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Abstract. Container technology provides a pathway to facilitate easy access to unified modeling systems and opens 

opportunities for collaborative model development and interactive learning. In this paper, we present the implementation of 10 

software containers for the System for High‐resolution prediction on Earth‐to‐Local Domains (SHiELD), a unified 

atmospheric model for weather-to-seasonal prediction. The containerized SHiELD is cross-platform and easy to install. 

Flexibility of the containerized SHiELD is demonstrated as it can be configured as a global, a global-nest, and a regional 

model. Bitwise reproducibility is achieved on various x86 systems tested in this study. Performance and scalability of the 

containerized SHiELD are evaluated and discussed. 15 

1 Introduction 

Unified modeling systems have shown advantages as a single framework supporting versatile applications across a wide 

range of spatial and temporal scales. Such a system helps accelerate model development as it provides an ideal platform for 

modelers/scientists to gather together and combine efforts to improve the model. The Unified Model of the U.K. Met Office, 

the most notable unified modeling system, adopted the unified modeling approach and demonstrated its strength in terms of 20 

integration and collaboration (Walters et al., 2011). In addition to facilitating collaboration, the system opens the possibility 

of developing one model with multiple uses. Previous studies (e.g., Brown et al., 2012 and Harris et al., 2020) have shown 

that it is possible to develop multiple applications at the same time for multiple purposes, such as conducting severe weather 

forecast and climate prediction simultaneously. Finally, the unified modeling system allows users to apply lessons learned 

from one application to another application. For example, Brown et al. (2012) showed that the error growth calculated based 25 

on short-range predictions can be used to evaluate the performance of climate predictions. Likewise, climatological signals 

deduced from the model provide valuable information for the development of physics parameterizations that can be used in 

short-range weather forecasts. 

    Lowering the barriers of entry into unified modeling systems will open many opportunities for the earth science 

community. To that end, the Unified Forecast System has been making consistent steps to make the system accessible and 30 

encourage discussion and collaborative research, one example being the Graduate Student Test 
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(https://ufscommunity.org/science/gst/, last access: 13 July25 November 2021). As discussed, a unified infrastructure 

provides a bedrock for cooperation. Assuring easy access to the infrastructure will help achieve cooperation. In an 

educational setting, Hacker et al. (2017) has shown that better access to a mesoscale model benefits classroom learning. 

Better access to unified modeling systems can greatly improve learning experience. For example, a highly-configurable 35 

unified model can be used as a global model to demonstrate the concept of climate sensitivity, as a regional model to learn 

the impact of topography on the track of a hurricane, or, as a tool to study multiscale interactions. 

    A software container provides a pathway to enhance the accessibility of geoscientific models. A software container, or 

simply container, is a stand-alone, executable software artifact that is designed to deploy applications with portability and 

performance. There are a few geoscientific models being implemented in software containers. Hacker et al. (2017) 40 

containerized the Weather Research and Forecasting model (WRF), a regional atmospheric model. Melton et al. (2020) 

containerized the Canadian Land Surface Scheme including Biogeochemical Cycles (CLASSIC). Jung et al. (2021)  

containerized the regional ocean-modeling system (ROMS). However, due to the fact that unified modeling systems are 

complicated and traditionally developed on specialized machines (e.g., high-performance computers), there appears to be no 

unified modeling system being containerized yet. This paper attempts to take advantage of container technology and make 45 

unified modeling systems approachable. 

    The purpose of this paper is to describe the implementation of software containers for the System for High-resolution 

prediction on Earth-to-Local Domains (SHiELD), a compact unified atmospheric model developed at the Geophysical Fluid 

Dynamics Laboratory (GFDL). Simulations of Hurricane Laura, with a regional and a global-nest configuration, are 

conducted on different computer systems to demonstrate the flexibility, portability, and easy use of the containerized 50 

SHiELD. Performance and scalability of the containerized SHiELD are examined and discussed. Future work and potential 

applications are discussed. 

