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Abstract 38 

 Domain size can have significant impactsimpact on regional modeling results, but few 39 

studies examiningexamined the sensitivities of regional modeling results ofsimulated aerosol 40 

impactsimpact to regional domain size. This study investigates the regional modeling 41 

sensitivities of aerosol impactsimpact on East Asian summer monsoon (EASM) to domain size. 42 

The simulations with two different domain sizes demonstrate consistently that aerosols induce 43 

the cooling of lower -troposphere that leads to the anti-cyclone circulation anomalies and thus 44 

the weakening of EASM moisture transport. The aerosol-induced adjustment of monsoonal 45 

circulation results in a spatialan alternate increase and decrease pattern of “+-+-+” for 46 

precipitation change over the continent of China. Domain size has a great influence on the 47 

simulated meteorological fields. For example, the simulation with increasinglarger domain size 48 

produces weaker EASM circulation, which also affectaffects aerosol distributions significantly. 49 

This leads to the difference of simulated strength and area extent of aerosol-induced changes 50 

of lower-tropospheric temperature and pressure, which further results in different 51 

locationsdistributions of circulation and precipitation anomalies over the continent of China. 52 

For example, over Southeast China, aerosols induce the increase (decrease) of precipitation 53 

from the smaller-domain (larger-domain) simulation. Different domain sizes simulate 54 

consistently aerosol-induced increase of precipitation around 30°N over East China. This study 55 

highlights the important impactsinfluence of domain size on regional modeling results of 56 

aerosol impactsimpact on circulation and precipitation, which may not be limited to East Asia. 57 

More generally, this study also implies that proper modeling of meteorological fields with 58 

appropriate domain size is one of the keys to simulate robust aerosol climatic impactsimpact.  59 

 60 
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 65 
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1. Introduction 67 

 As one of the forcing’s of climate change, aerosol contributes the largest uncertainty to 68 

the total radiative forcing estimate, and it has attracted more and more attention since the 1980s 69 

(IPCC, 2013; Li et al., 2019). AerosolsAerosol can absorb and scatter solar radiation through 70 

Aerosol-Radiationaerosol-radiation interactions, affect the regional radiation budget, and 71 

amplify its impact through atmospheric mixing and circulation (e.g., Schwartz, 1996; Rinke et 72 

al., 2004; Kim et al., 2007; Z. Q. Li et al., 2010; C. Zhao et al., 2011, 2012, 2014; Myhre et al., 73 

2013; Kuniyal et al., 2019; Zhang et al., 2020). Serving as cloud condensation nuclei or ice 74 

nuclei, aerosolsaerosol can change the microscopic and macroscopic characteristics of clouds 75 

and affect the climate, which is called Aerosol-Cloudaerosol-cloud interactions (Twomey, 76 

1977; Albrecht, 1989; Ackerman et al., 2000; Fan et al., 2012, 2013, 2016). And thereThere 77 

are manyalso some other possible Aerosol-Cloud-Precipitation processes whichaerosol-cloud-78 

precipitation interactions that may amplify or dampen this effect (Rosenfeld et al., 2008, 2014; 79 

Tao et al., 2012; Fan et al., 2015, 2018). 80 

 Due to the large population and the rapid economic development in last few decades, 81 

East Asia has encountered large aerosol loading, and suffered from severe air pollution caused 82 

by various emission sources (e.g., Chan et al., 2008; X. Y. Zhang et al., 2012; Li et al., 2017; 83 

An et al., 2019). Moreover, East Asia is located inwithin the monsoon region, the and its 84 

weather and climate systems are more complicated, which makes the studystudying of aerosol 85 

effects more challenging (Ding et al., 2005; Ding, 2007; Li et al., 2016, 2019; Wu et al., 2016). 86 

In recent decades, the East Asian summer monsoon (EASM) and summerthe associated 87 

precipitation in eastern China have shown strong interdecadalinter-decadal changes (Ding et 88 

al., 2008, 2013; Zhou et al., 2009; Zhu et al., 2011; Zhang, 2015), which hadhas a significant 89 

impact on agriculture, economy, and human life (An et al., 2015). Many factors aremay be 90 

related to the interdecadalinter-decadal variability of the EASM, such as extraterrestrial natural 91 

forcing, internal dynamical feedbacks within the climate system, and changes in atmospheric 92 

composition (e.g., greenhouse gases and aerosols) and surface conditions (land cover 93 

changeschange or urbanization) related to anthropogenic factors (Ding et al., 2008, 2009; H. 94 

M. Li et al., 2010; Song &and Zhou, 2014; Xiao &and Duan, 2016; Jiang et al., 2017). As one 95 

of the forcing factors of summer climate change in East Asia, aerosol havehas attracted many 96 

people to study theits effect on weather and climate effects of summer aerosols in of East Asia 97 

(Cowan &and Cai, 2011; H. Zhang et al., 2012; Guo et al., 2013; Jiang et al., 2013, 2017; Wu 98 
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et al., 2013; Song et al., 2014; Li et al., 2015, 2018; Wang et al., 2015, 2017; Chen et al., 2016; 99 

Kim et al., 2016; Xie et al., 2016; Dong et al., 2019). 100 

 Numerous studies have used global climate models to study the impactsimpact of 101 

anthropogenic aerosolsaerosol on the EASM climate and understand the mechanisms 102 

underneath (e.g., Guo et al., 2013; Jiang et al., 2013, 2017; Song et al., 2014; Yan et al., 2015; 103 

Chen et al., 2016; Wang et al., 2017; Li et al., 2018; Dong et al., 2019). The global modeling 104 

results have shown that aerosols tendaerosol tends to reduce the land-sea thermal contrast, 105 

weaken the EASM, and thereby reduce the rainfall over the continent (e.g., Guo et al., 2013; 106 

Jiang et al., 2013; Song et al., 2014; Wang et al., 2017; Li et al., 2018; Dong et al., 2019). The 107 

reduction of monsoon precipitation over the continent may reduce the release of latent heat 108 

from condensation in the upper troposphere and further weaken the East Asian summer 109 

monsoonEASM (e.g., Jiang et al., 2013; Li et al., 2019). Jiang et al. (2013) used the CAM5 110 

(the Community Atmospheric Model version 5) model to study the effect of different aerosol 111 

types on East Asian summer clouds and precipitation during the EASM, and found that all 112 

anthropogenic aerosols suppressed the precipitation in North China and enhanced the 113 

precipitation in South China and the adjacent ocean areas. Through analyzing the CMIP5 114 

