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Abstract. We present MISTRA-v9.0, a one dimensional (1D) atmospheric chemistry model. The model includes a detailed

particle description with regards to the microphysics, gas-particle interactions, and liquid phase chemistry within particles.

Version 9.0 is the first release of MISTRA as an open-source community model. A major review of the code has been performed

along with this public version release to improve the user-friendliness and platform-independence of the model. In the past 20

years, MISTRA has been used in over 25 studies to address a wide range of scientific questions. The purpose of this public5

release is to maximise the benefit of MISTRA to the community by making the model freely available and easier to use and

develop. This paper presents a thorough description of the model characteristics and components. We show some examples of

simulations reproducing previous studies with MISTRA, finding that version 9.0 is consistent with previous versions.

1 Introduction

1.1 Scientific context and purpose of the model10

Atmospheric aerosols are a major component of the Earth climate system. They significantly affect the radiative balance of the

atmosphere, through direct (scattering and absorption) and indirect effects (cloud properties modification) (Carslaw et al., 2010;

Boucher et al., 2014). However their concentrations, chemical and physical properties are still insufficiently constrained, and

the variability associated with their effects is dominant in the uncertainties of climate projections (Bender, 2020). Atmospheric

particles also have a fundamental role in the chemistry of the atmosphere, since they offer a large area and volume for (photo)-15

chemical reactions to occur (Andreae and Crutzen, 1997; Finlayson-Pitts, 2009; George et al., 2015; Simpson et al., 2015;

Seinfeld and Pandis, 2016; Kanakidou et al., 2018). Other impacts include the reduction of visibility and health effects of

pollution.

Numerical models are essential tools to help understand the relevant processes, and make projections of their evolution

in a changing climate (Ervens, 2015). While global three-dimensional (3D) models, and specifically Earth System Models20

(ESMs) are well suited for climate simulation, the high computing cost of coupled physical-microphysical-chemical processes
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modelling limits the space resolution of such models. Currently, a kilometer-scale resolution is already very challenging,

thus preventing fully resolved approaches for subgrid scale processes, such as turbulence. Conversely, limited-area and one-

dimensional (1D) models can reach sufficiently fine resolution for process-resolving simulations. In turn, the results obtained

with such models can be used to develop parameterisations for use in 3D models.25

Whatever the model, a crucial step is the validation based on field measurements. Balloon or flight surveys provided valuable

data for this purpose, but the number of investigated parameters is necessarily limited, with many uncertainties and unknown

values. Another useful tool for atmospheric chemistry and physic understanding is the atmospheric simulation chambers (see

for instance https://www.eurochamp.org, last accessed 01-July-2021). These platforms enable the simultaneous measurement

of a large number of chemical species and associated physical characteristics, in a constrained volume. The resulting datasets30

are highly valuable to validate models. In turn, numerical models are complementary tools to help understand and interpret

measured results.

In this paper, we present the 1D atmospheric chemistry model MISTRA-v9.0, including size-resolved aerosol processes

as well as particle-chemistry interaction. MISTRA-v9.0 also includes a box-model configuration, which can be adapted for

atmospheric simulation chamber applications. In Sect. 1.2 and 1.3, we give a brief history of the MISTRA model, then an35

overview on the recent developments presented in this paper. Section 2 gives a thorough description of processes implemented

in the model. Section 3 presents practical and technical aspects of MISTRA-v9.0 with the main settings, while a set of example

simulations reproducing previous studies settings and configurations is presented in Section 4, to show the consistency of

MISTRA-v9.0 with previous results.

1.2 History of MISTRA and reference publications40

The MISTRA model was originally designed to study the MIcrophysics in STRAtus clouds, and was written based on a fog

model (MIFOG: Bott et al. (1990); Bott and Carmichael (1993); von Glasow and Bott (1999)). Bott et al. (1996) developed the

first version of MISTRA, for the simulation of cloud microphysics in the marine boundary layer (MBL). The unique feature

of this model is the use of a two-dimensional particle distribution, with one dimension accounting for dry particle radius, and

the second dimension for the total particle radius. Based on this first version of MISTRA, Bott (1997) further included typical45

particle distributions of urban and rural aerosols for the study of MBLs influenced by continental air masses. In this work,

the radiative forcing of stratiform clouds was assessed. The radiation code used in MISTRA, called PIFM1, was updated by

Loughlin et al. (1997) and the new radiation code, PIFM2, was evaluated. The collision-coalescence process was implemented

in MISTRA by Bott (2000, 2001). Bott (1999a) adapted the chemistry module from Bott and Carmichael (1993) in MISTRA,

with special emphasis on sulfur chemistry, and studied the retroaction of cloud processing over the microphysics in Bott50

(1999b). Meanwhile, von Glasow (2000) developed another chemistry module for MISTRA, with special emphasis on halogen

chemistry, and presented the results for cloud free (von Glasow et al., 2002a) and cloudy MBLs (von Glasow et al., 2002b).

Our paper develops the branch of MISTRA based on von Glasow (2000).

From the early 2000s to the mid 2010s, MISTRA was regularly improved with respect to the chemistry and the gas-particle

interactions, and was used in several studies, many of them with a focus on halogen chemistry. A major improvement was the55
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introduction of a module for aerosol nucleation which improved the iodine chemistry (Pechtl et al., 2006, 2007). The gas-phase

chemical mechanism was updated by Sommariva and von Glasow (2012).

Over the years, numerous modelling studies were performed using MISTRA (von Glasow and Crutzen, 2004; Pechtl and

von Glasow, 2007; Lawler et al., 2009; Jones et al., 2010; Joyce et al., 2014) including alternative model configurations where

the chemistry was computed in a zero-dimension (0D) atmospheric box mode (Buys et al., 2013), and a 0D chamber mode60

(Buxmann et al., 2015). MISTRA was also adapted to model specific environments such as volcanic plumes (Aiuppa et al.,

2007; Bobrowski et al., 2007, 2015) polar conditions (Piot and von Glasow, 2008, 2009; Buys et al., 2013), and was coupled

with an ocean model for studies over the Dead Sea (Smoydzin and von Glasow, 2007, 2009). A module for firn chemistry

was developed and coupled to MISTRA to specifically address the influence of chemical reactions occurring in the snowpack

on the oxidative capacity of the atmosphere in snow covered regions (Thomas et al., 2011, 2012). In this study, we present a65

selection of a few specific model settings reproducing previous work, to compare the original results with those obtained with

MISTRA-v9.0.

