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Abstract. Coupled general circulation models are of paramount importance to assess quantitatively the magnitude of future

climate change. Usual methods for validating climate models include the evaluation of mean values and covariances, but

less attention is directed to the evaluation of extremal behaviour. This is a problem because many severe consequences of

climate changes are due to climate extremes. We present a method for model validation in terms of extreme values based on

classical extreme value theory. We further discuss a clustering algorithm to detect spacial
:::::
spatial

:
dependencies and tendencies5

for concurrent extremes. To illustrate these methods, we analyse precipitation extremes of the AWI-ESM global climate model

compared
::
as

::::
well

::
as

:::
of

::::
other

:::::::
models

:::
that

::::
take

::::
part

::
in

:::
the

:::::::
Coupled

::::::
Model

::::::::::::::
Intercomparison

::::::
Project

::::::
CMIP6

::::
and

:::::::
compare

:::::
them

to the reanalysis data set CRU TS4.04. The methods
::::::::
clustering

::::::::
algorithm

:
presented here can also be used for the comparison

of model ensembles
::
be

::::
used

::
to
:::::::::

determine
:::::::
regions

::
of

:::
the

::::::
climate

::::::
system

::::
that

:::
are

::::
then

::::::::
subjected

::
to
::

a
::::::
further

:::::::
in-depth

:::::::
analysis,

and there may be further
:::
also

:::
be applications in palaeoclimatology.10

1 Introduction

Coupled general circulation models are frequently utilised to assess quantitatively the magnitude of future climate change.

Validating these models by simulating different climate states is essential for understanding the sensitivity of the climate sys-

tem to both natural and anthropogenic forcing. Usual methods for validating climate models include the evaluation of mean

values and covariances and the comparison of empirical cumulative distribution functions. These analyses can also be con-15

ducted over seasonal and annual averages (climatologies) or along latitudinal/longitudinal transects (Tapiador et al., 2012).

The comparison of climate indices is also common in model validation (Sillmann et al., 2013; Zhang et al., 2011). While

climate models are able to reproduce many climate phenomena across the globe, their reliability regarding extremes requires

additional evaluation. Changes in the intensity and frequency of extremes have drawn much attention during recent decades

(IPCC, 2012; Rahmstorf and Coumou, 2011; Horton et al., 2016), mainly due to their large impacts on natural environment,20

economy and human health (Ciais et al., 2005; Kovats and Kristie, 2006). For instance, the summer heat wave over Central

Europe in 2003 resulted in extensive forest fires, crop yield reductions and fatalities (de Bono et al., 2004; Vandentorren et al.,

2004). During the 20th century, the frequency of high-temperature extremes has increased in Europe (Dong et al., 2017), even

after the apparent levelling off of global mean temperatures after 2000 (Trenberth and Fasullo, 2013), and for precipitation

extremes, a similar development has been observed (Fischer and Knutti, 2016). Due to the inherent nature of extreme events,25
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their evolution differs from that of the mean and the variance (Schär et al., 2004; IPCC, 2012) and also highly depends on the

strength of the events themselves (Myhre et al., 2019).

In particular, the concurrent occurrence of climate extremes at different locations may have especially large impacts on agri-

culture (Toreti et al., 2019), human societies and economies (Jongman et al., 2014) and on the climate system itself (Zscheis-30

chler et al., 2014). Large-scale climate extremes can furthermore cause serious problems for insurance and reinsurance compa-

nies (Mills, 2005). For these reasons, an increasing amount of research is being conducted on multivariate analysis of extremes

with focus on their concurrent appearance (Shaby and Reich, 2012; Dombry et al., 2018; Kornhuber et al., 2020; Ionita et al.,

2021a) and new tools have been created for the analysis of extremes in climate models (Weigel et al., 2021).

35

The
:
A

::::::::
particular

:::::::::
challenge

::
for

:::
the

:
analysis of extreme events is often complicated by the fact that extreme events are typi-

cally rare, and that it is therefore difficult to build informative statistics based solely on the extreme events themselves. As a

remedy, it is common to apply the
:::
Two

::::::::
common

:::::::::
approaches

:::
are

:::::
used

::
to

::::::::
overcome

:::
this

:::::
issue:

::::::::::::::::::
peaks-over-threshold

:::
and

:
block-

maximaapproach, i. e. to group data .
::
In
:::
the

::::::::::::::::::
peaks-over-threshold

::::::::
approach,

:
a
:::::
fixed

:::::::
threshold

::
is
::::::::
selected.

:::
The

::::::::::
distribution

::
of

:::
the

:::
data

:::::::::
exceeding

:::
this

::::::::
threshold

:::
can

::::
then

:::
be

:::::::::::
approximated

:::
by

:
a
:::::::::
generalised

::::::
Pareto

::::::::::
distribution

:
if
:::::
some

::::::::
additional

:::::::::::
assumptions

:::
are40

::::::
fulfilled

::::
(see

:::::::::::::::::
McNeil et al. (2015)

:
,
:::::::
Chapter

:::
7.2

:::
for

::::
more

:::::::
details).

::::
The

:::::::::::::::::
peaks-over-threshold

::::::::
approach

::
is
:::::::::
frequently

:::::::
applied

::
in

::::::::::
climatology

:::
and

:::::::::
hydrology

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Acero et al., 2011; Fowler and Kilsby, 2003; Kiriliouk et al., 2019)

:
.
:::
The

::::::::::::
block-maxima

:::::::::
approach,

::
on

:::
the

:::::
other

:::::
hand,

::::::
follows

:::
the

::::
idea

::
to

::::
split

:::
the

::::
time

::::
axis

:
into blocks of a sufficiently large size and investigate the block-wise

maxima
::
of

:::
the

:::
data. Under suitable conditions,

::
the

::::::::::
distribution

::
of these block-wise maxima can be described with the

::
for

:::::
large

::::::
sample

::::
sizes

::
be

::::::::::::
approximated

::
by

::
a generalised extreme value (GEV) distribution.45

In this work, we will evaluate the performance of the fully coupled AWI Earth
:::::
Alfred

::::::::
Wegener

::::::::::::
Institute-Earth System Model

AWI-ESM1.1LR
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Shi et al., 2020; Lohmann et al., 2020; Ackermann et al., 2020) in terms of its accuracy regarding variabil-

ity and extremes of precipitation, putting special focus on spatially concurrent precipitation extremes. Our main questions are

whether the model is able to correctly
::::::::
accurately

:
reproduce extreme events in different regions and if

:::::::
whether spatial depen-50

dencies and concurrent extremal events are correctly identified
:::::::
modelled

::::::::::
adequately. We compare model data from a historical

run of the AWI-ESM to the global precipitation reanalysis data set CRU TS4.04
::::::::::::::::
(Harris et al., 2020). We start with inves-

tigating variability and extremes locally using empirical statistics
:::::::
statistical

::::::::::
parameters and by fitting a GEV distribution to

annual precipitation maxima. Then, following an approach by Bernard et al. (2013), we use a clustering algorithm to group

spatio-temporal climate data into different spatial regions based on their similarity in terms of extremal behaviour and the55

concurrency of their extremes. This clustering is based on the theory of max-stable copulae, which has been used extensively

::
in

::::
prior

:::::
work to investigate spatial dependence of extreme precipitation events, for example in Bargaoui and Bárdossy (2015);

Zhang et al. (2013); Qian et al. (2018). In those papers, an analysis of bivariate variables
::::::::::
distributions is performed. In our

work, we first construct for each pair of locations a measure for their similary
::::::::
similarity in terms of extremes. This measure

is then used as a basis for the clustering algorithm to group the data into spatial regions of comparable extremal behaviour.60
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The resulting clusters for model and observational data are compared and used to analyse the ability of the climate model to

correctly reproduce spatial dependencies of precipitation extremes.

Applying clustering algorithms to climate data is
::
In

:::
this

::::::
article,

::::
our

::::
main

:::::
focus

::
is
:::
on

:::
the

:::::::::
AWI-ESM

::::
and

:::
we

::::::
present

::::
our

:::::::
methods

:::::
using

::::
data

::::
from

::::
this

::::::
model.

:::
We

::::
also

::::::
present

::
a
:::::::
measure

:::
for

:::
the

::::::
model

::::::::
accuracy

::
in

::::::
regard

::
to

:::::::
extremal

::::::::::::
precipitation,65

:::
and

:::::
apply

::
it

::
to

::
a
:::
set

::
of

::::::::
different

::::::
CMIP6

:::::::
models.

:::
In

:::
the

::::
main

:::::
text,

::::::
results

:::
will

:::
be

::::::::
discussed

:::
for

::::
the

:::::::::
AWI-ESM

::::
and

:::
for

:::
the

:::::
model

::::::::
identified

::
as

::::::
having

:::
the

::::
best

::::::
model

::::::::
accuracy.

::
In

:::
the

::::::::::
supplement

::
to

::::
this

:::::
paper,

:::
the

::::::
results

:::
for

:::
the

:::::
other

::::::
CMIP6

:::::::
models

::::::::::
investigated

::
are

:::::::::
presented.

