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Abstract. We perform Observing System Simulation Experiments (OSSEs) with the GEOS-Chem adjoint model to test how 

well methane emissions over North America can be resolved using measurements from the TROPOspheric Monitoring 

Instrument (TROPOMI) and similar high-resolution satellite sensors. We focus analysis on the impacts of i) spatial errors in 10 

the prior emissions, and ii) model transport errors. Along with a standard scale-factor (SF) optimization we conduct a set of 

inversions using alternative formalisms that aim to overcome limitations in the SF-based approach that arise for missing 

sources. We show that 4D-Var analysis of the TROPOMI data can improve monthly emission estimates at 25 km even with a 

spatially biased prior or model transport errors (42–93% domain-wide bias reduction; R increases from 0.51 up to 0.73). 

However, when both errors are present, no single inversion framework can successfully improve both the overall bias and 15 

spatial distribution of fluxes relative to the prior on the 25 km model grid. In that case, the ensemble-mean optimized fluxes 

have a domain-wide bias of 77 Gg d-1 (comparable to that in the prior), with spurious source adjustments compensating for the 

transport errors. Increasing observational coverage through longer-timeframe inversions does not significantly change this 

picture. An inversion formalism that optimizes emission enhancements rather than scale factors exhibits the best performance 

for identifying missing sources, while an approach combining a uniform background emission with the prior inventory yields 20 

the best performance in terms of overall spatial fidelity—even in the presence of model transport errors. However, the standard 

SF optimization outperforms both of these for the magnitude of the domain-wide flux. For the common scenario in which prior 

errors are non-random, approximate posterior error reduction calculations (derived via gradient-based randomization) for the 

inversions reflect the sensitivity to observations but have no spatial correlation with the actual emission improvements. This 

demonstrates that such information content analysis can be used for general observing system characterization but does not 25 

describe the spatial accuracy of the posterior emissions or of the actual emission improvements. Findings here highlight the 

need for careful evaluation of potential missing sources in prior emission datasets and for robust accounting of model transport 

errors in inverse analyses of the methane budget. 
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1 Introduction 30 

Increases in atmospheric methane since the pre-industrial era have enhanced global radiative forcing by 0.97 W m-2, making 

it the second-most important anthropogenic greenhouse gas after carbon dioxide (IPCC, 2013). However, the limited spatial 

coverage of observations has made it difficult to constrain emission distributions (Dlugokencky et al., 2011; Dlugokencky, 

2020; Kirschke et al., 2013; Saunois et al., 2020). New space-based measurements from TROPOMI (TROPOspheric 

Monitoring Instrument) provide near-global high-precision methane column observations at 7 km resolution, potentially filling 35 

this gap. In this study, we present Observing System Simulation Experiments (OSSEs) using a range of inversion strategies to 

explore the capabilities and limitations of high-resolution satellite-based column measurements for spatially resolving methane 

sources across North America. 

Bottom-up methane emissions contain significant uncertainties. Recent global estimates for the 2008–2017 period range from 

594–880 Tg y-1 (Saunois et al., 2020), with major disparities in spatial distribution. For example, while the total US 40 

anthropogenic methane flux in the Gridded Environmental Protection Agency inventory (GEPA: 29 Tg y-1 for 2012; 

(Maasakkers et al., 2016)) is within 15% of the corresponding estimate from the Emissions Database for Global Atmospheric 

Research v5 (EDGAR: 25 Tg y-1 for 2015; (Crippa et al., 2019; EDGAR v5, 2019)), these two datasets have a spatial correlation 

of just R = 0.08 at 0.1°×0.1° resolution. Such spatial errors limit our ability to diagnose the reasons for model-measurement 

disparities and thus hinder regional mitigation policies. 45 

Atmospheric inversions are critical for testing and improving bottom-up methane flux estimates but carry their own 

uncertainties. Global top-down methane emission estimates for 2008–2017 range from 550–594 Tg y-1 and diverge 

substantially in their attribution of fluxes to source sectors, with differences up to a factor of 2 (e.g., 21–50 Tg y-1 for non-

wetland natural emissions; (Dlugokencky et al., 2011; Saunois et al., 2020)). Such uncertainties also manifest on regional 

scales. For example, recent top-down estimates for the US based on satellite (Greenhouse Gases Observing SATellite, GOSAT; 50 

Scanning Imaging Absorption Spectrometer for Atmospheric Chartography, SCIAMACHY) and in situ (tall tower, aircraft) 

measurements have varied between 30–45 Tg y-1 for different years, with differing source allocation  (Maasakkers et al., 2021; 

Miller et al., 2013; Turner et al., 2015; Wecht et al., 2014a). Such disparities also manifest in other regions (Dlugokencky et 

al., 2011; Kirschke et al., 2013).  

Prior spatial emission errors present one major barrier to top-down flux estimation. Inverse analyses commonly employ 55 

Bayesian scale factor (SF) optimization to improve flux estimates based on model-measurement concentration mismatches 

(Chen et al., 2018; Chen et al., 2021; Deng et al., 2014; Hooghiemstra et al., 2012; Jacob et al., 2016; Li et al., 2019; Maasakkers 

et al., 2021; Turner et al., 2015; Wecht et al., 2014a; Yu et al., 2021; Zhang et al., 2018). However, this approach fails where 

emissions are either missing entirely in the prior inventory or are too low to sufficiently adjust without incurring a prohibitive 

cost-function penalty (Chen et al., 2018). In such cases the optimization will then tend to attribute the required emissions to 60 
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locations with higher prior emissions that require only modest adjustment and involve a smaller penalty (Jacob et al., 2016). 

Previous studies (e.g., Maasakkers et al., 2016; Turner et al., 2015) have further shown that prior spatial uncertainties in the 

sectoral allocation of emissions limit the accuracy of top-down source attributions. Employing normalized spatial surrogates 

(e.g., livestock distribution) as prior constraints can eliminate the dependence on bottom-up inventories (Michalak et al., 2004; 

Miller et al., 2013), but the same limitations will apply given uncertainty in the spatial surrogates or variability in their 65 

relationship to fluxes. 

Limited observational coverage has historically presented another major limitation to top-down methane analyses and 

exacerbates the prior dependencies outlined above. Ground-based networks provide a high-precision, temporally dense and 

long-term record of atmospheric methane concentrations at globally distributed sites (AGAGE, 2021; NOAA ESRL/GMD, 

2021; WMO/WDCGG, 2021). However, these observations are spatially sparse compared to the heterogeneity of emissions. 70 

Airborne measurements (e.g., Davis et al., 2018; Gonzalez et al., 2021; Karion et al., 2015; Knox et al., 2019; Kort et al., 2008; 

Miller et al., 2013; Sheng et al., 2018b; Smith et al., 2017; Wofsy et al., 2018; Yu et al., 2020; Yu et al., 2021) expand this 

spatial footprint but only for discrete snapshots. Satellite measurements to date have generally also provided only limited 

coverage. For example, shortwave infrared (SWIR) methane measurements from GOSAT are separated in space by 260 km 

(Kuze et al., 2016), while GHGSat observations are high-resolution (0.05° × 0.05°) but measure only a limited set of targets. 75 

Thermal infrared (TIR) measurements provide broad sampling but with limited sensitivity to methane emissions (Jacob et al., 

2016). 

