
1

Enhancing the accessibility of unified modeling systems: GFDL
SHiELD v2021b in a container
Kai-Yuan Cheng1,2, Lucas M. Harris2, Yong Qiang Sun1,2,3
1Cooperative Institute for Modeling the Earth System, Program in Oceanic and Atmospheric Sciences, Princeton University,
Princeton, NJ, USA 5
2NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
3Now at Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, USA

Correspondence to: Kai-Yuan Cheng (kai-yaun.cheng@noaa.gov)

Abstract. Container technology provides a pathway to facilitate easy access to unified modeling systems and opens

opportunities for collaborative model development and interactive learning. In this paper, we present the implementation of 10

software containers for the System for High‐resolution prediction on Earth‐to‐Local Domains (SHiELD), a unified

atmospheric model for weather-to-seasonal prediction. The containerized SHiELD is cross-platform and easy to install.

Flexibility of the containerized SHiELD is demonstrated as it can be configured as a global, a global-nest, and a regional

model. Bitwise reproducibility is achieved on various x86 systems tested in this study. Performance and scalability of the

containerized SHiELD are evaluated and discussed. 15

1 Introduction

Unified modeling systems have shown advantages as a single framework supporting versatile applications across a wide

range of spatial and temporal scales. Such a system helps accelerate model development as it provides an ideal platform for

modelers/scientists to gather together and combine efforts to improve the model. The Unified Model of the U.K. Met Office,

the most notable unified modeling system, adopted the unified modeling approach and demonstrated its strength in terms of 20

integration and collaboration (Walters et al., 2011). In addition to facilitating collaboration, the system opens the possibility

of developing one model with multiple uses. Previous studies (e.g., Brown et al., 2012 and Harris et al., 2020) have shown

that it is possible to develop multiple applications at the same time for multiple purposes, such as conducting severe weather

forecast and climate prediction simultaneously. Finally, the unified modeling system allows users to apply lessons learned

from one application to another application. For example, Brown et al. (2012) showed that the error growth calculated based 25

on short-range predictions can be used to evaluate the performance of climate predictions. Likewise, climatological signals

deduced from the model provide valuable information for the development of physics parameterizations that can be used in

short-range weather forecasts.

 Lowering the barriers of entry into unified modeling systems will open many opportunities for the earth science

community. To that end, the Unified Forecast System has been making consistent steps to make the system accessible and 30

encourage discussion and collaborative research, one example being the Graduate Student Test

2

(https://ufscommunity.org/science/gst/, last access: 13 July25 November 2021). As discussed, a unified infrastructure

provides a bedrock for cooperation. Assuring easy access to the infrastructure will help achieve cooperation. In an

educational setting, Hacker et al. (2017) has shown that better access to a mesoscale model benefits classroom learning.

Better access to unified modeling systems can greatly improve learning experience. For example, a highly-configurable 35

unified model can be used as a global model to demonstrate the concept of climate sensitivity, as a regional model to learn

the impact of topography on the track of a hurricane, or, as a tool to study multiscale interactions.

 A software container provides a pathway to enhance the accessibility of geoscientific models. A software container, or

simply container, is a stand-alone, executable software artifact that is designed to deploy applications with portability and

performance. There are a few geoscientific models being implemented in software containers. Hacker et al. (2017) 40

containerized the Weather Research and Forecasting model (WRF), a regional atmospheric model. Melton et al. (2020)

containerized the Canadian Land Surface Scheme including Biogeochemical Cycles (CLASSIC). Jung et al. (2021)

containerized the regional ocean-modeling system (ROMS). However, due to the fact that unified modeling systems are

complicated and traditionally developed on specialized machines (e.g., high-performance computers), there appears to be no

unified modeling system being containerized yet. This paper attempts to take advantage of container technology and make 45

unified modeling systems approachable.

 The purpose of this paper is to describe the implementation of software containers for the System for High-resolution

prediction on Earth-to-Local Domains (SHiELD), a compact unified atmospheric model developed at the Geophysical Fluid

Dynamics Laboratory (GFDL). Simulations of Hurricane Laura, with a regional and a global-nest configuration, are

conducted on different computer systems to demonstrate the flexibility, portability, and easy use of the containerized 50

SHiELD. Performance and scalability of the containerized SHiELD are examined and discussed. Future work and potential

applications are discussed.