(Coupled Model Intercomparison Program phase 5) modeling results, Song et al. (2014) 115 

examined the contributions of different forcingsforcing’s (aerosol forcing, greenhouse gas 116 

forcing, and natural forcing) to the weakening of EASM circulation during 1958–2001, and. 117 

They found that aerosol forcing playsplayed a major role in the weakening of EASM, and the 118 

contribution of natural forcing is almost negligible, and the forcing of greenhouse gases is 119 

conducive to slightly strengthening rather than weakening the monsoon circulation. 120 

Global climate models have been widely used for investigating aerosol impacts, 121 

howeverimpact. However, there are still large uncertainties with the results at regional scale, 122 

partly because the regional-scale monsoon rainband and aerosol distributions are still not able 123 

to be described accurately with relatively lower model horizontal resolution (H. M. Li et al., 124 

2010; Guo et al., 2013; Jiang et al., 2013; Song et al., 2014; Li et al., 2018; Dong et al., 2019). 125 

In comparison, regional model often has relatively higher horizontal resolution and can better 126 

capture regional features of weather and climate systems and aerosol distributions, and 127 

therefore has been used to investigate aerosol regional climatic impactsimpact recently (e.g., 128 

Zhang et al., 2009; Stanelle et al., 2010; Zhao et al., 2011, 2012; Wu et al., 2013; Wang et al., 129 

2015; Crippa et all, 2017; Zhuang et al., 2018). For example, usingCrippa et al. (2017) found 130 

that the enhanced resolution (from 60 to 12 km) can improve the regional model performance 131 

of meteorological fields and aerosol optical depth (AOD). Using the regional model 132 
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(RegCCMS), Wang et al. (2015) found that aerosol-cloud interaction decreasesdecreased the 133 

autoconversionauto-conversion rates of cloud water to rain water and increasesincreased the 134 

liquid water path of clouds in East China, strengthenswhich further strengthened the cooling 135 

of lower atmosphere caused by the direct aerosol-radiation effect,interaction and 136 

suppressessuppressed the convective precipitation. Wu et al. (2013), with the regional model 137 

(WRF-Chem), found that the aerosol heating effect caused the cloud to move northward over 138 

East China and led to the increased precipitation in the north.  139 

Although regional model at higher horizontal resolution may better capture regional 140 

features of wind, cloud, precipitation, and aerosol, it also introduces additional uncertainties 141 

on modeling regional aerosol climatic impactsimpact resulted from the lateral boundary 142 

conditions of regional simulation. Previous studies have found that domain size of regional 143 

model cancould significantly influence the simulation results (e.g., Warner et al., 1997; Leduc 144 

and Laprise, 2009; Leduc et al., 2011; Bhaskaran et al., 2012; Diaconescu et al., 2013; Di Luca 145 

et al., 2015; Giorgi, 2019). For example, Bhaskaran et al. (2012) studied the sensitivity of the 146 

simulated hydrological cycle to the regional domain size over the Indian subcontinent. They 147 

found that the simulations with smaller domains produced the increased precipitation and 148 

evapotranspiration on seasonal mean and the higher number of moderate precipitation days 149 

relative to the ones with larger domains. Different distributions of cloud, precipitation, and 150 

winds from the simulations with different domain sizes may lead to different aerosol 151 

distributions and itsthe associated climatic impactsimpact. Previous studies have found that 152 

aerosol impactsimpact on precipitation, clouds, and circulation willwould be significantly 153 

different under different weather and climate conditions (e.g., Wu et al., 2013; Wang et al., 154 

2015; Xie et al., 2016). In addition, Seth and Giorgi. (1998) found that the smaller-domain 155 

simulation produced better precipitation compared with the observations, but resulted in an 156 

unrealistic response to the internal forcing. This indicates that the simulation domain size may 157 

also affect the aerosol impactsimpact on large-scale circulation. Therefore, the regional 158 

simulation with increased domain size may be preferred to better reflect the overall aerosol 159 

impactsimpact on large-scale circulation and weatherclimate system without the strict 160 

constraint from the boundary forcing (e.g., Seth and Giorgi, 1998; Leduc and Laprise, 2009; 161 

Xue et al., 2014), but the increased domain size may make the simulationssimulation deviated 162 

from the forcing such as the reanalysis.  163 

As far as we know, there are few studies examining the sensitivities of regional 164 

modeling results of aerosol impactsimpact to regional domain size. Although it can be expected 165 

that domain size will play a role, it is not knownunknown to what extent and how domain size 166 
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can affect modeling results of aerosol climatic impactsimpact. Therefore, in this study, the 167 

regional online-coupled meteorology and chemistry model WRF-Chem (Weather Research 168 

and Forecasting model coupled with Chemistry) (Grell et al., 2005; Skamarock et al., 2008) is 169 

used to study the aerosol impactsimpact on East Asian summer monsoonthe EASM system 170 

andwith the focus on the modeling sensitivities to regional domain size. WRF-Chem has been 171 

widely used for studying aerosol meteorological and climatic impactsimpact over East Asia 172 

(e.g.,A. J. Ding et al., 2013; Wu et al., 2013; Gao et al., 2014; Chen et al., 2014; Zhao et al., 173 

2014; Huang et al., 2016; Liu et al., 2016; Petaja et al., 2016; Zhao B et al., 2017). The 174 

investigation of aerosol impactsimpact under different simulated meteorological fields due to 175 

different domain sizes may also help understand the different modeling results about the 176 

aerosol impactsimpact on East Asian summer monsoonEASM from previous studies. The 177 

study is organized as follows. Section 2 describes the numerical experiments and methods. The 178 

results and discussions are presented in Section 3. A summary is provided in Section 4.  179 

 180 

2. Methodology 181 

2.1 WRF-Chem   182 

 In this study, the version of WRF-Chem updated by the University of Science and 183 

Technology of China (USTC version of WRF-Chem) is used. The model simulates the 184 

emission, transport, mixing, and chemical transformation of trace gases and aerosols 185 

simultaneously with the meteorology, and can be used for investigation of regional-scale air 186 

quality and interactions between meteorology and chemistry. Compared with the publicly 187 

released version, the USTC version of WRF-Chem includes a few additional functions, such 188 

as the diagnosis of radiative forcing of aerosol species, optimized Kain-Fritsch (KF) convection 189 

scheme, aerosol-snow interaction, land surface coupled biogenic Volatile Organic Compound 190 

(VOC) emission, etc. (Zhao et al., 2013a, b, 2014, 2016; Hu et al., 2019; Du et al., 2020), all 191 

of which may have important impact on modeling aerosol and its climatic impactsimpact.  192 