1.3 Recent developments and public release

The previous (non-public) version of MISTRA (v7.4.1) included the update of the gas-phase chemical mechanism by Som-

mariva and von Glasow (2012). A version 8 featuring an alternative chemical bin definition was partly developed but not70

completed, thus explaining the current version number. More information about past versions of MISTRA can be found in

the preface of the manual (https://github.com/Mistra-UEA/Mistra/blob/master/doc/manual_v9.0.pdf). Since 2015, significant

efforts have been devoted to release MISTRA as an open-source model, including major technical improvements. The orig-

inal code, written in Fortran77, has been updated to Fortran90 to ease future maintenance and developments. To improve

robustness and portability of the code, intensive controls throughout the code have been performed to track issues, fix bugs,75

and conform to strict coding rules (Metcalf et al., 2004). This was achieved with the help of the Fortran analyser Forcheck

(v14.6, no longer distributed), as well as standard code check options of compilers. Computing efficiency has also been

improved by factorising parts of code, and re-indexing arrays to respect column-major order in Fortran (i.e. innermost do-

loops should be leftmost indexes). The chemical "Kinetic PreProcessor" (KPP) has been updated to the latest version 2.2.3

(https://people.cs.vt.edu/~asandu/Software/Kpp/ last accessed 23 June 2021). Overall, several technical developments have80

been implemented to make the model as user-friendly as possible, and easier to adopt. The model code of MISTRA-v9.0 now

has improved readability, documentation, and is available under licence EUPL-v1.1 on https://github.com/Mistra-UEA.

2 Scientific description

2.1 Overview of the model components

MISTRA is a one-dimensional model of the MBL. Figure 1 shows schematically the most important processes that are included85

in the model for a cloudy MBL. The meteorological and microphysical part consists of the boundary layer model MISTRA
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described in detail by Bott et al. (1996) and Bott (1997). The most important processes are turbulent mixing, condensation,

evaporation and radiative heating. Apart from dynamics and thermodynamics, MISTRA includes a detailed microphysical

module that calculates particle growth explicitly and includes feedbacks between radiation and particles. The radiative-transfer

parameterisation is a standard two-stream code using 6 spectral bands for visible and 12 bands for infrared radiation (Loughlin90

et al., 1997). A chemistry module computes the atmospheric chemistry in the gas phase and in the particles. Gas phase chemistry

is active in all model layers; aerosol chemistry only in layers where the relative humidity has been greater than the deliquescence

humidity and not dropped below the crystallisation humidity (as discussed in Sect. 2.3.3). When a cloud forms, cloud droplet

chemistry is also active. Fluxes of sea salt aerosol and gases from the ocean are included. A nucleation module is also included

to account for new particles nucleated from the gas phase species.95

large scale 
subsidence radiation

inversion

ocean

FT

MBL

cloud

cloud-free

aerosol and 
cloud chemistry

aerosol chemistry

gas phase chemistry in all layers

turbulence

sea salt aerosol DMS

Figure 1. Schematic depiction of the most important processes included in the one-dimensional boundary layer model MISTRA. The free

troposphere and marine boundary layer are denoted as FT and MBL, respectively.

2.2 Meteorology, microphysics and thermodynamics

The model is one-dimensional, thus all variables are taken to be horizontally homogeneous. The set of prognostic variables

comprises the horizontal components of the wind speed u and v, the specific humidity q, and the potential temperature θ. The

Boussinesq approximation is applied and the air pressure is derived from the large scale hydrostatic equilibrium.

The set of governing equations for these prognostic variables is:100
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where fc is the Coriolis parameter, ug and vg are the geostrophic wind components, Km and Kh are the turbulent exchange105

coefficients for momentum and heat, L is the latent heat of condensation, C the condensation rate, ρ the air density, p the air

pressure, p0 the air pressure at the surface, Ra the specific gas constant for dry air, cp the specific heat of dry air at constant

pressure, and En the net radiative flux density, respectively. The first term on the right of each equation is the large scale

subsidence. Strictly, in a one-dimensional framework, the vertical velocity w should be zero everywhere, otherwise this implies

a downward mass transport (forw < 0) without lateral outflow at the bottom of the 1D model column as would occur in the real110

atmosphere. Therefore the mass balance is violated if subsidence is included. However, including subsidence is essential for

modelling stratiform cloud evolution (e.g. Driedonks and Duynkerke, 1989). In runs where only aerosol chemistry is studied,

i.e. in runs without clouds, the vertical velocity is set to zero (w = 0) in the model to avoid this problem, while for the cloud

runs subsidence is usually included.

Turbulence is treated with the level 2.5 model of Mellor and Yamada (1982) with the modifications described in Bott et al.115

(1996) and Bott (1997). The turbulent exchange coefficients Km and Kh are calculated via stability functions Sm/h and Gm/h,

where the subscript m stands for shear and h for buoyancy production. The prognostic equation for the turbulence kinetic

energy (TKE) e is:

∂e

∂t
=−w∂e

∂z
+

∂

∂z

(
Ke

∂e

∂z

)
+

(2e)3/2

l

(
SmGm +ShGh−

1
16.6

)
(5)

assuming a constant dissipation ratio (last term on the right). For more details and an explanation of the calculation of the120

mixing length l, the exchange coefficient Ke for the TKE, and the functions Sm/h and Gm/h see Mellor and Yamada (1982),

Bott et al. (1996), and Bott (1997).

The microphysics is treated using a joint two-dimensional particle size distribution function f(a,r) where a is the dry aerosol

radius the particles would have if no water is present in the particles, and r is the total particle radius. The two-dimensional

particle grid is divided into 70 logarithmically equidistant spaced dry aerosol classes. The minimum aerosol radius is generally125

set to 0.005 µm and the maximum radius 15 µm. Choosing these values allows to account for all accumulation mode particles

and most of the coarse particles. The minimum and maximum, as well as the number of bins for both dimensions of the particle

spectrum are adjustable. Each of the 70 dry aerosol classes is associated with 70 total particle radius classes, ranging from the
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Figure 2. The two-dimensional particle spectrum as function of the dry aerosol radius a and the total particle radius r. Added are the chemical

bins. I: sulfate aerosol bin, II: sea salt aerosol bin, III: sulfate cloud droplet bin, IV: sea salt droplet bin. For simplicity a 35 by 35 bin grid is

plotted, in the model 70 x 70 bins are used.