2 SHiELD in a container 

2.1 SHiELD 

The System for High-resolution prediction on Earth-to-Local Domains (SHiELD), a unified atmospheric model developed at 55 

the GFDL, has demonstrated its capability for versatile applications on a wide range of temporal and spatial scales, including 

severe weather nowcasting, hurricane forecasting, and subseasonal-to-seasonal prediction (Harris et al., 2020). SHiELD is 

powered by the finite-volume cubed-sphere dynamical core (FV3; Putman and Lin, 2007; Harris and Lin, 2013) and is 

equipped with a modified version of the Global Forecast System (GFS) physics suite developed by the Environmental 

Modeling Center of the National Centers for Environmental Prediction. As a unified modeling system, SHiELD has been 60 

used for forecast, research, and model development: all in a single framework (Harris et al., 2020). For example, SHiELD, 

featuring variable-resolution, has demonstrated excellence in tropical cyclone forecasting (Hazelton et al., 2018). Another 

example is that SHiELD was used to develop a time-split microphysics parameterization for multiple applications, such as 

https://ufscommunity.org/science/gst/
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convective scale weather prediction and global scale cloud-radiative forcing research (Harris et al., 2020). Version 2021b of 

the SHiELD is used in this study and the model source code can be found in Cheng et al. (2021). 65 

2.2 Containerization 

Containerization refers to packaging one or more applications (such as a unified atmospheric model) into a container in a 

portable manner. A container packages not only applications but all their dependencies, such as runtime environment and 

libraries, so the applications can run directly from one computing system to another. Unlike a virtual machine that emulates a 

whole computing system for use at the hardware layer, a container uses the kernel of the host machine and packages only the 70 

necessary components required to run applications. As a result, a container is lightweight and fast. , compared to a virtual 

machine. 

    Advantages of the containerization of geoscience models are discussed in many papers (e.g., Hacker et al., 2017 and 

Melton et al., 2020) and will be shown throughout this paper, including easy installation, high portability, and perfect 

reproducibility. We want to add one additional advantage that motivates innovation and spurs model development. It is not 75 

uncommon for developers to come up with innovative schemes that are not ready for publication but ready for technology 

transfer and/or public use. In this situation, developers may want to take advantage of container technology to package their 

innovations as a black box that users can use but cannot see through. Unlike source code sharing which reveals everything, 

software containers may be used to protect developers’ intellectual properties without revealing their full content while being 

used to share with others. 80 

    Technically speaking, a container does not directly package applications and dependencies. It is the container image, or 

simply image, that does the packaging. An image is an immutable file that contains prebuilt applications and their 

dependencies needed to run the applications. An image is used by a container to construct a runtime environment and then 

run applications.  

    For the containerization of SHiELD, we use Docker (https://www.docker.com/, last access: 13 July25 November 2021) as 85 

a primary tool and Singularity (https://sylabs.io/, last access: 13 July25 November 2021) as a secondary. Docker is a leading 

containerization platform that sets the industry standard for containers. However, Docker containerization requires superuser 

access, which is a concern for multi-user systems like supercomputers. As a result, most supercomputers do not allow 

Docker to be installed. Singularity, on the other hand, is designed to address the security concern. Singularity is originally 

designed for supercomputers (Kurtzer et al., 2017) and architected specifically for large-scale and performance-oriented 90 

applications. Both Docker and Singularity are available for freecan be used for free. At the time of this writing (25 

November 2021), Docker is free for personal or academic use. Singularity provides a free community edition under a 

Berkeley Software Distribution (BSD) license. Other containerization platforms (e.g., Podman, https://podman.io/, last 

access: 25 November 2021) may also be used to containerize SHiELD. 

    The procedure of containerizing SHiELD is described as follows. First, we create a Docker image with SHiELD and its 95 

dependencies. In the spirit of open collaboration, the SHiELD image does not contain any proprietary software. SHiELD and 

https://www.docker.com/
https://sylabs.io/
https://podman.io/
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all its dependencies are open-source. SHiELD is built using open-source compilers: GNU Compiler Collection (GCC) and 

GFortran. Second, we create a SHiELD container by containerizing the SHiELD image on any supported system. As of 

JulyNovember 2021, Docker supports three major operating systems (OS): Windows, macOS, and Linux. The SHiELD 

image can also be used in cloud computing. Major cloud computing platforms (e.g., Amazon Web Services and Microsoft 100 

Azure) can directly deploy Docker containers. On supercomputers where Docker is generally not available, the SHiELD 

image can be easily converted to a Singularity container image and seamlessly executed. One thing to note is that the 

container made by either Singularity or Docker gives identical results, which will be discussed in the next section. 

3 Running containerized SHiELD as a regional and a global-nest model 

For the purpose of demonstration and experimentation, we conducted 24-hour simulations of Hurricane Laura initialized 105 

from 20210826122020082612 UTC. Two different domain configurations, as illustrated in Fig. 1, are used to demonstrate 

the flexibility of SHiELD, showing that it can be used for a variety of applications at different spatial and temporal scales. 