The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol 193 

module coupled with CBM-Z (carbon bond mechanism) photochemical mechanism in WRF-194 

Chem is selected in this study (Zaveri & Peters, 1999; Zaveri et al., 2008). MOSAIC uses a 195 

sectional approach to represent aerosol size distributions with four or eight discrete size bins 196 

in the current version of WRF-Chem (Fast et al., 2006). To reduce the computational cost, four 197 

discrete size bins is selected in this study. All major aerosol components including sulfate, 198 

nitrate, ammonium, black carbon, organic matter, sea-salt, mineral dust, and other inorganic 199 
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matter (OIN) are simulated in the model. The MOSAIC aerosol scheme includes physical and 200 

chemical processes of nucleation, condensation, coagulation, aqueous-phase chemistry, and 201 

water uptake by aerosols. Dry deposition of aerosol mass and number is simulated following 202 

the approach of Binkowski and Shankar (1995), which includes both turbulent diffusion and 203 

gravitational settling. Wet removal of aerosols by grid-resolved stratiform clouds and 204 

precipitation includes in-cloud removal (rainout) and below-cloud removal (washout) by 205 

impaction and interception, following Easter et al. (2004) and Chapman et al. (2009). In this 206 

study, cloud-ice-borne aerosols are not explicitly treated in the model, but the removal of 207 

aerosols by the droplet freezing process is considered. Convective transport and wet removal 208 

of aerosols by cumulus clouds is coupled with the Kain-Fritsch cumulus scheme as Zhao et al. 209 

(2013b). Aerosol radiative feedback is coupled with the Rapid Radiative Transfer Model 210 

(RRTMG) (Mlawer et al., 1997; Iacono et al., 2000) for both SW and LW radiation as 211 

implemented by Zhao et al. (2011). The optical properties and direct radiative forcing of 212 

individual aerosol species in the atmosphere are diagnosed following the methodology 213 

described in Zhao et al. (2013a). 214 

 215 

2.2 Numerical experiments 216 

 Four sets of experiments, CTRL-L, CTRL-S, CLEAN-L, and CLEAN-S, with different 217 

simulation domain sizes or emission configurations are conducted as explained and listed in 218 

Table 1. The control experiments (CTRL-S, and CTRL-L) simulations use standard 219 

anthropogenic emission dataset (described in Section 2.3), while the clean simulations 220 

(CLEAN-S, and CLEAN-L) apply a factor of 0.1 on the standard emissions within the small 221 

domain to represent a clean atmosphere condition over East Asia (Fig. 1). The CTRL-L and 222 

CTRL-S (CLEAN-L and CLEAN-S) represent the simulations with large and small domain 223 

sizes, respectively, as shown in FigureFig. 1. The aerosol impactsimpact can be calculated by 224 

the difference between the CTRL and CLEAN simulations for each simulation domain. The 225 

comparison of aerosol impacts between the large and small simulation domains implies the 226 

sensitivity of aerosol impacts to domain size. impact between the large and small simulation 227 

domains implies the sensitivity of aerosol impact to domain size. Besides these experiments, 228 

another set of experiment NoRA-S is conducted to isolate aerosol-radiation and aerosol-cloud 229 

interactions for further understanding the mechanisms of aerosol impact, which is also listed 230 

in Table 1. The horizontal resolution of 30 km is selected for both simulation domains with the 231 

consideration of the balance of computational efficiency and modeling performance, 232 

particularly for the larger domain. The comparable horizontal resolutions have also been 233 
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widely used for investigating aerosol impact on regional climate (e.g., Zhang et al., 2009; 234 

Stanelle et al., 2010; Zhao et al., 2011, 2012; Chen et al., 2014; Wang et al., 2015). 235 

 All the WRF-Chem experiments select the Morrison two-moment microphysics 236 

(Morrison et al., 2009), Kain-Fritsch cumulus scheme (Kain, 2004), unified Noah land-surface 237 

model, Rapid Radiative Transfer Model (RRTMG) longwave and shortwave radiation schemes 238 

(Iacono et al., 2008), and MYNN planetary boundary layer (PBL) scheme (Nakanishi & Niino, 239 

2006,2009). Following Du et al. (2020), the PBL mixing coefficient is modified to simulate 240 

better PBL mixing of aerosols. Five ensemble simulations are performed for each experiment 241 

by changing the simulation initial conditionstime at UTC 0000 from May 1212th to May 1616th, 242 

2017. (i.e., the five ensemble simulations start at UTC 0000 of May 12th, 13th, 14th, 15th, and 243 

16th, respectively). The averaged results from five ensembles are analyzed to reduce the 244 

influence of modeling internal variability. The simulations run continuously through entire 245 

June and July of 2017. The analysis focuses on the simulation results for June 1 to July 31, 246 

2017. The meteorological initial and lateral boundary conditions are derived from National 247 

Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis data 248 

(NCEP, 2000) with a horizontal resolution of 1°1° and a timetemporal resolution of 6h. The 249 

chemical initial and boundary conditions are provided by a quasi-global WRF-Chem 250 

simulation for the same time period. The quasi-global WRF-Chem simulation is performed at 251 

1°1° horizontal resolution with 360130 grid cells (180°W-180°E, 60°S-70°N). More 252 

details about the general configuration of a quasi-global WRF-Chem simulation can be found 253 

in Zhao et al. (2013b) and Hu et al. (2016). The simulation configuration is summarized in 254 

Table 2. 255 

 256 

2.3 Emissions 257 

 Biomass burning emissions are obtained from the Fire Inventory (FINN) of the National 258 

Center for Atmospheric Research with hourly temporal resolution and 1 km horizontal 259 

resolution (Wiedinmyer et al., 2011), and the injection heights follow Dentener et al. (2006) 260 

for the Aerosol Comparison between Observations and Models (AeroCom) project. The natural 261 

dust emission fluxes are calculated based on the adjusted GOCART dust emission scheme 262 

(Ginoux et al., 2001; Zhao et al., 2010), and the emitted dust particles are distributed into the 263 

MOSAIC aerosol size bins following a theoretical expression based on the physics of scale-264 

invariant fragmentation of brittle materials derived by Kok (2011). More details about the dust 265 

emission scheme coupled with MOSAIC aerosol scheme in WRF-Chem can be found in Zhao 266 

et al. (2010, 2013b). Sea-salt emission follows Zhao et al. (2013a), which includes the 267 
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correction of particles with radius less than 0.2 μm and the dependence of sea-salt emission on 268 

sea surface temperature. Anthropogenic emissions are obtained from the Multi-resolution 269 

