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Abstract. Coupled general circulation models are of paramount importance to assess quantitatively the magnitude of future

climate change. Usual methods for validating climate models include the evaluation of mean values and covariances, but less

attention is directed to the evaluation of extremal behaviour. This is a problem because many severe consequences of climate

changes are due to climate extremes. We present a method for model validation in terms of extreme values based on classical

extreme value theory. We further discuss a clustering algorithm to detect spatial dependencies and tendencies for concurrent5

extremes. To illustrate these methods, we analyse precipitation extremes of the AWI-ESM global climate model as well as of

other models that take part in the Coupled Model Intercomparison Project CMIP6 and compare them to the reanalysis data set

CRU TS4.04. The clustering algorithm presented here can be used to determine regions of the climate system that are then

subjected to a further in-depth analysis, and there may also be applications in palaeoclimatology.

1 Introduction10

Coupled general circulation models are frequently utilised to assess quantitatively the magnitude of future climate change. Val-

idating these models by simulating different climate states is essential for understanding the sensitivity of the climate system

to both natural and anthropogenic forcing. Usual methods for validating climate models include the evaluation of mean values

and covariances and the comparison of empirical cumulative distribution functions. These analyses can also be conducted over

seasonal and annual averages (climatologies) or along latitudinal/longitudinal transects (Tapiador et al., 2012). The comparison15

of climate indices is also common in model validation (Sillmann et al., 2013; Zhang et al., 2011). While climate models are

able to reproduce many climate phenomena across the globe, their reliability regarding extremes requires additional evaluation.

Changes in the intensity and frequency of extremes have drawn much attention during recent decades (IPCC, 2012; Rahmstorf

and Coumou, 2011; Horton et al., 2016), mainly due to their large impacts on natural environment, economy and human health

(Ciais et al., 2005; Kovats and Kristie, 2006). For instance, the summer heat wave over Central Europe in 2003 resulted in20

extensive forest fires, crop yield reductions and fatalities (de Bono et al., 2004; Vandentorren et al., 2004). During the 20th cen-

tury, the frequency of high-temperature extremes has increased in Europe (Dong et al., 2017), even after the apparent levelling

off of global mean temperatures after 2000 (Trenberth and Fasullo, 2013), and for precipitation extremes, a similar develop-

ment has been observed (Fischer and Knutti, 2016). Due to the inherent nature of extreme events, their evolution differs from

that of the mean and the variance (Schär et al., 2004; IPCC, 2012) and also depends on the strength of the events themselves25
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(Myhre et al., 2019).

In particular, the concurrent occurrence of climate extremes at different locations may have especially large impacts on agri-

culture (Toreti et al., 2019), human societies and economies (Jongman et al., 2014) and on the climate system itself (Zscheis-

chler et al., 2014). Large-scale climate extremes can furthermore cause serious problems for insurance and reinsurance compa-30

nies (Mills, 2005). For these reasons, an increasing amount of research is being conducted on multivariate analysis of extremes

with focus on their concurrent appearance (Shaby and Reich, 2012; Dombry et al., 2018; Kornhuber et al., 2020; Ionita et al.,

2021a) and new tools have been created for the analysis of extremes in climate models (Weigel et al., 2021).

A particular challenge for the analysis of extreme events is the fact that extreme events are typically rare, and that it is35

therefore difficult to build informative statistics based solely on the extreme events themselves. Two common approaches are

used to overcome this issue: peaks-over-threshold and block-maxima. In the peaks-over-threshold approach, a fixed threshold

is selected. The distribution of the data exceeding this threshold can then be approximated by a generalised Pareto distribution

if some additional assumptions are fulfilled (see McNeil et al. (2015), Chapter 7.2 for more details). The peaks-over-threshold

approach is frequently applied in climatology and hydrology (Acero et al., 2011; Fowler and Kilsby, 2003; Kiriliouk et al.,40

2019). The block-maxima approach, on the other hand, follows the idea to split the time axis into blocks of a sufficiently large

size and investigate the block-wise maxima of the data. Under suitable conditions, the distribution of these block-wise maxima

can for large sample sizes be approximated by a generalised extreme value (GEV) distribution.

