from the same model (CLM4.5). For instance, ELM now incorporates dynamic root modeling (Drew-287

niak, 2019), climate driven planting date estimation, and perennial crop modeling while CLM5 includes the implementation288

of Fixation and Uptake of Nitrogen (FUN) and Leaf Use of Nitrogen for Assimilation (LUNA). The FUN model accounts for289

the carbon cost of nitrogen acquisition (Shi et al., 2016) while the LUNA model accounts for leaf nitrogen utilization in its290

photosynthetic capacity estimation (Ali et al., 2016). Second, both miscanthus and switchgrass are modeled as annual crops by291

Cheng et al. (2020) while in this study they are modeled as perennial crops to accurately capture various phenological stages,292

including crop emergence, leaf onset, growing season length, and leaf senescence, of the two crops that are quite distinct from293

annual crops. Third, Cheng et al. (2020) conducted sensitivity analysis by varying ten samples at equal increments within the294

input range, one parameter at a time. This approach ignores the effect of parameter interactions. The GSA approach utilized295

in this study accounts for parameter interactions by randomly varying all parameters within their input range to generate 2000296

parameter samples for running ELM. Additionally, ELM surrogates were developed from the outputs of 2000 ELM runs that297

were then employed for surrogate based GSA. Due to these differences across the two studies, the optimized parameter values298

obtained in this study were compared to the literature rather than among themselves.299

The optimized parameter range for slatop is similar in magnitude to observations collected at various sites. A study com-300

paring photosynthetic rate among fourteen miscanthus genotypes observed slatop to range between 0.021 – 0.031 (m2 g−1)301

(Jiao et al., 2016). Observational estimates for switchgrass slatop have varied between 0.014 – 0.023 (Trócsányi et al., 2009;302

Tian et al., 2015). A study comparing leaf photosynthetic rates among the two perennial bioenergy crops found slatop for303

miscanthus to be higher (0.015) than slatop for switchgrass (0.012) (Dohleman et al., 2009). The calibrated value estimated304

for slatop in this study ranges from 0.02 – 0.07 (m2 gC−1) (Table 2) that is equivalent to 0.01 – 0.03 (m2 g−1) (assuming305

the leaf carbon content is 45% of leaf weight) and falls within the observed range. Slatop has been observed to vary with the306

growing season and with light availability. Variation with the growing season resulted in peak value being observed earlier in307

the season followed by a gradual decline (Dohleman et al., 2009; Tian et al., 2015) while variation with light resulted in higher308

observed slatop for shaded canopy at the bottom of the plant and lower slatop at the top of the canopy (Trócsányi et al.,309

2009). Currently parameters in ELM-crop do not vary with the growing season or light availability.310

Similar to slatop, the calibrated value of q10_mr is comparable to observations. Studies examining the impact of temper-311

ature sensitivity on soil respiration found q10_mr to range between 1.6 – 3.2 with an average of 3.0 for miscanthus (Yazaki312

et al., 2004; Robertson et al., 2017) and to range between 2.3 – 3.8 with an average of 2.7 for switchgrass (Lee et al., 2007;313

Skinner and Adler, 2010). Variability across the year was also observed in q10_mr with highest values being observed during314

the growth period and lowest values during winter months (Robertson et al., 2017). The q10_mr range estimated in this study315

(Table 2) is close to observations but stays constant throughout the year in ELM. Interestingly, a study calibrating CLM4.5 for316
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coniferous forest found that q10_mr of 2.5 better captured the observed seasonality of ER for needleleaf evergreen temperate317

forest (Duarte et al., 2017).318

6 Conclusions319

This study implements perennial crop modeling in ELM and parameterizes the model for miscanthus and switchgrass using320

observational data on carbon and energy fluxes from the midwest United States. All four QoIs capture the observed seasonality321

and simulated carbon fluxes (GPP and ER) closely match the observations, however, the magnitude of energy fluxes (LE and322