2 SHiELD in a container

2.1 SHiELD

The System for High-resolution prediction on Earth-to-Local Domains (SHiELD), a unified atmospheric model developed at 55

the GFDL, has demonstrated its capability for versatile applications on a wide range of temporal and spatial scales, including

severe weather nowcasting, hurricane forecasting, and subseasonal-to-seasonal prediction (Harris et al., 2020). SHiELD is

powered by the finite-volume cubed-sphere dynamical core (FV3; Putman and Lin, 2007; Harris and Lin, 2013) and is

equipped with a modified version of the Global Forecast System (GFS) physics suite developed by the Environmental

Modeling Center of the National Centers for Environmental Prediction. As a unified modeling system, SHiELD has been 60

used for forecast, research, and model development: all in a single framework (Harris et al., 2020). For example, SHiELD,

featuring variable-resolution, has demonstrated excellence in tropical cyclone forecasting (Hazelton et al., 2018). Another

example is that SHiELD was used to develop a time-split microphysics parameterization for multiple applications, such as

https://ufscommunity.org/science/gst/

3

convective scale weather prediction and global scale cloud-radiative forcing research (Harris et al., 2020). Version 2021b of

the SHiELD is used in this study and the model source code can be found in Cheng et al. (2021). 65

2.2 Containerization

Containerization refers to packaging one or more applications (such as a unified atmospheric model) into a container in a

portable manner. A container packages not only applications but all their dependencies, such as runtime environment and

libraries, so the applications can run directly from one computing system to another. Unlike a virtual machine that emulates a

whole computing system for use at the hardware layer, a container uses the kernel of the host machine and packages only the 70

necessary components required to run applications. As a result, a container is lightweight and fast. , compared to a virtual

machine.

 Advantages of the containerization of geoscience models are discussed in many papers (e.g., Hacker et al., 2017 and

Melton et al., 2020) and will be shown throughout this paper, including easy installation, high portability, and perfect

reproducibility. We want to add one additional advantage that motivates innovation and spurs model development. It is not 75

uncommon for developers to come up with innovative schemes that are not ready for publication but ready for technology

transfer and/or public use. In this situation, developers may want to take advantage of container technology to package their

innovations as a black box that users can use but cannot see through. Unlike source code sharing which reveals everything,

software containers may be used to protect developers’ intellectual properties without revealing their full content while being

used to share with others. 80

 Technically speaking, a container does not directly package applications and dependencies. It is the container image, or

simply image, that does the packaging. An image is an immutable file that contains prebuilt applications and their

dependencies needed to run the applications. An image is used by a container to construct a runtime environment and then

run applications.

 For the containerization of SHiELD, we use Docker (https://www.docker.com/, last access: 13 July25 November 2021) as 85

a primary tool and Singularity (https://sylabs.io/, last access: 13 July25 November 2021) as a secondary. Docker is a leading

containerization platform that sets the industry standard for containers. However, Docker containerization requires superuser

access, which is a concern for multi-user systems like supercomputers. As a result, most supercomputers do not allow

Docker to be installed. Singularity, on the other hand, is designed to address the security concern. Singularity is originally

designed for supercomputers (Kurtzer et al., 2017) and architected specifically for large-scale and performance-oriented 90

applications. Both Docker and Singularity are available for freecan be used for free. At the time of this writing (25

November 2021), Docker is free for personal or academic use. Singularity provides a free community edition under a

Berkeley Software Distribution (BSD) license. Other containerization platforms (e.g., Podman, https://podman.io/, last

access: 25 November 2021) may also be used to containerize SHiELD.

 The procedure of containerizing SHiELD is described as follows. First, we create a Docker image with SHiELD and its 95

dependencies. In the spirit of open collaboration, the SHiELD image does not contain any proprietary software. SHiELD and

https://www.docker.com/
https://sylabs.io/
https://podman.io/

4

all its dependencies are open-source. SHiELD is built using open-source compilers: GNU Compiler Collection (GCC) and

GFortran. Second, we create a SHiELD container by containerizing the SHiELD image on any supported system. As of

JulyNovember 2021, Docker supports three major operating systems (OS): Windows, macOS, and Linux. The SHiELD

image can also be used in cloud computing. Major cloud computing platforms (e.g., Amazon Web Services and Microsoft 100

Azure) can directly deploy Docker containers. On supercomputers where Docker is generally not available, the SHiELD

image can be easily converted to a Singularity container image and seamlessly executed. One thing to note is that the

container made by either Singularity or Docker gives identical results, which will be discussed in the next section.

