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S.1 Energy considerations10

S.1.1 Thermal and mechanical energy

We consider a water column with variable density ρ(z, t) [kg m−3] and temperature T (z, t) [°C], linked via a non-linear

equation of state (equation 2 in the main text), in a gravitational field with acceleration g [m s−2], where z [m] is the vertical

coordinate pointing downwards. The bulk energy balance of the system should include both mechanical (potential Epot and

kinetic Ekin) and internal (thermal) energy Eint per unit area [J m−2], together with the energy fluxes [W m−2] given by the15

net heat flux Hnet and the wind power Pwl effectively transferred to the lake. The most general version of the energy equation

for the water volume considered as a thermodynamic system reads:

d

dt
(Eint +Epot +Ekin) =Hnet +Pwl , (S.1)

where Eint = Eint,0 +
∫
ρ(T )cpT dz, with cp ' 4.2 kJ °C−1 kg−1 the heat capacity of water at constant pressure and Eint,0 a

suitably defined constant, andEpot = Epot,0−
∫
ρ(T )gz dz can be defined with respect to an arbitrary reference state (z pointing20

downwards). Note that Pwl < Pw, where Pw = ρaCDW
3 is the wind power estimated in the atmosphere at a conventional

height above the lake’s free surface (see equation 4 in the main text and the discussion in section S.2 below).

Different orders of magnitude are involved in the balance expressed by equation (S.1): just to give an example, if the

temperature changes by 0.5°C (implying a density changes ∼ 10−2 kg m−3) uniformly over a depth of 5 m in 1 day, then

dEint/dt∼ 102 W m−2; dEpot/dt∼ 10−5 W m−2. It is more difficult to give a meaningful estimation of dEkin/dt, which25

might be on the same order of dEpot/dt. In this simplified description of the energy balance, we assume that the change of

kinetic energy from day to day is minor, and we do not consider a momentum balance. Hence, we simplify equation (S.1) by

neglecting the term dEkin/dt, and evaluate each term of the right hand side separately. Interpreting the assumption in terms

of the terminology used, e.g., by Winters et al. (1995), we are focusing on the balance of the background potential energy

neglecting the adiabatic changes in available potential energy due to the kinetic energy of the flow.30

The mechanical energy budget is classically partitioned between a heating/cooling term and a wind-induced mixing term

(Simpson et al., 1978), which we set here in integral terms as

∆Epot '
∂Epot
∂Eint

∆Eint +

∫
ηPw dt , (S.2)

where ∂Epot/∂Eint formally expresses how the change in the thermal energy modifies the potential energy, via the equation of

state, and η is the model’s coefficient that requires a calibration. In equation (S.2), the rate of change of the potential energy due35

to the change of temperature dominates the stratification process, while the wind power is responsible for the destratification.

However, not all the wind power is made available to modify the potential energy, but only a tiny fraction ηPw, where the

efficiency η� 1. The remaining part, Pwl−ηPw, causes mixing and, eventually, is dissipated into heat by means of molecular

viscosity at the small (Kolmogorov) scales at which the mechanical energy is transferred by turbulence. Thus, it should enter

into the thermal energy budget,40

∆Eint '
∫
Hnet dt+

∫
(Pwl− ηPw) dt , (S.3)
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but its magnitude (∼ 10−2 – 10−1 W m−2) is some orders of magnitude smaller than Hnet (∼ 102 W m−2), which primarily

governs the temperature dynamics. Practically, the last term in equation (S.3) is neglected as in the widely used equation:

∆Eint '
∫
Hnet dt . (S.4)

This separation between internal and mechanical energy is common to the majority of the models, where the heat balance45

is independent of the momentum equation (e.g., as in Simstrat; see Goudsmit et al. 2002). In addition, we introduce another

assumption in the minimal model, which is crucial to highlight the role of the different processes: we further simplify the

equation describing the temporal change in Epot (equation S.2) by attributing the two terms in the right-hand side of the

equation to two decorrelated phases. The phase A represents the wind-induced mixing of the surface layer, previously stratified

as a result of the change of potential energy due to the heat flux in phase B (see Figure 1 in the main text). Therefore, equation50