H) was not well captured and warrants further exploration in future studies. The poor simulation of energy fluxes could be323

either due to lack of accurate process representation or due to relevant parameters not being considered for calibration or large324

signal to noise ratio in the observations. Future studies can explore calibrating model outputs related to water budgets along325

with calibrating the model using spatially varying site data.326

Our modeling study lays the groundwork for future studies that examine the impact of perennial bioenergy crop expansion and327

provides valuable insights for improving representation of other crops in ESMs. Future research can utilize the parameterized328

perennial bioenergy crop model developed in this study to examine the impact of future perennial bioenergy expansion on329

carbon, water, and energy budgets. Additionally, future crop modeling studies that perform global sensitivity analysis can utilize330

only the most sensitive parameters identified in this study to reduce the surrogate models dimensionality and for improving the331

accuracy of the surrogate models.332
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Figure 1. Simulated (grey lines) and observed (red lines) daily GPP (gC m−2 day−1), ER (gC m−2 day−1), LE (W m−2) and, H (W m−2)

for miscanthus and switchgrass. Grey lines represent the simulated values for the 2000 ensemble members. Light red lines represent daily

observed values from 2009-2018 while the thick red line is the daily average across the ten years. The observational data was collected at the

University of Illinois Energy Farm from 2009-2018.
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Figure 2. Main-effect Sobol sensitivity indices of the eighteen parameters for the daily GPP, ER, LE, and H outputs for miscanthus and

switchgrass. The legend lists only the most influential parameters for the respective QoIs.
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Figure 3. Observed vs. prior and posterior distribution of the modeled GPP (gC m−2 day−1), ER (gC m−2 day−1), LE (W m−2) and,

H (W m−2) for miscanthus and switchgrass. The prior distribution (red shade) represents the daily simulated values for the 2000 ensemble

members while the posterior distribution (green shade) represents the calibrated values estimated with the optimized parameters. A calibration

window from 60 – 330 days and 60 – 270 days was utilized for miscanthus and switchgrass, respectively. The black line represents observed

average daily values from 2009-2018 collected at the University of Illinois Energy Farm.
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Table 3. RMSE, percent bias, correlation coefficient, and R2 between observations and mean of surrogate based posterior simulations. All

listed R2 are significant with p < 0.01.

Miscanthus within calibration window (60 – 330) Switchgrass within calibration window (60 – 270)

GPP ER LE H GPP ER LE H

RMSE 1.48 2.74 62.59 21.3 1.56 3.51 77.94 21.29

Percent bias -0.2% 28.7% -90.5% -61.9% -3.98% 32% -89.9% -52.1%

Corr. coeff. 0.96 0.95 0.94 -0.31 0.96 0.94 0.91 -0.5

R2 0.92 0.90 0.88 0.10 0.92 0.88 0.83 0.25

Miscanthus considering all 365 days Switchgrass considering all 365 days

RMSE 1.28 0.56 8.18 10.4 1.46 0.69 14.12 13.03

Percent bias -1.73% 1.7% -4.27% -9.96% -6.22% 3.16% -8.27% -1.97%

Corr. coeff. 0.97 0.97 0.97 0.65 0.97 0.98 0.94 0.45

R2 0.94 0.94 0.94 0.42 0.94 0.96 0.88 0.20

Code and data availability. The code for ELMv1 is available on GitHub (https://github.com/E3SM-Project/E3SM). The UIUC Energy Farm333

data used in this study is in the process of joining the AmeriFlux network (Site ID - US-UiC). Data will be made available through the334

Ameriflux website soon).335

Appendix A336

A1337
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Figure A1. Scatter plot of ELM and surrogate model simulations for miscanthus for the four QoIs for the first day of June, July, August,

September, and October.
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Figure A2. Same as Figure A1 but for switchgrass.
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Figure A3. Root mean square error (RMSE) compared to the ELM simulations for the validation points (shown in green dots in Figure A1

and A2. The errors are shown for each day of the year for the four QoIs and both perennial bioenergy crops.
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Figure A4. Same as Figure A3 but showing relative RMSE between surrogate and ELM simulations for each day of the year.
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Table A1. Impact of calibration window on RMSE, percent bias, and optimized parameter distribution for miscanthus and switchgrass GPP.

Miscanthus - GPP Switchgrass - GPP

Calibration window RMSE Percent bias RMSE Percent bias

0 – 365 1.22 -2.76% 1.48 -7.0%

60 – 270 1.42 -0.64% 1.56 -4.10%

60 – 300 1.67 -3.60% 1.7 -7.13%

60 – 330 1.51 -0.05% 1.7 -5.40%
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