3 Running containerized SHiELD as a regional and a global-nest model

For the purpose of demonstration and experimentation, we conducted 24-hour simulations of Hurricane Laura initialized 105

from 20210826122020082612 UTC. Two different domain configurations, as illustrated in Fig. 1, are used to demonstrate

the flexibility of SHiELD, showing that it can be used for a variety of applications at different spatial and temporal scales.

The first configuration is a regional domain centered over the Gulf Coast of the United States. The domain size is 108×108

grid cells with a grid-cell width of approximately 35.5 km. Initial conditions and a time-series of boundary conditions for the

regional configuration are generated from the U.S. operational Global Forecast System (GFS) analysis. 110

 The second configuration is a global domain embedding a locally-refined nest domain centered over the Gulf Coast of the

United States. The global domain is a cubed-sphere with 96×96 grid cells on each of the six tiles, which yields an average

grid-cell width of approximately 100 km. The nest domain shares identical size and position with the regional domain. This

global-nest configuration requires only initial conditions from the GFS analysis and enables two-way interaction between the

global and the nest domains. The details of the two-way nesting method can be found in Harris and Lin (2013). 115

5

Figure 1: Two grid configurations. (a) A 37.5 km regional grid (red mesh). (b) A 100 km global grid (black mesh) with a nest grid
(red mesh) that is refined by a factor of 3; the position and the grid size of the nest grid are the same as those of the regional grid.
Each grid box represents 12×12 actual grid boxes. Black heavy lines are the cubed-sphere edges and red heavy lines are the
boundaries of the regional/nest domain. 120

 Both configurations use identical 63 Lagrangian vertical levels, the same as those used in GFS version 15. The vertical

resolution is finest at the bottom level and gradually expands with height, as shown in Fig. 2. As for timestep, both regional

and global-nest runs use the same time step (450 s) for physical parameterization. The regional run uses an acoustic timestep

of 75 s. For the global-nest run, the acoustic time step is 150 s and 75 s in the global and the nest grid, respectively. The

resolution, timesteps, and physical parameterizations of the regional and the global-nest run are summarized in Table 1. 125

6

Figure 2: Vertical levels used in simulations. Layer thickness in pressure Δp/height Δz as a function of pressure p/height z for a
U.S. standard atmospheric with a surface pressure of 1000 hPa.

 130

Configuration Regional run Global-nest run

Resolution 37.5 km 100 km/37.5 km

Acoustic timestep 75 s 150 s/75 s

Physics timestep 450 s

Microphysics In-line GFDL microphysics (Harris et al., 2020)

PBL scheme Yonsei University scheme (Hong, 2010)

Convection scheme Scale-aware simplified Arakawa‐Schubert (Han et al., 2017)

Ocean surface Mixed-layer ocean (Pollard et al., 1973)

Table 1: Model configurations of the regional and the global-nest run. For the global-nest run, resolution and acoustic timestep are
shown in a format of global/nest.

7

 The containerized SHiELD has been tested on a variety of different x86 systems. Here we choose three machines – a 135

laptop, a desktop, and a supercomputer – to demonstrate the portability, reproducibility, and performance of the

containerized SHiELD. The three machines are chosen for their different OSs on different hardware, which are built for

different purposes, as listed in Table 2. They should be representative of computers used in most situations, including

research, operation, and education.

 140

Machine OS CPU Total cores

Laptop Windows 10 Intel Core i7-8550U 4

Desktop Windows 10 AMD Ryzen 9 3950X 16

Supercomputer CentOS 7.6 Intel Xeon Gold 6148 72000

Table 2: The operating system (OS), the central processing unit (CPU), and the total number of cores on the three representative
machines.

 All machines use the same Docker image to execute the containerized SHiELD for both regional and global-nest

simulations. For the supercomputer, the Docker image is converted to a Singularity image for containerization, as described

in Sec. 2.2. All machines use the same initial conditions and model configurations (and boundary conditions if the simulation 145

is a regional run) to run a 24-hour simulation of Hurricane Laura. In either the regional or the global-nest case, all three

machines finish the simulations successfully and give bitwise identical output even though they use different OS and

hardware. The containerized SHiELD has demonstrated its high portability and perfect reproducibility on any computing

system that supports containerizing Docker images.

