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Abstract. Coupled general circulation models are of paramount importance to assess quantitatively the magnitude of future
climate change. Usual methods for validating climate models include the evaluation of mean values and covariances, but
less attention is directed to the evaluation of extremal behaviour. This is a problem because many severe consequences of
climate changes are due to climate extremes. We present a method for model validation in terms of extreme values based on
classical extreme value theory. We further discuss a clustering algorithm to detect spacial-spatial dependencies and tendencies

for concurrent extremes. To illustrate these methods, we analyse precipitation extremes of the AWI-ESM global climate model

compared-as well as of other models that take part in the Coupled Model Intercomparison Project CMIP6 and compare them
to the reanalysis data set CRU TS4.04. The metheds-clustering algorithm presented here can also-be-used-for-the-comparison

of-medel-ensemblesbe used to determine regions of the climate system that are then subjected to a further in-depth analysis,
and there may be-further-also be applications in palaeoclimatology.

1 Introduction

Coupled general circulation models are frequently utilised to assess quantitatively the magnitude of future climate change.
Validating these models by simulating different climate states is essential for understanding the sensitivity of the climate sys-
tem to both natural and anthropogenic forcing. Usual methods for validating climate models include the evaluation of mean
values and covariances and the comparison of empirical cumulative distribution functions. These analyses can also be con-
ducted over seasonal and annual averages (climatologies) or along latitudinal/longitudinal transects (Tapiador et al., 2012).
The comparison of climate indices is also common in model validation (Sillmann et al., 2013; Zhang et al., 2011). While
climate models are able to reproduce many climate phenomena across the globe, their reliability regarding extremes requires
additional evaluation. Changes in the intensity and frequency of extremes have drawn much attention during recent decades
(IPCC, 2012; Rahmstorf and Coumou, 2011; Horton et al., 2016), mainly due to their large impacts on natural environment,
economy and human health (Ciais et al., 2005; Kovats and Kristie, 2006). For instance, the summer heat wave over Central
Europe in 2003 resulted in extensive forest fires, crop yield reductions and fatalities (de Bono et al., 2004; Vandentorren et al.,
2004). During the 20th century, the frequency of high-temperature extremes has increased in Europe (Dong et al., 2017), even
after the apparent levelling off of global mean temperatures after 2000 (Trenberth and Fasullo, 2013), and for precipitation

extremes, a similar development has been observed (Fischer and Knutti, 2016). Due to the inherent nature of extreme events,
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their evolution differs from that of the mean and the variance (Schir et al., 2004; IPCC, 2012) and also highly-depends on the
strength of the events themselves (Myhre et al., 2019).

In particular, the concurrent occurrence of climate extremes at different locations may have especially large impacts on agri-
culture (Toreti et al., 2019), human societies and economies (Jongman et al., 2014) and on the climate system itself (Zscheis-
chler et al., 2014). Large-scale climate extremes can furthermore cause serious problems for insurance and reinsurance compa-
nies (Mills, 2005). For these reasons, an increasing amount of research is being conducted on multivariate analysis of extremes
with focus on their concurrent appearance (Shaby and Reich, 2012; Dombry et al., 2018; Kornhuber et al., 2020; Ionita et al.,

2021a) and new tools have been created for the analysis of extremes in climate models (Weigel et al., 2021).

Fhe-A particular challenge for the analysis of extreme events is often-complieated-by-the fact that extreme events are typi-
cally rare, and that it is therefore difficult to build informative statistics based solely on the extreme events themselves. As-a
remedysit-is-common-to-apphy-the Two common approaches are used to overcome this issue: peaks-over-threshold and block-
data exceeding this threshold can then be approximated by a generalised Pareto distribution if some additional assumptions are
fulfilled (see McNeil et al. (2015). Chapter 7.2 for more details). The peaks-over-threshold approach is frequently applied in

climatology and hydrology (Acero et al., 2011; Fowler and Kilsby, 2003; Kiriliouk et al., 2019). The block-maxima approach
on the other hand, follows the idea to split the time axis into blocks of a sufficiently large size and investigate the block-wise

maxima of the data. Under suitable conditions, the distribution of these block-wise maxima can be-deseribed-with-the-for large
sample sizes be approximated by a generalised extreme value (GEV) distribution.

