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Abstract. We develop a Matlab program named LAPS (Lagrangian Advection of Particles at Sea) to simulate the advection

of suspended particles in the global ocean with a minimal user effort to install, set and run the simulations. LAPS uses the 3D

sea current velocity fields provided by ECCO2 to track the fate of suspended particles injected in the ocean, at specific places

and times, during a period of time. LAPS runs with a short configuration file set by the user and returns the distribution of

the particles at the end of the advection. A continuous tracking option is also available to record the complete trajectory of the5

particles throughout the entire period of advection. The effect of water waves, or Stokes drift, which alter sea surface current

velocities, can also be taken into account. The principle and usage of the program is detailed and then applied to three case

studies. The first two cases studies are applied to suspended sediment transport. We show how LAPS simulations can be used

to investigate the spatio-temporal distribution of fine particles observed by satellites in the upper ocean. We also estimated

sediment deposit areas on the seafloor as a function of sediment grain sizes. The third case study simulates the dispersion of10

microplastic particles during a tropical cyclone, and shows how the Stokes drift, which is significant during storm events, alters

the particles trajectories compared to the case where the Stokes drift is neglected.

1 Introduction

The quantitative analysis of particle transport by ocean currents relies on in-situ and remote observations, and on Lagrangian

simulation of particle transport (van Sebille et al., 2018). The latter allows hypothesis testing and statistical analysis when15

observations are missing. Indeed, remote sensing observations are global and are focused on sea surface. By contrast, in-situ

ocean observations, from ships or drifters, can probe deeper water but remain local. Thus, Lagrangian simulation allows to

bridge the gap between different spatial scales of observations.

For instance, sediments eroded from the continent are advected until they finally settle in deep oceanic basins. The finest

particles remain in suspension for a long time, making wide structures that are visible by remote sensing satellites (Martinez20

et al., 2015). Then for greater depths, the Lagrangian simulation of particle transport allows evaluating where they eventu-

ally accumulate and build sediment deposits (Mouyen et al., 2018). The ocean also spreads living organisms over the globe

and Lagrangian simulation can explain how biological dissemination toward the most remote areas is possible (Fraser et al.,
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2017, 2018). Ocean transport is also at the core of the contemporary issue of plastic littering, forming large accumulations of

plastic debris in the northern Pacific gyre (Egger et al., 2020) and elsewhere. Once again, Lagrangian simulation of particle25

transport allows to study these contemporary issues within a global framework (Lebreton et al., 2012).

Several Lagrangian simulation software exist, with various computation and customization ability (van Sebille et al., 2018).

Here we present such a Lagrangian simulation program, named LAPS (Lagrangian Advection of Particles at Sea) and pro-

grammed with Matlab. LAPS simulates the Lagrangian transport of the particles under the effect of oceanic currents and, if

requested, waves action (Stokes drift). The oceanic currents are computed by the Estimating the Circulation and Climate of30

the Ocean 2 (ECCO2) consortium (Menemenlis et al., 2008). The Stokes drift velocities are provided by the Ifremer and are a

reanalysis of the WAVEWATCH III model (Rascle and Ardhuin, 2013). Although no novel numerical method is used compared

to already existing Lagrangian simulation software, we believe LAPS offers new interesting features. LAPS is very simple to

use since it requires no installation and no programming, but only an input file defining the position of the particles to be

transported and a short configuration file that will set about ten basic parameters, such as the time of simulation. In addition,35

the program puts an emphasis on particles transport at depth, first because ECCO2 provides 3D velocity fields but also because

particles can be set to sink (e.g. due to their mass) with respect to the bathymetry used in ECCO2.

In this article, we will first describe the method and the complete procedure to use LAPS. We then show three case studies

applied to sediment transport and movement of microplastic particles in the ocean. They shall emphasize the main simulation

features of this program.40

2 Method

2.1 Overview

LAPS simulates the advection of particles at sea under the influence of global oceanic circulation, gravity and Stokes drift.