In this work, we will evaluate the performance of the fully coupled Alfred Wegener Institute-Earth System Model AWI-45

ESM1.1LR (Shi et al., 2020; Lohmann et al., 2020; Ackermann et al., 2020) in terms of its accuracy regarding variability and

extremes of precipitation, putting special focus on spatially concurrent precipitation extremes. Our main questions are whether

the model is able to accurately reproduce extreme events in different regions and whether spatial dependencies and concurrent

extremal events are modelled adequately. We compare model data from a historical run of the AWI-ESM to the global precip-

itation reanalysis data set CRU TS4.04 (Harris et al., 2020). We start with investigating variability and extremes locally using50

empirical statistical parameters and by fitting a GEV distribution to annual precipitation maxima. Then, following an approach

by Bernard et al. (2013), we use a clustering algorithm to group spatio-temporal climate data into different spatial regions

based on their similarity in terms of extremal behaviour and the concurrency of their extremes. This clustering is based on the

theory of max-stable copulae, which has been used in prior work to investigate spatial dependence of extreme precipitation

events, for example in Bargaoui and Bárdossy (2015); Zhang et al. (2013); Qian et al. (2018). In those papers, an analysis of55

bivariate distributions is performed. In our work, we first construct for each pair of locations a measure for their similarity in

terms of extremes. This measure is then used as a basis for the clustering algorithm to group the data into spatial regions of

comparable extremal behaviour. The resulting clusters for model and observational data are compared and used to analyse the

ability of the climate model to reproduce spatial dependencies of precipitation extremes.

60
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In this article, our main focus is on the AWI-ESM and we present our methods using data from this model. We also present

a measure for the model accuracy in regard to extremal precipitation, and apply it to a set of different CMIP6 models. In the

main text, results will be discussed for the AWI-ESM and for the model identified as having the best model accuracy. In the

supplement to this paper, the results for the other CMIP6 models investigated are presented.

65

Model validation in terms of precipitation extremes is already an active research topic. Tabari et al. (2016) investigate the

performance of global and regional climate models using the peaks-over-threshold approach. An evaluation of regional and

global climate models using extreme precipitation indices is conducted by Bador et al. (2020a), revealing a tendency for

stronger extremes in regional models. A similar result was obtained by Mahajan et al. (2015) by comparing climate model and

observational precipitation data over the United States using GEV distributions. Timmermans et al. (2019) conduct pairwise70

comparisons of the precipitation extremes of numerous gridded observation-based datasets and find considerable differences

between the datasets especially in mountainous regions. Precipitation extremes over India are investigated by Mishra et al.

(2014) using GEV distributions and comparisons of indices with a focus on changes over time.

It is also not a new approach to apply clustering algorithms to climate data. Among others, it has been used to define climate75

zones in the United States (Fovell and Fovell, 1993) and globally (Zscheischler et al., 2012), and to find regions with similar

trends in their climatic change over Europe (Carvalho et al., 2016). Those analyses focus on mean values and on their temporal

differences, respectively, while we apply clustering specifically to uncover connections regarding climate extremes.

The article is structured as follows: After introducing the data sets in Sect. 2, we present the methods used in Sect. 3. The80

results from their application to the data are presented in Sect. 4. A section on conclusions and discussions finalises the article.

2 Data

The observational data are reanalysed monthly precipitation data in mm over land (excluding Antarctica) from the CRU TS4.04

data set (Harris et al., 2020; University of East Anglia Climatic Research Unit et al., 2020) with data ranging from 1901 to

2019. We restrict the time frame to the years 1930 to 2014 in order to have a sufficiently large area with non-missing data85

and to be consistent with the climate model data. The grid size is 0.5◦× 0.5◦, the data have been obtained by interpolating

observations from more than 4.000 weather stations using angular distance weighting.

At some locations and time points, no data from nearby weather stations had been available to use for interpolation. In these

cases, the creators of the CRU TS4.04 data set used a value from a climatology instead. These climatology values are not very

informative in terms of extremes and too many of them would distort the analyses, therefore all grid points with more than 5%90

climatology values and additionally all grid points with at least twelve consecutive months of climatology values are excluded

from our analysis. This results in the exclusions of larger regions in northern and central Africa, in Indonesia, in central Asia
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and in the polar regions. In the figures showing geographical data in this paper, those regions are coloured in grey.

The climate model used is the coupled model AWI-ESM1.1LR. It is based on the AWI Earth System Model (AWI-ESM1),95

which consists of the AWI Climate Model (Sidorenko et al., 2015; Rackow et al., 2018), but with interactive vegetation. The

model comprises the atmosphere model ECHAM6 (Stevens et al., 2013), which is run with the T63L47 setup (that is, a hori-

zontal resolution of 1.85◦× 1.85◦ and 47 vertical layers) and the ocean-sea ice model FESOM1.4 (Wang et al., 2014), which

employs an unstructured grid, allowing for varying resolutions from 20km around Greenland and in the North Atlantic to

around 150km in the open ocean (CORE2 mesh). The land surface processes are computed by the land surface model JS-100

BACH2.11 (Reick et al., 2013). The model considers the surface runoff toward the coasts, deploying a hydrological discharge

model that also includes freshwater fluxes by snowmelt (Hagemann and Dümenil, 1997). AWI-ESM1 has been extensively

used and described in the context of palaeoclimate changes as well as of changes of the recent and future climate (Shi et al.,

2020; Lohmann et al., 2020; Ackermann et al., 2020; Niu et al., 2021). The historical run is documented in Danek et al.