Emission Inventory for China (MEIC) at 0.1°x0°0.1° horizontal resolution and with monthly 270 

temporal resolution for 2015 (Li et al., 2017; Zheng et al., 2018), except that the emissions 271 

outside of China are from the Hemispheric Transport of Air Pollution version2 (HTAPv2) at 272 

0.1°x0°0.1° horizontal resolution and with monthly temporal resolution for the year 2010 273 

(Janssens-Maenhout et al., 2015) (Fig. 1). As discussed above, the anthropogenic 274 

emissionsemission in the CLEAN experiments ishas a factor of 0.1 of that in the CTRL 275 

experiment, and. In addition, in the CLEAN-L experiment, only the emissions in the area of 276 

the small domain (denoted by the red box) are adjusted. In this way, the emission reduction 277 

from the simulations with both domains are made consistent. 278 

 279 

2.4 Observations and reanalysis 280 

Although the aims of this study are not evaluating the simulation results to determine 281 

the optimal model configuration for the experiments, some observations and reanalysis datasets 282 

are still used to provide the references for the key fields. The comparison with these references 283 

can demonstrate whether the simulation results are acceptable for further analysis. The MISR 284 

(Multi-angle Imaging SpectroRadiometer, instrument on board the NASA Terra platform) 285 

retrieval dataset is used as a reference of spatial distribution of AOD (Diner et al, 1998; 286 

Martonchik et al., 2004). When showing the comparison between the MISR retrieved and the 287 

simulated AOD, the simulation results are sampled from 10 am - 11 am for averaging and at 288 

the locations of the retrievals because the Terra platform passes over the equator at about 10:45 289 

LT (Diner et al, 2001). The precipitation datasets of CMA (National Meteorological 290 

Information Center of China Meteorological Administration) and CMORPH (Climate 291 

Prediction Center MORPHing technique) are used as the references for spatial and temporal 292 

variations of precipitation during the simulation period. The CMORPH dataset is a global 293 

precipitation reanalysis dataset that is derived from geostationary satellite IR imagery (Joyce 294 

et al., 2004). The CMA rainfall was measured by tipping buckets, self-recording siphon rain 295 

gauges, or automatic rain gauges and was subject to strict quality control. The European Centre 296 

for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) are used as a 297 

reference for wind fields (Hersbach, 2020). 298 

 299 

3. Results 300 



 

 11 

3.1 Sensitivity of simulated meteorological fields to domain size  301 

 Figure 2 shows the spatial distributions of precipitation and moisture transport at 700 302 

hPa over the small domain averaged for June and July of 2017 from the observation and 303 

reanalysis, and the simulations of CLEAN-S and CLEAN-L. The observation and reanalysis 304 

show that the southwesterly transports large amount of moisture into East China. The converge 305 

of large amount of moisture results in heavy precipitation over southern China and its adjacent 306 

ocean. Due to the gradual weakening of northeastward moisture transport and the blocking 307 

effect of the western mountains, precipitation becomes much weaker over northern and western 308 

China. Compared with the CMORPH observation and ERA5 reanalysis (Fig. 2), CLEAN-S 309 

can reasonably produce the spatial distributiondistributions of precipitation and moisture 310 

transport at 700 hPa, with slight underestimation of meridional moisture transport over eastern 311 

China. It is evident that the meridional moisture transport over southern China becomes weaker 312 

with the increasing domain size, and the eastward transport becomes stronger. In addition, the 313 

overall southwesterly moisture transport shiftshifts to the east. This leads to a decrease of 314 

precipitation over eastern China and an increase over the East China Sea. Compared with the 315 

observations of hourly precipitation from the CMA stations over eastern China (Fig. S1 in the 316 

supporting material), both the CLEAN-S and CLEAN-L experiments can generally reproduce 317 

the daily variation of precipitation over eastern China, although the CLEAN-L simulated 318 

precipitation is lower consistent with its weaker moisture transport over the region. 319 

 The difference in moisture transport between the simulations with different domain 320 

sizes results from their difference in geopotential height and wind circulation. Figure 3 shows 321 

the spatial distributions of geopotential height (GPH) and wind field at 700 hPa from the ERA5 322 

reanalysis and the CLEAN-S simulation, and of the difference between CLEAN-L and 323 

CLEAN-S. The comparison with the ERA5 reanalysis shows that the CLEAN-S can well 324 

simulate the distributions of GPH and wind fields at 700 hPa (Fig. S2 in the supporting 325 

material).. The spatial distribution of wind fields is generally consistent with that of moisture 326 

transport (Fig. 2),) and is largely controlled by the West Pacific sub-tropical high (WPSH). 327 

Compared to CLEAN-S, CLEAN-L simulates lower GPH at 700 hPa and produces an 328 

anomalous lower pressure center on the East China Sea, which indicates the weaker WPSH 329 

with increasing domain size. This causes the southwestward wind anomalies over the continent, 330 

which weakens the monsoon driven northeastward moisture transport. Over the South China 331 

Sea, the westerly anomalies enhance the eastward transport of moisture. 332 

 The impact of domain size is not only on the horizontal distribution of wind fields but 333 

also on the vertical circulation. Figure 4 shows the cross-section of meridional temperature 334 
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anomalies and wind averaged for 105°E and 122°E from the ERA5 reanalysis and the CLEAN-335 

S simulation during June to July, and of the difference of temperature (not meridional 336 

temperature anomalies) and wind between CLEAN-L and CLEAN-S. The meridional 337 

temperature anomalies are calculated by subtracting the mean temperature in this latitude range 338 

(as shown in Fig. 4) at each pressure level. First of all, CLEAN-S can generalgenerally 339 

reproduce the temperature gradient and wind circulation from the ERA5 reanalysis (Fig. S3 in 340 

the supporting material).. Relatively large meridional temperature gradient exists between 700 341 

hPa and 200 hPa, where the temperature is higher over the South. Below 700 hPa, the 342 

temperature gradient is relatively weaker, and the temperature is higher over the North. Along 343 

with this distribution of temperature gradient, meridional wind blows from the South and the 344 

North and converges at the latitude around 34°N, which generates strong upward motion in the 345 

area of 20°N-35°N. This is consistent with the spatial distributiondistributions of precipitation 346 

and moisture transport (Fig. 2). Compared with the CLEAN-S experiment, the CLEAN-L 347 

experiment produces larger meridional temperature gradient between 700 hPa and 200 hPa and 348 

weaker gradient below 850 hPa. The circulation from the CLEAN-L is generally consistent 349 

with CLEAN-S, but the southerly wind from CLEAN-L is weaker and the northerly wind is 350 

stronger. This results in an overall northerly wind anomalies from CLEAN-L compared with 351 