The velocities of the current come from ECCO2 (Menemenlis et al., 2008) for the global oceanic circulation and a reanalysis

of the WAVEWATCH III model for the Stokes drift (Rascle and Ardhuin, 2013). These two datasets must be downloaded by45

the user before running LAPS, or at least ECCO2 if the Stokes drift is not relevant for the purpose of the simulation (below a

few meters depth for instance, as we described in a next section.) The main principle of the program is thus to attribute each

particle a velocity according to their location in the velocity grids. The initial position of each particle is provided as an input

file by the user. The position of each particle is updated every 15 minutes (simulation time) during the entire simulation period,

according to the current velocity at the location of the particle. The injection of particle in the ocean can be done either once,50

at the beginning of the simulation, or every day until a given date.

The ECCO2 velocity fields used in LAPS have a time resolution of 3 days and a spatial resolution of 0.25◦. Dealing with such

a large grid size can represent a computational challenge for Lagrangian models. Therefore, LAPS is designed to efficiently

manage the ECCO2 grid by only uploading the spatial and temporal data of interest. When the simulation goes beyond three

days, it loads a new ECC02 field and continues the advection. To work with smaller velocity field matrices and decrease the55

computation time, the program loads only a sub-region of the global ECCO2 velocity field. This sub-region fits the extreme
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position of the particles, with a margin of 6 geographical degrees, in order to handle the displacement of the particle over the

three simulation days during which the file will be used. The same approach is used with the Stokes drift data, except that they

are updated every 3 simulation-hours.

The simulation stops when the end date set by the user is reached, or when all particles are either set on the seafloor or60

beached on the coast. The two latter conditions are tested at every advection step and aim at stopping the simulation as soon as

no particle can move, which may occur before the actual end of simulation. All the particles beached or settles on the seafloor

are progressively removed from the advection process, to lower the computation time. Note that the program does not support

parallel computing. The best way to benefit from parallel computing facilities is to split the particle input file into several input

files that shall be run simultaneously. LAPS does not provide functions to implement this approach, which must be designed65

by users willing to do so. At the end of simulation, LAPS stores the final positions of particles and, optionally their trajectories,

in folders defined by the user in the configuration file. The date of the simulation and a few particle properties, mostly defining

how they can sink, are also defined in the configuration, which in total requires 13 simple inputs from the user.

2.2 Oceanic currents

The oceanic currents used in LAPS are the 3-dimensions velocity fields obtained from ECCO2 (Estimating the Circulation and70

Climate of the Ocean 2). These products assimilate data such as sea surface height from Topex/Poseidon, Jason-1 and Jason-

2 missions and ocean bottom pressure from the Gravity Recovery and Climate Experiment (GRACE (Tapley et al., 2004))

mission into a global circulation model (MITgcm (Marshall et al., 1997)) through a Green functions approach that allows to

efficiently adjust the model parameters, initial conditions, and boundary conditions (Menemenlis et al., 2005b, a). They are

available for the 1992-present time period at a time resolution of three days and a spatial resolution of 0.25 degree. This velocity75

field is provided for up to 50 levels of water depths, ranging in thickness from 10 m near the surface to approximately 450 m

at a maximum model depth of 6150 m from the sea surface down to the sea floor.

2.3 Wave action - Stokes drift

Sea surface waves can drag particles in the direction of the wave propagation. This process, also known as the Stokes drift, has

a significant impact on particle advection at sea, especially during storms (Fraser et al., 2018; Dobler et al., 2019). Stokes drift80

velocities derived from wave hindcasts based on the WAVEWATCH III® model (WW3, Tolman, 2009) and forced by winds

(Rascle and Ardhuin, 2013) provided by Ifremer at a three-hours sampling can be added to the ECCO2 velocities. Adding the

Stokes drift velocity provides a more accurate sea surface velocity field, and can be especially relevant to account for storm

events on the particle transport (Fig. 1).