High-resolution measurements from TROPOMI offer a major advance over earlier satellite observations for mapping methane 

emissions. Prior OSSEs have demonstrated this potential. For example, Wecht et al. (2014b) and Sheng et al. (2018a) found 

that TROPOMI observations can provide comparable methane emission constraints as dedicated aircraft measurements 80 

spanning the same time intervals and regions. Other analyses have concluded that one week of TROPOMI methane 

observations is sufficient to resolve time-invariant fluxes at 30 km (Turner et al., 2018) and to achieve 100% error reduction 

over emission hotspots (Bousserez et al., 2016), while a single satellite overpass is able to monitor the 20 highest-emitting 

locations in the GEPA inventory (Jacob et al., 2016). However, the above work has focused primarily on resolving emission 

magnitudes without explicitly considering the impacts of spatial errors. 85 

Here, we apply the GEOS-Chem adjoint model in an OSSE framework to characterize the capabilities and limitations of 

TROPOMI and similar space-based sensors for resolving spatiotemporal patterns in methane emissions across local-to-

regional scales. We perform an ensemble of synthetic inversions over North America, and specifically assess the ability of the 

observing system to spatially quantify heterogeneous emissions given limited confidence in their prior distributions. We further 

evaluate multiple alternative inversion frameworks in terms of their strengths and weaknesses in this context relative to the 90 

standard and widely used SF approach. 
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Figure 1. Schematic illustrating the OSSE framework used here.  

 95 
 

 
Figure 2. TROPOMI sampling density at 0.25° × 0.3125° resolution (~25 km) for one-day to one-month observing intervals after 
filtering for data quality and clouds. GOSAT coverage (with no data filter) is shown for comparison. The total number of 
observations is labelled in each panel. 100 
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Table 1. Inversion frameworks 

Emission bias Inversion Framework1 Rationale 

Spatially uniform 

emission errors 

U-SF Base-case SF2 𝒙𝒙 = 𝒔𝒔 ∘ 𝒙𝒙𝒂𝒂 Explore reliability of optimized fluxes 

when spatial distribution is well-known in 

prior 

Spatially varying 

emission errors 

V-SF Base-case SF 𝒙𝒙 = 𝒔𝒔 ∘ 𝒙𝒙𝒂𝒂 Explore influence of spatial emission 

errors on base-case SF inversion 

V-flat Flat prior 𝒙𝒙 =  𝑥𝑥𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎 𝒔𝒔 Identify constraints solely from 

TROPOMI without bottom-up knowledge 

V-AddBG Background 

increment 

𝒙𝒙 = 𝒔𝒔 ∘  (0.5 𝒙𝒙𝒂𝒂 + 0.5 𝑥𝑥𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎) Identify missing sources 

V-OBSGuess Observational 

guess 

𝒙𝒙 = 𝒔𝒔 ∘ (𝒙𝒙𝒂𝒂 + 𝒙𝒙𝑶𝑶𝑶𝑶𝒔𝒔𝑶𝑶𝑶𝑶𝑶𝑶𝒔𝒔𝒔𝒔) Resolve and optimize emission hotspots 

V-EH Enhancement 𝒙𝒙 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖  𝒔𝒔+  𝒙𝒙𝒂𝒂 Identify missing sources 

Sensitivity 

inversions including 

transport error 

*-*-T 
 

Same as U and V cases above Assess the influence of model transport 

errors on methane source inversions 

1𝒙𝒙: optimized emissions, 𝒔𝒔: scale factors, 𝒙𝒙𝒂𝒂: prior emissions, 𝑥𝑥𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎: uniformly distributed prior emissions, 𝒙𝒙𝑶𝑶𝑶𝑶𝒔𝒔𝑶𝑶𝑶𝑶𝑶𝑶𝒔𝒔𝒔𝒔: observationally 

informed initial guess, 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖: emission increment. 

2SF: scaling factor. 

2 Methods 

Figure 1 summarizes the OSSE framework employed here. We apply one month of synthetic TROPOMI observations over 

North America, with realistic instrument noise and sampling coverage, to evaluate the ability of different inversion frameworks 

to recover the true distribution of methane sources. We test the impact of spatial biases by supplying each inversion with 105 

incorrect (but plausible) prior flux fields, both in the presence and absence of model transport errors. As is broadly the case 

for source inversions, the framework here is formally inconsistent with the best linear unbiased estimate (BLUE) 4D-Var 

problem. In general, we do not have an unbiased estimate of the prior so the solution will not be the BLUE. As a practical 

matter we thus seek to evaluate alternative inversion formalisms in terms of their ability to recover the true emissions in spite 

of this limitation. 110 
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2.1 TROPOMI observations 

TROPOMI is onboard Copernicus Sentinel-5 Precursor, a low-Earth polar-orbiting satellite launched in October 2017 with 

13:30 local solar overpass time (LT). TROPOMI has a 2600 km swath width and provides near-global daily measurements at 

7 × 7 km2 nadir resolution in the shortwave infrared (SWIR) and 7 × 3.5 km2 nadir resolution in the near infrared (NIR) (Hu 

et al., 2018). Methane columns are retrieved from NIR and SWIR spectral radiances with an estimated uncertainty of 1% due 115 

to instrument noise (0.6%) and forward model error (0.8%) (Hu et al., 2016; Hu et al., 2018; Lorente et al., 2021; TROPOMI 

Product User Manual, 2019).  

We use synthetic observations for August 2018 in our analyses and apply standard data filtering procedures based on the actual 

TROPOMI retrieval quality parameters for clouds, spectral fit, albedo, aerosols, and viewing geometry (Table S1). Figure 2 

shows the resulting data coverage for one-day to one-month intervals on the 0.25° × 0.3125° analysis grid. Over 247,000 120 

observations are available for August 2018 over North America, covering 66% of terrestrial grid cells, with the highest 

sampling density over the western US and northern Ontario. This level of data coverage is typical for TROPOMI: monthly 

overland coverage at 0.25° × 0.3125° ranges from 42–79% between May 2018 and April 2019 when using the data selection 

criteria in Table S1 (Fig. S1). For comparison, Fig. 2f shows August 2018 data coverage for the GOSAT satellite sensor, with 

overland sampling density just 0.4% that of TROPOMI. Despite its significant sampling gaps, TROPOMI thus offers 125 

unprecedented new information for advancing scientific understanding of global methane sources and their spatiotemporal 

variability.  

2.2 Chemical transport model and true state 

Our OSSE analyses employ the GEOS-Chem (v11-2) chemical transport model (CTM) and its adjoint (v35) to optimize 

methane emissions on a 0.25° × 0.3125° grid over North America (9.75°–60° N, 60°–130° W). Simulations use GEOS-FP 130 

meteorological fields and 5- and 10-minute timesteps for transport and emissions, respectively. Three-hourly dynamic 

boundary conditions are from simultaneous global simulations at 2° × 2.5°. Initial conditions are based on a global 25-year 

spinup for 2016 at 2° × 2.5°, followed by a two-week regional spinup over the nested domain at 0.25° × 0.3125°. As described 

next, inversions are performed for scenarios considering instrument error only and for scenarios considering both instrument 

error and model transport error. This permits comparison of these key observing system errors in terms of their impacts on 135 

solution accuracy.  