4 Result and Discussion 150

4.1 Hurricane Laura hindcast

Hurricane Laura was the first major hurricane (Category 4) that made landfall in the record-breaking 2020 Atlantic hurricane

season. Originating from a large tropical wave off the west African coast on August 16, Laura became a tropical depression

on August 20 and made landfall in the U.S. state of Louisiana early on August 27 after a period of rapid intensification.

 Fig. 3 shows the simulated outgoing longwave radiation with both the regional and the global-nest configuration of 155

SHiELD, together with a satellite image of Laura for simple verification. At 12 hours into the integration, both simulations

capture the location and general structure of Laura well, even at a grid spacing of ~36 km. Laura is moving north toward

coastline. From the spiral rainbands, the size and the shape of the simulated Laura agree very well with the observation. Both

configurations give realistic simulations, demonstrating SHiELD as a truly unified modeling system. Although requiring

higher computational resources, one advantage of the global-nest run is that it allows two-way interaction between the nest 160

domain and the large-scale circulation in the global domain. Another advantage is that the global-nest run does not need a

8

time-series of boundary conditions, which could potentially introduce significant errors for a regional model, as discussed in

Warner et al. (1997). Comparison of the results suggests that this two-way interaction contributes to slightly faster

movement of the storm and brings it closer to the observation. Why Laura moves faster in the global-nest run is beyond the

scope of this work. At a relatively coarse resolution for hurricane simulation, this computationally inexpensive case study 165

serves to illustrate the capability of the containerized SHiELD.

Figure 3: Hurricane Laura simulations versus satellite imagery. Panel a and b show outgoing longwave radiation simulated by
SHiELD as a region and a global-nest model, respectively. Both are a snapshot at 2020082700 UTC, 12 hours into the simulation.
Dot box represents the boundaries of the nest domain. Panel c shows the Geostationary Operational Environmental Satellite-16 170
true color and night infrared imagery 10 minutes after 2020082700 UTC.

9

4.2 Performance and scalability

Table 3 shows the wall-clock timings of the containerized SHiELD for the Hurricane Laura simulations on the three

machines listed in Table 2 with the laptop as the baseline. In the regional case, each machine runs a 24-hour simulation using 175

2 Message Passing Interface (MPI) processes. The results reflect the per-core performance on each system with the desktop

being the fastest, followed by the supercomputer and the laptop. In the global-nest case, each machine runs a 24-hour

simulation using 8 MPI processes, 6 more than used in the regional case. The result shows the same ranking: 1) desktop, 2)

supercomputer, and 3) laptop. However, this time the laptop runs over 100% more slowly than the other two systems. This

considerable slowdown is because the 8 MPI processes are oversubscribing only 4 cores (see Table 1). For the desktop and 180

the supercomputer, both systems have more cores than required and therefore perform at comparable speeds, as it was with

the regional case.

Machine Regional run Global-nest run

 Wall time [s] Cost relative to Laptop Wall time [s] Cost relative to Laptop

Laptop 739.80 1.00 1889.66 1.00

Desktop 526.80 0.71 778.81 0.41

Supercomputer 598.98 0.81 808.05 0.43

Table 3: Wall time of the regional and the global-nest run for a 24-hour simulation of Hurricane Laura on different machines. The
regional run uses 2 MPI (Message Passing Interface) processes and the global-nest run uses 8 MPI processes. Docker is used on all 185
machines except for the supercomputer where Singularity is used.

 We have shown that the containerized SHiELD delivers reasonable performance that reflects the power of the hardware,

regardless of the type of OS on the host machine. The next question to answer is how well the containerized SHiELD scales.

 For scalability purposes, the 24-hour global-nest case discussed previously will be executed with differing numbers of

cores on the supercomputer and compared against SHiELD running natively (i.e., without containerization). Fig. 4 shows the 190

wall-clock timings for runs from 8 to 64 cores. Both the container and the native SHiELD give reasonable scalability.

Interestingly, the containerized SHiELD runs about 10% faster than the native one at the same number of cores when using

equal to or less than 32 cores. It is unclear why the containerized SHiELD outperforms the native one in some situations in

spite of the overhead introduced by the software container, albeit tiny. It could be due to the difference in the runtime

environment between the Docker image and the supercomputer, which makes the executable in the Docker image more 195

efficient. Regardless, this result shows that the use of a software container does not appreciably impact application

performance, which is consistent with the findings of Felter et al. (2015) where the Docker container introduces “negligible

overhead for CPU and memory performance”.