The spatial resolution of the Stokes drift velocity fields is 0.5 degree and its time resolution is 3 hours. LAPS provides a85

function that converts these velocity fields to the same spatial resolution as ECCO2, prior to any advection simulation. Thus, it

is only necessary to locate the particles in the ECCO2 field, then its latitude and longitude indices can be re-used for the Stokes

drift velocity field. This saves computation time because locating the particles is computationally demanding.
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Figure 1. a) Stokes drift velocity in the Philippine Sea while tropical storm Jebi is traveling toward East Asia. The rather circular area of

higher Stokes drift velocity is due to the higher winds of the storm. The WW3 frame is on 2018-09-02, between 6 AM and 9 AM UTC. b)

Sea surface velocity at the equivalent time period, i.e from 2018-08-31 to 2018-09-02, since the time step of the ECCO2 files is 3 days.

The Stokes drift velocity is maximal at the sea surface and rapidly decreases with depth. LAPS approximates the effect of

the depth on the Stokes drift velocity, which is given in Equation 1 (Lynch et al., 2015, eq. 10.52)90

Uw(z) = Uw0−
U∗
κ

ln
∣∣∣∣
z

z0

∣∣∣∣ (1)

where Uw(z) and Uw0 are the Stokes drift velocities at depth z and at the sea surface, respectively, U∗ is the frictional velocity,

κ is the von Karman constant and z0 is the roughness length (0.5 mm≤ z0 ≤ 1.5 mm). With the typical approximations

Uw0 = 0.03W10 and U∗ = 0.0012W10 (Lynch et al., 2015), where W10 is the wind velocity 10 m above the sea level, Uw(z)

can be simplified as Equation 295

Uw(z) = Uw0

(
1− 0.04

κ
ln

∣∣∣∣
z

z0

∣∣∣∣
)

(2)

Thus, we can approximate the Stokes drift velocity at depth z from its surface value, the von Karman constant and the rough-

ness length, which are set by default to κ= 0.4 and z0 = 1 mm, respectively. Fig. 2 shows the rapid decrease of Uw(z)/Uw0

i.e. the term in brackets in Equation 2, as the depth increases, for three different values of z0. For z0 = 1 mm, the default value

set in LAPS, the Stokes drift velocity at 10 m depth decreases by a factor 10 compared to its value at the sea surface, and by a100

factor 100 at 25 m depth, consistent with the fact that the Stokes drift mainly impact particles located in shallow waters. This

is especially relevant for buoyant particles such as micro-plastic debris and very fine sediment particles (1 µm) that sink at a

slow rate.
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Thus, when the Stokes drift is taken into account, LAPS sets the particle velocity Up(z) following Equation 3:

Up(z) = UECCO2(z) +Uw0c(z) (3)105

where UECCO2(z) is the depth-dependent velocity of ECCO2 and c(z) is the factor that account for the decrease of the Stokes

drift surface velocity (Fig. 2 and Equation 2), using κ= 0.4 and z0 = 1 mm.
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Figure 2. Effect of increasing depth on the evolution of Stokes drift velocity for the boundary and mean values of the roughness length z0.

2.4 Settling of particles

Non-buoyant suspended particles, such as sediment particles, will sink at the Stokes settling velocity, expressed in Equation 4

vs =D2g
ρp− ρs

18µ
(4)110
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Table 1. Examples of times needed by particles of increasing sizes to settle on an average abyssal plain at 5000 m depth, assuming no vertical

currents. The particle density is ρp = 2000 kg m−3.

Particle size (µm) Time to settle at 5000 m depth

1 420 years

5 17 years

10 4 years

30 6 months

50 2 months

70 1 month

100 15 days

where g is the mean gravitational acceleration, ρs = 1030 kg m−3 and µ= 1.4 10−3 Pa s are the seawater density and dynamic

viscosity, respectively. This formalism presupposes that the sinking particles are spherical with ρp and D the particle density

and diameter, respectively, which are set by the user. The settling velocity is added to the vertical component of the oceanic

currents and is the main factor governing how long a particle can remain in suspension at sea (Table 1).