In this work, we will evaluate the performance of the fully coupled AWI-Earth-Alfred Wegener Institute-Earth System Model
AWI-ESM1.1LR (Shi et al., 2020; Lohmann et al., 2020; Ackermann et al., 2020) in terms of its accuracy regarding variabil-
ity and extremes of precipitation, putting special focus on spatially concurrent precipitation extremes. Our main questions are
whether the model is able to eerreetly-accurately reproduce extreme events in different regions and #-whether spatial depen-
dencies and concurrent extremal events are correethy-identifiedmodelled adequately. We compare model data from a historical
run of the AWI-ESM to the global precipitation reanalysis data set CRU TS4.04 (Harris et al., 2020). We start with inves-
tigating variability and extremes locally using empirical statisties-statistical parameters and by fitting a GEV distribution to
annual precipitation maxima. Then, following an approach by Bernard et al. (2013), we use a clustering algorithm to group
spatio-temporal climate data into different spatial regions based on their similarity in terms of extremal behaviour and the
concurrency of their extremes. This clustering is based on the theory of max-stable copulae, which has been used extensively
in prior work to investigate spatial dependence of extreme precipitation events, for example in Bargaoui and Bérdossy (2015);
Zhang et al. (2013); Qian et al. (2018). In those papers, an analysis of bivariate variables-distributions is performed. In our
work, we first construct for each pair of locations a measure for their stmitary-similarity in terms of extremes. This measure

is then used as a basis for the clustering algorithm to group the data into spatial regions of comparable extremal behaviour.
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The resulting clusters for model and observational data are compared and used to analyse the ability of the climate model to

eotreetly-reproduce spatial dependencies of precipitation extremes.

Applying-etustering-atgorithms-to-elimate-data-is-In this article, our main focus is on the AWI-ESM and we present our
methods using data from this model. We also present a measure for the model accuracy in regard to extremal precipitation,
and apply it to a set of different CMIP6 models. In the main text, results will be discussed for the AWI-ESM and for the
model identified as having the best model accuracy. In the supplement to this paper, the results for the other CMIP6 models
investigated are presented.

Model validation in terms of precipitation extremes is already an active research topic. Tabari et al. (2016) investigate the

performance of global and regional climate models using the peaks-over-threshold approach. An evaluation of regional and
global climate models using extreme precipitation indices is_conducted by Bador et al. (2020a), revealing a tendency for
stronger extremes in regional models. A similar result was obtained by Mahajan et al. (2015) by comparing climate model and
observational precipitation data over the United States using GEV distributions. Timmermans et al. (2019) conduct pairwise
comparisons of the precipitation extremes of numerous gridded observation-based datasets and find considerable differences

between the datasets especially in mountainous regions. Precipitation extremes over India are investigated by Mishra et al. (2014

using GEV distributions and comparisons of indices with a focus on changes over time.

It is also not a new approach to apply clustering algorithms to climate data. Among others, it has been used to define climate
zones in the United States (Fovell and Fovell, 1993) and globally (Zscheischler et al., 2012), and to find regions with similar
trends in their climatic change over Europe (Carvalho et al., 2016). Those analyses focus on mean values and on their temporal

differences, respectively, while we apply clustering specifically to uncover connections regarding climate extremes.

The article is structured as follows: After introducing the data sets in Sect. 2, we present the methods used in Sect. 3. The

results from their application to the data are presented in Sect. 4. A section on conclusions and discussions finalises the article.

2 Data

The observational data are reanalysed monthly precipitation data in mm over land (excluding Antarctica) from the CRU TS4.04
data set (Harris et al., 2020; University of East Anglia Climatic Research Unit et al., 2020) with data ranging from 1901 to
2019. We restrict the time frame to the years 1930 to 2014 in order to have a sufficiently large area with non-missing data
and to be consistent with the climate model data. The grid size is 0.5° x 0.5°, the data have been obtained by interpolating
observations from more than 4.000 weather stations using angular distance weighting.