(S.2) is simplified for phase A as

∆Epot '
∫
ηPw dt , (S.5)

while in phase B we directly assign the temperature profile, which modifies the water density and, eventually, the mass dis-

tribution and the potential energy. The separation of the two processes over a suitable time scale is the core of the minimal

model.55

S.1.2 Alternative formulation of the heat budget

A particular case of equation (S.1) can be formulated in a simplified way that might be more familiar to some readers. Assuming

that the variables involved in the heat budget are uniformly distributed along the water column (having depth h), it is possible

to express the variation of internal energy as dEint/dt' ρcphdT/dt and the potential energy can be estimated as Epot '
ρgh2/2. Imposing mass conservation (such that M = ρh is constant, per unit surface), Epot ' gM2/(2ρ) and its variation is60

dEpot/dt'−gh2 dρ/dt/2. Thus, neglecting also the kinetic energy, the simplified heat budget reads(
cp +

ghα

2

)
ρh
dT

dt
=Hnet +Pwl , (S.6)

where α=−ρ−1dρ/dT is the thermal expansion coefficient. For α∼ 10−6 K−1, g ∼ 10 m s−2 and h∼ 10 m, the second term

within brackets is ∼ 10−4 J kg−1 K−1, which is much smaller than cp ∼ 103 J kg−1 K−1. This confirms that different order of

magnitudes between the rates of change of internal and potential energy.65

Note that α < 0 for T < Tmd (the conditions we are investigating), so a cooling (dT/dt < 0) reduces the internal energy but

slightly increases the potential energy because the density decreases and the volume expands. However, equation (S.6) does

not consider the effect of stratification (ρ varies along the vertical) whereby the different distribution of the mass affects the

potential energy.

S.1.3 Energy required to mix the surface layer in phase A70

As explained in the main text, the wind can provide the energy necessary to destratify the water column. In this section, we

show how the potential energy changes passing from a linear stratification to well-mixed conditions. To this end, we temporarily
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adopt a different notation, with a coordinate y pointing upwards with origin at the base of the layer that is actually being mixed.

With this notation, the potential energy is defined as

Epot =

h∫
0

ρgydy , (S.7)75

where h is the distance from the base of the layer to the free surface.

Let us first assume the the water volume is conserved (hence h does not vary in the destratification process) and consider a

linear variability of the density

ρ(y) = ρd (1−σy) , (S.8)

where ρd is the density at the bottom of the layer and σ > 0 to have a stable stratification. The initial state is characterized80

by a potential energy Epot,1 = ρdgh
2 (1/2 +σh/4). In the final state, after the complete destratification, the density becomes

uniformly equal to ρ= ρd (1−σh/2), so the energy is Epot,2 = ρdgh
2 (1/2 +σh/3). Thus, the difference of potential energy

is

∆Epot = Epot,2−Epot,1 =
ρdgσh

3

12
> 0 , (S.9)

which demonstrates the inequality reported in the main text, stating that there is a need of external energy to destratify the85

water column.

In order to develop a more rigorous analysis, we can also relax the assumption of volume conservation (typical of practically

all numerical models), which would correspond to keep h constant, and adopt to the physically sounder requirement of mass

conservation, where the mass per unit area is M =
∫ h
0
ρdy. Furthermore, instead of the linear variation of density described by

equation (S.8), we consider a linear temperature profile90

T (y) = Td− δ y , (S.10)

with Td the temperature at the bottom of the layer and δ the temperature gradient (δ > 0 in the cooling phase). We assume the

parabolic equation of state (equation 2 in the main text), so that ρd = ρmax + a0 + a1Td + a2T
2
d , with ρmax the water density

at ' 4°C. As a result of the mixing, the final uniform temperature would be T = Td− δh/2. We can study the energy change

by following the same procedure as above, but distinguishing between the initial (h1) and final (h2) layer thickness. The mass95

conservation principle leads to a complicated algebraic condition, which however predicts that h2 < h1, although the difference

is typically irrelevant for the problem we deal with. Similarly, it is not worth reporting the complete algebraic equation for the

difference of potential energy, but it suffices to say that, also in this case, ∆Epot = Epot,2−Epot,1 > 0 and the difference is

close to the value predicted by equation (S.9).