:

:::::
Model

:::::::::
validation

::
in

:::::
terms

::
of

:::::::::::
precipitation

::::::::
extremes

::
is

::::::
already

:::
an

:::::
active

::::::::
research

:::::
topic.

::::::::::::::::
Tabari et al. (2016)

:::::::::
investigate

:::
the70

::::::::::
performance

::
of

::::::
global

::::
and

:::::::
regional

::::::
climate

:::::::
models

:::::
using

:::
the

:::::::::::::::::
peaks-over-threshold

:::::::::
approach.

:::
An

:::::::::
evaluation

::
of

:::::::
regional

::::
and

:::::
global

:::::::
climate

::::::
models

::::::
using

:::::::
extreme

:::::::::::
precipitation

::::::
indices

::
is
:::::::::

conducted
:::

by
:::::::::::::::::

Bador et al. (2020a)
:
,
::::::::
revealing

::
a

::::::::
tendency

:::
for

:::::::
stronger

:::::::
extremes

::
in

:::::::
regional

:::::::
models.

::
A

::::::
similar

:::::
result

:::
was

::::::::
obtained

::
by

::::::::::::::::::
Mahajan et al. (2015)

::
by

::::::::::
comparing

::::::
climate

:::::
model

::::
and

:::::::::::
observational

::::::::::
precipitation

::::
data

:::::
over

:::
the

::::::
United

:::::
States

:::::
using

:::::
GEV

:::::::::::
distributions.

::::::::::::::::::::::
Timmermans et al. (2019)

::::::
conduct

::::::::
pairwise

::::::::::
comparisons

::
of

:::
the

:::::::::::
precipitation

::::::::
extremes

::
of

:::::::::
numerous

::::::
gridded

:::::::::::::::
observation-based

:::::::
datasets

::::
and

::::
find

::::::::::
considerable

::::::::::
differences75

:::::::
between

::
the

:::::::
datasets

:::::::::
especially

::
in

::::::::::
mountainous

:::::::
regions.

:::::::::::
Precipitation

:::::::
extremes

::::
over

:::::
India

::
are

::::::::::
investigated

:::
by

::::::::::::::::
Mishra et al. (2014)

::::
using

:::::
GEV

::::::::::
distributions

::::
and

::::::::::
comparisons

:::
of

::::::
indices

::::
with

:
a
:::::
focus

:::
on

::::::
changes

::::
over

:::::
time.

:

:
It
::
is

::::
also not a new approach

::
to

:::::
apply

::::::::
clustering

:::::::::
algorithms

::
to

::::::
climate

::::
data. Among others, it has been used to define climate

zones in the United States (Fovell and Fovell, 1993) and globally (Zscheischler et al., 2012), and to find regions with similar80

trends in their climatic change over Europe (Carvalho et al., 2016). Those analyses focus on mean values and on their temporal

differences, respectively, while we apply clustering specifically to uncover connections regarding climate extremes.

The article is structured as follows: After introducing the data sets in Sect. 2, we present the methods used in Sect. 3. The

results from their application to the data are presented in Sect. 4. A section on conclusions and discussions finalises the article.85

2 Data

The observational data are reanalysed monthly precipitation data in mm over land (excluding Antarctica) from the CRU TS4.04

data set (Harris et al., 2020; University of East Anglia Climatic Research Unit et al., 2020) with data ranging from 1901 to

2019. We restrict the time frame to the years 1930 to 2014 in order to have a sufficiently large area with non-missing data

and to be consistent with the climate model data. The grid size is 0.5◦× 0.5◦, the data have been obtained by interpolating90

observations from more than 4.000 weather stations using angular distance weighting.

At some locations and time points, no data from nearby weather stations was
::
had

:::::
been

:
available to use for interpolation. In

these cases, the creators of the CRU TS4.04 data set used a value from a climatology instead. These climatology values are
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uninformative
::
not

:::::
very

:::::::::
informative

:
in terms of extremes and too many of them would distort the analyses, therefore all grid

points with more than 5% climatology values and additionally all grid points with at least 12
:::::
twelve

:
consecutive months of95

climatology values are excluded from our analysis. This results in the exclusions of larger regions in northern and central

Africa, in Indonesia, in central Asia and in the polar regions. In the figures below
:::::::
showing

:::::::::::
geographical

:::
data

::
in

::::
this

:::::
paper, those

regions are coloured in grey.

The climate model used is the coupled model AWI-ESM1.1LR. It is based on the AWI Earth System Model (AWI-ESM1),100

which consists of the AWI Climate Model (Sidorenko et al., 2015; Rackow et al., 2018), but with interactive vegetation. The

model comprises the atmosphere model ECHAM6 (Stevens et al., 2013), which is run with the T63L47 setup ,
:
(that is, a

horizontal resolution of 1.85◦× 1.85◦ . The
:::
and

::
47

:::::::
vertical

::::::
layers)

::::
and

:::
the

:
ocean-sea ice model FESOM1.4 (Wang et al.,

2014),
::::::
which employs an unstructured grid, allowing for varying resolutions from 20km around Greenland and in the North

Atlantic to around 150km in the open ocean (CORE2 mesh). The land surface processes are computed by the land surface105

model JSBACH2.11 (Reick et al., 2013). The model considers the surface runoff toward the coasts, deploying a hydrological

discharge model that also includes freshwater fluxes by snowmelt (Hagemann and Dümenil, 1997).

AWI-ESM1 has been extensively used and described in the context of palaeoclimate changes as well as of changes of the

recent and future climate (Shi et al., 2020; Lohmann et al., 2020; Ackermann et al., 2020; Niu et al., 2021). The historical run

is documented in Danek et al. (2020) and has been directly used in Ackermann et al. (2020) and Keeble et al. (2021). The110

model takes furthermore part in CMIP6/PMIP4 activities (Brierley et al., 2020; Brown et al., 2020; Otto-Bliesner et al., 2021;

Kageyama et al., 2021a, b).

:::
The

::::::::
Coupled

:::::
Model

::::::::::::::
Intercomparison

::::::
Project

::::::
CMIP,

::::::::::
coordinated

:::
by

:::
the

::::::::
Working

:::::
Group

:::
on

:::::::
Coupled

:::::::::
Modelling

:::::::::
(WGCM)

::
of

:::
the

:::::
World

:::::::
Climate

::::::::
Research

::::::::::
Programme

::::::::
(WCRP),

:::
has

:::
the

::::
goal

::
to

:::::::
support

:::
and

::::::::
facilitate

:::
the

:::::::
analysis

::
of

::::::
climate

::::::
model

::::
data115

::
by

:::::::::
providing

:
a
:::
set

:::
of

:::::::
common

:::::::::
standards

::::::::
regarding

:::
the

:::::::::
formatting

::::
and

::::::::::
availability

::
of

::::::
model

::::::
output.

:::::::::::
Additionally,

:::
in

:::::
order

::
to

:::::::
enhance

::::::
model

::::::::::::
comparability,

:::
all

::::::
models

:::::::::::
participating

:::
in

:::::
CMIP

:::
are

::::::::
required

::
to

::::
run

:
a
:::

set
:::

of
:::::::::::
standardised

:::::::::::
experimental

:::::
setups

:::::::::::
(Diagnostic,

:::::::::
Evaluation

:::
and

::::::::::::::
Characterization

:::
of

:::::
Klima

:::::::::::
experiments;

:::::::
DECK

:::::::::::
experiments)

::
as

::::
well

:::
as

:
a
:::::::::
simulation

:::
of

::
the

:::::::::
historical

::::::
climate

:::::
from

:::::
1850

::::
until

:::::
2014

::::
(the

::::::::
historical

::::::::::
simulations

:::
we

::::
also

:::
use

:::
in

:::
our

::::::::
analysis).

::::::
CMIP

::
is
:::::::
divided

::::
into

:::::::
different

::::::
phases

::::::::
reflecting

:::
the

:::::::::::
advancements

::
of

:::::::
climate

:::::::::
modelling,

:::
the

::::::
current

:::::
phase

::::::
CMIP6

::::::
started

::
in

:::::
2016.

:::::
More

::::::::::
information120

::
on

::::::
CMIP

:::
can

:::
be

:::::
found

::
in

::::::::::::::::
Eyring et al. (2016)

:
.
::::
The

:::::
model

:::::::
outputs

:::
are

:::::
made

::::::::
available

:::
by

:::
the

:::::
Earth

::::::
System

:::::
Grid

:::::::::
Federation

::::::::::::::::::::::::
(ESGF; Cinquini et al., 2014)

:
.

In our analysis,
::
we

::::::
restrict

:
the time frame is restricted

::
of

:::
the

::::::
model

:::
data

:
to the years 1930 to 2014, as in the observational

data. We investigate monthly precipitation (sum of convective precipitation and large-scale precipitation) in mm/month. We125

use bilinear interpolation to scale the
::::::::
reanalysis data to the 1◦× 1◦ grid of the reanalysis data set

::::::::::
atmospheric

:::::::::
component

:::
of

::
the

:::::::
climate

::::::
model and take into account only those interpolated grid points that correspond to locations with given observed
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data, excluding the oceans and the regions with incomplete data mentioned above.