(2020) and has been directly used in Ackermann et al. (2020) and Keeble et al. (2021). The model takes furthermore part in105

CMIP6/PMIP4 activities (Brierley et al., 2020; Brown et al., 2020; Otto-Bliesner et al., 2021; Kageyama et al., 2021a, b).

The Coupled Model Intercomparison Project CMIP, coordinated by the Working Group on Coupled Modelling (WGCM)

of the World Climate Research Programme (WCRP), has the goal to support and facilitate the analysis of climate model data

by providing a set of common standards regarding the formatting and availability of model output. Additionally, in order to110

enhance model comparability, all models participating in CMIP are required to run a set of standardised experimental setups

(Diagnostic, Evaluation and Characterization of Klima experiments; DECK experiments) as well as a simulation of the histori-

cal climate from 1850 until 2014 (the historical simulations we also use in our analysis). CMIP is divided into different phases

reflecting the advancements of climate modelling, the current phase CMIP6 started in 2016. More information on CMIP can

be found in Eyring et al. (2016). The model outputs are made available by the Earth System Grid Federation (ESGF; Cinquini115

et al., 2014).

In our analysis, we restrict the time frame of the model data to the years 1930 to 2014, as in the observational data. We in-

vestigate monthly precipitation (sum of convective precipitation and large-scale precipitation) in mm/month. We use bilinear

interpolation to scale the reanalysis data to the grid of the atmospheric component of the climate model and take into account120

only those interpolated grid points that correspond to locations with given observed data, excluding the oceans and the regions

with incomplete data mentioned above.
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3 Methods

3.1 Univariate Analysis125

In this subsection, the time series of each spatial location (henceforth referred to as grid point) is investigated separately, and all

operations and analyses described are therefore conducted for each grid point. Since the focus of this work is not on evaluating

the effects of long-time trends, we apply a seasonal-trend decomposition using Loess (Cleveland et al., 1990) on the data and

subtract the deviance of the trend from its mean value from it, resulting in data for which we assume temporal stationarity.

Then, as a first comparison between the data sets, we investigate differences in the empirical mean and empirical standard130

deviation of the annually maximised precipitation data.

The theoretical foundation for the application of the GEV distribution is as follows: For a random variable X with an

unknown probability distribution, we investigate the distribution of the maximum of i.i.d. copies X1, . . . ,Xn of it: Y (n) :=

maxi=1,...,n(Xi). We assume that for suitable normalising sequences an > 0 and bn, Y (n) converges in distribution if n tends135

to infinity:

Y (n)− bn
an

D−→H. (1)

In this case, as shown by Fréchet (1927), Fisher and Tippett (1928) and Gnedenko (1943), the distribution of Y (n) can be

approximated by a GEV distribution for a large (fixed) value of n. This distribution depends on the three parameters location

(µ), scale (σ > 0) and shape (γ) and its cumulative distribution function is given by140

Fµ,σ,γ(x) =

exp(−exp(−x−µσ )) γ = 0

exp(−max(0,1+ γ x−µσ )−
1
γ ) γ 6= 0.

(2)

The GEV distribution has widely been used as a model for blockwise maximised data (for example Coles et al., 2003; Onwueg-

buche et al., 2019; Villarini et al., 2011). Following this approach, we group our monthly precipitation data from observations

and climate model into one-year block maxima and fit a GEV distribution to the blockwise maxima at each grid point. When

selecting a block size, a bias-variance tradeoff has to be taken into account: For a low block size, the resulting parameter esti-145

mates tend to be biased because the convergence to the GEV distribution holds only asymptotically. A high block size, on the

other hand, will lead to a limited amount of block-wise maxima that can be analysed and therefore to a higher variance in the

estimates (see McNeil et al. (2015), Chapter 7). In our case, we have a relatively small block size of 12 (months per year) and

a number of block-wise maxima of 90 (years of investigation).

150

To estimate the distribution parameters, we use the method of probability-weighted moments developed by Hosking (1985)

as implemented in the R package "EnvStats" of Millard (2013). As shown by Hosking et al. (1985), this method yields es-

timators with a relatively low variance and bias compared to the maximum likelihood approach, especially for small and

medium-size samples. We test the goodness of fit using a one-sided Kolmogorov-Smirnov-test at significance level 5%. The
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null hypothesis of the test is that the annually maximised data follow the GEV distribution having the probability-weighted155

moments estimates as distribution parameters.