Microplastic particles are assumed as fully buoyant at the beginning of each advection simulation. Nevertheless, they can115

start sinking with a given probability after they spend a certain amount of time at sea, about a few tens of days, as a result

of degradation and biofouling (Fazey and Ryan, 2016; Liubartseva et al., 2018). Both this age threshold and the probability

of sinking have default values that can be modified by the user. The microplastic particles that are old enough to sink are

then chosen randomly with respect to that probability. The sinking velocity of these particles is set to 0.016 m s−1 by default

following the study of Kaiser et al. (2017) and can also be changed by the user. The diversity of biofouling processes, plastic120

types and local parameters at sea do not allow a definitive estimation of such values. That is why it is defined as a user parameter

that can be easily modified to any other estimated value.

3 Workflow and algorithm

3.1 Workflow

The main task for the user is to write a configuration file that sets up the simulation parameters (an example of such configu-125

ration file is provided with the program). Aside from paths and the simulation dates, the user must only specify another 5 or 6

parameters:

1. if the Stokes drift should be enabled

2. if the particles should be tracked at regular time intervals, as opposed to only the final positions
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3. if the particles are micro-plastic debris or suspended sediment, which control the settling of the particles (see section 2.4).130

Sediment particles will sink at the Stokes settling velocity, which requires to specify the diameter and density of the

sediment particle. Choosing micro-plastic debris means that particles either stay at the surface or may sink after a user-

defined time at sea, with also user-defined probability and velocity.

See the online documentation and the example configuration file for setting such parameters.

The user should then download the ECCO2 velocity for the zonal (ECCO2, 2021a), meridional (ECCO2, 2021b) and vertical135

(ECCO2, 2021c) components fields and the WW3 Stokes drift provided by the Ifremer institute that are suitable for the

simulation time-period (e.g. for 2016: Ifremer, 2016).

When running the simulation, the program checks if the parameters of the configuration file are correct and if the needed

velocity fields exist. If any check fails, explicit error messages will be displayed in the Matlab’s command window, so the user

can fix them. If all checks pass, the simulation starts.140

The progress is indicated by printing the processed injection time in the command window. The time of computation depends

mostly on the simulation period and the amount of particles that must be advected. The tracking option can also significantly

increase the computation time, because it updates a matrix storing each particle position at the time interval requested by the

user. See runtime examples for different settings in Table 2. At the end of the simulation, the results are saved in the folder

defined by the user in the configuration file.145

Table 2. Examples of runtime for different simulation settings. The Stokes drift is always enabled. CPU is Intel(R) Xeon(R) E5-2630 v3 @

2.40GHz.

Np tS Injection Tracking Runtime

10 1 year first day every 1 hour 2 min

10 1 year every day no tracking 2 min

10 1 year every day every 1 hour 2 hours

100 1 year first day no tracking 2 min

100 1 year every day no tracking 4 min

100 1 year first day every 1 hour 15 min

1000 1 year first day no tracking 2.5 min

1000 1 year first day every 1 hour 2.6 hours

3.2 Algorithm

A simplified algorithm is presented in Algorithm 1. It takes ECCO2 or a combination of ECCO2 and Stokes drift (see section

2.3) as well as particles initial positions as inputs. The main while-loop runs until the final time of simulation set by the user

is reached. It performs the injection of particles and updates the particle position for each time step of 15 mins, according to
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current velocity where the particle is located. The latter step thus implies to locate each particle in the current 3-D velocity150

field, which is done using the Matlab function histc.

Algorithm 1 Algorithm advection. T is the current time in the simulation, TF is the final time of simulation, TSI is the final

time of particle injection. dT is the time increment of the simulation (15 min).

Require: Configuration file, ECCO2 3-D velocity field and initial locations of the particles

Require: (optional) Stokes drift (SD) 3-D velocity field

Ensure: Valid configuration file

Ensure: ECCO2 and SD files match the simulation time period3

while T < TF AND particles can still move do

if T < TSI AND T = new day then

Inject particles at the initial location

end if

Find particles velocities V in the 3-D velocity field

Update particles positions X =X +V.dT

Update time T = T + dT

Count particles that can still move

end while

return Particles positions at the end of the simulation

return (optional) Particles trajectories

The validity of the simulation relies on the fact that each particle is properly located in the 3-D velocity field and that it moves

according to that local current velocity at its position. In addition, since the velocity field changes at regular time interval, the

program must track the simulation time and load a new velocity field whenever the end of such a time interval is reached. We

validate that these constraints are respected by creating synthetic ECCO2 and Stokes drift velocity fields, with simple velocity155

components: 1 m s−1 in pure east, west south and north directions split on four equal longitudinal sections. One particle is

set in each of this section and the simulation is run over 5 days of transport, a time long enough to necessitate loading a new

velocity field (ECCO2 has a 3-days resolution). We ensured that the simulated particles trajectories and distances agree with the

expected results. The synthetic velocity fields, the simulation results and their analysis are archived together with the program