3 Methods130

3.1 Univariate Analysis

In this subsection, the time series of all data points are
::::
each

::::::
spatial

:::::::
location

:::::::::
(henceforth

:::::::
referred

::
to

::
as

::::
grid

:::::
point)

::
is investigated

separately, and all operations and analyses described are therefore conducted for each grid point. Since the focus of this work

is not on evaluating the effects of long-time trends, we apply a seasonal-trend decomposition using Loess (Cleveland et al.,

1990) on the data and subtract the deviance of the trend from its mean value from it, resulting in data that can be assumed135

time-stationary
::
for

::::::
which

:::
we

::::::
assume

::::::::
temporal

::::::::::
stationarity. Then, as a first comparison between the data sets, we investigate

differences in the empirical mean and empirical standard deviation of the annually maximised precipitation data.

The theoretical foundation for the application of the GEV distribution is as follows: For a random variable X with an

unknown probability distribution, we look at
:::::::::
investigate

:
the distribution of the maximum of i.i.d. copies X1, . . . ,Xn of140

it: Y (n) := maxi=1,...,n(Xi). We assume that for suitable normalising sequences an > 0 and bn, these blockwise maxima

converge
::::
Y (n)

::::::::
converges

:
in distribution if the block size n tends to infinity:

Y (n)− bn
an

D−→H. (1)

In this case, as shown by Fréchet (1927), Fisher and Tippett (1928) and Gnedenko (1943), the distribution of Y (n) can be

approximated by a GEV distribution for a large (fixed) value of n. This distribution depends on the three parameters location145

(µ), scale (σ > 0) and shape (γ) and its cumulative distribution function is given by

Fµ,σ,γ(x) =

exp(−exp(−x−µσ )) γ = 0

exp(−max(0,1+ γ x−µσ )−
1
γ ) γ 6= 0.

(2)

The GEV distribution has widely been used as a model for blockwise maximised data , especially for the yearly maximum of

daily average precipitation (Coles et al., 2003; Onwuegbuche et al., 2019; Villarini et al., 2011, for example)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for example Coles et al., 2003; Onwuegbuche et al., 2019; Villarini et al., 2011)

. Following this approach, we group our monthly precipitation data from observations and climate model into one-year block150

maxima and fit a GEV distribution to
::
the

:::::::::
blockwise

:::::::
maxima

::
at

:
each grid point. When selecting a block size, a bias-variance

tradeoff has to be taken into account: For a low block size, the resultung
:::::::
resulting parameter estimates tend to be biased be-

cause the convergence to the GEV distribution holds only asymptotically. A high block size, on the other hand, will lead to

a limited amount of block-wise maxima that can be analysed and therefore to a higher variance in the estimates (see McNeil

et al. (2015), Chapter 7). In our case, we have a relatively small block size of 12 (months per year) and a number of block-wise155

maxima of 90 (years of investigation).
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To estimate the distribution parameters, we use the method of Probability-Weighted Moments
:::::::::::::::::
probability-weighted

::::::::
moments

developed by Hosking (1985) as implemented in the R package "EnvStats" of Millard (2013). As shown by Hosking et al.

(1985), this method yields estimators with a relatively low variance and bias compared to the maximum likelihood ap-160

proach, especially for small and medium-size samples. We test the goodness of fit using a one-sided Kolmogorov-Smirnov-test

at significane
:::::::::
significance

:
level 5%.

:::
The

::::
null

:::::::::
hypothesis

::
of

::::
the

:::
test

::
is
::::

that
:::
the

::::::::
annually

::::::::::
maximised

::::
data

::::::
follow

:::
the

:::::
GEV

:::::::::
distribution

::::::
having

:::
the

:::::::::::::::::
probability-weighted

::::::::
moments

::::::::
estimates

::
as

::::::::::
distribution

::::::::::
parameters.

For each parameter, we also compute
:::
We

:::
also

::::
use

:::
the

:::::::::
parametric

::::::::
bootstrap

::::::
method

:::::
with

::::
2500

:::::::::
resamples

::
to

:::::::
compute

:
95%165

:::::::::
confidence

:::::::
intervals

:::
for

:::::
each

:::::
GEV

:::::::::
parameter

:::
and

:::
for

::::
the

::::
95%

::::::::
quantiles

::
of

::::
the

:::::::::::
distributions.

::::::::::
Confidence

:::::::
intervals

:::
for

::::
the

::::
GEV

::::::::::
parameters

:::::
based

::
on

::::::::::
asymptotic

::::::::
normality

::::
also

:::::
exist

:::
for

:::
the

:::::::::::::::::
probability-weighted

::::::::
moments

::::::::::
estimators,

::::
but,

::
as

::::::
shown

::
by

::::::::::::::::::
Hosking et al. (1985),

::::
they

:::::
have

:
a
:::::
high

:::
bias

::::
and

:::::::
variance

::
if
::::

the
:::::
shape

::::::::
parameter

::
is
:::

far
:::::

away
:::::
from

::::
zero.

:::
In

:::
our

:::::
data,

:::
for

::::::
several

::::
time

:::::
series

:::::
such

::
a

:::::
value

::
is

::::::::
estimated

:::
for

::::
the

:::::
shape

:::::::::
parameter,

::::
and

:::::::::::
comparisons

:::::::
between

::::
the

:::::::::
confidence

::::::::
intervals

:::::
based

::
on

::::::::
bootstrap

::::
and

:::::
those

:::::
based

:::
on

::::::::::
asymptotic

::::::::
normality

::::
also

:::::::::
confirmed

:::::
large

:::::::::
differences

::
in
:::::

these
::::::

cases.
:::
For

:::
the

:::::
sake170

::
of

:::::::::::::
methodological

::::::::::
consistency

:::
and

:::::::
because

:::
we

::::
also

:::
use

::::
the

::::::::
bootstrap

:::
for

:::
the

:::::::::
confidence

::::::::
intervals

::
of

:::
the

::::
95%

:::::::::
quantiles,

:::
we

::::::::
calculated

:::
the

:::::
GEV

::::::::
parameter

:
confidence intervals using the parametric bootstrap method with 2500 resamples.

::::::::
bootstrap

:::
for

::
all

::::
time

::::::
series.

:::::
Since

::::
this

::::::
method

::
is
:::::

quite
::::::::::::::
time-consuming,

::
it
:::::
could

::::
also

:::
be

:::::::::
advocated

::
to

::::::
choose

:::
the

:::::::
method

::
of

::::::::::
confidence

::::::
interval

:::::::::
calculation

:::::
based

:::
on

:::
the

::::::::
estimated

:::::
shape

:::::::::
parameter

:::::
value.

175

::
To

::::::::
compare

:::
the

:::::::::::
performance

::
of

::::::::
different

:::::::
CMIP6

:::::::
models,

:::
we

::::::::
introduce

:::
as

:
a
::::::::

measure
:::
for

:::
the

::::::::
accuracy

:::
of

:::
the

::::::::
extremal

::::::::::
precipitation

:::
an

:::::::
Average

::::::::
Weighted

::::::::
Quantile

:::::::::
Difference

::::::::
(AWQD).

::::
For

:::
this

::::::::
measure,

:::
the

:::::::
absolute

::::::::::
differences

:::::::
between

::::::
model

:::
and

:::::::::::
observational

::::
95%

:::::
GEV

::::::::
quantiles,

::::::::
weighted

::::
with

:::
the

::::::
cosine

::
of

:::
the

:::::::
latitude,

:::
are

::::::::
averaged.

::::
The

::::::::
weighting

::::::::
accounts

:::
for

:::
the

:::
fact

::::
that

:::
the

::::
grid

::::
cells

:::
do

:::
not

::::
have

:::
an

:::::
equal

:::
size

:::
for

:::
all

::::
grid

::::::
points,

:::
and

:::
the

:::::::
average

::
is
:::::
taken

:::::::
because

:::
of

:::
the

:::::::
different

::::::
model

:::::::::
resolutions.

::::
For

:
G
:::
the

:::
set

::
of

::::
grid

:::::
points

::::
and

::::::::
estimated

::::::::
quantiles

:::::::::
q̂0.95,mod(g)::::

and
:::::::::
q̂0.95,obs(g):::

for
::::::
g ∈ G,

::
we

::::::::
therefore

::::::
define180

AWQD :=
1

|G|
∑
g∈G

cos(lat(g)) · |q̂0.95,mod(g)− q̂0.95,obs(g)|.

:::::::::::::::::::::::::::::::::::::::::::::::

(3)

3.2 Comparison of spatial distributions

To compare the spatial distributions of climate extremes, we introduce a hierarchical clustering algorithm (using average link-

ing) to determine regions with similar extremal behaviour. This approach is similar to the idea proposed in Bernard et al.