S.1.4 Development of the stratification in phase B and variation of potential energy100

Phase B describes the process whereby the stratification is established. The assumption of a linear stratification is only a

rough description of what is likely to happen in reality. The idealized model behind the process refers to a layer of water
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characterized by a relatively intense turbulent diffusion (the well-mixed layer at the surface), lying on top of another layer

where the temperature is approximately constant. We assume that the heat exchanged at the air-water interface produces a

diffusive flux in the surface layer.105

Under steady conditions, the resulting temperature profile would be linear, as described in equation (S.10). Based on simple

theoretical arguments for diffusive processes, the time scale to reach a steady state is TD ∼ h2/K, with K a reference value of

the vertical eddy diffusivity. Assuming h∼ 10 m and K ∼ 10−3 m2 s−1, the time scale TD ∼ 1 day, which corresponds to the

time step of the model. For a shallower surface layer or more intense turbulence, shorter times would be required.

The way the potential energy changes in phase B is not completely obvious. We start from a uniform temperature profile110

(T = Td and ρ= ρd in the layer of thickness h1) and we end up with a linear stratification. Let us first consider the case where

the volume is conserved (h2 = h1, note that this is the usual assumption in numerical models) and the final ρ varies linearly as

in equation (S.8). The difference ∆Epot =−ρdgσh3/3, which implies that the potential energy should decrease because the

water at the top of the layer becomes lighter. However, this result is not correct because the expansion of the water is neglected.

If one imposes mass conservation, instead, the result is opposite: potential energy increases. In fact, the thickness increases115

(h2 > h1, although the difference is infinitesimal), as can be seen using (S.8) to derive that h1 = h2 (1−σh2/2). Then, the

difference ∆Epot = ρdgσh
3
2 (1/6−σh2/8) is typically a positive number because σ ∼ 10−5 m−1 in typical conditions. The

potential energy grows if the layer stably stratifies because the centre of mass uplifts slightly. Similar results can be obtained

using (S.10), but the solutions are algebraically more complicated.

S.2 Physical interpretation of the calibration parameter120

In this section, we analyze the process of energy transfer from the wind to the lake, and in particular how to estimate the energy

of the surface currents in a lake. Neglecting the effect of Earth rotation, assuming a constant value for the reference vertical

eddy viscosity νz [m s−2], and referring to steady-state conditions, the velocity profile can be obtained analytically (Heaps,

1984). Different approximations can be invoked. Here we consider the case of a no-slip condition at the bottom, which can be

a simplified model for a surface layer on the top of a strongly stratified layer (Toffolon and Rizzi, 2009). Then, the velocity at125

the free surface is

U =
1

4

τhf
ρ0νz

, (S.11)

where hf [m] is the depth over which the surface flow develops.

Selecting an appropriate constant value for νz is the most complex task. As a first approximation, we assume a parabolic

profile νz = κu∗z(1− z/ht) as a function of the distance z from the free surface, over the depth ht affected by turbulence130

(which scales with hf ), and average it to obtain

νz =
κ

6
u∗ht , (S.12)

where κ' 0.4 is the von Kármán constant and u∗ =
√
τ/ρ0 [m s−1] is the friction velocity.
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wind

lake surface

stratification

Figure S.1. Conceptual scheme of the energy transfer from the wind energy, Ew, to the energy at the lake surface, Ek, to the change of

potential energy in the stratified water column, ∆Ep.

Combining equations (S.11) and (S.12), it follows that

U =
3

2κ

hf
ht
u∗ , (S.13)135

so that the rate of working Pk = τU [W m−2] can be estimated as

Pk =
3

2κ

hf
ht

√
ρa
ρ0
CD ρaCDW

3 = γW 3 . (S.14)

Note that Pk < Pwl because part of the wind power transferred to the lake (Pwl) is dissipated at the surface (by breaking waves,

Stokes dissipation, etc.) and does not contribute to the development of surface currents. Assuming that ht ' hf , it is possible

to obtain the order of magnitude of γ = 3/2κ
√

ρ3a
ρ0
C

3/2
D ' 0.8× 10−5 kg m−3.140

Thus, the mechanical energy Ek [J m−2 day−1] transmitted from the wind to the water can be obtained as