LAPS.160

4 Comparison with surface drifters

We evaluate the general performance of LAPS by comparing its simulation results with surface drifter data acquired in the

frame of the Global Drifter Program (GDP, Elipot et al., 2016a), specifically the global hourly location from GDP surface

drifters tracked by GPS (Elipot et al., 2016b). We select drogued drifters that are available between years 2015 and 2019 (2837

drifters in total), extract their positions at the earliest time and run LAPS for particles injected at those same initial time and165
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positions. The simulation is done over one year, tracking the simulated positions every 6 hours. This leads to a maximum of

365× 24/6 = 1460 positions per drifter. The drogue, or sea anchor, is centered around 15 m depth and attach to the float with

tether. A drogued drifter will thus drift with the velocity of the currents at 15 m depth. For that reason, the particles in the

simulation are injected at 15 m depth. The Stokes drift is not accounted for because it is likely negligible at such depth, about

10 times smaller than at the surface according to Fig. 2. Fig. 3 shows two examples of such a comparison between simulated170

and observed drifters trajectories
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Figure 3. Comparisons between simulated and observed drifters trajectories for two end-members examples showing a) satisfactory and b)

unsatisfactory LAPS trajectory predictions.

To quantify the uncertainty of LAPS, we compare the observed and simulated position vectors for each 6-hourly observed

and simulated positions, for all drifters during the entire year of simulation. The origin of each position vector is the initial

position of each drifter (the simulated and observed initial positions are identical). Residual vectors are then computed by

subtracting each pair of positions vector. Fig. 4 a shows the 2-D (East-North) distribution of the residuals, with their histograms175

along the North and East axis in Figs. 4 b and c, respectively.
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Figure 4. Residuals between the observed and simulated drifter positions for trajectories computed over one year and tracked every 6 hours.

a) Distribution of the amplitude of the residuals in the East and North component. b) Histogram of the residuals for the North component. c)

Histogram of the residuals for the East component.

One limitation in this comparison is that, because of its size (about 40 cm diameter) the buoy of the drifter, even drogued,

is much more sensitive to winds than a particle floating just at the surface or below. Nevertheless, this comparison helps to

provide an uncertainty of the particle positions. The standard deviation of the residuals is 1060 km for the East component

and 560 km for the North component. Given the area covered by the global ocean, we consider that the standard deviations180

obtained with LAPS are reasonable.
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5 Case studies and discussion

In this section, we show and discuss the results of two examples of application of LAPS. The first example focuses on the spatio-

temporal distribution of suspended material discharged by the Amazon River in 2019. The second one simulates movement of

microplastic particles in the ocean, with an emphasis on the effect of Stokes drift on the particle trajectories in an area hit by a185

tropical cyclone.

5.1 Spatiotemporal distribution of suspended material in the ocean

About 19 Gt yr−1 of suspended sediment are discharged by rivers into the oceans (Milliman and Farnsworth, 2011) and take

part in various processes, such as building delta fans or fuelling the nutrient cycle that sustains marine life (Darby et al., 2016).

Therefore, simulating the oceanic transport of sediment discharged by rivers can provide useful constraints on the spatio-190

temporal distribution of sediment, which is difficult to assess in-situ due to the wide areas and depths ranges of the ocean.

In this section, we compare the spatio-temporal distribution of fine particles (1 µm diameter) simulated by LAPS to that of

the gelbstoff and detritus observed by the MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua satellite mission

(NASA Goddard Space Flight Center et al., 2018).