actual dry aerosol radius up to 60 µm (150 µm in cloud runs). See Figure 2 for a depiction of 2D particle grid. The prognostic

equation for f(a,r) is:130

∂f(a,r)
∂t

= −w∂f(a,r)
∂z

+
∂

∂z

(
Khρ

∂f(a,r)/ρ
∂z

)
− ∂

∂z

(
wtf(a,r)

)
− ∂

∂r

(
ṙf(a,r)

)
(6)

Again, subsidence is the first term on the right, followed by turbulent mixing, particle sedimentation (wt is the sedimenta-

tion velocity) and changes in f due to particle growth (ṙ = dr/dt). The 2D particle spectrum is initialised with distribution

depending on the type of aerosol chosen (see Bott, 1997, and ref. therein). Currently, particle distributions are provided for

typical marine, rural and urban air masses. Other distributions are available for specific studies, such as a polar distribution135

(see for instance Buys et al., 2013, and the corresponding example simulation). Particles are initialised with a water coating

according to the equilibrium radius of the dry nucleus at the ambient relative humidity. During the integration, particle growth

is calculated explicitly for each bin of the 2D particle spectrum using the growth equation after Davies (1985) Bott et al. (see

also 1996):

r
d r

d t
=

1
C1

[
C2

(
S∞
Sr

− 1
)
− Fd(a,r)−mw(a,r)cwdT/dt

4πr

]
(7)140

with the ambient supersaturation S∞ and the supersaturation at the droplet’s surface Sr according to the Köhler equation:
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Sr = exp
[
A

r
− Ba3

r3− a3

]
. (8)

where factors A and B account for the Kelvin effect and the solute effect, respectively.

The change in particle radius is not determined by changes in water vapour saturation alone, but also by the net radiative flux

at the particle’s surface Fd(a,r), that leads to temperature changes and therefore to condensation or evaporation. The constants145

C1 and C2 in equation (7) are:

C1 = ρwL+
ρwC2

D′vSrρs
C2 = k′T

[
L

RvT
− 1
]−1

, (9)

mw(a,r) is the liquid water mass of the particle, cw and ρw are the specific heat and density of water, ρs is the saturation

vapour density and Rv the specific gas constant for water vapour. The thermal conductivity k′ of moist air and the diffusivity

of water vapour D′v have been corrected for gas kinetic effects following Pruppacher and Klett (1997) (their equations 13.20150

and 13.14, respectively). For the accommodation coefficient of water (condensation coefficient), a value of αc = 0.036 is used

(see table 5.4 in Pruppacher and Klett (1997) for a compilation of measured αc values; in table 13.1 they use αc = 0.036 as

“best estimate”).

The condensation rate C in equation (4) is determined diagnostically from the particle growth equation (7).

Collision-coalescence processes are not included in the model because this leads to difficulties when redistributing the155

chemical species in the particles. A version of MISTRA including collision-coalescence without considering chemistry does

exist (Bott, 2000), and this limitation of MISTRA-v9.0 is discussed in Sect. 4.1.2.

For the calculation of the radiative fluxes, a δ-two stream approach is used (PIFM2 Zdunkowski et al., 1982; Loughlin et al.,

1997). The radiative fluxes are used for calculating heating rates and the effect of radiation on particle growth. The radiation

field is calculated with the aerosol/cloud particle data from the microphysical part of the model, so feedbacks between radiation160

and particle growth are fully implemented. The calculation of photolysis frequencies is described in Sect. 2.3.5.

2.3 Chemistry

The multiphase chemistry module comprises chemical reactions in the gas phase as well as in aerosol and cloud particles.

Transfer between gas and aqueous phase and surface reactions on particles are also included. The reaction set was based on

that of Sander and Crutzen (1996) plus some organic reactions from Lurmann et al. (1986). It has been updated and expanded165

by von Glasow and Crutzen (2004) to include a better description of the oxidation of DMS. Iodine chemistry was significantly

improved by Pechtl et al. (2006, 2007). Further updates to the chemical mechanism were done by Sommariva and von Glasow

(2012). The current mechanism is provided in the model manual (tables in Appendix D). In the following, the term aqueous

phase is used as generic term for sub-cloud aerosol, interstitial aerosol (i.e. non-activated aerosol particles in cloudy layers),

and cloud particles.170
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2.3.1 Gas phase and uptake

The prognostic equation for the concentration of a gas phase chemical species cg (in mol m−3) including subsidence, turbulent

exchange, deposition on the ocean surface, chemical production and destruction, emission and exchange with the aqueous

phases is:

∂cg
∂t

=−w∂cg
∂z

+
∂

∂z

(
Khρ

∂cg/ρ

∂z

)
−D+P −Scg +E−

nkc∑

i=1

[
kt,i

(
wl,icg−

ca,i

Kcc
h

)]
. (10)175

Again subsidence is the first term on the right and is included only in runs with clouds, otherwise w = 0. P and S are chemical

production and loss terms, respectively, Hcc
s is the dimensionless Henry constant obtained by Hcc

s =Hcp
s RT , where Hcp

s is in

mol m−3 Pa−1, wl,i is the dimensionless liquid water content (Vaq/Vair) of bin i (see explanation in Sect. 2.3.2). The emission

E as well as dry deposition D are effective only in the lowermost model layer. The calculation of the dry deposition velocity

vdry
g , that is needed for the determination of D, is explained at the end of this section. Note that both E and D are not inserted180

as fluxes in equation 10. Instead, the actual fluxes have to be divided by the thickness of the lowermost model layer to yield

D and E. The last term in equation (10) describes the transport from the gas phase into the aqueous phases according to the

formulation by Schwartz (1986) (see also Sander, 1999), nkc is the number of aqueous classes as explained below. For a single

particle, the mass transfer coefficient kt is defined as:

kt =
(
r2

3Dg
+

4r
3v̄α

)−1

(11)185

with the particle radius r, the mean molecular speed v̄ =
√

8RT/(Mπ) (M is the molar mass), the accommodation coefficient

α, and the gas phase diffusion coefficient Dg. Dg is approximated using the mean free path length λ as Dg = λv̄/3 (e.g.

Gombosi (1994), p. 125).

Chameides (1984) points out that the time needed to establish equilibrium between the gas and aqueous phase differs

greatly for individual species and that soluble species never reach equilibrium in cloud droplets, emphasizing the importance190

of describing phase transfer in the kinetic form that is used here. Audriffen et al. (1998) and Chaumerliac et al. (2000) point

out that for reactive species like H2O2, the use of the Henry equilibrium assumption instead of the detailed description of mass

transfer in the kinetic form that is used here would lead to significant errors in cloud droplet concentrations.