Base case analyses include instrument error only, with the same transport scheme used to drive the adjoint model and to 

generate the true-state methane fields. Specifically, this relies on the transport implementation in v35 of the GEOS-Chem 

adjoint model, which includes fully instantaneous planetary boundary layer (PBL) mixing (Wu et al., 2007), a relaxed 

Arakawa-Schubert scheme (Moorthi and Suarez, 1992) for convection, and a multi-dimensional Flux-Form Semi-Lagrangian 140 

(FFSL) treatment of advection (Lin and Rood, 1996). The simulation also employs a six-cell (0.25° × 0.3125°) buffer region 
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at the boundary between the global and nested simulation domains. We add 0.6% random error to the resulting methane column 

concentrations to represent instrument noise, and we apply the TROPOMI observation operator (averaging kernel and prior 

methane profiles) to the model output sampled instantaneously at the time and location of each satellite retrieval. In this way, 

the applied cloud coverage and other data filters are consistent with the actual TROPOMI measurements. 145 

Analyses that also incorporate model transport error rely on true-state tropospheric methane concentrations generated using 

v11-2 of the GEOS-Chem forward model. Transport here employs a non-local PBL mixing scheme (Lin and Mcelroy, 2010) 

and updated implementations of convection and advection (Zhang et al., 2021). The nested domain boundary uses a three-cell 

(rather than the six above) buffer region. Instrument error and the TROPOMI observation operator are then applied as before, 

but to time-averaged (13:00–14:00 LT) rather than instantaneous tropospheric methane fields. The resulting TROPOMI 150 

methane columns have a mean root-mean-square error (RMSE) of 12 ppb relative to the base-case, with similar error 

contributions from transport and from the use of alternative emissions (Fig. S2). For comparison, Locatelli et al. (2013) 

reported a mean inter-model standard deviation of >15 ppb for surface concentrations between 10 CTMs (with identical 

emissions but differing transport) across a global ensemble of observing stations. 

Figure 3. True-state and prior emissions used in the OSSE analyses. The total emission for the North American domain is labelled 
in each panel. 

 

2.3 Methane sources and sinks 

We use differing emission inventories to generate the true-state atmosphere and as prior for the inversions (Fig. 3). True-state 160 

anthropogenic fluxes are from the year-2012 Gridded EPA inventory (Maasakkers et al., 2016) over the US and from year-
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2012 EDGAR v4.3.2 (2017) elsewhere, totalling 124 Gg d-1 over the North America simulation domain. Wetland emissions 

use the WetCHARTs ensemble mean (146 Gg d-1 for year-2017; (Bloom et al., 2017)), while biomass burning emissions are 

from the Quick Fire Emissions Dataset (QFED, 6 Gg d-1 for year-2017; (Darmenov and Silva, 2015)). Geological seep and 

termite emissions follow Maasakkers et al. (2019) and Fung et al. (1991), respectively (together 5 Gg d-1).  165 

Prior emissions include scenarios with spatially uniform and spatially variable errors (designated as U and V cases, 

respectively; see Table 1). In the U cases, we scale the true-state emissions uniformly by 0.5×. This is informative when the 

prior emissions have strong spatial fidelity with the truth and is a common OSSE approach (e.g., Bousserez et al., 2016; Sheng 

et al., 2018; Turner et al., 2018). However, when the spatial allocation of emissions is uncertain, as is frequently the case for 

methane, such analyses are likely to yield overly optimistic results. We therefore also include prior scenarios based on an 170 

alternate set of inventories: EDGAR v4.3.2 for anthropogenic emissions (yielding a domain-wide anthropogenic source of 112 

Gg d-1), a single WetCHARTs ensemble member for wetlands (with CH4:C q10 = 1, GLOBCOVER wetland extent, and a 

resulting flux of 80 Gg d-1 for year-2017), and QFED biomass burning emissions for a different year than in the true state (8 

Gg d-1 for year-2018). The minor sources from geological seeps and termites are treated as before (5 Gg d-1).  

Figure 3 compares the true-state emissions with the above spatially perturbed prior. Across the domain, they differ by 76 Gg 175 

d-1 (27% of the true state), with large spatial disparities yielding an overall R of 0.51. Major discrepancies are evident over oil 

and gas production regions (e.g., Bakken formation, Alberta oil sands), wetlands (e.g., Hudson Bay Lowlands, US south coast), 

and agricultural areas (e.g., California Central Valley, Upper Midwest).  

Methane sinks in the model include oxidation by the hydroxyl radical (OH, 90% of the total simulated removal over the nested 

domain), computed using archived monthly fields from a full-chemistry simulation (v5-07-08). Stratospheric oxidation 180 

contributes a further 6% and is computed based on NASA Global Modeling Initiative monthly loss frequencies (Murray et al., 

2013). Other minor sinks include soil absorption (3%; following Fung et al. (1991)) and oxidation by chlorine (2%; following 

Sherwen et al. (2016)). 

2.4 Optimization framework 

We apply the GEOS-Chem adjoint model (Henze et al., 2007) to optimize the total methane flux (𝒙𝒙) in each 0.25° × 0.3125° 185 

grid cell via iterative reduction of the following cost function: 

𝐽𝐽(𝒙𝒙) = (𝒙𝒙 − 𝒙𝒙𝒂𝒂)T𝐒𝐒𝐚𝐚−1(𝒙𝒙 − 𝒙𝒙𝒂𝒂) + 𝛾𝛾�𝒚𝒚 − 𝐹𝐹(𝒙𝒙)�
T
𝐒𝐒𝐨𝐨𝐨𝐨𝐨𝐨−1 (𝒚𝒚 − 𝐹𝐹(𝒙𝒙)) (1) 

 

where 𝐹𝐹(𝒙𝒙) are the model-predicted methane columns, 𝒚𝒚 are the synthetic TROPOMI observations, 𝒙𝒙𝒂𝒂 are the prior emissions, 

and 𝐒𝐒𝐚𝐚 and 𝐒𝐒𝐨𝐨𝐨𝐨𝐨𝐨 are respectively the prior and observational error covariance matrices. We employ a regulation parameter (𝛾𝛾) 
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to avoid overfitting, defined based on one-week sensitivity inversions with uniformly biased prior emissions (Fig. S3). We 190 

then scale 𝛾𝛾 for other time windows according to the number of observations (𝛾𝛾 = 8.1, 1.6, 1.0, 0.5, and 0.2, for 1 day, 3 days, 

1 week, 2 weeks, and 1 month, respectively). We do not optimize boundary conditions. 

By default, minimization of 𝐽𝐽(𝒙𝒙) in the GEOS-Chem adjoint proceeds through derivation of grid-level SFs 𝒔𝒔 that are then 

applied as  𝒙𝒙 = 𝒔𝒔 ∘ 𝒙𝒙𝒂𝒂. Eq. 1 can thus be equivalently expressed in terms of 𝒔𝒔 rather than 𝒙𝒙, in which case 𝐒𝐒𝐚𝐚 describes relative 

rather than absolute errors. We first explore inversion performance in this framework, including the impacts of spatial emission 195 

errors and model transport errors. We subsequently evaluate four alternative inversions as candidates to address shortcomings 

of this SF approach; these are summarized in Table 1 and detailed in Sect. 4. 

Prior error covariances for the GEPA anthropogenic emissions include magnitude and displacement components and are 

computed following Maasakkers et al. (2016). Those for wetlands are estimated as the standard deviation of the WetCHARTs 

model ensemble (Bloom et al., 2017). Other emissions assume an error standard deviation of 50%, consistent with previous 200 

work (Maasakkers et al., 2019; Sheng et al., 2018b; Turner et al., 2015; Wecht et al., 2014a; Zhang et al., 2018). The above 

components, weighted by the corresponding flux amount, are added in quadrature to obtain the diagonal elements of 𝐒𝐒𝐚𝐚. The 

resulting prior errors have a median value of 67% for the uniform-bias inversions (which employ GEPA as anthropogenic 

prior) and 142% for the others (which employ EDGAR v4.3.2). Finally, we employ an exponentially decaying 200 km 

correlation length scale to populate the off-diagonal elements of 𝐒𝐒𝐚𝐚, in-line with previous studies (200–500 km (Monteil et al., 205 

2013; Wecht et al., 2014a; Yu et al., 2021)). Sensitivity tests varying this length scale yield broadly similar results: derived 

scale factors for one-week V-SF inversions using 100 km, 200 km, and 400 km correlation lengths are spatially correlated to 

R = 0.82-0.94 and have <1% domain-wide emission differences. 