Ek = 〈γW 3〉∆t , (S.15)

where angle brackets denote the temporal average over the time window ∆t. However, not the whole input of energy Pw [W

m−2] from the wind is transmitted to the water flow. In fact, the ratio η1 between the rates of working is

η1 =
Pk
Pw

=
3

2κ

hf
ht

√
ρa
ρ0
CD . (S.16)145

A reference value of η1 '0.0048 can be obtained (assuming again ht ' hf ) and falls within the range recently proposed

for mixed (0.0013) and stratified (0.0064) lakes by Woolway and Simpson (2017). The same coefficient holds for the ratio
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between the surface current velocity and the wind speed, so that U = η1W , where η1 also depends on W through CD. This

estimate of η1 is an order of magnitude smaller than that proposed for the sea by Kullenberg (1976). Similarly, the range

of variation of γ ∼ (1− 5)× 10−5 kg m−3 reported by Imboden and Wüest (1995) is larger than the one derived from the150

approximate scaling in the present analysis, which however is consistent with the recent estimates by Woolway and Simpson

(2017). Nonetheless, any possible shortcoming in the estimation of γ or η1 has to be connected with the uncertainty in the

estimation of η2 = ∆Ep/Ek (see Figure S.1 for a conceptual summary). Thus, it is more suitable to condense both effects in a

single calibration parameter, the global efficiency η, which multiplies the wind energyEw to obtain the energy ∆Ep effectively

available for the destratification of the water column (see equation 5 in the main text).155

S.3 Approximate analytical model

S.3.1 Derivation of the linearized model

In this section, we derive a simplified analytical model to obtain a solution in closed form for the case of constant forcing

(fixed values of cooling Ec and wind-induced mixing ∆Ep). The whole analysis is based on a daily time interval ∆t; hence,

the energies are expressed per unit area and per day [J m−2 day−1].160

As in equation (S.10) and for the SELF model, we assume a linear temperature profile in a layer of height h:

T (z) = Ts + δ z , (S.17)

where Ts is the surface temperature and δ = ∆T/h [°C m−1] the vertical gradient, with ∆T > 0 the decrease of surface

temperature for the case of cooling (hence, δ > 0). Accordingly, the energy that has to be extracted from the surface layer to

produce the linear temperature profile (S.17) is165

Ec =
ρ0cph∆T

2
. (S.18)

In order to derive an explicit analytical solution, we need to introduce a few strong assumptions. First, we assume a linear

variation of water density with temperature:

ρ(T ) = b0 + b1T (S.19)

where the coefficients are different from those of the parabolic equation (2) in the main text. Although the linear variation is170

not representative of the actual equation of state, which should be approximated at least by a parabolic function, it is needed to

obtain an analytical result because it allows for removing the effect of temperature on the potential energy change.

The potential energy of the water column Ep is given by equation (3) in the main text. In the case of linear stratification in a

layer of thickness h, it reads

Ep,s =−gh
2

2

(
b0 + b1Ts +

2

3
b1δh

)
(S.20)175
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and, after mixing to the constant average temperature Ts + δh/2, becomes

Ep,m =−gh
2

2

(
b0 + b1Ts +

1

2
b1δh

)
. (S.21)

Assuming that h does not change in phase A (for a discussion on the implications see section S.1.3), the energy difference

from stratified to mixed conditions is

∆Ep = Ep,m−Ep,s =
b1g δh

3

12
, (S.22)180

which is independent of the temperature thanks to the linearity of the fit (S.19).