Ambient particle populations are never monodisperse, i.e. one has to account for particle with different radii. The mean

transfer coefficient kt for a particle population is given by the integral:195

kt =
4π
3wl

lgrmax∫

lgrmin

(
r2

3Dg
+

4r
3v̄α

)−1

r3
∂N

∂ lgr
d lgr, (12)

where the size distribution function ∂N/∂ lgr depends on the type of aerosol chosen.
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2.3.2 Aqueous phase

Aqueous chemistry is calculated in four bins (see Figure 2): deliquescent aerosol particles with a dry radius less than 0.5 µm

are included in the “sulfate aerosol” bin #1, whereas deliquescent particles with a dry aerosol radius greater than 0.5 µm are in200

the “sea salt aerosol” bin #2. Although the composition of the particles changes over time, the terms “sulfate” and “sea salt”

aerosol are used to describe the origin of the particles. The particles get internally mixed by exchange with the gas phase but, as

mentioned earlier, not by particle collisions. Depending on the type of aerosol relevant to the study, various initial compositions

of the aerosol bins may be chosen.

When the total particle radius exceeds the dry particle radius by a factor of 10, i.e. when the total particle volume is 1000205

times greater than the dry aerosol volume, the particle and its associated chemical species are moved to the corresponding sea

salt or sulfate-derived cloud particle class (#3 and #4, respectively). This threshold roughly coincides with the critical radius

derived from the Köhler equation (see Eq. 8). Conversely, when particles shrink, they are redistributed from the droplet to the

aerosol bins.

Therefore in a cloud-free layer there are two (nkc = 2) aqueous chemistry bins (sulfate and sea salt aerosol) and in a cloudy210

layer two cloud droplet (sulfate and sea salt derived) and two interstitial aerosol (sulfate and sea salt) bins, giving a total of four

(nkc = 4) aqueous chemistry bins. In each of these bins the following prognostic equation is solved for each chemical species

ca,i (in mol m−3), where the index i stands for the i-th aqueous bin:

∂ca,i

∂t
=−w∂ca,i

∂z
+

∂

∂z

(
Khρ

∂ca,i/ρ

∂z

)
−D+P −Lca,i +E+Ppc + kt,i

(
wl,icg−

ca,i

Kcc
h

)
(13)

The individual terms have similar meanings as in equation (10). The calculation of the sedimentation velocity vdry
a,i , that is215

needed for the calculation of the dry deposition D, is explained at the end of this section. The additional term Ppc accounts

for the transport of chemical species from the aerosol to the cloud droplet regimes and vice versa when droplets are formed or

when they evaporate, i.e. when particles move along the Köhler curve and get activated or unactivated. If only phase transfer

is considered, equation (13) reduces in steady state conditions (∂ca,i/∂t= 0) to the Henry equilibrium ca,i = wl,icgK
cc
h .

The concentration of H+ ions is calculated like any other species, i.e. no further assumptions are made. The charge balance220

is satisfied implicitly.

2.3.3 Hysteresis of particle activation

Cloud-processing, i.e. the change of aerosol mass due to uptake of gases, is included based on the model of Bott (1999b).

It has been observed in many laboratory experiments that soluble aerosol remains in a highly concentrated metastable

aqueous state when they are dried below their deliquescence humidity. Only when they reach the crystallisation humidity they225

can be regarded as “dry”. This effect is called the hysteresis effect. For NaCl the crystallisation point is about 45 % relative

humidity (Shaw and Rood (1990), Tang (1997), Pruppacher and Klett (1997), and Lee and Hsu (2000)).
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The crystallisation humidity for many mixed aerosol particles containing sulfate or nitrate is below 40 % relative humidity

(Seinfeld and Pandis (1998) and references therein), implying that aerosol particles that already had been involved in cloud

cycles will also be in an aqueous metastable state. Therefore most soluble aerosol particles will be present in the atmosphere230

as metastable aqueous particles below their deliquescence humidity. If the humidity drops below the crystallisation humidity,

these particles can only reactivate when the deliquescence humidity is reached.

2.3.4 Accounting for the chemical activity

Aerosol particles are usually highly concentrated solutions. Laboratory measurements show that NaCl molalities can be in

excess of 10 mol/kg (Tang, 1997) implying high ionic strengths. Therefore, it is necessary to account for deviations from ideal235

behaviour by including activity coefficients. The Pitzer formalism (Pitzer, 1991) is used to calculate the activity coefficients for

the actual composition of each aqueous size bin. The implementation by Luo (Luo et al. (1995) and pers. comm. 1999) is used

in MISTRA. It computes the activity of 7 main ions (H+, NH4
+, Na+, HSO4

−, SO4
2−, NO3

−, and Cl−). The activities of

15 other ions are scaled on the previous ones based on the results from Liang and Jacobson (1999) and Chameides and Stelson

(1992).240

2.3.5 Photolysis

Here an overview of the calculation of the photolysis rates is given, for a detailed description see the model manual, Chapter 5.

Photolysis is calculated online using the method of Landgraf and Crutzen (1998). The photolysis rate (or photo dissociation

coefficient) JX for a gas X can be calculated from the spectral actinic flux F (λ) via the integral:

JX =
∫

I

σX(λ)φX(λ)F (λ)dλ (14)245

where λ is the wavelength, σX the absorption cross section, φX the quantum yield and I the photochemically active spectral

interval. If the integral in equation (14) were approximated with a sum, the number of wavelength intervals needed for an

accurate approximation of the integral would be in the order of 100, which would lead to excessive computing times. Landgraf

and Crutzen (1998) suggested a method using only 8 spectral intervals approximating (14) by:

JX ≈
8∑

i=1

Ja
i,Xδi (15)250

where Ja
i,X is the photolysis rate for a purely absorbing atmosphere. The factor δi:

δi =
F (λi)
F a(λi)

(16)

describes the effect of scattering by air molecules, aerosol and cloud particles. F a(λi) is the actinic flux of a purely absorbing

atmosphere. The factor δi is calculated online for one wavelength for each interval, while the Ja
i,X are pre-calculated with a

fine spectral resolution and are approximated during runtime from lookup tables or by using polynomials. The advantage of255
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this procedure is that the fine absorption structures that are present in σX and φX are considered and only Rayleigh and cloud

scattering, included in F (λi), are treated with a coarse spectral resolution, which is justified.