Observational error covariances are prescribed as the relative residual standard deviation of the column mismatch between the 

true-state synthetic observations and the prior simulations over a 2°×2° moving window (Heald et al., 2004). We impose on 210 

the derived values a lower limit of 60 ppb2, corresponding to the 0.25 quantile of the overall error distribution. The resulting 

observing system errors average 9 ppb (range: 8–29 ppb) and mainly reflect instrument noise. The 9 ppb estimate is in-line 

with and slightly smaller than observational error estimates for previous methane inversions using data from TROPOMI (e.g., 

11 ppb; (Zhang et al., 2020)) and GOSAT (e.g., 13 ppb; (Maasakkers et al., 2019)); it is therefore an appropriate representation 

for our OSSE analyses. Note that any systematic measurement errors (Lorente et al., 2021) are inherently not accounted for in 215 

our framework and would need separate correction.  
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Figure 4. Differences between the initial-guess emissions and the true state, and between the optimized emissions and the true state, 
for each inversion framework. Labels inset indicate the change in domain-wide bias and spatial correlation with respect to the true 220 
fluxes achieved through each optimization. More details are provided in Table 1 (inversion specifications) and Fig. S4 (initial-guess 
and optimized emissions). Inversions shown here do not include model transport errors; Fig. S7 shows results when such errors are 
included. 
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Figure 5. Inversion performance by source size and sector in terms of root-mean-square error (RMSE) and spatial correlation 
coefficient (R) relative to the true fluxes. Results from base-case inversions (instrument error only) are shown for a) all grid cells, b) 
small sources (< 50 mg m-2 d-1), c) large sources (≥ 50 mg m-2 d-1), d) small missing sources (prior < 10 mg m-2 d-1; truth ∈ [10, 50) 
mg m-2 d-1), e) large missing sources (prior < 10 mg m-2 d-1; truth ≥ 50 mg m-2 d-1), f) fossil fuel, g) livestock, h) other anthropogenic, 
i) wetland, and j) other natural emissions. Panels k–t show results including model transport error. The total true fluxes are indicated 230 
in each panel.  
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Figure 6. Inversion performance in terms of domain-wide emission bias for (top to bottom): all grid cells, small sources (˂ 50 mg m-235 
2 d-1), large sources (≥ 50 mg m-2 d-1), small missing sources (prior < 10 mg m-2 d-1; truth ∈ [10, 50) mg m-2 d-1), large missing sources 
(prior < 10 mg m-2 d-1; truth ≥ 50 mg m-2 d-1), and for fossil fuel, livestock, other anthropogenic, wetland, and other natural emissions. 
Panel a shows results for synthetic observations subject to instrument error only, while panel b shows results that also include model 
transport errors. 
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 240 

 

 

Figure 7. Posterior error reduction derived via gradient-based randomization (top row; degrees of freedom for signal are labelled 
inset; 𝝆𝝆𝑶𝑶𝒔𝒔𝒆𝒆(𝒊𝒊) = 𝟏𝟏 − 𝐒𝐒𝐨𝐨𝐨𝐨𝐨𝐨(𝒊𝒊, 𝒊𝒊)/𝐒𝐒𝐚𝐚(𝒊𝒊, 𝒊𝒊) ) and actual grid-level emission improvement (bottom rows;  
𝝆𝝆𝒆𝒆𝒕𝒕𝑶𝑶𝑶𝑶(𝒊𝒊) = 𝟏𝟏 − �𝒙𝒙�(𝒊𝒊)− 𝒙𝒙𝒆𝒆𝒕𝒕𝑶𝑶𝑶𝑶(𝒊𝒊)�𝟐𝟐/�𝒙𝒙𝒂𝒂(𝒊𝒊)− 𝒙𝒙𝒆𝒆𝒕𝒕𝑶𝑶𝑶𝑶(𝒊𝒊)�𝟐𝟐) for each inversion framework. Table 1 provides the inversion details for each 245 
case. 

We derive posterior errors and degrees of freedom for signal (DOFS) for each of the inversions using a gradient-based 

randomization approach (Bousserez et al., 2015). The posterior error matrix 𝐒𝐒𝐨𝐨𝐨𝐨𝐨𝐨 is given by: 

𝐒𝐒𝐨𝐨𝐨𝐨𝐨𝐨  = �𝐒𝐒𝐚𝐚−1 +  𝛾𝛾𝐇𝐇T𝐒𝐒𝐨𝐨𝐨𝐨𝐨𝐨−1 𝐇𝐇�
−1

=  �𝐒𝐒𝐚𝐚−1 +  𝛾𝛾𝛻𝛻𝐽𝐽(𝒙𝒙𝒂𝒂) 𝛻𝛻𝐽𝐽(𝒙𝒙𝒂𝒂)T���������������������
−1

 (2) 

where 𝐇𝐇 is the forward model operator and 𝛻𝛻𝐽𝐽(𝒙𝒙𝒂𝒂) is the cost function gradient at 𝒙𝒙 =  𝒙𝒙𝒂𝒂 . The 𝛻𝛻𝐽𝐽(𝒙𝒙𝒂𝒂) 𝛻𝛻𝐽𝐽(𝒙𝒙𝒂𝒂)T�������������������� term is 

computed from an ensemble of cost function gradients, each relying on synthetic data that have been perturbed with random 250 

noise based on the error characteristics of the original dataset; it thus reflects the combined effects of data coverage and the 

system error characteristics. The DOFS are then computed as the trace of  𝐈𝐈 − 𝐒𝐒𝐨𝐨𝐨𝐨𝐨𝐨𝐒𝐒𝐚𝐚−1. Our computed DOFS converge at 

approximately 100 ensemble members.  
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We compute these information content metrics because they are commonly used for evaluating satellite instrument capabilities 

(Bousserez et al., 2016; Sheng et al., 2018a). However, posterior error reduction estimates can only match the emission 255 

improvements if the prior emissions are unbiased, which is not usually the case. For this reason, we compare the posterior 

error reduction 𝝆𝝆𝑶𝑶𝒔𝒔𝒆𝒆(𝑖𝑖) = 1− 𝐒𝐒𝐨𝐨𝐨𝐨𝐨𝐨(𝑖𝑖, 𝑖𝑖)/𝐒𝐒𝐚𝐚(𝑖𝑖, 𝑖𝑖) estimated as above against the actual grid-level emission improvement: 