In order to describe the evolution of the surface temperature, we consider a sequence of daily steps, as schematically repre-

sented in Figure 1 in the main text and Figure S.2 here. Let us assume that, at time ti, the stratification begins with a thermal

gradient (Figure S.2a)

δi =
∆Ti
hi

=
2Ec
ρ0cph2i

, (S.23)185

as obtained from equation (S.18) for phase B, and continues with the homogenization due to the wind action (phase A, Figure

S.2b), producing a new mixed layer with a different height according to equation (S.22):

hi+1 =

(
12∆Ep
b1δig

)1/3

. (S.24)

Then, the stratification develops again (Figure S.2c) and the process iterates. We recall that Ec and ∆Ep do not change with

time in this simplified description.190

Equations (S.23) and (S.24) can be cast in dimensionless form (indicated with a superscript *) introducing h∗i = hi/h0 (and

analogously for hi+1):

δi =
2Ec
ρ0cph20

h∗i
−2 , h∗i+1 =

(
12∆Ep
b1gh30

)1/3

δ
−1/3
i . (S.25)

Substituting δi from the former into the latter, a relation is obtained for the evolution of the well-mixed layer thickness:

h∗i+1 = βh∗i
m , (S.26)195

where m= 2/3 and a dimensionless coefficient appears:

β =

(
6ρ0Cp∆Ep
b1gEch0

)1/3

. (S.27)

The relationship (S.26) is used to predict the evolution of the thickness of the mixed layer in one step. The dimensionless

coefficient β regulates the velocity at which the mixed layer becomes thinner. Starting from hi=0 = h0, hence h∗0 = 1, we can

compute the layer height at the time step i+ 1 = n as200

h∗n = βθn , (S.28)
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time i

phase B
(stratification)

time i+1

phase A
(mixing)

time i+1

phase B
(stratification)

(a)

(b)

(c)

Figure S.2. Sequence of phases showing how the temperature profile evolves in time: (a) starting from a well-mixed condition at time i, a

stratification is formed (phase B); (b) wind provides the energy to mix the surface layer, whose thickness changes with respect to that at the

previous time (phase A at time i+ 1); (c) the surface layer stratifies again (phase B at time i+ 1).
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with exponent

θn =

n−1∑
i=0

mi =
1−mn

1−m
(S.29)

passing from the value 0 for n= 0 (initial condition) to 3 asymptotically for n� 1. Hence, the condition β < 1 produces an

acceleration of the thinning of the mixed layer at each time step. The problem is how to determine the number n of steps (days)205

to reach the formation of ice, which depends on the behaviour of the surface temperature.

The surface temperature changes from day i to day i+ 1. Starting from a well mixed condition, stratification forms (Figure

S.2a) and the new surface layer is mixed (Figure S.2b). Hence, the change of surface temperature in a day is:

Ts,i+1−Ts,i =−∆Ti +
δihi+1

2
=− 2Ec

ρ0cphi
+

2Ec
ρ0cph2i

hi+1

2
=−∆T0

h∗i

(
1−

h∗i+1

2h∗i

)
, (S.30)

where ∆T0 = 2Ec/(ρ0cph0) is consistent with the definition (S.18). Then, it is possible to compute the evolution of the surface210

temperature by using equations (S.26) and (S.28):

Ts,i+1−Ts,i =−∆T0
h∗i

(
1− βh∗i

m−1

2

)
=−∆T0

βθi

(
1− ββθi(m−1)

2

)
=−∆T0 Ψi , (S.31)

where

Ψi = β−θi
(

1− 1

2
β1−θi(1−m)

)
= β−θi

(
1− 1

2
β(mi)

)
. (S.32)

S.3.2 Approximate estimate of the duration of the pre-freezing period215

If the initial value of the surface temperature is approximately 4°C, ice forms when the sequence of nd days brings it to

0°C, hence for a total difference ∆Tice = 4°C, so that
∑nd

i=0 ∆T0Ψi = ∆Tice from equation (S.31). Introducing the parameter

Γ = ∆Tice/∆T0, which is dimensionally expressed as number of days, the problem can be cast in dimensionless form as

nd∑
i=0

Ψi = Γ , (S.33)

which shows that two dimensionless parameters (β and Γ) govern the number of days nd required to form the ice.220

We can look at the properties of the function Ψi defined in (S.32). Figure S.3 shows that the function has a horizontal

asymptote Ψ∞ for large i, and initial value Ψ0 and slope dΨ/di= ys for i= 0:

Ψ∞ =
1

2
β−1/(1−m) , Ψ0 = 1− β

2
, Ψs =

2 +mβ− 2β

2(1−m)
logm logβ . (S.34)

Note that, for the actual value m= 2/3, the value of Ψ∞ = (2β3)−1.