 When using 64 cores, the situation is the opposite: the native SHiELD outperforms the containerized version. Since each

node on the supercomputer has 40 cores, this result could imply that the scalability of the container degrades across nodes. 200

10

However, this is not the only explanation as the global-nest configurations can suffer from inherent load-imbalance. The

global and nest domains run concurrently, rather than sequentially. The concurrent approach greatly improves computational

efficiency, as discussed in Harris and Lin (2013), but it is not always possible to exactly synchronize the time per integration

step on the global and nest domains to avoid waits for one side or the other at the two-way update communication points.

The current configuration uses a ratio of 3 to 1 to assign the number of MPI processes to the global and the nest domains. 205

This configuration may not be optimal for the load balancing and therefore may not be suitable for scalability tests. Also, the

problem size of the global-nest run may be too small to reveal the true scalability SHiELD can deliver.

11

12

Figure 4: Performance and scalability of the containerized SHiELD, (with Singularity), compared to those of the native SHiELD.
Results are from 24-hour global-nest simulations.

4.3 Scalability issue

To better evaluate the scalability of containerized SHiELD, 12-hour global simulations at 13-km horizontal resolution were 215

conducted. Unlike a global-nest run, the scalability test for a global run is straightforward in terms of MPI configurations.

The global domain (cubed-sphere grid) is engineered to achieve excellent scalability, as demonstrated during the dynamical

core evaluation of the Next‐Generation Global Prediction System (

https://www.weather.gov/sti/stimodeling_nggps_implementation_atmdynamics, last access: 13 July25 November 2021.).).

The global run conducted here uses configurations similar to those used by the flagship 13-km SHiELD, the details of which 220

can be found in Harris et al. (2020) or Zhou et al. (2019). Fig. 5a shows the data for runs from 96 to 3072 cores. The native

https://www.weather.gov/sti/stimodeling_nggps_implementation_atmdynamics

13

SHiELD gives good scalability, with speed roughly doubling as the number of cores used doubles. The containerized

SHiELD, on the other hand, cannot scale beyond 768 cores, due to a large degradation in the MPI communication (Fig. 5b).

When the number of cores used is equal to or less than 768 cores, the containerized SHiELD outperforms the native one,

which is consistent with the result seen in the global-nest case (Fig. 4). However, the performance gap decreases with 225

increasing number of cores. This is due to a disproportionate increase in the MPI communication burden. As shown in Fig.

5b, the MPI communication efficiency degrades with increasing numbers of cores for both containerized and native

SHiELD. However, the degradation grows more quickly with the container. In the container case, the degradation becomes

even worse when the simulation uses more than 768 cores. This result, combined with the results previously presented for

the global-nest run, suggests the containerized SHiELD does scale reasonably well up to a modest number of cores, but the 230

extreme scalability is significantly worse than that of the native SHiELD with an eventual plateau in performance. The

modest core number seems proportional to the size of the problem, but an exact relationship is still unclear.

Figure 5: (a) Performance and scalability of the containerized SHiELD, the native SHiELD, and the containerized SHiELD built 235
with bind model; (b) Ratio of the MPI communication of the Singularity container remains challenging when an application uses a
large number of cores. Note that,to the total computational cost in the case of the containerized SHiELD, the native SHiELD, and
the containerized SHiELD with bind model. Results are from 12-hour global simulations at a resolution of ~13 km. For both
containers, Singularity is used.

 It is not uncommon for a model to scale well in one environment but scale poorly in another environment even though the 240

model is free of bugs. In addition to the “hybrid model” adopted in this study,model itself, the performance of MPI

communication also depends on external hardware and/or software, as can be seen in literatures. Montes et al. (2020)

compared the performance of a climate model on a cloud computing service with that on a computing infrastructure on

14

premises. The cloud computing gave a better performance than the on-premises machine for a small number of MPI tasks.

However, the on-premises machine performed better beyond approximately 100 MPI tasks. Zhuang et al. (2020) showed the 245

impact of network software on the performance of the Goddard Earth Observing System chemical transport model (GEOS‐

Chem). The authors compared the performance of two different communication protocols, Elastic Fabric Adapter (EFA) vs.

Transmission Control Protocol (TCP), on the same hardware. They found that EFA and TCP performed comparably when

less than 577 cores were used in the model. Beyond 577 cores, the EFA continued to scale while the TCP failed to scale.