At some locations and time points, no data from nearby weather stations was-had been available to use for interpolation. In

these cases, the creators of the CRU TS4.04 data set used a value from a climatology instead. These climatology values are
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uninformative-not very informative in terms of extremes and too many of them would distort the analyses, therefore all grid
points with more than 5% climatology values and additionally all grid points with at least +2-twelve consecutive months of
climatology values are excluded from our analysis. This results in the exclusions of larger regions in northern and central
Africa, in Indonesia, in central Asia and in the polar regions. In the figures belowshowing geographical data in this paper, those

regions are coloured in grey.

The climate model used is the coupled model AWI-ESM1.1LR. It is based on the AWI Earth System Model (AWI-ESM1),
which consists of the AWI Climate Model (Sidorenko et al., 2015; Rackow et al., 2018), but with interactive vegetation. The
model comprises the atmosphere model ECHAMS6 (Stevens et al., 2013), which is run with the T63L47 setup s—(that is, a
horizontal resolution of 1.85° x 1.85° —The-and 47 vertical layers) and the ocean-sea ice model FESOM1.4 (Wang et al.,
2014), which employs an unstructured grid, allowing for varying resolutions from 20km around Greenland and in the North
Atlantic to around 150km in the open ocean (CORE2 mesh). The land surface processes are computed by the land surface
model JSBACH2.11 (Reick et al., 2013). The model considers the surface runoff toward the coasts, deploying a hydrological
discharge model that also includes freshwater fluxes by snowmelt (Hagemann and Diimenil, 1997).

AWI-ESM1 has been extensively used and described in the context of palacoclimate changes as well as of changes of the
recent and future climate (Shi et al., 2020; Lohmann et al., 2020; Ackermann et al., 2020; Niu et al., 2021). The historical run
is documented in Danek et al. (2020) and has been directly used in Ackermann et al. (2020) and Keeble et al. (2021). The
model takes furthermore part in CMIP6/PMIP4 activities (Brierley et al., 2020; Brown et al., 2020; Otto-Bliesner et al., 2021;
Kageyama et al., 2021a, b).

The Coupled Model Intercomparison Project CMIP, coordinated by the Working Group on Coupled Modelling (WGCM)
of the World Climate Research Programme (WCRP), has the goal to support and facilitate the analysis of climate model data
by providing a set of common standards regarding the formatting and availability of model output. Additionally, in order
to_enhance model comparability, all models participating in CMIP are required to run a set of standardised experimental

setups (Diagnostic, Evaluation and Characterization of Klima experiments; DECK experiments) as well as a simulation of

the historical climate from 1850 until 2014 (the historical simulations we also use in our analysis). CMIP is divided into

different phases reflecting the advancements of climate modelling, the current phase CMIP6 started in 2016. More information
on CMIP can be found in Eyring et al. (2016). The model outputs are made available by the Earth System Grid Federation
ESGF; Cinquini et al., 2014).

In our analysis, we restrict the time frame is—restrieted-of the model data to the years 1930 to 2014, as in the observational
data. We investigate monthly precipitation (sum of convective precipitation and large-scale precipitation) in mm/month. We

use bilinear interpolation to scale the reanalysis data to the +°-<1+>-grid of the reanalysis-data-set-atmospheric component of

the climate model and take into account only those interpolated grid points that correspond to locations with given observed



data, excluding the oceans and the regions with incomplete data mentioned above.

130 3 Methods

3.1 Univariate Analysis

In this subsection, the time series of all-data-points-are-each spatial location (henceforth referred to as grid point) is investigated

separately, and all operations and analyses described are therefore conducted for each grid point. Since the focus of this work
is not on evaluating the effects of long-time trends, we apply a seasonal-trend decomposition using Loess (Cleveland et al.,
135 1990) on the data and subtract the deviance of the trend from its mean value from it, resulting in data that-ecan-be-assumed
time-stationaryfor which we assume temporal stationarity. Then, as a first comparison between the data sets, we investigate

differences in the empirical mean and empirical standard deviation of the annually maximised precipitation data.