For the calculation of the actinic fluxes, a four stream radiation code is used in addition to the two stream radiation code used

for the determination of the net radiative flux density En, because different spectral resolutions and accuracies are needed for

these different purposes. Based on the findings of Ruggaber et al. (1997), photolysis rates inside aqueous particles are increased260

by a factor of two to account for the actinic flux enhancement inside the particles due to multiple scattering.

2.3.6 Emission and deposition

The emission of gases is accounted for in the model, either with constant emission fluxes (for instance, for DMS and NH3

emitted from the sea surface), or with scenarios of emission variable in time (see for instance the example run based on the

study of Joyce et al. (2014)).265

Sea salt particles are emitted by bursting bubbles at the sea surface (e.g. Woodcock et al. (1953), Pruppacher and Klett

(1997)). The parameterisations of Monahan et al. (1986) and Smith et al. (1993a) are implemented to estimates the flux of

particles. The former is advised for small to moderate wind speeds, while the latter has to be used for high wind speeds.

The dry deposition velocity for gases vdry
g at the sea surface is calculated using the resistance model described by Wesely

(1989):270

vdry
g =

1
ra + rb + rc

. (17)

The aerodynamic resistance ra is calculated using:

ra =
1
κu∗

[
ln
(
z

z0

)
+Φs(z,LMO)

]
, (18)

with the friction velocity u∗, the von Kármán constant κ= 0.4, and the stability function Φs which depends on the Monin-

Obukhov length LMO, the roughness length z0 and a reference height z. The quasi-laminar layer resistance rb is parameterised275

for gases as:

rb =
5Sc2/3

u∗
. (19)

The Schmidt number Sc can be written as Sc= ν/Dg with the kinematic viscosity of air ν and the gas diffusion coefficientDg

as in Eq. 11. The surface resistance rc is calculated using the formula by Seinfeld and Pandis (1998) (their equation (19.30)):

rc =
2.54× 104

H∗Tu∗
, (20)280

with the effective Henry constant H∗.
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The dry deposition velocity of particles vdry
a,i is calculated after Seinfeld and Pandis (1998):

vdry
a,i =





1
ra+rb+rarbwt

+wt lowest model layer

wt rest of model domain.
(21)

where the quasi-laminar resistance rb is parameterised for particles as:

rb =
1

u∗(Sc−2/3 + 10−3/St)
. (22)285

The Stokes number St can be written as St= wtu
2
∗/(gν). The particle sedimentation velocity wt is calculated in the mi-

crophysical module assuming Stokes flow and taking into account the Cunningham slip flow correction for particles with

r < 10µm and after Beard for larger particles (see Pruppacher and Klett (1997)).

3 Technical description

3.1 Namelist settings290

3.1.1 General configuration switches

Table 1 presents the switches available to define the model configuration.

3.1.2 Initialisation and run settings

Initial atmospheric conditions are set in the namelist with the parameters presented in Table 2. Note that default values are295

set for all of them, however they should be systematically redefined by the user to match the simulated atmosphere. Standard

settings (timing and geography, run duration) are straightforward and are not detailed hereafter. In addition to these, surface

settings are detailed in Table 3.

3.1.3 Special runs setting300

When a specific run requires multiple adjustments in various parts of the code that were not already including namelist options,

a single general switch might be used instead of defining several new namelist entries for each parameterisation that require

special settings. An example of such global switch for special configuration is given with the lpJoyce14bc switch, used to

activate all relevant parts of code to reproduce the base case of Joyce et al. (2014) study (particle distribution and composition,

gas and particle emission scenario, special formulation of accommodation coefficient for N2O5, and of gas dry deposition,305

etc.). Similarly, switches lpBuys13_0D and lpBuxmann15alph are used to reproduce all relevant settings of the studies

of Buys et al. (2013, 0D case) and Buxmann et al. (2015, alpha case), respectively.
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Table 1. General configuration switches in MISTRA-v9.0

Switch name Description

rst defines if the model is restarted (true) or not (false, default setting).

mic this switch is used to turn on (true, default setting) or off (false) the 2D microphysical distribution

chem this switch is used to turn on (true, default setting) or off (false) the whole chemistry module. If turned off, only the

physics and microphysics is activated.

halo activate (default setting, true) or unactivate (false) the chemical reactions involving halogen species (Cl, Br, and I)

iod activate (default setting, true) or unactivate (false) the chemical reactions involving iodine species

nuc activate (true) or unactivate (false, default setting) the nucleation module.

Napari activate (true, default setting) or unactivate (false) the ternary H2SO4-H2O-NH3 nucleation

Lovejoy activate (true, default setting) or unactivate (false) the OIO homogeneous nucleation

ifeed nucleation feedback over background particles (0=no feedback, default setting; 1=with feedback, 2=partial feedback for

microphysics only, see Chapter 4 of the manual for a complete description of the nucleation module).

box use the box version (0D: true) or the whole 1D version (false, default setting) of the chemistry module.

BL_box define whether the box represents a single layer extracted from the 1D model (BL_box = false, default setting) or an

average of the whole boundary layer (BL_box = true).

nlevbox index of the designated layer if BL_box=false

z_box height of the boundary layer represented by the box if BL_box=true

chamber use the chamber version (true) or the whole 1D version (false, default setting) of the chemistry module.

binout request binary output files (true) or not (false, default setting).

netcdf request netCDF output files (true, default setting) or not (false).

3.2 How to run MISTRA

3.2.1 Get the code

The model is provided on GitHub on the following repository: https://github.com/Mistra-UEA/Mistra. It is released under the310

European Union Public Licence (EUPL) v1.1, which permits free commercial and private use and unrestricted distribution, but

requires that future developments of MISTRA are shared under the same licence. The version of KPP adapted for MISTRA is

provided along with the distribution, and is released under its own licence.