For the LAPS simulation, 345 particle inputs are evenly distributed every 0.25◦ along the Brazilian coast, within a ribbon of195

30 km width running from latitudes 5◦ south up to 10◦ north, in Guyana, which includes the Amazon estuary. One particle is

released from each of the input at a constant rate, every day since 2015 until the end of 2019. Note that the rate of sediment input

might not be strictly constant through time, especially for the Amazon where a seasonal sediment delivery is reported (Martinez

et al., 2009). We neglect this time variation because we are only interested in the first order patterns of the simulations.

The simulations outputs are saved only in 2019, every month for days 1, 5, 10, 20, 25 and 28. One monthly spatial distribution200

of the particles is the average of these seven days. We then compute the relative difference between each monthly spatial

distribution and the monthly average over the entire year, and convert it into a percentage. The resulting distributions are shown

in the left column of Fig. 5. We compute equivalent monthly maps using MODIS-Aqua data, using the monthly and yearly

composite products available online(NASA Goddard Space Flight Center et al., 2018) for year 2019 using the 9 km-resolution

(Fig. 5, right column).205
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Figure 5. Relative spatial distribution of fine sediment particles at the sea surface (0 to 1 m depth) simulated by LAPS (left column) and

observed by MODIS satellite (right column), every three months in 2019.12
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The simulation cannot account for all the processes and the variety of material that compose the gelbstof. In addition, the

actual particles input leading to MODIS-Aqua observations covers larger areas and time periods than the one we simulated

in LAPS. Rather we intend to compare the spatiotemporal pattern of slowly sinking particles out of the basin with one of the

world largest sediment discharge (1.43 Gt yr−1, (Milliman and Farnsworth, 2011)). Indeed, we observe common features:

1. Particles are transported eastward in January and April, and north-westward In July and October210

2. South of the Amazon estuary, we note a relative increase of particle content in April and relative decrease in October.

Conversely, LAPS can also be used to highlight inconsistencies between observations and simulations in order to better

identify sediment sources and grain size. In addition, optical observations are restricted to the sea surface and the transport of

sediment that sank deeper shall take advantage from such simulations. LAPS can thus be used to investigate sediment transport

for various grain size distributions. Indeed, as already shown in Table 1, sediment grain sizes control their settling velocity and,215

therefore, significantly alter how sediment distribute in the water column.

5.2 Deposition zones of suspended sediment

Here we simulate the area of deposition of the suspended sediment delivered by the rivers Magdalena (Colombia) and Godavari

(India), which have significant sediment loads of 140 and 170 Mt yr−1, respectively. We use the "Sediment mode" of LAPS to

evaluate how the sediment deposition area might be controlled by the grain size of the sediment, ranging from 25 to 95 µm,220

with 10 µm increase. Indeed, for a given density, the size of grain is responsible for most of the variation of particle settling

velocities.

The simulation runs from January 2015 to December 2019 with particles injected every day outside the river from January

2015 to December 2018. The 1-year time lag between the end of the injection and the end of the simulation is made to ensure

that all injected particles can settle on the seafloor by the end of the simulation. The Stokes drift is not taken into account225

because the finest particles (25 µm) still sink at about 1 m hr−1, putting them quickly at depths where the Stokes drift influence

has vanished.

The results in Fig. 6 show that, overall, fine grain size extend further than coarser ones, simply because they need more

time to settle and can thus travel over longer distances. However, the shape of the sedimentation zone is a rather complex

combination of the sea-floor depth (as given in ECCO2), the grain size and the sea current velocities, from which we expect to230

obtain realistic estimate of contemporary sedimentation zones.

5.3 Ocean plastic pollution

The pollution of the marine environment with macro and microplastic debris is rising and has become a global problem

(Borrelle et al., 2020). It is estimated that more than 5 trillion plastic particles weighing 250,000 tons float on the ocean

surface (Eriksen et al., 2014) and that in the top 200 m of the Atlantic Ocean alone up to 21.1 million tons of plastic are235

floating (Pabortsava and Lampitt, 2020). The global distribution of floating plastic particles is roughly understood, and the

main accumulation spots in large ocean gyres are mapped (Avio et al., 2017; Cózar et al., 2014). However, it is still unclear
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Figure 6. Sedimentation zones for the a) Magadalena river b) Godavari river and grain sizes ranging from 25 to 95 µm, with 10 µm increase.