We also use the parametric bootstrap method with 2500 resamples to compute 95% confidence intervals for each GEV

parameter and for the 95% quantiles of the distributions. Confidence intervals for the GEV parameters based on asymptotic

normality also exist for the probability-weighted moments estimators, but, as shown by Hosking et al. (1985), they have a high160

bias and variance if the shape parameter is far away from zero. In our data, for several time series such a value is estimated

for the shape parameter, and comparisons between the confidence intervals based on bootstrap and those based on asymptotic

normality also confirmed large differences in these cases. For the sake of methodological consistency and because we also use

the bootstrap for the confidence intervals of the 95% quantiles, we calculated the GEV parameter confidence intervals using

bootstrap for all time series. Since this method is quite time-consuming, it could also be advocated to choose the method of165

confidence interval calculation based on the estimated shape parameter value.

To compare the performance of different CMIP6 models, we introduce as a measure for the accuracy of the extremal pre-

cipitation an Average Weighted Quantile Difference (AWQD). For this measure, the absolute differences between model and

observational 95% GEV quantiles, weighted with the cosine of the latitude, are averaged. The weighting accounts for the170

fact that the grid cells do not have an equal size for all grid points, and the average is taken because of the different model

resolutions. For G the set of grid points and estimated quantiles q̂0.95,mod(g) and q̂0.95,obs(g) for g ∈ G, we therefore define

AWQD :=
1

|G|
∑
g∈G

cos(lat(g)) · |q̂0.95,mod(g)− q̂0.95,obs(g)|. (3)

3.2 Comparison of spatial distributions

To compare the spatial distributions of climate extremes, we introduce a hierarchical clustering algorithm (using average link-175

ing) to determine regions with similar extremal behaviour. This approach is similar to the idea proposed in Bernard et al.

(2013). The hierarchical clustering is based on concepts from extreme value statistics that will be discussed in the following.

Assume that two real-valued random variables (X,Y ) have a copula function C : [0,1]×[0,1]→ [0,1], that is, their joint distri-

bution function can be written in terms of the copula and the marginal distribution functions as FX,Y (x,y) = C(FX(x),FY (y))180

for all x,y ∈ R. Then, if (X,Y ) is the weak limit of block-wise maxima of a sequence of i.i.d. two-dimensional variables when

the block size goes to infinity (a similar condition as in Sect. 3.1, extended to two-dimensional random variables), it follows

thatX and Y are (jointly) GEV distributed. It follows as well that the copula must fulfilC(ut,vt) = Ct(u,v) for all u,v ∈ [0,1]

and t > 0 (see McNeil et al. (2015), Theorem 7.44 and 7.45). Such a copula is called max-stable and it can be written as

C(u,v) = exp
(
(lnu+ lnv)AX,Y

( lnu

lnu+ lnv

))
(4)185

using a functionAX,Y : [0,1]→ [ 12 ,1] called the Pickands dependence function (Pickands, 1981). The functionAX,Y is convex

and satisfies max(w,1−w)≤AX,Y (w)≤ 1 for all w ∈ [0,1]. The extremal coefficient is now defined as two times its value
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at the point 0.5:

θX,Y := 2 ·AX,Y (0.5). (5)

The extremal coefficient takes its minimal possible value of 1 if X and Y are comonotonic (so in particular it holds θX,X = 1190

for all X). The maximal possible value of 2 is obtained if X and Y are stochastically independent. To estimate the extremal

coefficient, we use the madogram estimator as described in Ribatet et al. (2015) and Cooley et al. (2006) and rewrite θX,Y as

θX,Y =
1+2νX,Y
1− 2νX,Y

(6)

with the madogram νX,Y = 1
2E[|FX(X)−FY (Y )|]. The madogram can be estimated by replacing FX ,FY with their empirical

counterparts. For a data sample (x1,y1), . . . ,(xn,yn), we then obtain195

ν̂X,Y =
1

2n(n+1)

n∑
i=1

∣∣∣ n∑
j=1

(1xj≤xi −1yj≤yi)
∣∣∣ (7)

and consequently define an estimator

θ̂X,Y =
1+2ν̂X,Y
1− 2ν̂X,Y

. (8)

Hierarchical clustering algorithms require a dissimilarity function D : G×G → R that must fulfilD(g1,g2) =D(g2,g1)≥ 0

and D(g1,g1) = 0 for all grid points g1,g2 ∈ G (for an introduction to hierarchical clustering algorithms see Murtagh and200

Contreras, 2012). Based on the properties of the extremal coefficient discussed above, we define such a dissimilarity function

as

D0(g1,g2) := θ̂X,Y − 1 (9)

with X and Y representing the GEV distributions at the grid points g1 and g2, respectively.