3.2.2 System requirements and installation

A Fortran compiler is mandatory to compile the model code. During the recent development stages, MISTRA has been regularly315

compiled using either GNU Fortran (gfortran) or Intel Fortran (ifort). New users are advised to choose one of those compilers.
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Table 2. Namelist settings for model initialisation of MISTRA-v9.0

Parameter name Unit Description

detamin m constant vertical grid spacing for the lowest 100 prognostic layers (default = 10 m).

etaw1 m height of the highest prognostic layer (50 layers with exponentially increasing thickness on top of the

100 layers with constant height). Default is 2000 m.

rnw0 µm minimum dry particle radius in the 2D particle spectrum.

rnw1 µm maximum dry particle radius in the 2D particle spectrum.

rw0 µm minimum total particle radius in the 2D particle spectrum.

rw1 µm maximum total particle radius in the 2D particle spectrum.

iaertyp – aerosol distribution: 1 for urban aerosol, 2 for rural aerosol, 3 for marine aerosol (default setting).

rp0 Pa pressure at ground/sea level.

zinv m inversion height. It must be lower than the highest prognostic layer.

dtinv K temperature jump at inversion level.

ug ms−1 geostrophic wind speed in x direction.

vg ms−1 geostrophic wind speed in y direction.

nuvProfOpt – option for vertical profile of geostrophic wind speed components. By default, the same values are applied

to the whole atmospheric column, apart from the 4 lowest layers where wind components are reduced

to 75 %, 50 %, 25 %, and 0 % at ground/sea level. Alternatively, using nuvProfOpt, other specific

profiles can be defined. Currently, only one alternative profile for geostrophic wind components is pro-

posed: if nuvProfOpt=3 is selected, the geostrophic wind is constant above the inversion level, and

linearly decreases in the whole MBL to reach zero at ground/sea level.

wmin ms−1 minimum subsidence speed (default is 0 ms−1).

wmax ms−1 maximum (in negative values) subsidence speed.

nwProfOpt – profile option for subsidence. See appendix 1 for a description.

xm1w kg kg−1 moisture content in the MBL

xm1i kg kg−1 moisture content in the FT (i.e. above inversion level).

rhMaxBL 1 maximum relative humidity (default=1) in the MBL (additional constrain to xm1w parameter).

rhMaxFT 1 maximum relative humidity in the FT (additional constrain to xm1i parameter).

cGasListFile names of user gas files for non radical species.

cRadListFile names of user gas files for radical species.

scaleO3_m D.U. ozone column, to scale the photolysis rates computed. It has no effect on the radiation calculation.

The implementation of KPP output files into MISTRA is done with bash and csh scripts, thus any change in the chemical

mechanism will require these shells.

Plotting scripts provided as example are written for ferret and NCL (NCL), but neither are necessary to run the model.

Only KPP needs to be installed on the user system and the instructions to do so are in the readme file of the KPP distribution320
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Table 3. Namelist settings for surface initialisation and parameterisation in MISTRA-v9.0

Parameter name Unit Description

isurf sets the type of surface, 0 for ocean or snow (default setting), 1 for layered soil.

tw K initial surface temperature.

ltwcst constant (true, default setting) or time-varying (false) surface temperature.

ntwopt scenario number for time varying surface temperature (if ltwcst = true).

jpAlbedoOpt surface albedo optiona: 0 for ocean surface (default setting: albedo = 0.05), 1 for snow surface (albedo = 0.8).

z0 m roughness length at the surface.

lpmona aerosol source after Monahan et al. 1986 (small to moderate wind speed)

lpsmith aerosol source after Smith et al. (1993b) (high wind speed)

a Currently, constant albedo is used over the 6 solar wavelength bands. Alternative choice with varying albedo could be implemented with this namelist

option.

package. Preprocessed files using the current chemical mechanism are provided in the distribution, so the installation of KPP

can be skipped until the user needs to modify the chemical mechanism.

3.2.3 Prepare the chemical mechanism files

This section can be skipped if no change is applied to the current chemistry mechanism. All files related to the chemical

mechanism are contained in the subdirectory ./src/mech The chemical mechanism, written with the formalism of KPP, is325

contained in two main files: master_gas.eqn for gas phase reactions, and master_aqueous.eqn for the liquid phase

mechanism. For convenience, all necessary steps to prepare the equation files for KPP, run KPP, and adapt the resulting output

from KPP for MISTRA have been set up in a Makefile, so that the user simply has to run make in the ./src/mech directory

to proceed. The resulting files are copied to the main source directory.

3.2.4 Compile the model330

In ./src, after ensuring that the Makefile refers to the correct Fortran compiler, and links to the appropriate netCDF libraries,

compile the model running make. The resulting executable file is mistra.

3.2.5 Set a namelist and initial chemical species concentration

As presented in details in Sect. 3.1, the namelist file allows the user to configure the model, by setting the main options and

initialisation values. Several namelists are provided in the distribution and can be used as starting points to define new ones335

corresponding to the user requirements. The set of initial concentration, and emission of gas phase species can be set in a tab-

15

https://doi.org/10.5194/gmd-2021-241
Preprint. Discussion started: 23 July 2021
c© Author(s) 2021. CC BY 4.0 License.



separated table, whose name has to be specified in the namelist. If no file is specified, the ./src/mech/gas_species.csv

file is used by default.

3.2.6 Set a param file and run

The param file allows the user to specify the namelist to use for the run, and to define the paths to the input, output and340

mechanism directories. For most cases, these directories will be the default ones (./input, ./output, and ./src/mech),

and only the namelist name should be specified. Several param files are provided as example. This script is in charge of creating

the subdirectory for output (which will be named the same as the param file name), and launch the model.

4 Consistency with previous versions

In this section, we present a series of example runs that have been performed to evaluate the model. All the examples pro-345

vided here reproduce the settings of previous studies carried out with previous versions of MISTRA. For that purpose, several

namelists have been introduced to hold all relevant parameters in order to reproduce the same simulation scenarios as in the

original publications. These namelists, as well as the scripts used to produce the plots presented here, are available in the

MISTRA repository.

4.1 Meteorology and microphysics350

4.1.1 Comparison with 1996 version: LWC, TKE and 2D spectrum

The first example focuses on the physical and microphysical aspects of the model. For this purpose, the chemistry is switched

off. The initialisation settings are identical to those of the original paper from Bott et al. (1996), and are provided in the namelist

BTZ96. Some model changes have been maintained for this comparison, even if this leads to differences to the original version.

For instance, the number of bins in the 2D particle spectrum is set to 70× 70 in MISTRA-v9.0 while it was of 40× 50 in the355

version of Bott et al. (1996). However, we adjusted the minimum and maximum particle radius values so that the resolution is

nearly identical in both versions.

This simulation reproduces conditions over the North Sea, for 3 simulated days (2 are shown, the first one is used as model

spin up) centered on the 22 July. The radiative code used by Bott et al. (1996) has been updated from PIFM1 to PIFM2 by

Loughlin et al. (1997), and the simulation settings were the same in both papers. For this reason, we compare figures from the360

study of Loughlin et al. (1997) with the current output of MISTRA.