The shaded bathymetry is from Etopo (NOAA, 2009). The black dots at the exit of each river locate where the sediment particles are injected.
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how much plastic sank to the bottom of the sea and where. Barrett et al. (2020) estimated that 14 million tons of plastic particles

accumulated at the seafloor in the Great Australian Bight. Studying the pollution in the ocean or deep sea is a difficult task,

due to the vast areas and great depths that need to be covered (Jalón-Rojas et al., 2019; Hardesty et al., 2017; Goldstein et al.,240

2013). Therefore, modelling the transport and sinking of plastic particles is of great interest as it allows to estimate the location

of pollution hotspots at the sea surface as well as in the deep sea. Additionally, in recent years, it has become more and more

evident that rivers play a major role in polluting the oceans with plastic (Jambeck, 2015; Lebreton et al., 2017). It was estimated

that every year 1.15-2.41 million tons of plastic waste are carried by rivers into the ocean (Lebreton et al., 2017). The fate of

riverine plastic waste is not well known. Modelling can help to identify the transport ways and the locations where plastic245

might sink to the ocean floor or is beached on the coast. These results can in turn help to plan mitigation or cleaning efforts. We

use LAPS to run two different scenarios, scenario 1 shows the release of plastic particles by rivers in East-Asia and in scenario

2 we demonstrate the impact of a typhoon on the particle trajectory.

5.3.1 Scenario 1

In this scenario, we use the Tamsui River in Taiwan, and the Pearl River and Yangtze River in China as examples for riverine250

plastic output. All three rivers carry significant amounts of micro and macroplastic waste into the ocean (Lin et al., 2018; Wong

et al., 2020; Schneider et al., 2021; Zhang et al., 2021) and belong to the most polluting rivers worldwide (Jambeck et al., 2015;

Lebreton et al., 2017). For this scenario, 20 injection points are randomly placed at the river mouth. The injection of particles

is done once on May 1st, 2019 and the trajectories are simulated until July 30th, 2019. Three different settings for LAPS are

used while keeping location of starting points and time frame of the model the same:255

– a) no Stokes drift affecting the particles

– b) Stokes drift affecting the particles

– c) same as (b) but with additional sinking of microplastic particles. The parameters are set so that particles at sea for

more than 50 days may sink with a probability of 0.4 and a sinking velocity of 0.02 m s−1. These parameters were

chosen based on the study of Karkanorachaki et al. (2021).260

The resulting trajectories are shown in Fig. 7a, b and c, respectively, and it can be seen that Stokes drift has a significant

influence on the particle trajectories. Especially for the particles that were released by the Pearl River. Without Stokes drift,

the majority of particles traveled from the Pearl River mouth in a north-eastern direction. Some particles beached at the north

coast of Taiwan, others continued further northwards. However, when applying Stokes drift in the model, all particles released

by the Pearl River stay in a gyre close to the river mouth. For particles that were released by the Tamsui River and the265

Yangtze River, the effect of Stokes drift results in different trajectories and endpoints as well. Without Stokes drift, particles

from the Tamsui River end at the eastern coast of Japan, whereas with Stokes drift particles travel to the western coast of

Japan. This scenario shows that Stokes drift is an important factor to consider, as it can change the result of a model and its

interpretation significantly. Microplastic sinking results only in a reduced travel distance of particles. This effect is stronger
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for longer modeling times, as the probability for sinking increases. However, parameters for microplastic sinking should be270

chosen with care. As summarized by Karkanorachaki et al. (2021), a variety of factors, such as plastic density, shape, particle

size, biofouling, waves, are controlling the sinking of plastic particles. Currently, only basic concepts and mechanisms of

microplastic sinking are known from laboratory experiments. Field studies are missing yet. Therefore, validation of the model

results with real world examples are not possible.
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Figure 7. Modeling results for scenario 1. Injection of particles was on May 1st, 2019 and the model run until July 30th, 2019. The location

of starting points (plain color dots) is the same for all settings. (a) Particle trajectories calculated without Stokes drift. (b) Particle trajectories

calculated with Stokes drift. (c) Particle trajectories calculated with Stokes drift and sinking of microplastic particles enabled. See text for

model parameters.
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5.3.2 Scenario 2275