𝝆𝝆𝒆𝒆𝒕𝒕𝑶𝑶𝑶𝑶(𝑖𝑖) = 1 − �𝒙𝒙�(𝑖𝑖)− 𝒙𝒙𝒆𝒆𝒕𝒕𝑶𝑶𝑶𝑶(𝑖𝑖)�
𝟐𝟐

/�𝒙𝒙𝒂𝒂(𝑖𝑖)− 𝒙𝒙𝒆𝒆𝒕𝒕𝑶𝑶𝑶𝑶(𝑖𝑖)�
𝟐𝟐
 (3) 

where 𝒙𝒙�(𝑖𝑖) and 𝒙𝒙𝒆𝒆𝒕𝒕𝑶𝑶𝑶𝑶(𝑖𝑖) are respectively the optimized and true emissions for grid cell 𝑖𝑖. For computational reasons we 

employ only the diagonal elements of 𝐒𝐒𝐚𝐚 in the calculation of 𝝆𝝆𝑶𝑶𝒔𝒔𝒆𝒆; an evaluation using a random subset of grid cells suggests 

that this approximation alters the results by <25%. 260 

3 Role of prior errors in biasing inversions 

3.1 Inversions with spatially uniform prior biases  

Our results show that in the absence of model transport errors, a one-month standard SF inversion of TROPOMI observations 

can effectively minimize a uniform prior emission bias while maintaining spatial fidelity with the truth (U-SF inversion; Table 

1). Figure 4 (a–b) shows that for this scenario the prior bias of 140 Gg d-1 is reduced by 61% (to 54 Gg d-1), while spatial 265 

correlation with the true fluxes decreases only slightly from R = 1 to R = 0.93. The U-SF inversion successfully improves the 

prior estimates for both small (< 50 mg m-2 d-1) and large (≥ 50 mg m-2 d-1) sources, in all cases maintaining R > 0.8 with the 

true fluxes and decreasing model RMSE at the 25 km grid resolution (Fig. 5). Domain-wide flux estimates for these source 

categories are improved by 46% and 95%, respectively (Fig. 6). Partitioning of emissions between anthropogenic and natural 

sources (by scaling the derived total fluxes to the prior grid-level source fractions) is also accurate, with R > 0.9 and decreased 270 

RMSE for every case except livestock (which had low error to begin with) and improved domain-wide flux accuracy (Figs. 5 

and 6). 

Despite this strong overall performance, we do see an influence from the prior emission distributions on the inversion results. 

The spatial correlation between the derived SFs and the prior emissions is R = 0.58, whereas the true solution (SF = 2 for all 

grid cells) would have no such correlation. This reflects a tendency for SF inversions to over-correct large sources while under-275 

correcting small sources (along with the fact that the satellite data themselves are less sensitive to small sources). If the actual 

prior emission errors were random and normally distributed (i.e., no mean bias), the impacts of this tendency would manifest 

equally everywhere and would not lead to spatially coherent SF-prior correlations. Here, we employ a uniform prior emission 

bias, which (like most real scenarios) breaks the assumption of unbiased Gaussian emission errors. SF inversions are widely 

used despite this limitation, and we see here that the approach broadly succeeds under a uniform-bias scenario even with the 280 

tendency for large-source overcorrection. 
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The U-SF inversion has DOFS = 382, with derived posterior error reductions that reflect the TROPOMI spatial sampling 

density for this month (Fig. 7). However, this computed error reduction 𝝆𝝆𝑶𝑶𝒔𝒔𝒆𝒆 (derived via gradient-based randomization) has 

no meaningful spatial correlation with the actual emission improvement 𝝆𝝆𝒆𝒆𝒕𝒕𝑶𝑶𝑶𝑶 (R = 0.07). This reflects the fact that the 

posterior error reductions and DOFS contain no information on where the prior emissions are actually in error and can therefore 285 

be improved. For a scenario where the prior emissions had random and normally distributed disparities relative to the truth, 

areas with the largest computed posterior error reduction would also tend to have the greatest emission improvement—since 

those locations would have the strongest observational constraints. DOFS and error reduction analyses are thus useful for 

general observing system characterization, but do not describe the spatial accuracy of posterior emissions or the actual emission 

improvements for realistic scenarios where the real prior errors are non-random.  290 

The imposition of model transport errors does not strongly degrade the above performance. In this case (U-SF-T inversion; 

Table 1), the domain-wide optimized emission magnitude for North America is no less accurate than before (in fact slightly 

more so; Fig. 8b). The spatial distribution of the derived emissions, while less precise than in the case with perfect model 

transport, maintains high spatial fidelity with the truth (R > 0.8; Fig. 8b). As we will see later, the same is not true when 

spatially varying prior errors are present. 295 

 

Figure 8. OSSE performance for timescales ranging from one day to one month (colors) as a function of inversion framework 
(symbols). Table 1 provides the inversion details for each case. Panel a shows results for synthetic observations subject to instrument 
error only, while panel b shows results that also include model transport errors (panel b shows only the one-month results for the 
alternative formalisms).  300 
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3.2 Inversions with spatially varying prior biases 

When spatially varying biases are present in the prior emissions but transport errors are absent, the standard SF approach (V-

SF inversion; Table 1) can still successfully minimize the domain-wide flux bias (78% reduction, from 76 to 17 Gg d-1) and 

has moderate success in recovering the true spatial distribution of emissions (R increases from 0.51 to 0.71). However, unlike 305 

the strong performance seen across all sources in the uniform bias case, Figs. 5 and 6 show that the V-SF inversion reduces 

the domain-wide emission biases for both small and large sources, but fails to improve the spatial allocation of large sources 

(RMSE and R improve by just 0.2% and 0.02, respectively). Comparing Fig. 4 (c–d) and 5, we see that the V-SF inversion 

successfully corrects erroneous hotspots that are overestimated in the prior (e.g., Bakken and Permian shales) but lacks the 

ability to identify missing sources (e.g., wetland emissions in Alberta, the Hudson Bay Lowlands, and the US south coast). 310 

Thus, given the presence of spatially varying prior biases, the SF tendency to over-correct large sources and under-correct 

small sources discussed above now manifests in systematic ways that bias the derived fluxes for particular regions and sectors. 

The V-SF inversion has DOFS = 1281, higher than the U-SF case due to the larger prior error estimates for EDGAR versus 

GEPA. However, as with the U-SF inversion, the estimated posterior error reductions 𝝆𝝆𝑶𝑶𝒔𝒔𝒆𝒆  and the actual emission 

improvements 𝝆𝝆𝒆𝒆𝒕𝒕𝑶𝑶𝑶𝑶 have no significant spatial correlation at the 95% confidence level—for the reasons discussed earlier. As 315 

an example, the computed posterior error reductions shown in Fig. 7b show large uncertainty decreases over the Hudson Bay 

Lowlands (with high observational density), but the derived fluxes over this region do not in fact improve towards the truth.  

Combining model transport errors with the spatially varying prior emission errors substantially worsens the SF inversion 

performance. We then obtain an over-correction of the domain-wide flux and a resulting positive bias (23%) that is almost as 

large as the prior negative bias, with the optimization also failing to meaningfully improve the spatial accuracy of the prior 320 

emissions (Fig. 8b). As a result, the inversion has little ability to resolve sectoral sources: with the exception of livestock, none 

of the posterior sectoral fluxes improve over their prior estimates in terms of RMSE or correlation, and only wetland sources 

are improved in terms of domain-wide bias (Figs. 5 and 6). As discussed in Sect. 5, extending the duration of the analysis 

period does not significantly improve the situation (Figs. 8b). This finding aligns with a previous ensemble analysis of surface 

observations (Locatelli et al., 2013), in which the optimized fluxes varied by 23–48% regionally and up to 150% at the grid 325 

level (2.5° × 3.75°) depending on model transport scheme. These disparities clearly point to model transport error as one of 

the primary reasons behind the large spread in top-down methane source attributions (Locatelli et al., 2013).  