CLEAN-S, and alsoalong with a southward shift of the wind convergence from 34°N to 32°N. 352 

It is also noteworthy that the upward motion is weakened around 22°N-38°N and strengthened 353 

to the south of 20°N due to the increased domain size. 354 

  355 

3.2 Sensitivity of simulated aerosol characteristics to domain size 356 

 Figure 5 shows the spatial distributiondistributions of AOD averaged for June and July 357 

of 2017 from the CTRL-S simulation, and of the difference between CTRL-L and CTRL-S. It 358 

can be seen that relativelyRelatively high AOD (>0.6) exists in the Sichuan Basin and the North 359 

China Plain. Theplain. AOD over East Central China and South China is relatively lower (0.2-360 

0.5), which is in line with previous research (studies (e.g., Luo et al., 2014; Qi et al., 2013). In 361 

general, the CTRL-S generally captures the spatial distribution of retrieved AOD from MISR 362 

(Fig. S4S2 in the supporting material). Compared with the CTRL-S experiment, CTRL-L 363 

simulates a similar spatial pattern of AOD as CTRL-S, but produces higher AOD in southern 364 

China and lower AOD in most areas of northern China. To explore the reasons of difference 365 

between the two simulations, Figure 6 shows the spatial distributions of column integrated total 366 

PM2.5 concentrationmass and water content in aerosol averaged forin June and July of 2017 367 

from the CTRL-S simulation, andand of the difference between CTRL-L and CTRL-S. The 368 
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CTRL-S simulation shows high PM2.5 mass loading over the North China Plainplain, which is 369 

consistent with the spatial distribution of AOD (Fig. 5). The PM2.5 mass loading also shows 370 

high values over Northwest China, which is not shown in the spatial distribution of AOD. This 371 

is mainly due to the high mass loading of dust over Northwest China (Fig. S5S3 in the 372 

supporting material),) and the water content associated with dust is relatively small.  373 

CTRL-L simulates higher PM2.5 mass loading over Southeast China and lower values 374 

over North China, which is consistent with AOD. The difference of water content in aerosol 375 

shows a similar pattern. The analysis shows that the difference of PM2.5 mass loading over 376 

North China is mainly due to the difference of dust, while the difference over Southeast China 377 

is due to anthropogenic aerosols (Fig. S5S3). The reduction of dust mass loading over North 378 

China from CTRL-L is primarily due to its weakening of westerlies over Northwest China 379 

compared to CTRL-S (Fig. 3), which results in less transport of dust into the downwind region. 380 

The increase of aerosol mass loading over Southeast China in CTRL-L is partly due to its less 381 

wet scavenging associated with weak precipitation (Fig. 2). The weakening of northward 382 

transport of aerosol (Fig. 3) also contributes to the increase of PM2.5 mass loading over southern 383 

China in CTRL-L. Besides the change of dry aerosol mass loading, the change of water content 384 

in aerosol between the two experiments also contributes to the change in AOD, which results 385 

from the difference of both dry aerosol mass and moisture. 386 

 Figure 7 shows the latitude-height cross-section of total PM2.5 averaged between 105°E 387 

and 122°E for June and July of 2017 from the CTRL-S experiment, and of the difference 388 

between CTRL-L and CTRL-S. The latitudinal distribution of aerosol is consistent with itits 389 

spatial pattern with high aerosol mass concentration over North China. The mass concentration 390 

gradually reduces from the surface to the free atmosphere. The mass concentration around 500 391 

hPa over North China can reach 5 ug/m3 that is comparable to the surface concentration over 392 

South China. In general, CTRL-L simulates higher aerosol mass concentration over South 393 

China and lower aerosol mass concentration over North China from the surface to about 500 394 

hPa. At 32°N-36°N, CTRL-L simulates lower aerosol mass concentration near the surface and 395 

higher above values between 700 hPa and 850 hPa., likely due to the difference in aerosol wet 396 

scavenging and transport between the two experiments. The difference of aerosolin horizontal 397 

and vertical distributions of aerosols and also the circulation patterns between the two 398 

experiments may lead to the difference in simulating aerosol impacts on East Asian monsoon 399 

systemimpact on EASM. 400 

 401 

3.3 Sensitivity of aerosol impact to domain size 402 
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 Before studying the sensitivity of aerosol impactsimpact to domain size, the 403 

impactsimpact of aerosol on precipitation and circulation from the small domain simulations 404 

areexperiments is first investigated. Figure 8 shows the spatial distributions of aerosol-induced 405 

difference (CTRL-CLEAN) of precipitation and moisture transport at 700 hPa averaged for 406 

June and July of 2017 from the small domain simulations. The dominant effect is that aerosol 407 

weakens the southwesterlies flow and reduces the moisture transport over the continent of 408 

Central and South China (primarily between 105°E-115°E). Along the coast of Southeast China, 409 

the moisture transport is enhanced slightly. Over the continent of China, aerosol induces a “+-410 

+-+” patternan alternate increase and decrease pattern (denoted as “+-+-+”) of precipitation 411 

changes, i.e., precipitation increases in the south of 25°N, north of 40°N, and around 30°N, 412 

while decreases at 25°N~30°N and 32°N~40°N. This weakening of monsoonal circulation at 413 

the lower troposphere is found mainly due to the cooling of lower troposphere and thus the 414 

increase of surface pressure by aerosols (Fig. 9). The temperature averaged for lower -415 

troposphere (below 500 hPa) is reduced by aerosols over the continent of China, which results 416 

in a positive pressure anomaly center in Southwest China. This leads to an anticyclone anomaly 417 

as shown in Fig. 8, which weakens the monsoonal southwesterlies between 105°E-115°E.  418 

In order to further understand the mechanisms of aerosol impactsimpact and isolate 419 

aerosol-radiation and aerosol-cloud interactions, another set of numerical experiment (NoRA-420 

S) with the small domain areis conducted, similar as CTRL-S but with the aerosol-radiation 421 

interaction turned off. The difference of results between NoRA-S and CLEAN-S (NoRA-S 422 

minus CLEAN-S) is interpreted as the impactsimpact of aerosol-cloud interaction, while the 423 

difference of results between CTRL-S and NoRA-S (CTRL-S minus NoRA-S) is interpreted 424 

as the impactsimpact of aerosol-radiation interactionsinteraction. Figure 10 shows the spatial 425 

distributiondistributions of the impactsimpact of aerosol-cloud and aerosol-radiation 426 

interactions on (a, d) tropospheric temperature averaged below 500 hPa, (b, e) surface pressure, 427 