(2013). For hierarchical clustering , an appropriate dissimilarity function D :A×A→ R with A the total set of grid points is185

required. This function must fulfil D(x,x) = 0 and D(x,y) =D(y,x)≥ 0 for all x,y ∈A.
::::
The

::::::::::
hierarchical

::::::::
clustering

::
is

:::::
based

::
on

:::::::
concepts

:::::
from

:::::::
extreme

:::::
value

:::::::
statistics

:::
that

::::
will

::
be

:::::::::
discussed

::
in

:::
the

::::::::
following.

:

One possible dissimilarity measure is based on the extremal coefficient θx,y , a measure of the strength of the dependency

of GEV distributed attaining a low value if the extremes in the distributions at x and y tend to be concurrent. The extremal

coefficient is based on the theory of max-stable copulae: Assume that the190
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::::::
Assume

::::
that two real-valued random variables (X,Y ) have a copula function C : [0,1]×[0,1]→ [0,1], that is, their joint distri-

bution function can be written in terms of the copula and the marginal distribution functions as FX,Y (x,y) = C(FX(x),FY (y))

for all x,y ∈ R. Then, if (X,Y ) is the
:::::
weak limit of block-wise maxima of a sequence of i.i.d. two-dimensional variables when

the blocksize
::::
block

::::
size

:
goes to infinity (a similar condition as in Sect. 3.1, extended to two-dimensional random variables), it

follows immediately that X and Y are
::::::
(jointly)

:
GEV distributed. As shown for example in McNeil et al. (2015), Theorem 7.44195

and 7.45,
:
It
:::::::
follows

::
as

::::
well

:::
that

:
the copula must also fulfil C(xt,yt) = C(x,y)t for all x,y ∈ [0,1]

:::
fulfil

::::::::::::::::::
C(ut,vt) = Ct(u,v)

::
for

:::
all

:::::::::
u,v ∈ [0,1]

:
and t > 0 in this case,

::::
(see

::::::::::::::::
McNeil et al. (2015)

:
,
::::::::
Theorem

::::
7.44

:::
and

:::::
7.45).

::::
Such

::
a
::::::
copula

:
is
::::::
called

:::::::::
max-stable

and it can be rewritten as
::::::
written

::
as

:

C(xu
:
,yv

:
) = exp

(
(lnxu

:
+ lnyv

:
)AX,Y

:::

( lnx

lnx+ lny

lnu

lnu+ lnv
::::::::

))
(4)

using a function A : [0,1]→ [ 12,1]
::::::::::::::::::
AX,Y : [0,1]→ [ 12,1] called the Pickands dependence function (Pickands, 1981). The200

function A
::::
AX,Y:

is convex and satisfies max(w,1−w)≤A(w)≤ 1
:::::::::::::::::::::::::
max(w,1−w)≤AX,Y (w)≤ 1

:::
for

:::
all

::::::::
w ∈ [0,1]. The

extremal index is
:::::::::
coefficient

:
is
::::
now

:
defined as two times its value at the point 0.5:

θx,yX,Y
:::

:= 2 ·A(0.5)X,Y (0.5)
:::::::

. (5)

In the case of a perfect positive correlation between X and Y (Corr(X,Y ) = 1), the extremal index
:::
The

::::::::
extremal

:::::::::
coefficient

takes its minimal possible value of 1 , for independent variables it reaches the maximal
:
if
:::
X

:::
and

::
Y

:::
are

:::::::::::
comonotonic

::::
(so

::
in205

::::::::
particular

:
it
:::::
holds

::::::::
θX,X = 1

:::
for

:::
all

:::
X).

::::
The

:::::::
maximal

:::::::
possible

:
value of 2 . The extremal coefficient gives rise to a dissimilarity

function

D0(x,y) := θx,y − 1

To estimate it
:
is

:::::::
obtained

::
if
::
X

::::
and

::
Y

:::
are

:::::::::::
stochastically

:::::::::::
independent.

::
To

:::::::
estimate

:::
the

::::::::
extremal

::::::::
coefficient, we use the madogram

estimator as described in Ribatet et al. (2015) and Cooley et al. (2006) and rewrite the extremal coefficient as
::::
θX,Y ::

as210

θx,yX,Y
:::

=
1+2νx,y
1− 2νx,y

1+2νX,Y
1− 2νX,Y
::::::::

(6)

with the madogram νx,y =
12E[|FX(X)−FY (Y )|]

::::::::::::::::::::::::::
νX,Y = 12E[|FX(X)−FY (Y )|]. The madogram can be estimated by

replacing FX ,FY with their empirical counterparts. For a data sample (x1,y1), . . . ,(xn,yn), we then obtain

ν̂x,yX,Y
:::

=
1

2n(n+1)

n∑
i=1

∣∣∣ n∑
j=1

(1xj≤xi −1yj≤yi)
∣∣∣. (7)

:::
and

:::::::::::
consequently

:::::
define

:::
an

::::::::
estimator215

θ̂X,Y =
1+2ν̂X,Y
1− 2ν̂X,Y

.

::::::::::::::::

(8)
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::::::::::
Hierarchical

::::::::
clustering

:::::::::
algorithms

::::::
require

::
a

::::::::::
dissimilarity

:::::::
function

:::::::::::::
D : G ×G → R

:::
that

:::::
must

::::
fulfil

::::::::::::::::::::::
D(g1,g2) =D(g2,g1)≥ 0

:::
and

:::::::::::
D(g1,g1) = 0

:::
for

:::
all

:::
grid

:::::
points

:::::::::
g1,g2 ∈ G :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(for an introduction to hierarchical clustering algorithms see Murtagh and Contreras, 2012)

:
.
:::::
Based

::
on

:::
the

:::::::::
properties

::
of

:::
the

:::::::
extremal

:::::::::
coefficient

::::::::
discussed

::::::
above,

:::
we

:::::
define

:::::
such

:
a
::::::::::
dissimilarity

::::::::
function

::
as

D0(g1,g2) := θ̂X,Y − 1
::::::::::::::::::

(9)220

::::
with

::
X

:::
and

::
Y

:::::::::::
representing

:::
the

::::
GEV

:::::::::::
distributions

::
at

:::
the

:::
grid

::::::
points

::
g1::::

and
::
g2,

:::::::::::
respectively.

Note that the extremal coefficient is invariant under rank transformations and especially that it does not depend on the val-

ues of the GEV parameters of the marginal distributions (in fact, in Ribatet et al. (2015) and Cooley et al. (2006) it was only

used in the special case of GEV(1,1,1) distributed margins, but it can easily be extended to the general case). It may be de-225

sirable also to include the similarity of the estimated GEV parameters in the dissimilarity measure used for the
::
to

:::
also

:::::::
include

::
the

:::::::::::
dissimilarity

::
of

:::
the

::::::::
marginal

::::::::::
distributions

::
in

:::
the

:
clustering. As a further generalised dissimilarity measure we propose

Dλ(xg1
:
,yg2

:
) := (1−λ)D0(xg1

:
,yg2

:
)+λ

(1
3
dµ(xg1

:
,yg2

:
)+

1

3
:

dσ(xg1
:
,yg2

:
)+

1

3
:

dγ(xg1
:
,yg2

:
)
)
, (10)

with dp(x,y) =
|px−py|

maxa,b |pa−pb| :::::
where

::::::::
λ ∈ [0,1)

::
is

:
a
:::::::::
weighting

::::::::
parameter

::::
and

::::
with

:::::::::::::::::::::::::::::::::::
dµ(g1,g2) :=

|µ̂g1−µ̂g2 |
maxh1,h2∈G |µ̂h1−µ̂h2 |

∈ [0,1]

the normalised distance between the
:::::::
location parameter estimates at the points x and y, where p is one of the parameters µ,σ,γ230

and with λ ∈ [0,1) a weighting parameter
:::
grid

::::::
points

::
g1::::

and
::
g2::::::::::

(analogous
:::
for

::
dσ::::

and
::::
dγ).

::::::
Instead

::
of

:::
an

:::::
equal

:::::::::
weighting,

::
it

:::::
would

::::
also

::
be

::::::::
possible

::
to

:::
use

::::::::
different

::::::
weights

:::
for

::::
dµ,

::
dσ::::

and
:::
dγ ,

:::
but

:::
the

::::::::
selection

::
of

::
a
:::
set

::
of

:::::::
weights

:::
that

::
is
:::::::

clearly
:::::
better

:::::
suited

::
to

:::::::::
describing

:::::
GEV

:::::::::
distribution

:::::::::::
dissimilarity

::
is

:::::::
difficult.

::
It

:::::
could

::
be

::::::
argued

:::
to

:::
put

::::
more

::::::
weight

:::
on

:::
the

:::::
shape

:::::::::
parameter

::::
since

::::
this

::::::::
parameter

::::::::
describes

:::
the

::::::::::::::
heavy-tailedness

::
of

:::
the

::::::::::
distribution

:::
and

::::::::
therefore

:::
the

:::::::
strength

::
of

::
its

::::::::
extremes

:::::::
relative

::
to

:::
the

::::::::::
non-extreme

::::::
values.