In summary, while TROPOMI is ground-breaking in providing high-precision, high-resolution methane observations daily 

and on a global basis, the combination of i) spatial errors in prior emission estimates with ii) model transport errors continues 

to limit inversion performance. Careful evaluation of potential missing sources in the prior inventories, along with rigorous 330 

evaluation of model transport errors, is critical for robust inverse analyses.  
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4 Alternative approaches to mitigate impacts of spatially varying prior errors 

The impacts of prior spatial errors discussed above present a general challenge to inverse analyses. The fact that SF-based 

emission adjustments of a given magnitude incur less penalty over high-emission grid cells can be problematic for sources 

with poorly known spatial distributions, such as wetlands. For methane, with its long atmospheric lifetime, such issues are 335 

compounded by model transport biases, since the inversion cost function is then heavily weighted by downwind observations 

with their accumulating errors. 

We examine here four alternative inversion strategies in terms of their capacity for addressing these limitations. As summarized 

in Table 1 and described below, these include three SF inversions in which the initial guesses are modified from the standard 

prior (V-flat, V-AddBG, and V-OBSGuess) and a fourth inversion that optimizes absolute emission enhancements (V-EH) 340 

rather than SFs. As before, we evaluate inversion performance in each case based on one month of synthetic TROPOMI 

observations both in the absence and presence of model transport errors.  

4.1 Flat-Prior inversion (V-flat): Good spatial performance for small sources but poor constraints on large sources 

Our first alternative inversion (V-flat; Table 1) employs initial-guess emissions that are distributed uniformly among model 

land grid cells, with the aim of resolving spatial flux patterns entirely from the TROPOMI observations while also addressing 345 

the inability of the SF inversion to recover missing sources. The initial domain-wide flux magnitude is consistent with that in 

the standard prior, and the inversion penalty term is computed with respect to the revised initial guess.  

Figure 4 (e–f) shows that in the absence of transport error the V-flat inversion reduces the total prior emission bias by 42% 

(from -76 Gg d-1 to -44 Gg d-1, the weakest performance among all inversions) and recovers a significant portion of the true 

spatial variance (R = 0.49; however, this is still lower than for the original prior emissions). The optimization captures some 350 

broad patterns in the true fluxes, with higher emissions in the eastern US and over Canada (Fig. S4), but does not resolve key 

finer-scale features. In particular, the optimized fluxes yield no improvement for large sources, either in terms of spatial 

distribution or emission magnitude (Figs. 5 and 6). The inversion performs well at recovering the spatial distribution of small 

sources (RMSE decreases by 54%; R increases from 0.39 to 0.71), and it captures their combined source magnitude to within 

15%.  355 

When transport error is included (V-flat-T, Table 1), the magnitude of the domain-wide emission bias increases from -44 to 

+49 Gg d-1. The V-flat-T inversion is still able to improve the RMSE (by 25%) for small sources but dramatically overestimates 

their domain-wide magnitude (by 63%) to compensate for a 78% underestimate of large sources (Fig. 6). Given the V-flat 

inability to constrain large sources and poor overall spatial correlation with the truth, we move on to examine other inversion 

approaches below. 360 
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4.2 Background-Increment inversion (V-AddBG): Best spatial performance 

Our second alternative framework (V-AddBG; Table 1) occupies a middle ground between the V-SF inversion and the V-flat 

inversion. Here we construct an initial guess field as the mean of the standard prior and the flat initial guess used above, with 

the aim of incorporating prior knowledge while also enabling the SF inversion to recover missing sources. 

Figure 4 (g–h) shows that in the absence of model transport error, the V-AddBG inversion successfully reduces the regional 365 

mean bias from the prior value of -76 Gg d-1 to -28 Gg d-1. While this overall bias correction is not as strong as the standard 

V-SF approach (63% vs. 78%), the V-AddBG inversion yields higher spatial correlation with the truth across the domain (R 

= 0.73 vs. 0.71). Sectoral performance combines the strengths of the V-SF and V-flat inversions. Like V-flat, V-AddBG has 

strong spatial performance for small sources (reducing the RMSE by 56% and increasing R from 0.39 to 0.75; Fig. 5), while 

mitigating the V-flat tendency to overestimate small sources and underestimate large sources. Like V-SF, V-AddBG can 370 

effectively correct false hotspots (e.g., Bakken and Permian shales) while being better able to resolve missing sources (e.g., 

Hudson Bay Lowlands). Some missing sources (e.g., US Gulf Coast) are still not resolved due to limited observational 

coverage.  

Transport errors (V-AddBG-T inversion; Table 1) increase the domain-wide bias in the derived fluxes from -28 Gg d-1 to +76 

Gg d-1. However, this framework still provides the best spatial accuracy among all approaches examined, with R = 0.67 relative 375 

to the true fluxes even with transport error. It has better spatial performance than V-SF-T for every source category except 

wetlands, where the two are comparable (Fig. 5). For several emission categories where the standard V-SF-T solution is 

spatially inferior to the prior (small sources, large sources, fossil fuel, livestock), V-AddBG-T delivers meaningful 

improvements—improving the grid-level RMSE by up to 27% and the spatial correlation to the truth by up to 76% (Fig. 5). 

Overall, we find that V-AddBG provides the best spatial fidelity across all inverse approaches, but the domain-wide bias 380 

improvements are in general not as strong as the standard V-SF approach. 

4.3 Observational-Guess inversion (V-OBSGuess): Exploiting long-term observations to identify missing sources 

Our third alternative framework (V-OBSGuess; Table 1) exploits the TROPOMI observations themselves to derive initial-

guess emissions that enable SF-based recovery of spatially heterogeneous and missing sources. Specifically, we use one year 

of synthetic TROPOMI data (generated as above for the true-state atmosphere and averaged to the model resolution (Sun et 385 

al., 2018)) to identify locations 𝑖𝑖 with high methane column 𝛺𝛺𝑖𝑖 but low prior emissions 𝑥𝑥𝑖𝑖 based on the following index (see 

Fig. S5): 

𝛽𝛽𝑖𝑖 = (𝑥𝑥𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑥𝑥𝑖𝑖)/𝑥𝑥𝑚𝑚𝑎𝑎𝑚𝑚 ×  𝛺𝛺𝑖𝑖/𝛺𝛺𝑚𝑚𝑎𝑎𝑚𝑚  (4) 

For locations exceeding the 0.8 quantile for this index we linearly scale 𝛽𝛽𝑖𝑖 to a corresponding prior emission increment. The 

scaling relationship is derived from scaled-emission sensitivity simulations with the resulting increments capped at 50 mg m-
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2 d-1. The role of atmospheric transport means that this conversion is merely an approximation, but it is suitable for our purposes 390 

as input for a source inversion—and in particular, addresses the failure of standard SF inversions for scenarios with a near-

zero prior where a source actually exists. The initial guess flux field derived in this way reduces the regional emission bias in 

the standard prior by 97% (from -76 Gg d-1 to -3 Gg d-1) and slightly improves its spatial fidelity to the truth (from R = 0.51 to 

0.54), thus providing an improved starting point for the 4D-Var optimization. This inversion thus optimizes emissions in two 

steps, using the synthetic observations to first spatially identify missing sources then to optimize grid-level emission 395 

magnitudes. 

Figure 4 (i–j) shows that in the absence of transport error, the V-OBSGuess inversion maintains the low domain-wide bias 

present in its initial guess; however, this does reflect some compensation between large-source underestimates and small-

source overestimates (Fig. 6). The spatial accuracy of emissions is improved from R = 0.54 to R = 0.66. Specific improvements 

are apparent for locations with erroneous hotspots in the prior (e.g., Bakken and Permian shales) as well as those with missing 400 

sources (e.g., Hudson Bay Lowlands). Emissions are likewise improved over southern US coastal regions, where observational 

coverage is low for this month, thanks to the revised initial guess that employs a full year of data. V-OBSGuess yields moderate 

spatial performance for sector-specific emissions (Fig. 5), outperforming V-SF slightly for missing sources but otherwise not 

exhibiting a particular benefit for any specific emission category. Overall, when omitting transport error, the V-OBSGuess 

approach provides the lowest domain-wide bias of any inversion, with comparable spatial performance to the standard V-SF 405 

approach. 