Assuming the asymptotic value as a constant, a rough approximation for the whole process if it is not long enough, we obtain225

an estimate of the number of days of the pre-freezing period

Γ'
nd∑
i=0

Ψ∞ = (nd + 1)Ψ∞ ' ndΨ∞ =
nd
2β3

, (S.35)
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Figure S.3. An example of the function Ψi (equation S.32) and asymptotic value Ψ∞ used to derive the simplified analytical solution for

constant forcing, for a given value of β ' 0.92.

where we also have assumed that nd is sufficiently large. Hence,

nd ' 2Γβ3 =
6ρ20 c

2
p∆Tice

b1g

∆Ep
E2
c

= r
∆Ep
E2
c

, (S.36)

where r = 6ρ20 c
2
p∆Tice(b1g)−1 ' 1.3×1015 kg s−2 is approximately a constant. We stress the fact that equation (S.36) cannot230

give a precise value because of the strong assumptions introduced in the derivation, but at least the order of magnitude of the

estimate. Thus, we can recast it as

nd = µr
∆Ep
E2
c

, (S.37)

where we have introduced a correction factor µ∼O(1) to remind that it is not exact.

Equation (S.37) yields nd given the effective mixing energy per day ∆Ep and cooling per day Ec. The cumulative values235

[J m−2] over the pre-freezing period of nd days are simply ∆E
(nd)
p = ∆Epnd and E(nd)

c = Ecnd. Hence, we can manipulate

equation (S.37) to highlight the cumulative energies:

E2
c n

2
d = µr∆Epnd , (S.38)

which shows that it can be cast as a power law between them, say

∆E(nd)
p = k

(
E(nd)
c

)2
(S.39)240

where k = (µr)−1. Equation (S.39) corresponds to equation (10) in the main text.
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S.3.3 Connection with formulations based on negative degree days

If we accept that equation (S.37) provides a first approximation of the conditions for freezing, we can try to connect it to

the widely used approach based on negative degree days. In this analysis, we rely again on the assumption of constant daily

energy fluxes Ec and ∆Ep = ηW 3∆t. Furthermore, we introduce a simplified closure based on the difference between air245

temperature Ta and LSWT, Ec ' ρ0cpφ(Ts−Ta)∆t, with φ [m s−1] a bulk heat exchange coefficient. Recalling equation (9)

of the main text for the definition of negative degree days, and assuming a mean value of air temperature, we can estimate that

D '−ndTa. Finally, neglecting the effect of surface water temperature, we obtain that Ec ' φρ0cp∆tD/nd. Hence, equation

(S.37) becomes

nd = µ
6∆Tice
b1g

ηW 3

φ2D2∆t
n2d (S.40)250

and it follows that

D =

√
6∆Ticeµ

b1gφ2 ∆t
η W 3/2nd (S.41)

which suggests that any model based only on the computation of negative degree days, D, is incomplete because it misses the

effect of wind speed, W , whose dependence is even more than linear.
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Table S.1. Root mean square error (RMSE) and R2 scores of the results of Simstrat against the available observations of water temperature.

Lake Years R2 RMSE [°C]

Sils 2 016-2020 0.83 0.26

Silvaplana 2016-2020 0.90 0.21

St. Moritz 2016-2020 0.72 0.29

Joux 2013-2019 0.89 0.17

Sihl 2015-2016 0.93 0.19

S.4 Performances of Simstrat255

The results of the 1D model Simstrat were compared with the available data of water temperature in the five investigated lakes.

The results are reported in Table S.1.

Moreover, in Figure S.4 we report the whole series of temperature profiles obtained for Lake Sils in winter 2016/17, com-

pleting the plots shown in Figure 4 of the main text.
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Figure S.4. Evolution of the temperature profile in the pre-freezing period for Lake Sils between 18 December 2016 and 08 January 2017.