 Note that the “bind model” provided by Singularity is likelycan be used to alleviatesolve the scalability issue 250

(https://sylabs.io/guides/3.7/user-guide/mpi.html, last access: 13 July25 November 2021).), as can also be seen in Fig 5. The

bind model uses the MPI implementation on the host to build and run a container, which should makemakes the container

fully compatible with the high-performance interconnects on the host. If the containerized SHiELD is built usingHowever,

the outstanding scalability archived by the bind model, it may not show the scalability limit as seen in Fig. 4 and 5. However,

the comes with two caveats. First, the configuration of the bind model can beis likely more complicated than the native 255

SHiELD installation, as users are required to install all the libraries needed by the pre-built SHiELD image, with the correct

version and dependencies, on the host and to bind them to the container explicitly. AlsoThis complicated installation process

deviates from the idea that container technology simplifies the deployment of applications. Second, reproducibility is not

guaranteed with the bind model since the runtime environment of the bind model is dependent on the host and is not isolated

as in the case of the hybrid model.original containerization of SHiELD. For large-scale applications in which scalability is 260

more important than portability, reproducibility, or convenience, we recommend either the bind model or a native

installation of SHiELD built from source.

Figure 5: (a) Performance and scalability of the containerized and the native SHiELD; (b) Ratio of the MPI communication to the
total computational cost in the case of the containerized and the native SHiELD. Results are from 12-hour global simulations at a 265
resolution of ~13 km.

https://sylabs.io/guides/3.7/user-guide/mpi.html

15

5 Conclusion and Future work

We have shown that software containers are a promising tool to enhance the accessibility of unified modeling systems,

which opens possibilities for research, education, and operation. We documented the implementation of software containers 270

for SHiELD, a compact unified modeling system developed at GFDL. To assure wide access and encourage collaboration,

the containerization of SHiELD was made without any proprietary software. Furthermore, the containerization described in

this study should be directly applicable to all unified modeling systems other than the one used here. We believe that making

unified modeling systems approachable will greatly accelerate model development.

 The containerized SHiELD has demonstrated its high portability without compromise on functionality. It is fully 275

functional as the native one and can be easily deployed onto any computing system, as long as the system supports

containerization of Docker images. Simulations of Hurricane Laura with a regional and a global-nest configuration were

conducted on a variety of different x86 systems to show the flexibility of the containerized SHiELD. In either configuration,

bit-for-bit reproducibility is achieved regardless of differences in computing systems. The high portability and perfect

reproducibility brought by software containers enable reproducible research and analysis. 280

 We demonstrated that the SHiELD container can be deployed on supercomputers across nodes using Singularity. The

container scales well up to a certain number of cores, depending on the size of the simulations. Beyond that certain number

of cores, the MPI communication burden grows quickly and degrades scalability drastically. The scalability issue of the

container couldcan be solved by utilizing the bind model of Singularity. However, the bind model is nearly as difficult to

configure as the native SHiELD and does not guarantee reproducible results. AEither a native SHiELD installation ofor the 285

SHiELD containerized with bind model is recommended if scalability is critical and portability is less important.

 The containerized SHiELD is designed to be community-oriented. We will continue to bring new features to the SHiELD

container using developments made within the experimental SHiELD. Efforts are being made to improve physics-dynamics

coupling by taking advantage of the conservation laws upon which the FV3 dynamical core is built. New capabilities (for

example, multiple and telescoping nest domains) are also being developed or planned. Meanwhile, we are working on 290

enabling idealized experiments, such as the Held-Suarez test (Held and Suarez, 1994) and supercell simulations. We believe

that these new capabilities will be useful for research or classroom learning.

Code and data availability

The containerized SHiELD developed in this study is available at https://zenodo.org/record/5090895 (Cheng et al., 2021). It

is also available as a Docker image at https://hub.docker.com/r/gfdlfv3/shield tag gmd2021. The case configurations and 295

associated initial/boundary conditions are available at https://zenodo.org/record/5090124 (Cheng, 2021b). The Laura

https://zenodo.org/record/5090895
https://hub.docker.com/r/gfdlfv3/shield%20tag%20gmd2021
https://zenodo.org/record/5090124

16

simulations are available at https://zenodo.org/record/5090126 (Cheng, 2021a). The Geostationary Operational

Environmental Satellite-16 data is available at the NOAA Comprehensive Large Array-data Stewardship System (CLASS;

https://www.avl.class.noaa.gov/, last access: 13 July25 November 2021).