However, this approach is highly sensitive to model transport error (V-OBSGuess-T; Table 1). In its presence, the domain-

wide emission bias increases from -5 Gg d-1 to 95 Gg d-1, which is worse than the original prior. The spatial allocation of the 

derived emissions is not substantially improved over the revised initial guess (R = 0.56 versus 0.54) or the original prior (R = 

0.51). Therefore, while V-OBSGuess can achieve a low regional-mean bias and strong spatial fidelity given accurate model 410 

transport, its flexibility in spatially correcting emissions also makes it more sensitive to meteorological errors than other 

approaches.. 

4.4 Emission enhancement inversion (V-EH): Recovering large missing sources  

Finally, we optimize emission enhancements rather than SFs (V-EH; Table 1). In this case, the prior error covariances in Eq. 

1 are computed with respect to absolute flux increments rather than with respect to the prior emissions; the inversion thus has 415 

increased flexibility to add emissions everywhere regardless of the local prior. We employ an increment of 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 10 kg grid-

1 min-1 and optimize emissions as 𝒙𝒙 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖  𝒔𝒔+  𝒙𝒙𝒂𝒂. For context, approximately half of the domain-wide prior emissions are 

contributed by grid cells with emissions greater than 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖. We further set a lower bound for the scaled increment (of −𝒙𝒙𝒂𝒂) to 

avoid negative fluxes, and prescribe zero fluxes for ocean grid cells outside of offshore oil/gas production fields.  
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Figure 4 (k–l) shows that in the absence of model transport error, the V-EH inversion reduces the regional emission bias from 420 

-76 Gg d-1 to -14 Gg d-1 (by 81%) while improving the spatial correlation from R = 0.51 to 0.60. It succeeds at removing some 

of the false hotspots present in the prior (i.e., Bakken and Permian shales), but incorrectly smears those corrections spatially 

due to atmospheric transport. The V-EH inversion exhibits the best overall performance for missing sources (prior emissions 

< 10 mg m-2 d-1; Figs. 5 and 6): the RMSE and domain-wide bias are reduced by 25% and 62%, respectively, for small missing 

sources (with R increasing from 0 to 0.39 with respect to the truth), and by 16% and 22%, respectively, for large missing 425 

sources (but with no clear correlation improvement in this case).  

Transport errors significantly degrade the optimized fluxes in this framework (V-EH-T; Table 1), increasing the domain-wide 

bias from -14 Gg d-1 to 101 Gg d-1 and reducing the spatial fidelity to R = 0.53. The latter is only a slight improvement over 

the prior (R = 0.51) and lower than is obtained with the standard V-SF-T approach (R = 0.55). V-EH-T still yields the best 

overall improvement for large missing sources, but in other cases the performance is mixed (Figs. 5 and 6). 430 

4.5 Summary and ensemble inversion performance 

The inversion approaches explored above offer distinct advantages and disadvantages, which we summarize below. 

1) In the absence of model errors (Fig. 5), V-flat and V-AddBG exhibit strong spatial performance for small sources (<50 mg 

m-2 d-1, representing 97% of grids cells and 70% of total emissions), but overestimate their emissions while underestimating 

those for large sources. For large sources (≥50 mg m-2 d-1, 3% of grid cells, 30% of total emissions), all inversions except 435 

V-flat yield modest improvements (e.g., 0.2-12% reduction in grid-level RMSE relative to the true fluxes). V-EH performs 

best at recovering missing sources (e.g., for wetlands) while the V-AddBG results generally have the highest spatial 

correlation with the truth. At the sectoral level, the V-SF, V-AddBG and V-OBSGuess inversions are all able to improve 

over the prior estimates for fossil fuel emissions (characterized by false hotspots in the prior) and livestock emissions 

(which have a spatially accurate prior). The alternative approaches allow more spatial flexibility in source allocation than 440 

the standard SF inversion, but the trade-off is a greater propensity to introduce spurious sources.   

2) When subject to model errors, the V-SF-T, V-AddBG-T and V-OBSGuess-T inversions all overcorrect large sources, while 

the V-flat-T and V-EH-T inversions create some spurious sources to compensate for transport biases. The V-AddBG-T 

inversion is the only framework able to reduce the grid-level emission RMSE despite transport errors, and it achieves the 

highest spatial R across all inversions (Fig. 5). However, it is unable to reduce the domain-wide emission bias given the 445 

transport errors imposed here. Conversely, the V-SF-T and V-flat-T inversions are able to improve the overall emission 

bias in the presence of transport errors, but they fail to improve their spatial accuracy. Short-lived species that are less 

influenced by transport error would likely yield better performance. 

3) In all cases, the posterior error reductions 𝝆𝝆𝑶𝑶𝒔𝒔𝒆𝒆 derived via Eq. 2 have no significant correlation with the actual emission 

improvements 𝝆𝝆𝒆𝒆𝒕𝒕𝑶𝑶𝑶𝑶 (Fig. 7). 450 
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Together, the above inversions provide a range of possible emission solutions to fit the TROPOMI data. For optimizations 

using real data, analyzing the mean and spread across inversion frameworks provides a way to combine those various 

constraints and to diagnose robust aspects of the solution (e.g., Tarantola, 2006; Yu et al., 2021). Here, in the absence of 

transport error, the ensemble mean solution reduces the domain-wide bias from -76 Gg d-1 to -22 Gg d-1 (by 72%; Fig. 4) with 

higher spatial accuracy (R increases from 0.51 to 0.73, RMSE is reduced by 33%) than any individual inversion. In the presence 455 

of transport errors, the ensemble mean offers performance intermediate among the individual cases for both domain-wide 

emission bias (77 Gg d-1 vs. -76 Gg d-1 in the original prior) and overall spatial fidelity (R increases from 0.51 to 0.63, RMSE 

is reduced by 11%).  

Restricting the analysis to grid cells where the derived emission adjustments have consistent sign across all inversions yields 

a larger improvement over the prior. In the instrument-error-only cases, the spatial fidelity across these grid cells (totalling 127 460 

Gg d-1, 45% of total emissions and 31% of the grid cells) improves from R = 0.21 to R = 0.53 with a 46% reduction in the 

grid-level RMSE, and total emission magnitude bias improves by 79% (from -52 Gg d-1 to -11 Gg d-1). In the presence of both 

instrument and model transport errors, the spatial fidelity of these consistent grid cells (totalling 147 Gg d-1, 52% of total 

emissions and 40% of the grid cells) improves from R = 0.25 to R = 0.50 with a 27% grid-level RMSE reduction, but total 

emission magnitude bias only improves by 2% (from -61 Gg d-1 to 60 Gg d-1). 465 

5 Influence of inversion timeframe on solution accuracy 

The above analyses are all based on one month of synthetic observations and performed on the 0.25° × 0.3125° model grid. 

Below we extend the analysis to alternate timeframes to further evaluate the impact of data coverage on inversion performance. 