(c, f) precipitation and moisture transport. The aerosol-cloud interaction reduces significantly 428 

the lower -tropospheric temperature (Fig. 10a) over a large area of South China (to the south 429 

of 32°N) mainly due to its increasing of cloud amounts (Fig. S6aS4a in the supporting material) 430 

over this area, which results in an increase of surface pressure in this area (Fig. 10b). Similarly, 431 

aerosol-cloud interaction also increases cloud amounts over Northeast China and its adjacent 432 

ocean (Fig. S6aS4a) and thus reduces the lower -tropospheric temperature and increases the 433 

surface pressure over the area.  The surface pressure over the Yellow River Basin is reduced 434 

slightly by aerosol-cloud interaction, which may be due to the reduction of cloud amounts (Fig. 435 

S6aS4a) and the increase of lower -tropospheric temperature. Although, the experiments can 436 
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generally demonstrate that aerosol-cloud interaction can largely affect cloud amount, lower-437 

tropospheric temperature, and surface pressure, please note that the co-locations of the changes 438 

of cloud, temperature, and surface pressure may not be simply straightforward. For example, 439 

in a fully coupled system, the cloud change due to aerosols would also adjust the temperature 440 

through the release of latent heat in the atmosphere. In addition, the change of temperature 441 

would also modulate the circulation and further feedback to the distributions of cloud and 442 

temperature. The difference between NoRA-S and CLEAN-S over Northwest China is due to 443 

the dust-radiation interaction that is included in CLEAN-S but not in NoRA-S. The analysis of 444 

this study focuses on the impactsimpact of anthropogenic aerosol. The combined effect of two 445 

anti-cyclone anomalies due to the two positive pressure anomalies at the lower -troposphere 446 

results in the southward wind anomalies over the ocean and the northward wind anomalies over 447 

North China, while the changes of circulations in other areas of China is negligible.  448 

The primary impactsimpact of aerosol-radiation interaction on lower-atmospheric 449 

temperature areis the positive temperature anomaliesanomaly over the Yellow Ocean and over 450 

central China and the negative temperature anomaliesanomaly over the Yellow River Basin 451 

and Southwest China, which is the combined effectseffect from the aerosol cooling and heating 452 

at the surface and heating in the atmosphere, respectively, and also the adjustment of cloud 453 

distributions (Fig. S6bS4b and Fig. S7S5). The two positive temperature anomaly centers lead 454 

to two negative pressure anomaly centers and thus a large cyclone circulation anomaly over 455 

the continent of East China. Therefore, it can be noted that the influence of aerosol-cloud and 456 

aerosol-radiation interactions on monsoonal circulations areis counteracted over the ocean and 457 

over northern China, which results in relatively small changes of monsoonal circulation over 458 

the ocean and over northern China (Fig. 8). The overall aerosol impact is shown as the 459 

weakening of the monsoonal circulation over the continent of central and southern China (Fig. 460 

8), which is mainly contributed by the aerosol-radiation interaction.  461 

Figure 11 shows the latitude-pressure cross-section of aerosol-induced difference 462 

(CTRL-CLEAN) of temperature and wind averaged between 105°E and 122°E for June and 463 

July of 2017 from the small domain simulation. It can be seen that theThe pattern of 464 

precipitation change corresponds well to the changeschange of wind circulation. The 465 

weakening of monsoonal southwesterlies resultresults in a sinking airflow anomaly around 466 

28°N and the compensating upward anomaly around 24°N in the south of China, and also a 467 

downdraft around 35°N and an updraft around 40°N in north China. These two sinking airflows 468 

correspondscorrespond to the reduced precipitation between 25°N and 30°N and between 32°N 469 

and 40°N, respectively (Fig. 8), while these updrafts correspond to the increasing precipitation 470 
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between 22°N and 25°N and between 32°N and 40°N. There is also weak upward 471 

compensating airflow around 30°N, leading to the slight increase of precipitation in the area 472 

(Fig. 8). It is noteworthy that aerosols lead to an abnormal cooling center around 33°N between 473 

400 hPa to 200 hPa. This is mainly because of less solar radiation entering the atmosphere due 474 

to aerosol-radiation and aerosol-cloud interactions, and also weaker monsoonal airflow that 475 

leads to less release of latent heat from cloud and precipitation (Fig. S8S6 in the supporting 476 

material). This cooling anomaly center also strengthens the downdraft anomalies on its both 477 

sides, further weakening the monsoonal circulation. 478 

In order to explore the sensitivity of aerosol impactsimpact to domain size, similar as 479 

Fig. 8, Figure 12 shows the results from the large domain simulations. One consistent signal 480 

between the simulations with different domain sizes is that aerosols weaken the southwesterlies 481 

flow and reduce the moisture transport over the continent of Central and South China. The 482 

difference is that this weakening is not only over the inland of China but also extending to over 483 

the South China Ocean. The weakening of monsoon airflow is broader with the increasing 484 

domain size, which may be due to its weaker monsoon airflow (Fig. 3) and less constraint from 485 

the lateral boundariesboundary conditions in the large domain simulation. Another consistent 486 

signal between the two sets of simulations with different domain sizes is that aerosol induces 487 

a similar “+-+-+” pattern of precipitation changes over the domain, except that the areas with 488 

precipitation reduction become broader. This leads to the precipitation reduction over almost 489 

the entire region between 20°N~40°N over the continent of China except the area around 30°N 490 

with increasing precipitation. The increases of precipitation on the two sides of precipitation 491 

reduction area shift southward to the South China ocean and northward to the north of 40°N, 492 

respectively. 493 

Similar as the small domain simulation, the weakening of monsoonal airflow in the 494 

large domain simulation is also due to the abnormal positive lower-level pressure that is caused 495 

by the lower atmosphere-tropospheric cooling (Fig. 13), which can also be explained by the 496 

effects of aerosol-radiation and aerosol-cloud interactions (Fig. S9S7 and Fig. S10S8 in the 497 

supporting material). However, compared with the small domain simulation (Fig. 9), the 498 

cooling anomaly of lower-tropospheric temperature and thus the positive anomaly of lower-499 

level pressure covercovers a broader area from the large domain simulation. The two aerosol-500 

induced cooling centers over the continent of China lead to two positive lower-level pressure 501 

anomaly centers that resultsresult in a large anti-cycle circulation anomaly (Fig. 12), which 502 

weakens the monsoonal southwesterly airflow over South China and the South China Ocean 503 

and also slightly enhances the southwesterly over West China. Again, the pattern of 504 
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precipitation change corresponds well to the changeschange of wind circulation (Fig. 14). With 505 

larger domain size, aerosols lead to a broader area (between 20°N~40°N) of abnormal cooling 506 

in the troposphere up to 200 hPa. The single cooling center in the small domain simulation is 507 

split into two centers, one around 30°N at 250 hPa and another around 36°N at 700 hPa. The 508 

weakening of the background circulation and broader cooling area lead to the broader sinking 509 

airflowsairflow over the region, which results in the broader area of reduced precipitation 510 

compared with the small domain simulation (Fig. 8 and Fig. 12). The increasing precipitation 511 

around 30°N is also resulted from the compensating updraftsupdraft around 30°N. 512 