The theoretical foundation for the application of the GEV distribution is as follows: For a random variable X with an
140 unknown probability distribution, we leek-at-investigate the distribution of the maximum of i.i.d. copies Xi,...,X,, of
n(X;). We assume that for suitable normalising sequences a,, > 0 and b,,, these-bleckwise-maxima
eonverge-Y (") converges in distribution if the-bloek-size-n tends to infinity:

it: V(") := max;_;

,,,,,

Y™ —b,

N
Gnp

In this case, as shown by Fréchet (1927), Fisher and Tippett (1928) and Gnedenko (1943), the distribution of Y (™) can be

145 approximated by a GEV distribution for a large (fixed) value of n. This distribution depends on the three parameters location

ey

(), scale (¢ > 0) and shape () and its cumulative distribution function is given by

exp(—exp(— =~ ~v=0
FH:”/Y(:I;): h ( * ( )) 1 (2)
exp(—max(0,1+~vy=£)"7) ~#£0.

o

The GEV distribution has widely been used as a model for blockwise maximised data ;-espeetally-for-the-yearly-maximum-of

e St e OO Db e L ni-et-al20+Hferexample)(for example Coles et al., 200
150 . Following this approach, we group our monthly precipitation data from observations and climate model into one-year block

maxima and fit a GEV distribution to the blockwise maxima at each grid point. When selecting a block size, a bias-variance
tradeoff has to be taken into account: For a low block size, the resultungresulting parameter estimates tend to be biased be-
cause the convergence to the GEV distribution holds only asymptotically. A high block size, on the other hand, will lead to
a limited amount of block-wise maxima that can be analysed and therefore to a higher variance in the estimates (see McNeil
155 etal. (2015), Chapter 7). In our case, we have a relatively small block size of 12 (months per year) and a number of block-wise

maxima of 90 (years of investigation).
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To estimate the distribution parameters, we use the method of Prebability-Weighted Moments-probability-weighted moments
developed by Hosking (1985) as implemented in the R package "EnvStats" of Millard (2013). As shown by Hosking et al.

(1985), this method yields estimators with a relatively low variance and bias compared to the maximum likelihood ap-

proach, especially for small and medium-size samples. We test the goodness of fit using a one-sided Kolmogorov-Smirnov-test

at signifieane-significance level 5%. The null hypothesis of the test is that the annually maximised data follow the GEV
distribution having the probability-weighted moments estimates as distribution parameters.

For-each-parameter-we-also-compute-We also use the parametric bootstrap method with 2500 resamples to compute 95%
confidence intervals for each GEV_parameter and for the 95% quantiles of the distributions. Confidence intervals for the
GEV parameters based on asymptotic normality also exist for the probability-weighted moments estimators, but, as shown
by Hosking et al. (1985), they have a high bias and variance if the shape parameter is far away from zero. In our data, for
several time series such a value is estimated for the shape parameter, and comparisons between the confidence intervals
based on bootstrap and those based on asymptotic normality also confirmed large differences in these cases. For the sake
of methodological consistency and because we also use the bootstrap for the confidence intervals of the 95% quantiles, we
calculated the GEV parameter confidence intervals using the-parametric-bootstrap-method-with-2500-resamples—bootstrap for
all time series. Since this method is quite time-consuming, it could also be advocated to choose the method of confidence
interval calculation based on the estimated shape parameter value.

To compare the performance of different CMIP6 models, we introduce as a measure for the accuracy of the extremal
precipitation an Average Weighted Quantile Difference (AWQD). For this measure, the absolute differences between model
and observational 95% GEV quantiles, weighted with the cosine of the latitude, are averaged. The weighting accounts for the
fact that the grid cells do not have an equal size for all grid points, and the average is taken because of the different model

resolutions. For G the set of grid points and estimated quantiles ¢ o and o 95 obs(g) for g € G, we therefore define
1 . .
AWQD := [ >~ cos(lat(g)) - [do.os.moa(g) — do.05.0bs(9)]- 3)
geg

3.2 Comparison of spatial distributions

To compare the spatial distributions of climate extremes, we introduce a hierarchical clustering algorithm (using average link-

ing) to determine regions with similar extremal behaviour. This approach is similar to the idea proposed in Bernard et al.