In this scenario, the simulation is set in a period where a typhoon was passing through the area of interest. By comparing

simulations with and without account for the Stokes drift, we aim at demonstrating the sensitivity of the simulation to storm

events that last only a short time. Typhoon Lekima (Hanna) was a category 4 super typhoon with maximum sustained wind

speed reaching up to 250 km h−1 (Naval Meteorology and Oceanography Command, 2021). Lekima formed on July 30th

2019 and passed from August 2nd in north-western direction to the east coast of Taiwan and made landfall on August 9th in280

China. Ten particles were placed randomly in a small area in the eastern part of the Bashi Channel between Taiwan and the

Philippines. Injection of particles was done at two different times. First injection was on May 1st 2019 and particles traveled for

three months through the undisturbed western Pacific (Fig. 8a). Second injection was on July 1st 2019 and particles crossed the

path of typhoon Lekima (Fig. 8b). For both time periods, the trajectories with and without Stokes drift effect were modelled.

For the time period May to July, it can be seen that Stokes drift has a significant impact on the location of the endpoints. The285

location of the endpoints differs in average by 1068 km, with some endpoints only 163 km apart and others up to 2422 km

apart. During the time period from July to September when particles crossed the typhoon path, the trajectories are completely

different from the undisturbed time period. Interestingly, the effect of Stokes drift in this case is not as strong as during the

previous period. Endpoints are closer together, and locations differ in average by 625 km.
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Figure 8. Modeling results of scenario 2. Starting location of particles was always the same. Model was run with and without Stokes drift,

sinking of microplastic particles disabled. (a) Injection of particles on May 1st, 2019 and model run until July 30th, 2019. (b) Injection of

particles on July 1st, 2019 and model run until September 30th, 2019. Typhoon Lekima crossed area of particle trajectories during August

5th to 8th, 2019.

5.4 Perspectives290

Two features are considered for future development. The first one is the ability for storms and currents to re-mobilize sediment

particles that settled at shallow depths (Stastna and Lamb, 2008). At the moment, a workaround is to update the particles input
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file with points located in areas prone to sediment re-suspension, and to keep the injection running over the requested time.

This will act as if sediment particles were re-suspended from these locations.

The second feature is the effect of tidal currents, which can also impact the sediment redistribution in coastal areas. The295

significance of this effect depends on the area considered and on the timescale at which the sediment transport is considered,

since the strongest tidal currents have a 6- to 12 hours period (to be compared with the 3-days resolution of ECCO2 velocity

fields used for LAPS). The last FES2014b products (Carrère et al., 2015) should be suitable for that purpose.

6 Conclusion

We described a Matlab program for Lagrangian advection that allows to simulate the 3D displacement of particles in the300

ocean. The utilisation of LAPS is made simple by only requesting to download publicly available current velocity data and

setting a short configuration file for basic parameters (such as the time of the simulation, the paths to working directories,

particle sinking or particle tracking). By comparing LAPS results with actual drifters trajectories over one year of transport,

we evaluate particle position uncertainties to 1060 km for the East component and 560 km for the North component. We run

example of applications that show how LAPS can handle particle grain size and Stokes drift in order to simulate particles305

trajectories in various cases. We suggest that LAPS is suitable for investigating sediment transport, plastic littering and other

suspended particles.

Code and data availability. The exact version of the model used to produce the results used in this paper is archived on Zenodo (Mouyen,

2021) under the MIT licence, as are input data and scripts to run the model and produce the plots for all the simulations presented in this

paper (Mouyen et al., 2021).310

Video supplement. Two videos of the plastic advection in different situations are available on Figshare (Kunz, 2021).
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