We find that in the absence of both spatially varying prior emission errors and model transport errors (U cases; Table 1), a 

single day of TROPOMI measurements can reduce a domain-wide emission bias by 47% (from -140 Gg d-1 to -74 Gg d-1, Fig. 470 

8a) while maintaining high spatial fidelity with the truth (R > 0.9). Extending the inversion timeframe to 3 days reduces the 

bias by an additional 10% (to -60 Gg d-1), but longer timeframes beyond this offer no additional benefit (our true emissions in 

the OSSE do not vary on a sub-monthly timescale). When model transport error is present but prior emissions are still spatially 

accurate, we again find similar performance across one-day to one-month timeframes, with strong bias reduction and spatial 

accuracy in each case (Fig. 8b, U-SF-T, Table 1). Therefore, given spatially reliable bottom-up inventories, TROPOMI can 475 

constrain methane emissions at high time resolution and resolve day-to-day temporal variability even in the presence of realistic 

model transport errors. 

Spatial errors in the prior change this picture. In that case, when model transport error is absent (V cases; Table 1), both the 

emission bias and spatial fidelity continue to improve as the inversion timeframe increases from one day to one month (Fig. 

8a). Given accurate transport, additional TROPOMI observations thus allow all the inversions to progressively correct prior 480 
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spatial inaccuracies. However, the combination of transport errors with spatial emission errors in the prior strongly 

compromises inversion performance in all cases. Except for V-AddBG, we see at best marginal spatial improvements with 

increasing observational coverage (Fig. 8b). Furthermore, the domain-wide bias progressively worsens as the inversion 

timeframe increases, and after one month the bias in the derived fluxes has comparable magnitude to that in the prior. While 

longer inversion windows benefit from increased data coverage, this comes at the cost of accumulating transport error as 485 

atmospheric enhancements are related to emissions farther and farther upwind. In such cases, multiple short inversions, rather 

than a single long inversion, may be preferable.  

Given the combined effects of imperfect model transport, prior spatial errors, and limited observational coverage, one might 

expect better inversion accuracy when evaluated at coarser resolution rather than on the native 0.25° × 0.3125° model grid. 

When aggregating the solutions to 4° × 5° we indeed obtain higher correlation with the true fluxes for all cases with spatially 490 

variable prior errors (Fig. S6). However, this result mainly arises because the prior itself is more spatially accurate at this scale: 

the degree of improvement actually achieved through the inversion is no better than at fine resolution. Overall, neither the use 

of alternative timeframes nor of spatial aggregation changes our finding that inversion experiments can improve both the 

spatial distribution and magnitude of fluxes if either spatially variable prior errors or transport errors are present—but not when 

both errors are present. 495 

6 Conclusions and implications 

In this paper we examine three factors that limit the accuracy of top-down methane source estimates: i) observational coverage, 

ii) spatial inaccuracies in prior emission estimates, and iii) model transport accuracy. The TROPOMI satellite sensor provides 

unprecedented, high-density and high-precision measurements of atmospheric methane columns over land, representing a 

major step forward in addressing the first of these constraints. We employ here a series of OSSE experiments to evaluate a 500 

range of inversion approaches in terms of their ability to spatially resolve methane emissions from high-coverage satellite 

sensors such as TROPOMI given the remaining limiting factors above.  

The widely used SF-based inversion approach can be problematic for sources with poorly known spatial distributions, since 

adjusting grid cells with missing or near-zero sources in the prior may incur a prohibitive cost-function penalty. The required 

emissions are then unfortunately allocated to higher-emission locations. We examine four alternate inversion strategies that 505 

aim to alleviate this issue. Three use a revised initial guess to allow SF-based recovery of missing sources (V-flat: flat prior; 

V-AddBG: adds a background emission to the standard prior; V-OBSGuess: uses satellite data to pre-allocate missing sources) 

while the fourth optimizes emission enhancements (V-EH) rather than scale factors. The V-EH inversion performs best at 

resolving missing sources, whereas V-AddBG has the best performance in terms of the overall spatial fidelity of the solution—

even in the presence of model transport errors. However, the standard V-SF approach yields better domain-wide bias reduction 510 

when model transport errors are present. The spread and mean across the ensemble solutions help in identifying robust aspects 
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and uncertainties in the optimized flux patterns. For example, grid cells in which the emission corrections have consistent sign 

across the ensemble members exhibit improved grid-level RMSE reduction (here, 27% in the presence of transport error) 

compared to other grid cells (-8%, degraded performance). 

We find that 4D-Var source optimization based on TROPOMI observations can provide robust constraints on monthly methane 515 

emissions at 25-km resolution, even when provided spatially incorrect prior emissions or in the presence of significant model 

transport error. However, performance is substantially degraded when both of these errors are present. Then, only one of the 

inversion frameworks is able to improve upon the prior spatial distribution of emissions (V-AddBG-T; R increases from 0.51 

to 0.67 and RMSE reduces by 21%), but it is unable to reduce the domain-wide emission bias. The two inversion frameworks 

that successfully reduce the prior bias in this scenario (V-SF-T and V-flat-T; 16–36% bias reduction) are unable to improve 520 

the spatial distribution (grid-level RMSE). In many cases spurious emission adjustments are derived to compensate for the 

transport errors. Increasing observational coverage through longer-timeframe inversions does not resolve the situation, 

providing only a modest spatial improvement but with progressively worsening domain-wide bias due to accumulating 

transport errors.  

We show through the OSSE analysis that the computed error reduction (approximated via gradient-based randomization) has 525 

no meaningful correlation with the actual emission improvements that are obtained in the inversions. This arises because, in 

general, the true prior emission disparities are not randomly distributed with zero mean (as is formally required in the best 

linear unbiased estimate, or BLUE, 4D-Var problem) but rather have coherent spatial patterns associated with specific source 

types and regions. The same issue would also apply had the posterior errors instead been derived exactly via an analytical 

Bayesian solution. While often applied for observing system characterization, this approximate information content analyses 530 

should not be used to assess inversion accuracy or the spatial reliability of derived fluxes.  

Findings here show that improving the spatial accuracy of bottom-up methane emission estimates is one key need for advancing 

top-down source assessments—for example through wetland extent surveys, better assessment of the environmental drivers of 

fluxes, and precise facility-level information for livestock, fossil fuel, and industrial facilities. However, even with best efforts 

in these areas, the temporally sporadic nature of certain fluxes, combined with uncertainties in sectoral partitioning and in 535 

emission drivers, will inevitably lead to some bottom-up spatial biases. Such challenges provide the main motivation for 

pursuing top-down approaches in the first place. 

Fundamental advancement will therefore require both the minimization of model transport errors and explicit representation 

of such errors in inverse analyses. On-going efforts to improve CTM representation of inter-hemispheric transport, convection, 

and boundary layer mixing offer promise for reducing the influence of model transport errors in future inverse analyses (Lin 540 

and Mcelroy, 2010; Patra et al., 2011; Saito et al., 2013). Including model error terms in the cost function for optimization, for 

example via weak-constraint inverse modelling, can alleviate the perfect-model dependence of standard (strong-constraint) 
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inverse approaches and would improve inversion results for long-lived tracers such as methane (Stanevich et al., 2020, 2021). 

Furthermore, the current version of the GEOS-Chem adjoint model assumes that the observational error covariance matrix is 

diagonal. However, model transport errors have clear spatial correlation structure (Fig. S2), and future work accounting for 545 

off-diagonal observational errors may thus improve performance. As such developments progress, current inverse analyses of 

space-borne methane measurements require careful evaluation of possible missing sources and of model transport errors, along 

with thoughtful assessment of the potential for multiple viable solutions. 

Code and data availability 
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