195

200

205

210

215

Assume that two real-valued random variables (X,Y") have a copula function C': [0,1] x [0, 1] — [0, 1], that is, their joint distri-
bution function can be written in terms of the copula and the marginal distribution functions as Fx y (x,y) = C(Fx (z), Fy (y))
for all z,y € R. Then, if (X,Y") is the weak limit of block-wise maxima of a sequence of i.i.d. two-dimensional variables when
the bloeksize-block size goes to infinity (a similar condition as in Sect. 3.1, extended to two-dimensional random variables), it

follows immediately-that X and Y are (jointly) GEV distributed. As-shewnforexample-in-MeNetl-et-al(2015); Theorem-7-44

and-7-45-1t follows as well that the copula must Lyl L fulfil C(u' v') = C*(u,v

for all u,v € [0,1] and £ > 0 in-thisease;(see McNeil et al. (2015), Theorem 7.44 and 7. 45) Such a copula is called max-stable

and it can be rewsitten-as-written as_

Inz Inu
Cau,yv) = exp ((nzu+Iny) Axy ) 4
(zu,yv) = exp  (Inzu +Inyv) Ax y Inz+ Iny lnwtlno “)
using a function A-{6;H—124H-Ax y :[0,1] = [12.1] called the Pickands dependence function (Pickands, 1981). The
function A-Ay y is convex and satisfies max{w+—w)<Afw)<tmax(w,1 —w) < Axy(w) <1 for all w € [0,1]. The

extremal index-is-coefficient is now defined as two times its value at the point 0.5:

Oayxy =2-A(05)xy(05). )

takes its minimal possible value of 1 maﬂmmm%gm

articular it holds 6 = 1 for all X). The maximal possible value of 2 -
e

DO(wvy) = ezr,y -1

To-estimate-itis obtained if X and Y are stochastically independent. To estimate the extremal coefficient, we use the madogram
estimator as described in Ribatet et al. (2015) and Cooley et al. (2006) and rewrite the-extremal-coefficientasfx y as

1+ 2Vm’y 1+ QI/X,Y

0., = 6
LV — 2w, 1 —2uxy ©
with the madogram #— = 2BHH(—F -y y = L2E[| Fx (X) — Fy (Y)[]. The madogram can be estimated by
replacing F'x, Fy with their empirical counterparts. For a data sample (z1,41),. .., (Zn,yn), we then obtain
1 n n

" . 1, <o —1,. <) 7
Doyxy 2n(n+1);‘;( <o — Ly;<y.)|: @)
and consequently define an estimator
N 1420
By = XY ®)

1-— 21/)(7}/



Hierarchical clustering algorithms require a dissimilarity function D :

x G — R that must fulfil D

and D(gy,91) = 0 for all grid points € G (for an introduction to hierarchical clustering algorithms see Murtagh and Contreras, 2012

. Based on the properties of the extremal coefficient discussed above, we define such a dissimilarity function as

220 Do(g1,92) :=fxy ~1 ©)

with X and Y representing the GEV distributions at the grid points g; and respectively.

Note that the extremal coefficient is invariant under rank transformations and especially that it does not depend on the val-

ues of the GEV parameters of the marginal distributions (in fact, in Ribatet et al. (2015) and Cooley et al. (2006) it was only
225 used in the special case of GEV(1,1,1) distributed margms—b&&ﬁe&&e&%lﬂa&eﬁeaded%e%hegeﬂefa}ﬁ%e) It may be de-

aac € fHird

sirable 4

he-to also include

the dissimilarity of the marginal distributions in the clustering. As a further generalised dissimilarity measure we propose

1 1 1
Dx(z91,y92) := (1= A)Do(zg1,y92) + A(gdu(ﬁgg,g@) +3do(291,y92) + gdv(zgl7ggg)), (10)
with-d5 (= nmlf“;‘iylph‘ where A € [0,1 l“gl_”?l

230 the normalised distance between the location parameter estimates at the

M%MW&MW&%%MM&@%W%%
would also be possible to use different weights for d,, d, and d, but the selection of a set of weights that is clearly better
suited to describing GEV distribution dissimilarity is difficult. It could be argued to put more weight on the shape parameter
since this parameter describes the heavy-tailedness of the distribution and therefore the strength of its extremes relative to the

235 non-extreme values. On the other hand, we will see in the next section that the uncertainty in the shape parameter estimation is
considerably higher than the uncertainty in the estimation of the other two parameters at least for our data, which would speak
against weighting shape parameter differences too strongly.