:::
On

:::
the

:::::
other

::::
hand,

:::
we

::::
will

:::
see

::
in

:::
the

::::
next

::::::
section

:::
that

:::
the

::::::::::
uncertainty

::
in

:::
the

:::::
shape

::::::::
parameter

:::::::::
estimation

::
is235

::::::::::
considerably

::::::
higher

::::
than

:::
the

:::::::::
uncertainty

::
in

:::
the

:::::::::
estimation

::
of

:::
the

:::::
other

:::
two

:::::::::
parameters

::
at
:::::
least

::
for

::::
our

::::
data,

:::::
which

::::::
would

:::::
speak

::::::
against

::::::::
weighting

:::::
shape

:::::::::
parameter

:::::::::
differences

:::
too

:::::::
strongly.

Hierarchical clustering algorithms are well-known, for an introduction see Murtagh and Contreras (2012). To choose an

optimal
::
To

::::::
choose

:
a
:::::::
suitable number of clusters, we consider an approach by Salvador and Chan (2004) called the L-Method.240

In each step of the hierarchical clustering, the two clusters with minimal dissimilarity are combined, therefore we can plot the

number of clusters versus the dissimilarity between them, resulting in a graph called the evaluation graph. The dissimilarity

between clusters necessarily grows as the total number of clusters is reduced. The idea of Salvador and Chan (2004) is to find

a point from which on the growth rate of the dissimilarity measure increases considerably. It can then be expected that the

clusters up to this point combine rather similar data points, while combining them to larger ones would yield artificial results.245

To determine such a point of change, in the first step, a suitable range of the number of clusters is selected. For our example, we

use
:::::::
consider

:::::::
different

:
ranges starting with 10 and having no more than 550 clusters. Now, for each possible point of change c in

this range, the x-axis
::::::::
horizontal

::::
axis

:
of the graph is divided into the two parts to the left and the right of the change

:::
that point,

and a linear regression line is fitted to each of the two partial graphs. The root mean squared errors (RMSE’s
::::::
RMSEs) of the
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two regression lines are weighted with the number of points involved in the regression analysis and summed up. The change250

point
::::
point

::
of

::::::
change

:
with the minimal combined RMSE is chosen as the optimal

::::::
suitable

:
cluster number. As an alternative

method, we set the number of clusters to the highest possible number such that a fixed threshold dissimilarity between clusters

is not exceeded (Threshold method). This number can easily be read off on
::
of

:
the evaluation graph.

4 Results

We start with calculating for each annually maximised data point its
:::
grid

:::::
point

:::
the

:
empirical mean and standard deviation255

::
of

:::
the

:::::::
annually

::::::::::
maximised

::::
data, as can be seen in Fig. 1. In most regions, similar mean values can be observed. A notable

overestimation of the annual maxima of monthly precipitation by the climate model takes place in the Himalayas and along the

western continent coasts of the Americas. Underestimation occurs most prominently in the Amazon region and parts of Central

America, as well as in Bangladesh and East Asia. Looking at the standard deviation, a similar pattern as for the empirical mean

can be observed, but with a stronger tendency for underestimation, which occurs also in India and the northern part of Australia.260

In Fig. 2 a) and b), quantile-quantile plots (QQ-plots) of empirical mean and standard deviation can be seen
::
are

:::::::::
displayed. The

quantiles of the empirical mean are in general similar, but the highest quantiles show a strong discrepancy. Regarding the

standard deviation, this tendency is much more pronounced, corresponding to the larger areas of underestimation of empirical

standard deviation we saw in 1. In Fig. 2 c), the
:::::::
identified

:::
in

:::
Fig.

:::
1.

:::
The

:
difference in empirical mean and the difference in

empirical standard deviation are plotted against each other , and it is clearly visible that
::
in

:::
Fig.

::
2
:::
c).

:
It
::
is
::::::
visible

::::
that

::
in

:::::
many265

:::::
cases, overestimation (underestimation) of the empirical mean corresponds also to overestimation (underestimation) of the

empirical standard deviation. A similar case of heteroscedasticity has also been noted in Lohmann (2018) when investigating

Holocene climate.

As pointed out by Katz and Brown (1992), the frequency of extreme events is strongly influenced by changes (or, in this270

case, overestimation
::::::::::::
misestimation) of the mean as well as of the variance of a distribution. Therefore, a systematic

::
an

:
over-

and underestimation of extremes can be expected in certain regions based on the results in Figs. 1 and 2.

Fitting the GEV distributions to the data and applying KS-Tests to check the goodness of fit, the hypothesis of a GEV dis-

tribution with the estimated parameters is not rejected for nearly all grid points in both observational and climate model data,

except for parts of the Sahara and some isolated points.275

The three GEV parameters estimated are location, scale and shape, with location and scale very roughly corresponding

to mean and variance, and the shape parameter yielding information about the degree of heavy-tailedness. The estimated

parameter values are shown in Fig. 4. In Fig. 5
:
, the differences between model and observations

::::::::::
observational

:
parameters

are shown. Shaded areas are areas in which the model parameter falls into the 95% confidence interval of the corresponding280

observation parameter and vice versa. We can observe a strong similarity between the anomaly of the location parameters and

the anomaly of the empirical means discussed above, and likewise a similarity between the anomalies of scale parameters and
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Figure 1. The empirical mean (a, c, e) and empirical standard deviation (b, d, f) of the annual maxima of monthly precipitation of the CRU

TS4.04 reanalysis
:::::::

AWI-ESM
:::::
model

:
data set (a, b) and of the AWI-ESM model

::::
CRU

::::::
TS4.04

::::::::
reanalysis data set (c, d) and their difference

(reanalysis minus model data
:::::
minus

::::::::
reanalysis

:::
data; e, f). Values exceeding the scale limits are truncated. Units are mm/month.
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Figure 2. QQ-Plots comparing the empirical mean values (a) and the empirical standard deviations (b) and of the annually maximised

monthly precipitation of the CRU TS4.04 reanalysis data set and of the AWI-ESM model data set. Deviance of empirical mean and standard

deviation plotted against each other (c). Units are mm/month.
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Figure 3. P-values of Kolmogorov-Smirnov tests for the hypothesis that the data follow a GEV distribution with parameters estimated using

probability-weighted moments. Test results for the AWI-ESM climate model (a) and for the CRU TS4.04 reanalysis data (b).

empirical standard deviations. For the location parameter, we often observe high differences
::::
quite

::::
often, and the parameters

estimated for one data set seldom fall into the confidence interval derived from the other data set. The confidence intervals

of the estimated scale parameters are met more often
::::::
covered

:::::
more

::::
often

:::
by

:::
the

:::::::::
confidence

::::::::
intervals

::::::
derived

:::::
from

:::
the

:::::
other285

:::
data

:::
set, although there are also large regions with a high difference in the two estimates. The estimated shape parameters

often lie within
:::
are

:::::::
covered

::
by

:
the confidence intervals

:
at

:::::
many

::::::::
locations, but it needs to be noted that the estimator of the

shape parameter is known to be sensitive to small variations in the data. Therefore, the confidence intervals calculated using the

parametric bootstrap tend to be large and not particularly informative. In Fig. 6, the anomalies of the 95% upper quantiles of the

estimated GEV distributions are depicted, again with shading indicating areas lying in
:::::
shaded

:::::
areas

::::::::
indicating

::::::::
quantiles

:::::
lying290

:::::
within

:::
the

:
confidence levels determined using parametric bootstrap. Climate extremes are most strongly overestimated by the

model in the mountanious
:::::::::::
mountainous

::::::
regions

::
of

:
the Himalaya, the Andes and the Rocky Mountains. An underestimation of

climate extremes takes place most notably in the Amazon region and parts of eastern Asia. This corresponds well to the regions

of over- and underestimation of the empirical means and standard deviations and the implications of such misestimations

discussed above.295

We apply the hierarchical clustering algorithms using the two dissimilarity measures D0 and D0.25 as introduced in the

previous section. The numbers of clusters determined using the L-Method with selected cluster ranges (from 10 to a maximal

number of clusters m) and using the threshold method with selected threshold dissimilarities h is documented in Table 1.

300

The results of the L-Method strongly depend on the
:::::
seem

::
to

::::::
depend

:::::
rather

:::::::
strongly

::
on

:::
the

::::
data

:::
set

::::::::::
investigated

:::
and

:::
the value

of m and show a fairly inconsistent behaviour
::::::::
(compare

:::
for

:::::::
example

:::
the

::::::
results

:::
for

::::::::
m= 250

:::
and

::::::::
m= 300

:::
for

:::::::
measure

::::
D0),

making this method not very
:::
less

:
suitable for the comparison of two data sets. The threshold method consistently

::::::::
generally

predicts a similar, but in most cases slightly lower cluster number for observational data than for climate model data. In Fig. 7,

the clusters for both data sets are depicted using the threshold method for dissimilarity measure D0 with threshold h= 0.825305

as well as for dissimilarity measure D0.25 with threshold h= 0.65.
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Figure 4. The estimated GEV parameters location (a, b), scale (c, d) and shape (e, f) for
::::::::
AWI-ESM

:
climate model data (a, c, e) and for

reanalysis data (b, d, f). Values exceeding the scale limits are truncated. Units are mm/month.
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Figure 5. Difference between
::::::::
AWI-ESM

:
model and observational GEV parameter estimates: Location parameter (a), scale parameter (b)

and shape parameter (c). Values exceeding the scale limits are truncated. Units are mm/month.
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Figure 6. Difference of the 0.95-quantiles of the estimated GEV distribution for
::::::::
AWI-ESM model and observational data. Values exceeding

the scale limits are truncated. Units are mm/month.