205

Note that the extremal coefficient is invariant under rank transformations and especially that it does not depend on the val-

ues of the GEV parameters of the marginal distributions (in fact, in Ribatet et al. (2015) and Cooley et al. (2006) it was

only used in the special case of GEV(1,1,1) distributed margins). It may be desirable to also include the dissimilarity of the

marginal distributions in the clustering. As a further generalised dissimilarity measure we propose

Dλ(g1,g2) := (1−λ)D0(g1,g2)+λ
(1
3
dµ(g1,g2)+

1

3
dσ(g1,g2)+

1

3
dγ(g1,g2)

)
, (10)210

where λ ∈ [0,1) is a weighting parameter and with dµ(g1,g2) :=
|µ̂g1−µ̂g2 |

maxh1,h2∈G |µ̂h1−µ̂h2 |
∈ [0,1] the normalised distance between

the location parameter estimates at the grid points g1 and g2 (analogous for dσ and dγ). Instead of an equal weighting, it would

also be possible to use different weights for dµ, dσ and dγ , but the selection of a set of weights that is clearly better suited

to describing GEV distribution dissimilarity is difficult. It could be argued to put more weight on the shape parameter since
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this parameter describes the heavy-tailedness of the distribution and therefore the strength of its extremes relative to the non-215

extreme values. On the other hand, we will see in the next section that the uncertainty in the shape parameter estimation is

considerably higher than the uncertainty in the estimation of the other two parameters at least for our data, which would speak

against weighting shape parameter differences too strongly.

To choose a suitable number of clusters, we consider an approach by Salvador and Chan (2004) called the L-Method. In each220

step of the hierarchical clustering, the two clusters with minimal dissimilarity are combined, therefore we can plot the number

of clusters versus the dissimilarity between them, resulting in a graph called the evaluation graph. The dissimilarity between

clusters necessarily grows as the total number of clusters is reduced. The idea of Salvador and Chan (2004) is to find a point

from which on the growth rate of the dissimilarity measure increases considerably. It can then be expected that the clusters up

to this point combine rather similar data points, while combining them to larger ones would yield artificial results. To determine225

such a point of change, in the first step, a suitable range of the number of clusters is selected. For our example, we consider

different ranges starting with 10 and having no more than 550 clusters. Now, for each possible point of change c in this range,

the horizontal axis of the graph is divided into the two parts to the left and the right of that point, and a linear regression line

is fitted to each of the two partial graphs. The root mean squared errors (RMSEs) of the two regression lines are weighted

with the number of points involved in the regression analysis and summed up. The point of change with the minimal combined230

RMSE is chosen as the suitable cluster number. As an alternative method, we set the number of clusters to the highest possible

number such that a fixed threshold dissimilarity between clusters is not exceeded (Threshold method). This number can easily

be read off of the evaluation graph.

4 Results

We start with calculating for each grid point the empirical mean and standard deviation of the annually maximised data,235

as can be seen in Fig. 1. In most regions, similar mean values can be observed. A notable overestimation of the annual

maxima of monthly precipitation by the climate model takes place in the Himalayas and along the western continent coasts

of the Americas. Underestimation occurs most prominently in the Amazon region and parts of Central America, as well as in

Bangladesh and East Asia. Looking at the standard deviation, a similar pattern as for the empirical mean can be observed, but

with a stronger tendency for underestimation, which occurs also in India and the northern part of Australia. In Fig. 2 a) and b),240

quantile-quantile plots (QQ-plots) of empirical mean and standard deviation are displayed. The quantiles of the empirical mean

are in general similar, but the highest quantiles show a strong discrepancy. Regarding the standard deviation, this tendency is

much more pronounced, corresponding to the larger areas of underestimation of empirical standard deviation we identified in

Fig. 1. The difference in empirical mean and the difference in empirical standard deviation are plotted against each other in Fig.

2 c). It is visible that in many cases, overestimation (underestimation) of the empirical mean corresponds also to overestimation245

(underestimation) of the empirical standard deviation. A similar case of heteroscedasticity has also been noted in Lohmann
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Figure 1. The empirical mean (a, c, e) and empirical standard deviation (b, d, f) of the annual maxima of monthly precipitation of the

AWI-ESM model data set (a, b) and of the CRU TS4.04 reanalysis data set (c, d) and their difference (model data minus reanalysis data; e,

f). Values exceeding the scale limits are truncated. Units are mm/month.

(2018) when investigating Holocene climate.

As pointed out by Katz and Brown (1992), the frequency of extreme events is strongly influenced by changes (or, in this case,

misestimation) of the mean as well as of the variance of a distribution. Therefore, an over- and underestimation of extremes250

can be expected in certain regions based on the results in Figs. 1 and 2.

Fitting the GEV distributions to the data and applying KS-Tests to check the goodness of fit, the hypothesis of a GEV dis-

tribution with the estimated parameters is not rejected for nearly all grid points in both observational and climate model data,
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Figure 2. QQ-Plots comparing the empirical mean values (a) and the empirical standard deviations (b) of the annually maximised monthly

precipitation of the CRU TS4.04 reanalysis data set and of the AWI-ESM model data set. Deviance of empirical mean and standard deviation

plotted against each other (c). Units are mm/month.
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Figure 3. P-values of Kolmogorov-Smirnov tests for the hypothesis that the data follow a GEV distribution with parameters estimated using

probability-weighted moments. Test results for the AWI-ESM climate model (a) and for the CRU TS4.04 reanalysis data (b).

except for parts of the Sahara and some isolated points.