Author contribution 300

KYC and LMH established the scientific scope of this study. KYC developed the containerization of SHiELD. KYC

designed the experiments, conducted the simulations, and analyzed the model performance and scalability. YQS carried out

the verification and analysis of Hurricane Laura simulations. KYC and YQS drafted the paper. All authors contributed to the

writing of the finalized paper.

Competing interests 305

The authors declare that they have no conflict of interest.

Acknowledgments

We thank Linjiong Zhou for helping plot Fig. 2; Jeremy McGibbon and Spencer Clark for providing introduction of Docker

and container technology; Rusty Benson and, Thomas Robinson, and two anonymous reviewers for providing reviews of this

paper. This study is supported under awards NA18OAR4320123, NA19OAR0220145, and NA19OAR0220146 from the 310

National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements, findings, conclusions,

and recommendations are those of the authors and do not necessarily reflect the views of the National Oceanic and

Atmospheric Administration, or the U.S. Department of Commerce.

References

Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A.: Unified Modeling and Prediction of Weather and 315

Climate: A 25-Year Journey, Bull. Am. Meteorol. Soc., 93, 1865–1877, https://doi.org/10.1175/BAMS-D-12-00018.1, 2012.

Cheng, K.-Y.: Data of Hurricane Laura simulations - for submission to GMD, https://doi.org/10.5281/zenodo.5090126,

2021a.

Cheng, K.-Y.: SHiELD test cases - for submission to GMD, https://doi.org/10.5281/zenodo.5090124, 2021b.

Cheng, K.-Y., Harris, L. M., Zhou, L., Lin, S.-J., Mouallem, J., Benson, R., Clark, S., Gao, K., Chen, X., Chen, J.-H., Sun, 320

Y. Q., Tong, M., Xiang, B., Chilutti, L., Morin, M., Bender, M., Elbert, O. D., Kaltenbaugh, A., Marchok, T., Huff, J. J., and

Stern, W.: SHiELD v2021b in a container, Zenodo, https://doi.org/10.5281/zenodo.5090895, 2021.

https://zenodo.org/record/5090126
https://www.avl.class.noaa.gov/

17

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J.: An updated performance comparison of virtual machines and Linux

containers, in: 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2015

IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 171–172, 325

https://doi.org/10.1109/ISPASS.2015.7095802, 2015.

Hacker, J. P., Exby, J., Gill, D., Jimenez, I., Maltzahn, C., See, T., Mullendore, G., and Fossell, K.: A Containerized

Mesoscale Model and Analysis Toolkit to Accelerate Classroom Learning, Collaborative Research, and Uncertainty

Quantification, Bull. Am. Meteorol. Soc., 98, 1129–1138, https://doi.org/10.1175/BAMS-D-15-00255.1, 2017.

Han, J., Wang, W., Kwon, Y. C., Hong, S.-Y., Tallapragada, V., and Yang, F.: Updates in the NCEP GFS Cumulus 330

Convection Schemes with Scale and Aerosol Awareness, Weather Forecast., 32, 2005–2017, https://doi.org/10.1175/WAF-

D-17-0046.1, 2017.

Harris, L., Zhou, L., Lin, S.-J., Chen, J.-H., Chen, X., Gao, K., Morin, M., Rees, S., Sun, Y., Tong, M., Xiang, B., Bender,

M., Benson, R., Cheng, K.-Y., Clark, S., Elbert, O. D., Hazelton, A., Huff, J. J., Kaltenbaugh, A., Liang, Z., Marchok, T.,

Shin, H. H., and Stern, W.: GFDL SHiELD: A Unified System for Weather-to-Seasonal Prediction, J. Adv. Model. Earth 335

Syst., 12, e2020MS002223, https://doi.org/10.1029/2020MS002223, 2020.

Harris, L. M. and Lin, S.-J.: A Two-Way Nested Global-Regional Dynamical Core on the Cubed-Sphere Grid, Mon.

Weather Rev., 141, 283–306, https://doi.org/10.1175/MWR-D-11-00201.1, 2013.

Hazelton, A. T., Harris, L., and Lin, S.-J.: Evaluation of Tropical Cyclone Structure Forecasts in a High-Resolution Version

of the Multiscale GFDL fvGFS Model, Weather Forecast., 33, 419–442, https://doi.org/10.1175/WAF-D-17-0140.1, 2018. 340

Held, I. M. and Suarez, M. J.: A Proposal for the Intercomparison of the Dynamical Cores of Atmospheric General

Circulation Models, Bull. Am. Meteorol. Soc., 75, 1825–1830, https://doi.org/10.1175/1520-

0477(1994)075<1825:APFTIO>2.0.CO;2, 1994.