Table 1. The number of clusters
::

for
::::::::
AWI-ESM

::::::
climate

::::
model

::::
and

::::::::::
observational

:::
data determined with the L-Method (above the middle line)

and the threshold method (below the middle line) for different ranges/thresholds and for dissimilarity measure D0 (left) and D0.25 (right).

D0 Model
::::::::
AWI-ESM

:
Obs.

:::::::::
Observations

:

m= 250 64 146

m= 300 148 148

m= 400 200 296

m= 500 234 291

h= 0.85 143 127

h= 0.825 188 177

h= 0.8 232 221

h= 0.775 280 254

D0.25 Model
::::::::
AWI-ESM

:
Obs.

:::::::::
Observations

:

m= 250 187 102

m= 300 165 142

m= 400 223 140

m= 500 232 265

h= 0.675 118 109

h= 0.65 165 167

h= 0.625 219 220

h= 0.6 281 265

::
To

:::::::::
exemplify

:::
the

::::::::::
differences

:::
and

::::::::::
similarities

::
in

:::
the

::::::::::
clusterings,

:::
we

:::::
have

:
a
::::::

closer
::::
look

::
at
:::::::
Europe

::
in

:::
the

:::::::::::::
D0-clusterings.

:::
In
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Figure 7.
::::::::
Clustering

::
of

::::::::
AWI-ESM

:::::
model

:::
data

::
(a,

::
b)

:::
and

::::::::::
observational

::::
data

::
(c,

::
d)

:::
with

:::
the

:::::::::
dissimilarity

:::::::
measure

:::
D0 :::

and
:::::::
threshold

::::::::
h= 0.825

::
(a,

::
c)

:::
and

:::
with

::::::::::
dissimilarity

::::::
measure

:::::
D0.25:::

and
:::::::
threshold

:::::::
h= 0.65

:::
(b,

::
d).

Clustering of model data (a, b) and observational data (c, d) with the dissimilarity measure D0 and threshold h= 0.825 (a, c) and with

dissimilarity measure D0.25 and threshold h= 0.65 (b, d).

::
the

::::::
model

::::
data,

:::::
there

::
is

:::
one

::::::
cluster

::::::::
covering

:::::::
western

:::::
Spain

:::
and

::::::::
Portugal,

::::
one

:::::
cluster

::::::::
covering

::::::
eastern

::::::
Spain,

:::
and

::::
one

::::::
cluster

::::::::
consisting

::
of

:::::::
southern

::::::
France

::::
and

::::
Italy.

:::::
Great

::::::
Britain

:::
and

::::::::
Denmark

:::
are

::
in

:::
the

::::
same

::::::
cluster,

:::
the

::::::::
northern

::::
parts

::
of

::::::
France

:::::::
together310

::::
with

:::::::
Belgium

:::
and

:::
the

::::::::::
Netherlands

::
in
:::::::
another

::::
one.

::::
One

:::::
cluster

::::::
covers

::::::::
Germany

:::
and

:::::::::::
Switzerland,

:::
and

::
in

:::::::
Eastern

::::::
Europe

:::
we

:::
see

::::::
several

::::::
clusters

::::::::
covering

:::::
larger

::::
areas

::
in
:::
the

:::::::::::
longitudinal

::::::::
direction,

::
for

::::::::
example

:::
one

::::::
cluster

::::
over

:::::::
Poland,

:::
one

::::
over

:::::::
Ukraine,

::::
and

:::
one

::::
over

::::::
Turkey

:::
and

:::::::
Greece.

:::
The

:::::::
clusters

::
in

:::
the

:::::::::::
observational

::::::
dataset

:::::
show

:
a
:::::::
slightly

:::::::
different

::::::
picture:

:::::
Here,

:::
the

::::::
whole

::::::
Iberian

::::::::
Peninsula

::
is

::
in

:::
one

::::::
cluster,

::::
and

:::
one

:::::
large

::::::
cluster

::::::
extends

::::
over

::::::::
northern

::::::
France,

::::::::
Belgium,

:::
the

::::::::::
Netherlands

::::
and

::::::::
Germany

::
to

:::
the

::::::
western

:::::
parts

::
of

::::::
Poland.

:::
On

:::
the

:::::
other

::::
hand,

:::::
Great

::::::
Britain

::::
and

::::::::
Denmark

:::
are

:::
now

::
in
::::
two

:::::::
separate

:::::::
clusters.

:::::::::
Regarding

::::
other

:::::
parts315

::
of

:::
the

::::::
world,

:
it
::
is
::::::
worth

:::::
noting

::::
that

::
in

:::
all

::::
four

:::::::::
clusterings

::
a

::::
large

::::::
cluster

::::::
cluster

::::::::
covering

:::
the

::::::
Sahara

:::
(or

::
at

::::
least

:::
all

::::
parts

:::
of

:
it
:::
for

:::::
which

:::::
there

:::
are

:::::::::::
observations

::::::::
available)

:::
can

:::
be

::::::::
identified.

::::::
There

:::
are

::
no

:::::::
clusters

::::::::
extending

::::
over

::::
two

::::::
regions

::::
that

:::
are

::::
very

::
far

:::::
apart

::::
from

::::
each

:::::
other,

:::
and

::
in

::::::
general

:::::::
clusters

::::
tend

::
to

:::::
cover

::::
more

::::
area

::
in

:::
the

::::::::::
longitudinal

:::::::
direction

::::
than

::
in

:::
the

:::::::::
latitudinal

:::
one.

:
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:::
For

:::
the

::::::::::
AWI-ESM,

:::
we

::::::::
calculated

:::
an

:::::::
AWQD

::
of

::::::
52.98,

::::::
making

::
it
:::
the

::::::::
third-best

:::
of

::
all

:::
27

:::::::
CMIP6

::::::
models

::::::::
analysed.

::
A
::::
full320

::::
table

::
of

:::
the

:::::::
models

:::
and

::::
their

::::::::
AWQDs

::
is

:::::::
provided

:::
in

:::
the

:::::::::
supplement

:::
to

:::
this

::::::
paper.

::
In

::::
Fig.

::
8,

:::
the

:::::::
AWQDs

:::
are

::::::
plotted

:::::::
against

::
the

::::::
model

:::::::::
resolution

:::
(the

:::::
total

::::::
number

::
of
::::::

model
::::
grid

:::::
points

:::
in

::::
units

::
of

:::::
104).

::
A

:::::
linear

:::::::::
regression

::::
(red

::::
line;

::::::::
intercept:

:::::::
73.310,

:::::
slope:

:::::::
−2.368)

::::::::
indicates

:::
that

:::::::
models

::::
with

:
a
::::::
higher

::::::::
resolution

::::
have

::
a
::::::::
tendency

::
to

:::::::
describe

:::::::
extremal

:::::::::::
precipitation

:::::
better.

::
A
::::
test

::
on

:::
the

::::::::::
significance

::
of

::::
the

::::
slope

:::::::::
parameter

::::
(null

:::::::::
hypothesis

:::
of

:::
the

:::::
slope

::::::::
parameter

:::::
being

:::::
equal

::
to

:::::
zero)

::::
was

:::::::::
significant

::
at

:::
the

:::
5%

::::
level

::::
with

::
a
::::::
p-value

:::
of

::::::
0.0357.

::::
The

::::
best

::::::
model

::
in

:::::
terms

::
of

:::
the

:::::::
AWQD

::
is

:::
the

:::::::::::::
high-resolution

::::::
model

::::::::::::::::
EC-Earth3-Veg-LR325

::::::::::::::::::::::::
(EC-Earth Consortium, 2020)

::::
with

:
a
:::::
value

::
of

::::::
44.71.

:::
We

:::
will

::::
now

::::::
discuss

::::::
results

:::
for

:::
this

:::::
model

::
in
:::::
more

:::::
detail,

:::::
while

::::::
results

:::
for

::
the

:::::
other

:::::::
models

:::
can

::
be

::::::
found

::
in

:::
the

::::::::::
supplement.

:::
For

::::
the

::::::::::::::::
EC-Earth3-Veg-LR,

:::
the

::::::::
estimated

:::::
GEV

::::::::::
parameters

:::
and

:::::::::
anomalies

::
are

::::::
shown

::
in

::::
Fig.

::
9.

::::
The

:::::::::
differences

:::
of

:::
the

::::
95%

::::::::
quantiles

:::
are

:::::::
depicted

::
in

::::
Fig.