 513 

4. Summary and Discussion 514 

Due to the importance of domain size on regional modeling results and few studies 515 

examiningthat examined the sensitivities of regional modeling results of aerosol impactsimpact 516 

to domain size, this study applies the WRF-Chem model to simulate the anthropogenic aerosol 517 

impactsimpact on East Asian summer monsoonEASM circulation and precipitation, focusing 518 

on the modeling sensitivities to regional domain size. The impactsinfluence of domain size on 519 

meteorological fields, aerosol characteristics, and aerosol impacts areimpact is investigated.  520 

 First of all, the domain size has a great influence on the simulated meteorological fields. 521 

From the smallsmaller domain simulation, the circulation and precipitation are in good 522 

agreement with the reanalysis data and observations. The largelarger domain simulation 523 

produces weaker East Asian summer monsoon systemand southward shifting southwardEASM 524 

system, which results in that the precipitation decreasedecreases in southern China and 525 

increaseincreases in the adjacent ocean. The changes of circulation and precipitation also lead 526 

to the increase of aerosol mass loading in southern China and the decrease in northern China 527 

in the largelarger domain simulation. The deviation of atmospheric fields particularly the 528 

circulation between the simulations with different domains is partly due to their different 529 

constraint from lateral boundary conditions. With the less constraint of the boundary forcing 530 

from, the reanalysis data, the largelarger domain simulation may produce negative bias in 531 

precipitation over the Yangtze River Basin and positive bias in water vapormoisture transport 532 

over the South China Ocean as reported by previous studies. The uncertainties in moisture 533 

transport prescribed in the lateral boundariesboundary conditions from the reanalysis over a 534 

larger domain may also contribute to the biases (e.g., Wang and Yang, 2008; Huang and Gao, 535 

2018). WithPrevious studies found that, with the larger domain, the simulation includes larger 536 

areadomain including more areas of ocean. Without, without considering the online interaction 537 
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between the atmosphere and the ocean (i.e., with prescribed SST from the reanalysis), the 538 

artificial positive feedback between precipitation and surface latent heat flux may overestimate 539 

the precipitation over the subtropical Western North Pacific (WNP) and inhibit the westward 540 

expansion of the WNP subtropical high (e.g., Cha and Lee, 2009; Lee and Cha, 2020). 541 

In terms of the climatic impactsimpact of anthropogenic aerosols on East Asian summer 542 

monsoonEASM, as shown in the schematic plotfigure (Fig. 15), aerosols induce the cooling of 543 

lower troposphere over the continent through aerosol-radiation and aerosol-cloud interactions, 544 

which leads to an increase of regional pressure at lower atmosphere. The regional positive 545 

pressure anomalies result in the anti-cyclone circulation anomalies and thus weakensweaken 546 

the summer monsoonal northeastward moisture transport, which is consistent with previous 547 

studies (e.g., Y. Q. Jiang et al., 2013; Song et al., 2014; T. J. Wang et al., 2015; Xie et al., 548 

2016). The weakening of monsoonal circulation leads to several sinking airflows and 549 

compensating updrafts that correspond well to the regions with the decrease and increase of 550 

precipitation, respectively, showing a spatial pattern of “+-+-+” for precipitation change. The 551 

difference in the aerosol impactsimpact from the numerical experiments with different domain 552 

sizes is mainly determined by their simulated different strength and area extent of the aerosol-553 

induced lower-tropospheric negative temperature anomalies. Compared with the smaller-554 

domain simulation, the larger-domain simulation with weaker monsoonal circulation generates 555 

a broader area with negative temperature and positive pressure anomalies at the lower 556 

troposphere, which results in broader sinking airflows and thus broader areas of precipitation 557 

reduction over the continent of China. This could lead to the opposite signals of precipitation 558 

change due to aerosols over China, for. For example, over Southeast China, the increase and 559 

decrease of precipitation is increased (decreased) from the smaller-domain and (larger-domain 560 

simulations, respectively.) simulation. The consistent signal of aerosol impactsimpact between 561 

the simulations with different domain sizes is the increasing precipitation around 30°N that is 562 

resulted from the compensating updraft over the region. 563 

 Although the modeling results of aerosol impactsimpact in this study may have some 564 

uncertainties associated with physical and chemical processes, emissions, and simulation 565 

horizontal resolutions, (e.g., Di Luca et al., 2015; Crippa et al., 2019), it highlights the 566 

impactsimpact of simulation domain size on regional modeling aerosol impactsimpact on 567 

monsoonal circulation and precipitation, which may not be limited to the region of East Asia. 568 

Uncertainties of modeling aerosol climatic impactsimpact are often investigated focusingwith 569 

the focus on aerosol characteristics such as their distributions and properties. This study adds 570 

another complexity (impact of domain size) on regional modeling of aerosol climatic 571 
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impactsimpact. More specifically, althoughon one hand, larger-domain simulation may better 572 

allow aerosol feedbacks of aerosol impacts on weather and climate systems without strong 573 

lateral boundary constraint (e.g., Seth and Giorgi, 1998; Leduc and Laprise, 2009),; Diaconescu 574 

et al., 2013), but it may produce biased meteorological fields compared to smaller-domain 575 

simulation, which can then significantly influence the modeling results of aerosol 576 

impacts.impact. On the other hand, although the simulation with smaller domain produces 577 

better large-scale circulation compared to the reanalysis, the lateral boundary condition may 578 

also have stronger constraint on aerosol feedbacks to large-scale circulation. Therefore, not 579 

like meteorological fields or aerosol properties, there is no direct observation or reanalysis that 580 

can be used as the references to evaluate aerosol impact (Di Luca et al., 2015; Crippa et al., 581 

2017), and the optimal configuration of simulation domain is hard to be determined in this 582 

study. It may be the key to simulate reasonable/less biasedimprove the simulated 583 

meteorological fields with larger regional domain or global domain in order to model robust 584 

aerosol climatic impactsimpact. More generally, this study also highlights the impactsimpact 585 

of background meteorological fields (without aerosol effect) on simulated aerosol 586 

impactsimpact. Proper modeling of background meteorological fields is one of the keys to 587 

simulate robustreliable aerosol climatic impactsimpact. The model inter-comparison study of 588 

aerosol climatic impactsimpact should also focus on the diversity of simulated background 589 

meteorological fields besides aerosol characteristics.   590 

  591 
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 1062 
Table 1. Experiment Description. 1063 

Experiment ID Experiment Description 

CTRL-L Control experiment with large simulation domain. 