Hong, S.-Y.: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon, Q.

J. R. Meteorol. Soc., 136, 1481–1496, https://doi.org/10.1002/qj.665, 2010. 345

Jung, K., Cho, Y.-K., and Tak, Y.-J.: Containers and Orchestration of Numerical Ocean Model for Computational

Reproducibility and Portability in Public and Private clouds: Application of ROMS 3.6, Simul. Model. Pract. Theory,

102305, https://doi.org/10.1016/j.simpat.2021.102305, 2021.

Kurtzer, G. M., Sochat, V., and Bauer, M. W.: Singularity: Scientific containers for mobility of compute, PLOS ONE, 12,

e0177459, https://doi.org/10.1371/journal.pone.0177459, 2017. 350

Melton, J. R., Arora, V. K., Wisernig-Cojoc, E., Seiler, C., Fortier, M., Chan, E., and Teckentrup, L.: CLASSIC v1.0: the

open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem

Model (CTEM) – Part 1: Model framework and site-level performance, Geosci. Model Dev., 13, 2825–2850,

https://doi.org/10.5194/gmd-13-2825-2020, 2020.

Montes, D., Añel, J. A., Wallom, D. C. H., Uhe, P., Caderno, P. V., and Pena, T. F.: Cloud Computing for Climate 355

Modelling: Evaluation, Challenges and Benefits, Computers, 9, 52, https://doi.org/10.3390/computers9020052, 2020.

18

Pollard, R. T., Rhines, P. B., and Thompson, R. O. R. Y.: The deepening of the wind-Mixed layer, Geophys. Fluid Dyn., 4,

381–404, https://doi.org/10.1080/03091927208236105, 1973.

Putman, W. M. and Lin, S.-J.: Finite-volume transport on various cubed-sphere grids, J. Comput. Phys., 227, 55–78,

https://doi.org/10.1016/j.jcp.2007.07.022, 2007. 360

Walters, D. N., Best, M. J., Bushell, A. C., Copsey, D., Edwards, J. M., Falloon, P. D., Harris, C. M., Lock, A. P., Manners,

J. C., Morcrette, C. J., Roberts, M. J., Stratton, R. A., Webster, S., Wilkinson, J. M., Willett, M. R., Boutle, I. A., Earnshaw,

P. D., Hill, P. G., MacLachlan, C., Martin, G. M., Moufouma-Okia, W., Palmer, M. D., Petch, J. C., Rooney, G. G., Scaife,

A. A., and Williams, K. D.: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1

configurations, Geosci. Model Dev., 4, 919–941, https://doi.org/10.5194/gmd-4-919-2011, 2011. 365

Warner, T. T., Peterson, R. A., and Treadon, R. E.: A Tutorial on Lateral Boundary Conditions as a Basic and Potentially

Serious Limitation to Regional Numerical Weather Prediction, Bull. Am. Meteorol. Soc., 78, 2599–2618,

https://doi.org/10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2, 1997.

Zhou, L., Lin, S.-J., Chen, J.-H., Harris, L. M., Chen, X., and Rees, S. L.: Toward Convective-Scale Prediction within the

Next Generation Global Prediction System, Bull. Am. Meteorol. Soc., 100, 1225–1243, https://doi.org/10.1175/BAMS-D-370

17-0246.1, 2019.

Zhuang, J., Jacob, D. J., Lin, H., Lundgren, E. W., Yantosca, R. M., Gaya, J. F., Sulprizio, M. P., and Eastham, S. D.:

Enabling High-Performance Cloud Computing for Earth Science Modeling on Over a Thousand Cores: Application to the

GEOS-Chem Atmospheric Chemistry Model, J. Adv. Model. Earth Syst., 12, e2020MS002064,

https://doi.org/10.1029/2020MS002064, 2020. 375

	1 Introduction
	2 SHiELD in a container
	2.1 SHiELD
	2.2 Containerization

	3 Running containerized SHiELD as a regional and a global-nest model
	4 Result and Discussion
	4.1 Hurricane Laura hindcast
	4.2 Performance and scalability
	4.3 Scalability issue

	5 Conclusion and Future work
	Code and data availability
	Author contribution
	Competing interests
	Acknowledgments
	References