The first configuration is a regional domain centered over the Gulf Coast of the United States. The domain size is 108×108 

grid cells with a grid-cell width of approximately 35.5 km. Initial conditions and a time-series of boundary conditions for the 

regional configuration are generated from the U.S. operational Global Forecast System (GFS) analysis. 110 

    The second configuration is a global domain embedding a locally-refined nest domain centered over the Gulf Coast of the 

United States. The global domain is a cubed-sphere with 96×96 grid cells on each of the six tiles, which yields an average 

grid-cell width of approximately 100 km. The nest domain shares identical size and position with the regional domain. This 

global-nest configuration requires only initial conditions from the GFS analysis and enables two-way interaction between the 

global and the nest domains. The details of the two-way nesting method can be found in Harris and Lin (2013). 115 
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Figure 1: Two grid configurations. (a) A 37.5 km regional grid (red mesh). (b) A 100 km global grid (black mesh) with a nest grid 
(red mesh) that is refined by a factor of 3; the position and the grid size of the nest grid are the same as those of the regional grid. 
Each grid box represents 12×12 actual grid boxes. Black heavy lines are the cubed-sphere edges and red heavy lines are the 
boundaries of the regional/nest domain. 120 

    Both configurations use identical 63 Lagrangian vertical levels, the same as those used in GFS version 15. The vertical 

resolution is finest at the bottom level and gradually expands with height, as shown in Fig. 2. As for timestep, both regional 

and global-nest runs use the same time step (450 s) for physical parameterization. The regional run uses an acoustic timestep 

of 75 s. For the global-nest run, the acoustic time step is 150 s and 75 s in the global and the nest grid, respectively. The 

resolution, timesteps, and physical parameterizations of the regional and the global-nest run are summarized in Table 1. 125 
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Figure 2: Vertical levels used in simulations. Layer thickness in pressure Δp/height Δz as a function of pressure p/height z for a 
U.S. standard atmospheric with a surface pressure of 1000 hPa. 

 

 130 

 

Configuration Regional run Global-nest run 

Resolution 37.5 km 100 km/37.5 km 

Acoustic timestep 75 s 150 s/75 s 

Physics timestep 450 s 

Microphysics In-line GFDL microphysics (Harris et al., 2020) 

PBL scheme Yonsei University scheme (Hong, 2010) 

Convection scheme Scale-aware simplified Arakawa‐Schubert (Han et al., 2017) 

Ocean surface Mixed-layer ocean (Pollard et al., 1973) 

Table 1: Model configurations of the regional and the global-nest run. For the global-nest run, resolution and acoustic timestep are 
shown in a format of global/nest. 
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    The containerized SHiELD has been tested on a variety of different x86 systems. Here we choose three machines – a 135 

laptop, a desktop, and a supercomputer – to demonstrate the portability, reproducibility, and performance of the 

containerized SHiELD. The three machines are chosen for their different OSs on different hardware, which are built for 

different purposes, as listed in Table 2. They should be representative of computers used in most situations, including 

research, operation, and education.  

 140 

Machine OS CPU Total cores 

Laptop Windows 10 Intel Core i7-8550U 4 

Desktop Windows 10 AMD Ryzen 9 3950X 16 

Supercomputer CentOS 7.6 Intel Xeon Gold 6148 72000 

Table 2: The operating system (OS), the central processing unit (CPU), and the total number of cores on the three representative 
machines.  

    All machines use the same Docker image to execute the containerized SHiELD for both regional and global-nest 

simulations. For the supercomputer, the Docker image is converted to a Singularity image for containerization, as described 

in Sec. 2.2. All machines use the same initial conditions and model configurations (and boundary conditions if the simulation 145 

is a regional run) to run a 24-hour simulation of Hurricane Laura. In either the regional or the global-nest case, all three 

machines finish the simulations successfully and give bitwise identical output even though they use different OS and 

hardware. The containerized SHiELD has demonstrated its high portability and perfect reproducibility on any computing 

system that supports containerizing Docker images. 

4 Result and Discussion 150 

4.1 Hurricane Laura hindcast 

Hurricane Laura was the first major hurricane (Category 4) that made landfall in the record-breaking 2020 Atlantic hurricane 

season. Originating from a large tropical wave off the west African coast on August 16, Laura became a tropical depression 

on August 20 and made landfall in the U.S. state of Louisiana early on August 27 after a period of rapid intensification.  