Both Fig. 3 and Fig. 4 show very similar model output between the 1996 version of MISTRA and the current version. The

runs are similar, qualitatively and quantitatively (the maximum LWC is 6 % higher, the maximum TKE is 2.5 % higher in

MISTRA-v9.0 than in the 1996 version), without changing the findings and conclusions of the original study.

Bott et al. (1996) also shown the distribution of particles in the 2D grid, and we used the same graph format in Fig. 5.365

Qualitatively, the two simulations are similar. MISTRA-v9.0 exhibits more particle growth for the smallest dry radius bins;
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Figure 3. Contour plot of cloud water content (in g kg−1) as a function of height and simulation time. Top: study from Loughlin et al. (1997,

Fig. 1a). Bottom: MISTRA-v9.0. For both, the simulation settings are identical to those in Bott et al. (1996). Top panel reproduced with

permission from Loughlin et al. (1997, Fig. 1a). Copyright (1997) by John Wiley and Sons.
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Figure 4. Contour plot of turbulent kinetic energy (in m2 s−2 as a function of height and simulation time. The thick line shows the bottom

of cloud, defined as LWC dropping below 0.01 g kg−1. Top: study from Loughlin et al. (1997, Fig. 4a). Bottom: MISTRA-v9.0. For both,

the simulation settings are identical to those in Bott et al. (1996). Top panel reproduced with permission from Loughlin et al. (1997, Fig. 4a).

Copyright (1997) by John Wiley and Sons.
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Figure 5. Distribution of particles in the 2D particle grid and at different heights in the cloud. This graph is built identical to Bott et al. (1996,

Fig. 12): for each dry radius class (on x-axis), the total radius containing the maximum number of particles is marked with a filled circle;

total radii containing 50 % to 99 % of the maximum are marked with open circles, and total radii containing 1 % to 50 % of the maximum

are marked with plus signs. The 1:1 values (i.e. where total radius equal to dry radius) are represented with cross signs. The full line shows

the activation radius as accounted for in MISTRA. From top to bottom row is top (785 m), middle (605 m), and bottom (555 m) of the

cloud. Left column: version of 1996, panels are from Bott et al. (1996, Fig. 12). Right column: MISTRA-v9.0 Left column reproduced with

permission from Bott et al. (1996, Fig. 12). Copyright (1996) by John Wiley and Sons.
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Figure 6. One dimensional distribution of particle mass as a function of radius. Left: no-chem-MISTRA without collision coalescence.

Center: no-chem-MISTRA with collision-coalescence. Right: MISTRA-v9.0. Each panel shows the distribution in the top (black line),

middle (red line), and bottom of cloud (green line). The left and central panels are from Bott (2020, Fig. 2, published under CC BY 4.0

licence). The simulation settings were taken from Bott (2020).

however, this happens only for a minority of the particles (’plus’ signs in Fig. 5 denotes bins where particle concentration

is less than half the maximum particle concentration, for each dry radius class). As stated previously, the 1996 version of

MISTRA used by Bott et al. (1996) included the first version of the radiative code PIFM1, now updated to PIFM2. The

differences between both radiation schemes are likely the reason for this slightly different particle distributions observed for370

small dry particle radius. This figure also highlights the microphysics properties and dynamics of particle within the cloud,

with the activation of particles occurring when the supersaturation (not shown) is high enough, which is the case in the upper

part of the cloud. Conversely, in the middle and bottom parts of the cloud most of the particles are found below the critical

radius, even if some particles grow to above their respective critical radius, since the supersaturation is not high enough.

4.1.2 Impact of neglecting coalescence375

As pointed out in the general presentation of the model (Sect.2.2), the collision-coalescence process is not accounted for in

MISTRA-v9.0, which is a limitation of the model. The collision-coalescence process was implemented in a version of MISTRA

without chemistry (Bott, 2000), hereafter referred to as MISTRA-coal-nochem for brevity. In a recent study, Bott (2020) used

MISTRA-coal-nochem and compared the results with and without activating this process (Fig. 6). He showed that accounting

for the collision-coalescencce process leads to significant differences in the particle distribution, with a bimodal spectrum380

with particles larger than 40 µm when collision-coalescence is activated (Fig. 6b) Conversely, when particles grow solely by

diffusional uptake of water vapour, their size distribution remain in the 2 to 30 µm range (Fig. 6b). We defined a namelist,

named Bott2020, reproducing the same settings as in Bott (2020) to perform a further evaluation of MISTRA-v9.0 against

MISTRA-coal-nochem. The resulting one-dimensional particle distribution is presented in Fig. 6c, and shows similar results

as compared to MISTRA-coal-nochem.385
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Figure 7. Contour plot of humidity, potential temperature and temperature in the run based on Joyce et al. (2014). Left panel: original study

(Figure published under CC BY 3.0 licence). Right panel: MISTRA-v9.0.

Despite the important differences in particle distribution when collision-coalescence process is included, this limitation in

MISTRA-v9.0 is expected to have insignificant effect for simulations without clouds (non-activated particles only). Conversely,

cloudy runs should be restricted to conditions where collision-coalescence is less important, i.e. cases where no or little drizzle

formation would be expected. According to Duynkerke (1998), drizzle formation starts to be important when the cloud depth

is greater than 300 m. Future development plans with MISTRA-v9.0 include a re-evaluation of the feasibility of including the390

collision-coalescence process along with chemistry.

4.2 Chemistry in 1D simulations

A namelist reproducing the settings of the study by Joyce et al. (2014) is provided as namelist.Joyce14bc. In this study,

MISTRA was used to simulate an urban pollution plume from Fairbanks, Alaska. The model was thus used in an alternative

configuration, with surface covered by snow (with the relevant physical properties). An emission scenario of NOx was defined,395

and the evolution of gas and aqueous phase species was evaluated. In such configuration, the meteorological parameters have a

strong influence over the stability of the atmosphere, thus in turn over the vertical exchange of chemical species. In Fig. 7, key

meteorological variables are presented for both the original study and the new runs obtained with MISTRA-v9.0. As expected,

there is excellent agreement between both versions, which shows that the recent code developments did not alter the model

with regards to the plotted variables.400

Figures. 8 and 9 show the comparison of gas and particle phase chemical species, between the original study of Joyce et al.