CLEAN-L SameSimilar as CTRL-L, but the anthropogenic aerosol 

emissions are 0.1 times of CTRL-L. 

CTRL-S Control experiment with small simulation domain. 

CLEAN-S SameSimilar as CTRL-S, but the anthropogenic aerosol 

emissions are 0.1 times of CTRL-S. 

NoRA-S Similar as CTRL-S, but with the aerosol-radiation interaction 

turned off. 

 1064 

 1065 

 1066 

 1067 
 1068 

Table 2. Summary of model configurations. 1069 

Description Selection (L, S) 

Horizontal grid spacing 30km 

Grid dimensions 201x231, 121x121 

Vertical layers  41 

Topography USGS_30s 

Model top press 100hPa 

Aerosol scheme MOSAIC 4 bin 

Gas-phase chemistry CBM-Z 

Long wave Radiation RRTMG 

Short wave Radiation RRTMG 

Cloud Microphysics Morrison 2-moment 

Cumulus Cloud Kain-Fritsch 

Planetary boundary layer MYNN 3rd 

Land surface unified Noah land-surface model 

Meteorological Forcing FNL, 1°x1° ,6 hourly 
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Figure 1. Spatial distributions of anthropogenic emissions of primary PM2.5 averaged for June 1083 
and July for the simulation domains. The red box in the large simulation domain represents the 1084 
small domain. 1085 
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 1110 
Figure 2. Mean precipitation rate (mm/day) and 700hPa moisture transport (g/m² s) over the 1111 
small domain for the two months of June and July 2017 from (a) CMORPH and ERA5 1112 
reanalysis, (b) CLEAN-S simulation, and (c) CLEAN-L simulation. The red box (20°N-42°N, 1113 
105°E-122°E) represents the focus area of analysis in follow. (a) Precipitation data comes from 1114 
CMORPH, and the 700hPa moisture transport field data is obtained by processing ERA5 1115 
reanalysis.  1116 
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 1142 

 1143 
Figure 3. Spatial distributiondistributions of mean geopotential height and wind fields at 700 1144 
hPa Geopotential Height and winds of June and July 2017 from (a) ERA5, (b) CLEAN-S, and 1145 
the (b(c) difference between CLEAN-L and CLEAN-S. 1146 
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 1177 

Figure 4. (a, b) The cross-section of meridional temperature anomalies and wind averaged for 1178 
105°E and 122°E from (a) the ERA5 reanalysis and the CLEAN-S simulation during June to 1179 
July, and (bc) the difference of temperature (not meridional temperature anomalies) between 1180 
CLEAN-L and CLEAN-S. The meridional temperature anomalies are calculated by subtracting 1181 
the mean temperature in this latitude range at each pressure level. 1182 
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 1212 
Figure 5. The spatial distributiondistributions of AOD for June and July of 2017 from the 1213 
CTRL-S simulation, and the difference between CTRL-L and CTRL-S. 1214 
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 1236 

 1237 
Figure 6. The spatial distributions of column integrated total (a) PM2.5 concentration and (c) 1238 
water content in aerosol averaged for June and July of 2017 from the CTRL-S simulation, and 1239 
(b) (, d) the difference between CTRL-L and CTRL-S. 1240 

 1241 

 1242 

 1243 

 1244 

 1245 

 1246 

 1247 

 1248 

 1249 

 1250 

 1251 



 

 45 

 1252 

 1253 

 1254 

 1255 

 1256 

 1257 

 1258 

 1259 
Figure 7. The latitude-height cross-section of (a) total PM2.5 averaged between 105°E and 1260 
122°E for June and July of 2017 from the CTRL-S experiment, and (b) the difference between 1261 
CTRL-L and CTRL-S. 1262 
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 1293 
Figure 8. The spatial distributions of aerosol-induced difference (CTRL-CLEAN) of 1294 
precipitation and moisture transport at 700 hPa averaged for June and July of 2017 from the 1295 
small domain simulations.  1296 
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 1319 

 1320 
Figure 9. The spatial distributions of aerosol-induced difference (CTRL-CLEAN) of (a) 1321 
atmosphere temperature below 500 hPa and (b) surface pressure averaged for June and July of 1322 
2017 from the small domain simulations. We interpolate the atmosphereAtmospheric 1323 
temperature to the isobaric surfaceis weight-averaged by the layer thickness below 500 hPa 1324 
and get the atmosphere temperature below 500 hPa by weighted average according to the layer 1325 
height. 1326 
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 1351 
Figure 10. The spatial distributions of Aerosol-Cloud interactions induced difference of (a) 1352 
atmosphere temperature below 500 hPa, (b) surface pressure and (c) precipitation and moisture 1353 
transport at 700 hPa averaged for June and July of 2017 from the small domain simulations. 1354 
And the spatial distributions of Aerosol-Radiation interactions induced difference of (d) 1355 
atmosphere temperature below 500 hPa, (e) surface pressure and (f) precipitation and moisture 1356 
transport at 700 hPa averaged for June and July of 2017 from the small domain simulations. 1357 
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Figure 11. The latitude-pressure cross-section of aerosol-induced difference (CTRL-CLEAN) 1380 
of temperature and wind averaged between 105°E and 122°E for June and July of 2017 from 1381 
the small domain simulation. 1382 
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 1406 
Figure 12. The same as figure 8, but from the large domain simulation. 1407 
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Figure 13. Same as Fig. 9, but from the large domain simulation. 1429 
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 1456 
Figure 14. Same as figure 11, but from the large domain simulation. 1457 
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 1477 

 1478 
Figure 15. The schematic plot of aerosol impactsimpact in (a) small domain simulation and (b) 1479 
large domain simulation over East Asia. The light blue shadow area represents the extent of 1480 
aerosol induced decrease of lower tropospheric temperature and increase of surface pressure. 1481 



 

 59 

The red (blue) vector dash lines represent updraft (downdraft) anomalies. The “+” (“-”) above 1482 
the region indicates the aerosol-induced increase (decrease) of precipitation. 1483 
 1484 