    Fig. 3 shows the simulated outgoing longwave radiation with both the regional and the global-nest configuration of 155 

SHiELD, together with a satellite image of Laura for simple verification. At 12 hours into the integration, both simulations 

capture the location and general structure of Laura well, even at a grid spacing of ~36 km. Laura is moving north toward 

coastline. From the spiral rainbands, the size and the shape of the simulated Laura agree very well with the observation. Both 

configurations give realistic simulations, demonstrating SHiELD as a truly unified modeling system. Although requiring 

higher computational resources, one advantage of the global-nest run is that it allows two-way interaction between the nest 160 

domain and the large-scale circulation in the global domain. Another advantage is that the global-nest run does not need a 
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time-series of boundary conditions, which could potentially introduce significant errors for a regional model, as discussed in 

Warner et al. (1997). Comparison of the results suggests that this two-way interaction contributes to slightly faster 

movement of the storm and brings it closer to the observation. Why Laura moves faster in the global-nest run is beyond the 

scope of this work. At a relatively coarse resolution for hurricane simulation, this computationally inexpensive case study 165 

serves to illustrate the capability of the containerized SHiELD.  

 
Figure 3: Hurricane Laura simulations versus satellite imagery. Panel a and b show outgoing longwave radiation simulated by 
SHiELD as a region and a global-nest model, respectively. Both are a snapshot at 2020082700 UTC, 12 hours into the simulation. 
Dot box represents the boundaries of the nest domain. Panel c shows the Geostationary Operational Environmental Satellite-16 170 
true color and night infrared imagery 10 minutes after 2020082700 UTC. 
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4.2 Performance and scalability 

Table 3 shows the wall-clock timings of the containerized SHiELD for the Hurricane Laura simulations on the three 

machines listed in Table 2 with the laptop as the baseline. In the regional case, each machine runs a 24-hour simulation using 175 

2 Message Passing Interface (MPI) processes. The results reflect the per-core performance on each system with the desktop 

being the fastest, followed by the supercomputer and the laptop. In the global-nest case, each machine runs a 24-hour 

simulation using 8 MPI processes, 6 more than used in the regional case. The result shows the same ranking: 1) desktop, 2) 

supercomputer, and 3) laptop. However, this time the laptop runs over 100% more slowly than the other two systems. This 

considerable slowdown is because the 8 MPI processes are oversubscribing only 4 cores (see Table 1). For the desktop and 180 

the supercomputer, both systems have more cores than required and therefore perform at comparable speeds, as it was with 

the regional case.  

 

Machine  Regional run  Global-nest run 

  Wall time [s] Cost relative to Laptop  Wall time [s] Cost relative to Laptop 

Laptop  739.80 1.00  1889.66 1.00 

Desktop  526.80 0.71  778.81 0.41 

Supercomputer  598.98 0.81  808.05 0.43 

Table 3: Wall time of the regional and the global-nest run for a 24-hour simulation of Hurricane Laura on different machines. The 
regional run uses 2 MPI (Message Passing Interface) processes and the global-nest run uses 8 MPI processes. Docker is used on all 185 
machines except for the supercomputer where Singularity is used. 

    We have shown that the containerized SHiELD delivers reasonable performance that reflects the power of the hardware, 

regardless of the type of OS on the host machine. The next question to answer is how well the containerized SHiELD scales. 

    For scalability purposes, the 24-hour global-nest case discussed previously will be executed with differing numbers of 

cores on the supercomputer and compared against SHiELD running natively (i.e., without containerization). Fig. 4 shows the 190 

wall-clock timings for runs from 8 to 64 cores. Both the container and the native SHiELD give reasonable scalability. 

Interestingly, the containerized SHiELD runs about 10% faster than the native one at the same number of cores when using 

equal to or less than 32 cores. It is unclear why the containerized SHiELD outperforms the native one in some situations in 

spite of the overhead introduced by the software container, albeit tiny. It could be due to the difference in the runtime 

environment between the Docker image and the supercomputer, which makes the executable in the Docker image more 195 

efficient. Regardless, this result shows that the use of a software container does not appreciably impact application 

performance, which is consistent with the findings of Felter et al. (2015) where the Docker container introduces “negligible 

overhead for CPU and memory performance”. 