:::
10.

::::
The

:::::::
numbers

:::
of

::::::
clusters

::::::::::
determined

:::::
using

::
the

:::::::::
L-Method

::::
and

:::
the

::::::::
threshold

::::::
method

::::
are

:::::
found

::
in

:::::
Table

::
2

:::
and

::::::
images

:::
of

:::::::::
clusterings

:::
are

::::::
shown

::
in

::::
Fig.

:::
11.

::::::::
QQ-Plots

::::
and

::::
plots

::
of

::::::::
KS-Tests

:::
are

::::::
similar

::
to
:::
the

::::::::::::
corresponding

:::::
plots

:::
for

:::
the

:::::::::
AWI-ESM

::::
and

:::
can

::
be

::::::
found

::
in

:::
the

::::::::::
supplement

::
to

:::
this

::::::
paper.330

:::
The

::::::::::::::::
EC-Earth3-Veg-LR

:::::
model

:::::::
predicts

:::::::
climate

:::::::
extremes

:::::
better

::::
than

:::
the

:::::::::
AWI-ESM

::
in

:::
the

:::::::::
Himalayas

:::
and

::
in

:::
the

:::::::
Amazon

::::::
region

::::::::
(compare

:::
Fig.

::
6

::
to

:::
Fig.

::::
10),

:::::
while

:
it
:::::::::::
overestimates

:::::::::::
precipitation

::::::::
extremes

::::
more

:::::::
strongly

::::
than

:::
the

:::::::::
AWI-ESM

::
at

:::
the

::::::
western

:::::
coast

::
of

:::::
South

::::::::
America.

:::
The

:::::::
number

::
of

::::::
clusters

::
is
::
in

:::::::
general

:::::
higher

::::
than

:::
for

:::
the

:::::::::
AWI-ESM,

::
in

::::
part

:::::::
probably

::::
due

::
to

:::
the

:::::
higher

::::::
model

::::::::
resolution

:::::::::
(320× 160

:::::::::
compared

::
to

:::::::::
192× 96).

::::
Note

::::
that

:::
this

::::::::
increased

:::::::::
resolution

::
is

:::
also

:::
the

::::::
reason

:::
for

:::
the

:::::::
different

::::::
values

:::
for

::
the

::::::
cluster

:::::::
numbers

:::
of

::
the

:::::::::
reanalysis

::::
data

:
in
::::::
Tables

:
1
::::
and

::
2,

::::::
because

:::::::::
reanalysis

::::
data

::::
were

::
in

::::
each

::::
case

::::::::::
interpolated

::
to

::
the

:::::::
climate335

:::::
model

:::::::::
resolution.

:::::
When

:::::::::
comparing

:::::
again

:::
the

:::::::
clusters

::::
over

::::::
Europe

:::::
using

:::
the

:::
D0::::::::::

dissimilarity
::::::::

measure,
::
it

:::
can

:::
be

:::::::
observed

::::
that

::
in

:::
the

:::::::
western

:::
part

:::
of

:::::::
Europe,

:::::
model

::::
and

:::::::::::
observational

:::::::
clusters

:::
are

::
in

:::::::
general

::::::
similar,

:::::
with

::::
only

:::::
slight

:::::::::
differences

:::::
over

:::
the

::::::
Iberian

::::::::
Peninsula

:::
and

:::::
with

::
an

::::
area

:::::::
covering

::::::::
southern

::::::
France

:::
and

::::::::
northern

::::
Italy

:::
that

::
is
::
in

::::
one

::::::
cluster

::
in

:::
the

:::::
model

::::
data

::::
and

::
in

:::
two

:::::::
different

:::::::
clusters

::
in

:::
the

:::::::::::
observational

::::
data.

:::
In

::::::
Eastern

::::::
Europe

::::
and

::::::::::
Scandinavia,

:::
the

::::::::::
differences

:::::::
between

:::
the

:::::::::
clusterings

:::
are

:::::
larger

:::
and

::
it

::
is

:::::
more

:::::::
difficult

::
to

:::
see

::::::::::::::
correspondences.

::::
The

:::::::
general

:::::::
remarks

:::
that

:::::
have

::::
been

:::::
made

:::::
about

:::
the

::::::::::
clusterings

:::::
while340

::::::::
discussing

:::
the

:::::::::
AWI-ESM

::::
data

::::
also

:::::
apply

::::
here.

:
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Figure 8.
::
The

:::::::
Average

:::::::
Weighted

:::::::
Quantile

::::::::
Difference

::::::::
(AWQD)

::
of

::
the

:::
27

::::::
CMIP6

:::::
models

:::::::::
considered

:::::
plotted

::::::
against

:::
the

:::::
model

::::::::
resolution

::::::
(number

::
of

:::::
model

:::
grid

:::::
points

::
in

::::
units

::
of

::::
104).

::
In

:::
red:

:::::
Linear

::::::::
regression

:::
line

::::::::
(intercept

::::::
73.310,

::::
slope

:::::::
−2.368).

:

Table 2.
:::
The

::::::
number

::
of

::::::
clusters

:::
for

::::::::::::::
EC-Earth3-Veg-LR

::::::
climate

:::::
model

:::
and

:::::::::::
observational

:::
data

:::::::::
determined

::::
with

:::
the

:::::::
L-Method

::::::
(above

:::
the

:::::
middle

::::
line)

:::
and

:::
the

:::::::
threshold

::::::
method

::::::
(below

::
the

::::::
middle

::::
line)

:::
for

::::::
different

:::::::::::::
ranges/thresholds

::::
and

::
for

::::::::::
dissimilarity

::::::
measure

:::
D0:::::

(left)
:::
and

::::
D0.25::::::

(right).

:::
D0 ::::::::::::::

EC-Earth3-Veg-LR
: ::::::::::

Observations

:::::::
m= 250

::
76

: ::
89

:::::::
m= 300

:::
141

::
90

:::::::
m= 400

:::
181

::
94

:::::::
m= 500

:::
184

::
272

:

:::::::
h= 0.85

:::
173

::
145

:

::::::::
h= 0.825

:::
224

::
186

:

::::::
h= 0.8

:::
299

::
240

:

::::::::
h= 0.775

:::
366

::
272

:

:::::
D0.25 ::::::::::::::

EC-Earth3-Veg-LR
: ::::::::::

Observations

:::::::
m= 250

:::
113

::
67

:::::::
m= 300

:::
117

::
67

:::::::
m= 400

:::
129

::
154

:

:::::::
m= 500

:::
146

::
282

:

::::::::
h= 0.675

:::
131

::
116

:

:::::::
h= 0.65

:::
203

::
166

:

::::::::
h= 0.625

:::
276

::
225

:

::::::
h= 0.6

:::
358

::
279

:

5 Conclusions

We presented approaches and methods to validate climate model outputs by comparing their extremal behaviour to the ex-

tremal behaviour of observational data. To illustrate these methods, we compared precipitation extremes between the AWI345

Earth System Model
::::::::
AWI-ESM

:
and the CRU TS4.04 data set of reanalysed observations. After an analysis of empirical

statistics
:::::::
statistical

::::::::::
parameters, we fitted the data to GEV distributions and analyse

:::::::
analysed

:
the differences in estimated pa-
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Figure 9.
::::::::::::::
EC-Earth3-Veg-LR

::::::
climate

:::::
model

::::::::
estimated

::::
GEV

:::::::::
parameters

:::
(a,

::
c,

::
e)

:::
and

::::
their

:::::::
anomaly

::::::::
compared

::
to
:::

the
::::::::

reanalysis
:::::

GEV

::::::::
parameters

::
(b,

::
d,
::
f).
::::

The
::::
GEV

:::::::::
parameters

::
are

:::::::
location

::
(a,

:::
b),

::::
scale

::
(c,

::
d)

:::
and

:::::
shape

::
(e,

:::
f).

:::::
Values

::::::::
exceeding

::
the

:::::
scale

::::
limits

:::
are

::::::::
truncated.

::::
Units

:::
are mm/month

:
.
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Figure 10.
::::::::
Difference

::
of

:::
the

::::::::::
0.95-quantiles

::
of
:::
the

:::::::
estimated

:::::
GEV

::::::::
distribution

:::
for

::::::::::::::
EC-Earth3-Veg-LR

:::::
model

:::
and

:::::::::::
observational

:::
data.

::::::
Values

:::::::
exceeding

:::
the

::::
scale

:::::
limits

::
are

::::::::
truncated.

::::
Units

:::
are mm/month

:
.