255

The three GEV parameters estimated are location, scale and shape, with location and scale very roughly corresponding

to mean and variance, and the shape parameter yielding information about the degree of heavy-tailedness. The estimated

parameter values are shown in Fig. 4. In Fig. 5, the differences between model and observational parameters are shown.

Shaded areas are areas in which the model parameter falls into the 95% confidence interval of the corresponding observation

parameter and vice versa. We can observe a similarity between the anomaly of the location parameters and the anomaly of the260

empirical means discussed above, and likewise a similarity between the anomalies of scale parameters and empirical standard

deviations. For the location parameter, we observe high differences quite often, and the parameters estimated for one data set

seldom fall into the confidence interval derived from the other data set. The estimated scale parameters are covered more often

by the confidence intervals derived from the other data set, although there are also large regions with a high difference in the

two estimates. The estimated shape parameters are covered by the confidence intervals at many locations, but it needs to be265

noted that the estimator of the shape parameter is known to be sensitive to small variations in the data. Therefore, the confidence

intervals calculated using the parametric bootstrap tend to be large and not particularly informative. In Fig. 6, the anomalies

of the 95% upper quantiles of the estimated GEV distributions are depicted, again with shaded areas indicating quantiles lying

within the confidence levels determined using parametric bootstrap. Climate extremes are most strongly overestimated by

the model in the mountainous regions of the Himalaya, the Andes and the Rocky Mountains. An underestimation of climate270

extremes takes place most notably in the Amazon region and parts of eastern Asia. This corresponds well to the regions

of over- and underestimation of the empirical means and standard deviations and the implications of such misestimations

discussed above.

We apply the hierarchical clustering algorithms using the two dissimilarity measures D0 and D0.25 as introduced in the275

previous section. The numbers of clusters determined using the L-Method with selected cluster ranges (from 10 to a maximal
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Figure 4. The estimated GEV parameters location (a, b), scale (c, d) and shape (e, f) for AWI-ESM climate model data (a, c, e) and for

reanalysis data (b, d, f). Values exceeding the scale limits are truncated. Units are mm/month.
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Figure 5. Difference between AWI-ESM model and observational GEV parameter estimates: Location parameter (a), scale parameter (b)

and shape parameter (c). Values exceeding the scale limits are truncated. Units are mm/month.

13



Figure 6. Difference of the 0.95-quantiles of the estimated GEV distribution for AWI-ESM model and observational data. Values exceeding

the scale limits are truncated. Units are mm/month.

number of clusters m) and using the threshold method with selected threshold dissimilarities h is documented in Table 1.

Table 1. The number of clusters for AWI-ESM climate model and observational data determined with the L-Method (above the middle line)

and the threshold method (below the middle line) for different ranges/thresholds and for dissimilarity measure D0 (left) and D0.25 (right).

D0 AWI-ESM Observations

m= 250 64 146

m= 300 148 148

m= 400 200 296

m= 500 234 291

h= 0.85 143 127

h= 0.825 188 177

h= 0.8 232 221

h= 0.775 280 254

D0.25 AWI-ESM Observations

m= 250 187 102

m= 300 165 142

m= 400 223 140

m= 500 232 265

h= 0.675 118 109

h= 0.65 165 167

h= 0.625 219 220

h= 0.6 281 265
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The results of the L-Method seem to depend rather strongly on the data set investigated and the value of m (compare for ex-

ample the results for m= 250 and m= 300 for measure D0), making this method less suitable for the comparison of two data280

sets. The threshold method generally predicts a similar, but in most cases slightly lower cluster number for observational data

than for climate model data. In Fig. 7, the clusters for both data sets are depicted using the threshold method for dissimilarity

measure D0 with threshold h= 0.825 as well as for dissimilarity measure D0.25 with threshold h= 0.65.

To exemplify the differences and similarities in the clusterings, we have a closer look at Europe in the D0-clusterings. In285

the model data, there is one cluster covering western Spain and Portugal, one cluster covering eastern Spain, and one cluster

consisting of southern France and Italy. Great Britain and Denmark are in the same cluster, the northern parts of France together

with Belgium and the Netherlands in another one. One cluster covers Germany and Switzerland, and in Eastern Europe we see

several clusters covering larger areas in the longitudinal direction, for example one cluster over Poland, one over Ukraine, and

one over Turkey and Greece. The clusters in the observational dataset show a slightly different picture: Here, the whole Iberian290