    When using 64 cores, the situation is the opposite: the native SHiELD outperforms the containerized version. Since each 

node on the supercomputer has 40 cores, this result could imply that the scalability of the container degrades across nodes. 200 
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However, this is not the only explanation as the global-nest configurations can suffer from inherent load-imbalance. The 

global and nest domains run concurrently, rather than sequentially. The concurrent approach greatly improves computational 

efficiency, as discussed in Harris and Lin (2013), but it is not always possible to exactly synchronize the time per integration 

step on the global and nest domains to avoid waits for one side or the other at the two-way update communication points. 

The current configuration uses a ratio of 3 to 1 to assign the number of MPI processes to the global and the nest domains. 205 

This configuration may not be optimal for the load balancing and therefore may not be suitable for scalability tests. Also, the 

problem size of the global-nest run may be too small to reveal the true scalability SHiELD can deliver. 
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Figure 4: Performance and scalability of the containerized SHiELD, (with Singularity), compared to those of the native SHiELD. 
Results are from 24-hour global-nest simulations. 

 

4.3 Scalability issue 

To better evaluate the scalability of containerized SHiELD, 12-hour global simulations at 13-km horizontal resolution were 215 

conducted. Unlike a global-nest run, the scalability test for a global run is straightforward in terms of MPI configurations. 

The global domain (cubed-sphere grid) is engineered to achieve excellent scalability, as demonstrated during the dynamical 

core evaluation of the Next‐Generation Global Prediction System ( 

https://www.weather.gov/sti/stimodeling_nggps_implementation_atmdynamics, last access: 13 July25 November 2021.).). 

The global run conducted here uses configurations similar to those used by the flagship 13-km SHiELD, the details of which 220 

can be found in Harris et al. (2020) or Zhou et al. (2019). Fig. 5a shows the data for runs from 96 to 3072 cores. The native 

https://www.weather.gov/sti/stimodeling_nggps_implementation_atmdynamics
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SHiELD gives good scalability, with speed roughly doubling as the number of cores used doubles. The containerized 

SHiELD, on the other hand, cannot scale beyond 768 cores, due to a large degradation in the MPI communication (Fig. 5b).  

When the number of cores used is equal to or less than 768 cores, the containerized SHiELD outperforms the native one, 

which is consistent with the result seen in the global-nest case (Fig. 4). However, the performance gap decreases with 225 

increasing number of cores. This is due to a disproportionate increase in the MPI communication burden. As shown in Fig. 

5b, the MPI communication efficiency degrades with increasing numbers of cores for both containerized and native 

SHiELD. However, the degradation grows more quickly with the container. In the container case, the degradation becomes 

even worse when the simulation uses more than 768 cores. This result, combined with the results previously presented for 

the global-nest run, suggests the containerized SHiELD does scale reasonably well up to a modest number of cores, but the 230 

extreme scalability is significantly worse than that of the native SHiELD with an eventual plateau in performance. The 

modest core number seems proportional to the size of the problem, but an exact relationship is still unclear.  

Figure 5: (a) Performance and scalability of the containerized SHiELD, the native SHiELD, and the containerized SHiELD built 235 
with bind model; (b) Ratio of the MPI communication of the Singularity container remains challenging when an application uses a 
large number of cores. Note that,to the total computational cost in the case of the containerized SHiELD, the native SHiELD, and 
the containerized SHiELD with bind model. Results are from 12-hour global simulations at a resolution of ~13 km. For both 
containers, Singularity is used.  

    It is not uncommon for a model to scale well in one environment but scale poorly in another environment even though the 240 

model is free of bugs. In addition to the “hybrid model” adopted in this study,model itself, the performance of MPI 

communication also depends on external hardware and/or software, as can be seen in literatures. Montes et al. (2020) 

compared the performance of a climate model on a cloud computing service with that on a computing infrastructure on 
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premises. The cloud computing gave a better performance than the on-premises machine for a small number of MPI tasks. 

However, the on-premises machine performed better beyond approximately 100 MPI tasks. Zhuang et al. (2020) showed the 245 

impact of network software on the performance of the Goddard Earth Observing System chemical transport model (GEOS‐

Chem). The authors compared the performance of two different communication protocols, Elastic Fabric Adapter (EFA) vs. 

Transmission Control Protocol (TCP), on the same hardware. They found that EFA and TCP performed comparably when 

less than 577 cores were used in the model. Beyond 577 cores, the EFA continued to scale while the TCP failed to scale. 