Figure 11.
::::::::
Clustering

::
of

::::::::::::::
EC-Earth3-Veg-LR

:::::
model

:::
data

:::
(a,

::
b)

:::
and

::::::::::
observational

:::
data

:::
(c,

::
d)

:::
with

:::
the

:::::::::
dissimilarity

:::::::
measure

:::
D0 :::

and
:::::::
threshold

::::::::
h= 0.825

::
(a,

::
c)

:::
and

:::
with

::::::::::
dissimilarity

::::::
measure

:::::
D0.25:::

and
:::::::
threshold

:::::::
h= 0.65

:::
(b,

::
d).
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rameters. Then we continued with an analysis of spatial concurrence of extremes based on a hierarchical clustering approach

and a dissimilarity measure derived from bivariate copula theory. While the empirical statistics are similar for many parts of

the world, we can also identify larger regions of a continuous over- and underestimation of empirical means and standard350

deviations by the climate model. These misestimations often go hand in hand with a similar misestimation of the standard

deviation (heteroscedasticity), although for the standard deviation a stronger tendency for underestimation can be observed.

Misestimations of mean and standard deviations translate into a misestimation of extreme values, and this can be confirmed

by the comparison of the fitted GEV distribution parameters and the 0.95-quantiles derived from them. The shape parameter,

indicative of the heavy-tailedness of the distribution, is in general similar between model and observational data, but because355

of the difficulties in reliably estimating this parameter from data (that are in turn a result of the rareness of extreme events in

the data) these results have to be taken with caution.

The cluster analysis based on spatial dependencies and the occurence
:::::::::
occurrence of concurrent extremes shows that there is

generally a good agreement between identified clusters. Also the number of clusters is in general similar, with a slight tendency360

for a higher cluster number in the model data. Since it is mostly large-scale weather events and teleconnections contributing to

concurrent climate extremes, this indicates
:::
may

:::::::
indicate

:
that the basic physical behaviour underlying them is in general well

captured by the AWI Earth System Model. Further analysis
:::::::::
AWI-ESM.

:::::::
Further

:::::::
analyses

:
can be conducted to investigate in

detail the reasons for different clusterings over selected regions.

365

In
:::::::
addition

::
to

:::
the

:::::::::
AWI-ESM,

::::::
several

:::::
other

::::::
CMIP6

::::::
models

:::
are

::::
also

::::::::
analysed.

::
A

:::::::::
comparison

::
of

:::
the

::::::
model

::::::::
accuracy,

::::::::
measured

::::
using

:::
an

:::::::
averaged

:::::::
quantile

:::::::::
difference,

::::::
shows

:
a
::::::::
tendency

:::
for

::::::::::::::::
higher-dimensional

::::::
models

::
to

::::::
capture

::::::::
extremal

::::::::
behaviour

::::::
better.

::
In this work, we use a clustering algorithm based on bivariate copulae

:::::::
extremal

:::::::::
coefficients

:::
is

::::
used

:
to perform a spatial

analysis of extreme values. Another possible approach is the direct application of multivariate copulae. While parametric370

copulae families are applicable only to a very limited extent in high dimensions, the use of a non-parametric estimator based

on Bernstein polynomials is a promising idea. This technique enabled Marcon et al. (2014) to estimate the common distribution

of up to seven variables in their analysis of French precipitation data. Copulae based on Bernstein polynomials are also used

in multivariate extreme value analysis with a focus on multiple testing (Neumann et al., 2019). In global climate models, the

number of dimensions is much higher than seven and the approach by Marcon et al. (2014) is not directly transferable. Based375

on another approach, the multivariate spatial distribution of precipitation has also been described
::::::::
Extremal

::::::::::
coefficients

:::
are

:::
also

::::
used

:::
to

:::::
model

::::::::::
multivariate

::::::
spatial

:::::::::::
distributions

::
of

:::::::
extremal

:::::::::::
precipitation

:
using max-stable processes, first

:
.
::::
This

:::::::
method

:::
was

::::
first

:::::::::
developed by Smith (1990) and Schlather (2002) and then extended by Opitz (2013) and Ribatet et al. (2015). This

procedure ,
::::
and

::
it is successfully used to model precipitation over Switzerland (Ribatet, 2017). The models based on max-

stable processes assume spatial stationary
:::::::::
stationarity

:
(i.e. the spatial dependence between two points depends only on their380

distance). This assumption is justifiable for small regions like Switzerland, but it makes the models in their present form

unsuitable
::
not

:::::
well

::::::
suitable

:
for global data.

:::::::::::::::::::::::::::
Castro-Camilo and Huser (2020)

::::::
created

:
a
::::::
model

:::
for

:::
the

::::::
spatial

::::::::::
distributions

:::
of
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::::::
extreme

::::
tail

:::::::::::
dependencies

:::::
based

:::
on

:::::
factor

:::::::
copulae,

::::::::
allowing

:::::
them

::
to

:::
use

:::
the

:::::::
relaxed

:::::::::
assumption

:::
of

::::
local

::::::
spatial

::::::::::
stationarity

:::
and

::::::::
therefore

::
to

:::::
apply

:::::
their

:::::
model

:::
to

:::
the

:::::
whole

::::::::::
contiguous

::::::
United

::::::
States.

:::::
From

:::
the

::::
area

:::
of

:::::::::
parametric

::::::::
copulae,

::::
also

::::
vine

::::::
copulae

:::::
have

::::
been

:::::::::
employed

::
to

:::::
model

:::::::::::
precipitation

::::
data

:::
by

::::::::::::::::::::
Vernieuwe et al. (2015)

:::
and

::
by

::::::::::::::::::::::::
Nazeri Tahroudi et al. (2021)

:
.
::
A385

:::::
further

:::::::::
possibility

::
is
:::
the

::::::::::
application

::
of

:::::::::::::
non-parametric

::::::::::
multivariate

:::::::
copulae.

::::::::::::::::::
Marcon et al. (2014)

:::
used

:::
an

::::::::
estimator

:::::
based

:::
on

::::::::
Bernstein

::::::::::
polynomials

::
to

:::::
model

:::
the

::::::::
common

::::::::::
distribution

::
of

::
up

::
to

:::::
seven

::::::::
variables

::
in

::::
their

:::::::
analysis

::
of

::::::
French

::::::::::
precipitation

:::::
data.

:::::::
Copulae

:::::
based

::
on

::::::::
Bernstein

:::::::::::
polynomials

:::
are

::::
also

::::
used

::
in

::::::::::
multivariate

:::::::
extreme

:::::
value

:::::::
analysis

::::
with

:
a
:::::
focus

:::
on

:::::::
multiple

::::::
testing

::::::::::::::::::
(Neumann et al., 2019)

:
.
::
In

::::::
global

:::::::
climate

:::::::
models,

:::
the

::::::
number

:::
of

::::::::::
dimensions

::
is

:::::
much

:::::
higher

:::::
than

:::::
seven

:::
and

:::
the

:::::::
method

:::
by

:::::::::::::::::
Marcon et al. (2014)

:
is
:::
not

:::::::
directly

::::::::::
transferable.390

The clustering approach presented here focuses on the comparison of extremal events at different locations, thereby sup-

plementing the analyses of climate extremes that are often focused on extremes at a specific location (Zhang et al., 2011). An

application to daily data that has been annually or seasonally maximised , is also possible, but beyond the scope of this pa-

per. Besides, the method can be used for the comparison of ensembles of models (see Sillmann et al., 2013; Kim et al., 2020)395

::
In

:::::
order

::
to

:::::::::
investigate

:::::::
extreme

:::::::::::
precipitation

::::::
within

:::
the

::::
area

:::::::
covered

:::
by

::::
one

::::::
cluster

::
in

:::::
more

:::::
detail,

::::
the

:::::::
spatially

:::::::::
stationary

:::::::::
max-stable

::::::
models

::
or

:::
the

::::::::::::
copulae-based

:::::::
models

::::::::
mentioned

::::::
above

:::::
could

::
be

:::::::::
employed.

:::::
Most

::
of

:::
the

::::::
clusters

:::::
cover

::::
only

::
a
:::::
small

::::::
region,

:::::::
therefore

::::::
spatial

:::::::::
stationarity

:::::
might

:::
be

:
a
:::::::::
reasonable

::::::::::
assumption,

::::::::
although

:
it
::
is

:::
not

:
a
:::::
direct

:::::::::::
consequence

::
of

:::
the

::::
data

:::::
being

::
in

:::
the

::::
same

::::::
cluster. In addition to model validation, the definition of regions with concurrent extremes may turn out useful

for assessments of risks in a
::
an

:
economical context and for insurance. It needs to be noted, though, that extremes in climate400

models and in gridded reanalysis data sets tend to be damped because of the spatial averaging performed during the creation

of the data (Bador et al., 2020b). Another possible field of application is palaeoclimatology. Spatial
:::
The

::::::
spatial

:
distribution

of precipitation extremes is known to have changed markedly in the past (Lohmann et al., 2020; Ionita et al., 2021b), and

clustering based on climate models could be used to generalise the sparse existing
::::::::::::
palaeoclimatic data to larger regions.

Code and data availability. The CRU TS4.04 reanalysis data are available at https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9.405

The AWI-ESM climate model data are available under https://www.doi.org/10.22033/ESGF/CMIP6.9328 and the EC-Earth3-Veg-LR model

data can be found under https://doi.org/10.22033/ESGF/CMIP6.4702. The software code (in R) used for the analyses is provided in the

supplementary material to this paper.
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