Peninsula is in one cluster, and one large cluster extends over northern France, Belgium, the Netherlands and Germany to the

western parts of Poland. On the other hand, Great Britain and Denmark are now in two separate clusters. Regarding other parts

of the world, it is worth noting that in all four clusterings a large cluster cluster covering the Sahara (or at least all parts of

it for which there are observations available) can be identified. There are no clusters extending over two regions that are very

far apart from each other, and in general clusters tend to cover more area in the longitudinal direction than in the latitudinal one.295

For the AWI-ESM, we calculated an AWQD of 52.98, making it the third-best of all 27 CMIP6 models analysed. A full

table of the models and their AWQDs is provided in the supplement to this paper. In Fig. 8, the AWQDs are plotted against

the model resolution (the total number of model grid points in units of 104). A linear regression (red line; intercept: 73.310,

slope: −2.368) indicates that models with a higher resolution have a tendency to describe extremal precipitation better. A test300

on the significance of the slope parameter (null hypothesis of the slope parameter being equal to zero) was significant at the

5% level with a p-value of 0.0357. The best model in terms of the AWQD is the high-resolution model EC-Earth3-Veg-LR

(EC-Earth Consortium, 2020) with a value of 44.71. We will now discuss results for this model in more detail, while results for

the other models can be found in the supplement. For the EC-Earth3-Veg-LR, the estimated GEV parameters and anomalies

are shown in Fig. 9. The differences of the 95% quantiles are depicted in Fig. 10. The numbers of clusters determined using305

the L-Method and the threshold method are found in Table 2 and images of clusterings are shown in Fig. 11. QQ-Plots and

plots of KS-Tests are similar to the corresponding plots for the AWI-ESM and can be found in the supplement to this paper.

The EC-Earth3-Veg-LR model predicts climate extremes better than the AWI-ESM in the Himalayas and in the Amazon region

(compare Fig. 6 to Fig. 10), while it overestimates precipitation extremes more strongly than the AWI-ESM at the western coast

of South America. The number of clusters is in general higher than for the AWI-ESM, in part probably due to the higher model310

resolution (320×160 compared to 192×96). Note that this increased resolution is also the reason for the different values for the

cluster numbers of the reanalysis data in Tables 1 and 2, because reanalysis data were in each case interpolated to the climate

model resolution. When comparing again the clusters over Europe using the D0 dissimilarity measure, it can be observed that
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Figure 7. Clustering of AWI-ESM model data (a, b) and observational data (c, d) with the dissimilarity measure D0 and threshold h= 0.825

(a, c) and with dissimilarity measure D0.25 and threshold h= 0.65 (b, d).

in the western part of Europe, model and observational clusters are in general similar, with only slight differences over the

Iberian Peninsula and with an area covering southern France and northern Italy that is in one cluster in the model data and in315

two different clusters in the observational data. In Eastern Europe and Scandinavia, the differences between the clusterings are

larger and it is more difficult to see correspondences. The general remarks that have been made about the clusterings while

discussing the AWI-ESM data also apply here.
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Figure 8. The Average Weighted Quantile Difference (AWQD) of the 27 CMIP6 models considered plotted against the model resolution

(number of model grid points in units of 104). In red: Linear regression line (intercept 73.310, slope −2.368).

Table 2. The number of clusters for EC-Earth3-Veg-LR climate model and observational data determined with the L-Method (above the

middle line) and the threshold method (below the middle line) for different ranges/thresholds and for dissimilarity measure D0 (left) and

D0.25 (right).

D0 EC-Earth3-Veg-LR Observations

m= 250 76 89

m= 300 141 90

m= 400 181 94

m= 500 184 272

h= 0.85 173 145

h= 0.825 224 186

h= 0.8 299 240

h= 0.775 366 272

D0.25 EC-Earth3-Veg-LR Observations

m= 250 113 67

m= 300 117 67

m= 400 129 154

m= 500 146 282

h= 0.675 131 116

h= 0.65 203 166

h= 0.625 276 225

h= 0.6 358 279

5 Conclusions320

We presented approaches and methods to validate climate model outputs by comparing their extremal behaviour to the extremal

behaviour of observational data. To illustrate these methods, we compared precipitation extremes between the AWI-ESM and

the CRU TS4.04 data set of reanalysed observations. After an analysis of empirical statistical parameters, we fitted the data

to GEV distributions and analysed the differences in estimated parameters. Then we continued with an analysis of spatial

17



Figure 9. EC-Earth3-Veg-LR climate model estimated GEV parameters (a, c, e) and their anomaly compared to the reanalysis GEV param-

eters (b, d, f). The GEV parameters are location (a, b), scale (c, d) and shape (e, f). Values exceeding the scale limits are truncated. Units are

mm/month.
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Figure 10. Difference of the 0.95-quantiles of the estimated GEV distribution for EC-Earth3-Veg-LR model and observational data. Values

exceeding the scale limits are truncated. Units are mm/month.