    Note that the “bind model” provided by Singularity is likelycan be used to alleviatesolve the scalability issue 250 

(https://sylabs.io/guides/3.7/user-guide/mpi.html, last access: 13 July25 November 2021).), as can also be seen in Fig 5. The 

bind model uses the MPI implementation on the host to build and run a container, which should makemakes the container 

fully compatible with the high-performance interconnects on the host. If the containerized SHiELD is built usingHowever, 

the outstanding scalability archived by the bind model, it may not show the scalability limit as seen in Fig. 4 and 5. However, 

the  comes with two caveats. First, the configuration of the bind model can beis likely more complicated than the native 255 

SHiELD installation, as users are required to install all the libraries needed by the pre-built SHiELD image, with the correct 

version and dependencies, on the host and to bind them to the container explicitly. AlsoThis complicated installation process 

deviates from the idea that container technology simplifies the deployment of applications. Second, reproducibility is not 

guaranteed with the bind model since the runtime environment of the bind model is dependent on the host and is not isolated 

as in the case of the hybrid model.original containerization of SHiELD. For large-scale applications in which scalability is 260 

more important than portability, reproducibility, or convenience, we recommend either the bind model or a native 

installation of SHiELD built from source. 

 
Figure 5: (a) Performance and scalability of the containerized and the native SHiELD; (b) Ratio of the MPI communication to the 
total computational cost in the case of the containerized and the native SHiELD. Results are from 12-hour global simulations at a 265 
resolution of ~13 km. 

https://sylabs.io/guides/3.7/user-guide/mpi.html
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5 Conclusion and Future work 

We have shown that software containers are a promising tool to enhance the accessibility of unified modeling systems, 

which opens possibilities for research, education, and operation. We documented the implementation of software containers 270 

for SHiELD, a compact unified modeling system developed at GFDL. To assure wide access and encourage collaboration, 

the containerization of SHiELD was made without any proprietary software. Furthermore, the containerization described in 

this study should be directly applicable to all unified modeling systems other than the one used here. We believe that making 

unified modeling systems approachable will greatly accelerate model development. 

    The containerized SHiELD has demonstrated its high portability without compromise on functionality. It is fully 275 

functional as the native one and can be easily deployed onto any computing system, as long as the system supports 

containerization of Docker images. Simulations of Hurricane Laura with a regional and a global-nest configuration were 

conducted on a variety of different x86 systems to show the flexibility of the containerized SHiELD. In either configuration, 

bit-for-bit reproducibility is achieved regardless of differences in computing systems. The high portability and perfect 

reproducibility brought by software containers enable reproducible research and analysis. 280 

    We demonstrated that the SHiELD container can be deployed on supercomputers across nodes using Singularity. The 

container scales well up to a certain number of cores, depending on the size of the simulations. Beyond that certain number 

of cores, the MPI communication burden grows quickly and degrades scalability drastically. The scalability issue of the 

container couldcan be solved by utilizing the bind model of Singularity. However, the bind model is nearly as difficult to 

configure as the native SHiELD and does not guarantee reproducible results. AEither a native SHiELD installation ofor the 285 

SHiELD containerized with bind model is recommended if scalability is critical and portability is less important. 

    The containerized SHiELD is designed to be community-oriented. We will continue to bring new features to the SHiELD 

container using developments made within the experimental SHiELD. Efforts are being made to improve physics-dynamics 

coupling by taking advantage of the conservation laws upon which the FV3 dynamical core is built. New capabilities (for 

example, multiple and telescoping nest domains) are also being developed or planned. Meanwhile, we are working on 290 

enabling idealized experiments, such as the Held-Suarez test (Held and Suarez, 1994) and supercell simulations. We believe 

that these new capabilities will be useful for research or classroom learning.  

Code and data availability 

The containerized SHiELD developed in this study is available at https://zenodo.org/record/5090895 (Cheng et al., 2021). It 

is also available as a Docker image at https://hub.docker.com/r/gfdlfv3/shield tag gmd2021. The case configurations and 295 

associated initial/boundary conditions are available at https://zenodo.org/record/5090124 (Cheng, 2021b). The Laura 

https://zenodo.org/record/5090895
https://hub.docker.com/r/gfdlfv3/shield%20tag%20gmd2021
https://zenodo.org/record/5090124
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simulations are available at https://zenodo.org/record/5090126 (Cheng, 2021a). The Geostationary Operational 

Environmental Satellite-16 data is available at the NOAA Comprehensive Large Array-data Stewardship System (CLASS; 

https://www.avl.class.noaa.gov/, last access: 13 July25 November 2021).  
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