The plots represent the daily profiles obtained with SELF compared with the profiles at midnight computed by Simstrat. The dotted lines

represent the SELF model’s temperature profile on the previous day. The symbols represent the available observations, with the error band

equal to one standard deviation of the temperature during the day.
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S.5 Characterization of the freezing time260

S.5.1 Interannual variability

Figure S.5. Interannual variability of the pre-freezing period in Lakes St. Moritz, Sils, Silvaplana, Joux and Sihl, as simulated with Simstrat.

Blue dots represent the day when homothermal conditions (water temperature reaching approximately 4°C along the whole water column)

are reached; red dots the ice-on day.
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S.5.2 Statistical distribution of the duration of the pre-freezing period

Figure S.6. Comparison among the statistical distribution of the duration of the pre-freezing period obtained by means of the 100’000 random

runs with SELF and those simulated by Simstrat in the actual winters.
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S.5.3 Results of the Monte Carlo analysis with SELF for the lakes not included in the main text

S.5.3.1 Lake Sils
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Figure S.7. Cumulative mixing energy ∆E
(nd)
p vs. lost energy E(nd)

c for Lake Sils. For notation, please refer to Figure 6 in the main text.
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Figure S.8. Example of the dynamics in the pre-freezing period in Lake Sils. For notation, please refer to Figure 7 in the main text.
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Figure S.9. Pre-freezing duration, in Lake Sils, depending on the cumulative values of the energies, ∆E
(nd)
p and E(nd)

c . For notation, please

refer to Figure 8 in the main text.
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Figure S.10. Pre-freezing duration, in Lake Sils, depending on the average daily values of the energies, ∆Ep and Ec. For notation, please

refer to Figure 9 in the main text.
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S.5.3.2 Lake St. Moritz265
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Figure S.11. Cumulative mixing energy ∆E
(nd)
p vs. lost energy E(nd)

c for Lake St. Moritz. For notation, please refer to Figure 6 in the main

text.
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Figure S.12. Example of the dynamics in the pre-freezing period in Lake St. Moritz. For notation, please refer to Figure 7 in the main text.
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Figure S.13. Pre-freezing duration, in Lake St. Moritz, depending on the cumulative values of the energies, ∆E
(nd)
p andE(nd)

c . For notation,

please refer to Figure 8 in the main text.
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Figure S.14. Pre-freezing duration, in Lake St. Moritz, depending on the average daily values of the energies, ∆Ep and Ec. For notation,

please refer to Figure 9 in the main text.
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S.5.3.3 Lake Joux
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Figure S.15. Cumulative mixing energy ∆E
(nd)
p vs. lost energy E(nd)

c for Lake Joux. For notation, please refer to Figure 6 in the main text.
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Figure S.16. Example of the dynamics in the pre-freezing period in Lake Joux. For notation, please refer to Figure 7 in the main text.
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Figure S.17. Pre-freezing duration, in Lake Joux, depending on the cumulative values of the energies, ∆E
(nd)
p and E(nd)

c . For notation,

please refer to Figure 8 in the main text.
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Figure S.18. Pre-freezing duration, in Lake Joux, depending on the average daily values of the energies, ∆Ep and Ec. For notation, please

refer to Figure 9 in the main text.
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S.5.3.4 Lake Sihl
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Figure S.19. Cumulative mixing energy ∆E
(nd)
p vs. lost energy E(nd)

c for Lake Sihl. For notation, please refer to Figure 6 in the main text.
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Figure S.20. Example of the dynamics in the pre-freezing period in Lake Sihl. For notation, please refer to Figure 7 in the main text.
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Figure S.21. Pre-freezing duration, in Lake Sihl, depending on the cumulative values of the energies, ∆E
(nd)
p and E(nd)

c . For notation,

please refer to Figure 8 in the main text.
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Figure S.22. Pre-freezing duration, in Lake Sihl, depending on the average daily values of the energies, ∆Ep and Ec. For notation, please

refer to Figure 9 in the main text.
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S.5.4 Correlation of the pre-freezing duration with negative degree days

Figure S.23. Scatter plots of the duration of the pre-freezing period, nd, vs the negative degree days (NDD). The red line represents the

least-square linear fit, and the value of the Pearson correlation coefficient, r2, is shown in red within the plot. The quantities are obtained

from the simulations run with Simstrat.
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