(2014) and MISTRA-v9.0. Again, the plotted variables agree very well between both versions, with nearly identical results. In
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Figure 8. Contour plot of NOx and PM2.5 in the run based on Joyce et al. (2014) study. Left panel: original study (Figure published under

CC BY 3.0 licence). Right panel: MISTRA-v9.0. Scales are identical for both.

Fig. 9, the only exception is ammonium (NH4
+, bottom right panel on each side) whose maximum concentration is decreased

by 60 % in MISTRA-v9.0. The reason of this change was investigated, and we found that in the original run, the initialisation

of a variable in the routine computing the gas-particle exchange rates was missing. This is now corrected in MISTRA-v9.0,405

and explains the differences for NH4
+.
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Figure 9. Contour plot of height versus time for 4 gases and 2 aqueous phase species in the run based on Joyce et al. (2014). Left side:

original study (Figure published under CC BY 3.0 licence). Right side: MISTRA-v9.0. Scales are identical, except NH4
+ where the scale

for MISTRA-v9.0 is half that of the original paper.

4.3 Box and chamber model configurations

We present two additional configurations of MISTRA-v9.0, as an atmospheric box (0D) model (Buys et al., 2013), and in cham-

ber configuration following the study of Buxmann et al. (2015). In both cases, we set namelists (namelist.Buys13_0D

and namelist.Buxmann15_alpha, respectively) with the same settings as in the original publications.410

Figures 10 and 11 compare model output between each model version, and show that minor differences exist but are very

limited, and the results agree well qualitatively. This comes as a further demonstration of the good consistency of MISTRA-v9.0

with previous results.
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Figure 10. Gas phase concentration of Br2 and BrCl in a box model run based on the settings of Buys et al. (2013). Top row: original study

(Figure 3 published under CC BY 3.0 licence). Bottom row: MISTRA-v9.0. Scales are identical.

5 Conclusions

We have presented the current version of the 1D atmospheric chemistry model MISTRA-v9.0, released for the first time as an415

open-source, community model. We compared current output of a range of test cases against previous studies with identical

settings. Results obtained with MISTRA-v9.0 are consistent with the previous results even after 20 years of development.

MISTRA-v9.0 is a powerful tool for atmospheric chemistry research purposes, now easier to use, and free to use under EUPL-

v1.1 licence. Community input and development is welcome for MISTRA-v9.0.

Code availability. The code of the MISTRA-v9.0 model, the code of KPP-v2.2.3 tuned for MISTRA (referred to as v2.2.4), the additional420

example namelists and param files, and all NCL scripts developed to produce the Figures in this article are available on https://github.

com/Mistra-UEA/Mistra. The archives of code releases are also available on Zenodo: https://doi.org/10.5281/zenodo.5110025 and http:

//doi.org/10.5281/zenodo.5109913 for MISTRA-v9.0 and KPP-v2.2.4, respectively.
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Figure 11. Gas phase concentration in a chamber model run based on the study of Buxmann et al. (2015) (alpha wl sensitivity experiment).

Left side: original study. Right side: MISTRA-v9.0 with identical settings. Scales are identical. Left panel reproduced with permission from

Buxmann et al. (2015, Fig. 5). Copyright (2015) by CSIRO Publishing.
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Appendix A: List of symbols

a dry particle radius

A, B Kelvin effect, solute effect factors in the Köhler equation

ca,i aqueous phase concentration in bin i

cg gas phase concentration

cp specific heat of dry air at constant pressure

cw specific heat of water

C condensation rate

C1, C2 constants of Eq. (7)

D dry deposition term

D′v diffusivity of water vapour

Dg gas phase diffusion coefficient

e turbulence kinetic energy (TKE)

E emission of chemical species

En net radiative flux density

f(a,r) aerosol or droplet particle number concentration

fc Coriolis parameter

Fd(a,r) net radiative flux at the particle’s surface

Gh, Gm stability functions for buoyancy and shear production (see also Sh, Sm)

Hcc
s dimensionless Henry constant

JX photolysis rate

k′ thermal conductivity of moist air

kt mass transfer coefficient

Kh, Km, Ke turbulent exchange coefficient for heat, momentum, and turbulence kinetic energy

l mixing length

L latent heat of condensation

LMO Monin-Obukhov length

mw liquid water mass of the particle

p, p0 pressure, pressure at ground level

P chemical production term

q specific humidity

r total (i.e. humidified) particle radius

ṙ particle growth

ra aerodynamic resistance

26

https://doi.org/10.5194/gmd-2021-241
Preprint. Discussion started: 23 July 2021
c© Author(s) 2021. CC BY 4.0 License.



rb quasi-laminar resistance

rc surface resistance

R gas constant

Ra specific gas constant for dry air

Rv specific gas constant for water vapour

Sh, Sm stability functions for buoyancy and shear production (see also Gh, Gm)

S chemical loss term, or sink

Sc Schmidt number

Sr supersaturation at the droplet’s surface

S∞ ambient supersaturation

t time

T temperature

u, v west–east and north–south horizontal wind component

ug, vg west–east and north–south horizontal geostrophic wind component

u∗ friction velocity

v̄ mean molecular speed

vdry
g dry deposition velocity

w subsidence, i.e. vertical wind component

wl,i dimensionless liquid water content (Vaq/Vair) of bin i

wt sedimentation or terminal velocity

z vertical coordinate, positive upwards

z0 roughness length

α accommodation (or condensation) coefficient

αc accommodation (or condensation) coefficient of water

Θ potential temperature

κ von Kármán constant

λ mean free path length

ν kinematic viscosity of air

ρ air density

ρs saturation water vapour density

ρw water density

σX absorption cross section of species X

φX quantum yield of species X

Φs stability function for aerodynamic resistance calculation
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Appendix B: List of abbreviations

ESM Earth System Model

EUPL European Union Public Licence

FT free troposphere

KPP the Kinetic PreProcessor

MBL marine boundary layer

TKE turbulence kinetic energy

Appendix C: Subsidence profiles

Three subsidence profiles are currently implemented in MISTRA-v9.0.

– Option 1 follows the hyperbolic expression of Bott et al. (1996, Eq. (5)).430

– Option 2 linearly decreases from wmin at ground level to wmax at height = etaw1.

– Option 3 linearly decreases from wmin at ground level to wmax at height = zinv.

Figure C1. Vertical profiles of subsidence, computed for wmin = 0 cm s−1, wmax =−0.5cm s−1, and zinv = 700 m.
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