Figure 11. Clustering of EC-Earth3-Veg-LR model data (a, b) and observational data (c, d) with the dissimilarity measure D0 and threshold

h= 0.825 (a, c) and with dissimilarity measure D0.25 and threshold h= 0.65 (b, d).
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concurrence of extremes based on a hierarchical clustering approach and a dissimilarity measure derived from bivariate copula325

theory. While the empirical statistics are similar for many parts of the world, we can also identify larger regions of over- and

underestimation of empirical means and standard deviations by the climate model. These misestimations often go hand in hand

with a similar misestimation of the standard deviation (heteroscedasticity), although for the standard deviation a stronger ten-

dency for underestimation can be observed. Misestimations of mean and standard deviations translate into a misestimation of

extreme values, and this can be confirmed by the comparison of the fitted GEV distribution parameters and the 0.95-quantiles330

derived from them. The shape parameter, indicative of the heavy-tailedness of the distribution, is in general similar between

model and observational data, but because of the difficulties in reliably estimating this parameter from data (that are in turn a

result of the rareness of extreme events in the data) these results have to be taken with caution.

The cluster analysis based on spatial dependencies and the occurrence of concurrent extremes shows that there is generally335

a good agreement between identified clusters. Also the number of clusters is in general similar, with a slight tendency for a

higher cluster number in the model data. Since it is mostly large-scale weather events and teleconnections contributing to con-

current climate extremes, this may indicate that the basic physical behaviour underlying them is in general well captured by the

AWI-ESM. Further analyses can be conducted to investigate in detail the reasons for different clusterings over selected regions.

340

In addition to the AWI-ESM, several other CMIP6 models are also analysed. A comparison of the model accuracy, measured

using an averaged quantile difference, shows a tendency for higher-dimensional models to capture extremal behaviour better.

In this work, a clustering algorithm based on bivariate extremal coefficients is used to perform a spatial analysis of extreme

values. Extremal coefficients are also used to model multivariate spatial distributions of extremal precipitation using max-345

stable processes. This method was first developed by Smith (1990) and Schlather (2002) and then extended by Opitz (2013)

and Ribatet et al. (2015), and it is successfully used to model precipitation over Switzerland (Ribatet, 2017). The models

based on max-stable processes assume spatial stationarity (i.e. the spatial dependence between two points depends only on

their distance). This assumption is justifiable for small regions like Switzerland, but it makes the models in their present form

not well suitable for global data. Castro-Camilo and Huser (2020) created a model for the spatial distributions of extreme tail350

dependencies based on factor copulae, allowing them to use the relaxed assumption of local spatial stationarity and therefore

to apply their model to the whole contiguous United States. From the area of parametric copulae, also vine copulae have been

employed to model precipitation data by Vernieuwe et al. (2015) and by Nazeri Tahroudi et al. (2021). A further possibility is

the application of non-parametric multivariate copulae. Marcon et al. (2014) used an estimator based on Bernstein polynomials

to model the common distribution of up to seven variables in their analysis of French precipitation data. Copulae based on355

Bernstein polynomials are also used in multivariate extreme value analysis with a focus on multiple testing (Neumann et al.,

2019). In global climate models, the number of dimensions is much higher than seven and the method by Marcon et al. (2014)

is not directly transferable.
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The clustering approach presented here focuses on the comparison of extremal events at different locations, thereby sup-360

plementing the analyses of climate extremes that are often focused on extremes at a specific location (Zhang et al., 2011). An

application to daily data that has been annually or seasonally maximised is also possible, but beyond the scope of this paper.

In order to investigate extreme precipitation within the area covered by one cluster in more detail, the spatially stationary

max-stable models or the copulae-based models mentioned above could be employed. Most of the clusters cover only a small

region, therefore spatial stationarity might be a reasonable assumption, although it is not a direct consequence of the data being365

in the same cluster. In addition to model validation, the definition of regions with concurrent extremes may turn out useful for

assessments of risks in an economical context and for insurance. It needs to be noted, though, that extremes in climate models

and in gridded reanalysis data sets tend to be damped because of the spatial averaging performed during the creation of the

data (Bador et al., 2020b). Another possible field of application is palaeoclimatology. The spatial distribution of precipitation

extremes is known to have changed markedly in the past (Lohmann et al., 2020; Ionita et al., 2021b), and clustering based on370

climate models could be used to generalise the sparse existing palaeoclimatic data to larger regions.

Code and data availability. The CRU TS4.04 reanalysis data are available at https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9.

The AWI-ESM climate model data are available under https://www.doi.org/10.22033/ESGF/CMIP6.9328 and the EC-Earth3-Veg-LR model

data can be found under https://doi.org/10.22033/ESGF/CMIP6.4702. The software code (in R) used for the analyses is provided in the

supplementary material to this paper.375
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