240 optimal-To choose a suitable number of clusters, we consider an approach by Salvador and Chan (2004) called the L-Method.
In each step of the hierarchical clustering, the two clusters with minimal dissimilarity are combined, therefore we can plot the
number of clusters versus the dissimilarity between them, resulting in a graph called the evaluation graph. The dissimilarity
between clusters necessarily grows as the total number of clusters is reduced. The idea of Salvador and Chan (2004) is to find
a point from which on the growth rate of the dissimilarity measure increases considerably. It can then be expected that the

245 clusters up to this point combine rather similar data points, while combining them to larger ones would yield artificial results.
To determine such a point of change, in the first step, a suitable range of the number of clusters is selected. For our example, we
wse-consider different ranges starting with 10 and having no more than 550 clusters. Now, for each possible point of change c in
this range, the x-axis-horizontal axis of the graph is divided into the two parts to the left and the right of the-change-that point,
and a linear regression line is fitted to each of the two partial graphs. The root mean squared errors (RMSE’sRMSEs) of the
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two regression lines are weighted with the number of points involved in the regression analysis and summed up. The change
peint-point of change with the minimal combined RMSE is chosen as the eptimal-suitable cluster number. As an alternative
method, we set the number of clusters to the highest possible number such that a fixed threshold dissimilarity between clusters

is not exceeded (Threshold method). This number can easily be read off en-of the evaluation graph.

4 Results

We start with calculating for each annually-maximised-data—pointits—grid point the empirical mean and standard deviation
of the annually maximised data, as can be seen in Fig. 1. In most regions, similar mean values can be observed. A notable

overestimation of the annual maxima of monthly precipitation by the climate model takes place in the Himalayas and along the
western continent coasts of the Americas. Underestimation occurs most prominently in the Amazon region and parts of Central
America, as well as in Bangladesh and East Asia. Looking at the standard deviation, a similar pattern as for the empirical mean
can be observed, but with a stronger tendency for underestimation, which occurs also in India and the northern part of Australia.
In Fig. 2 a) and b), quantile-quantile plots (QQ-plots) of empirical mean and standard deviation ean-be-seenare displayed. The
quantiles of the empirical mean are in general similar, but the highest quantiles show a strong discrepancy. Regarding the

standard deviation, this tendency is much more pronounced, corresponding to the larger areas of underestimation of empirical

standard deviation we saw-in—t—In-Fig—2-e)-the-identified in Fig. 1. The difference in empirical mean and the difference in
empirical standard deviation are plotted against each other ;-and-itis—elearly-visible-thatin Fig. 2 ¢). It is visible that in man

cases, overestimation (underestimation) of the empirical mean corresponds also to overestimation (underestimation) of the
empirical standard deviation. A similar case of heteroscedasticity has also been noted in Lohmann (2018) when investigating

Holocene climate.

As pointed out by Katz and Brown (1992), the frequency of extreme events is strongly influenced by changes (or, in this
case, overestimationmisestimation) of the mean as well as of the variance of a distribution. Therefore, a-systematie-an over-
and underestimation of extremes can be expected in certain regions based on the results in Figs. 1 and 2.

Fitting the GEV distributions to the data and applying KS-Tests to check the goodness of fit, the hypothesis of a GEV dis-
tribution with the estimated parameters is not rejected for nearly all grid points in both observational and climate model data,

except for parts of the Sahara and some isolated points.

The three GEV parameters estimated are location, scale and shape, with location and scale very roughly corresponding
to mean and variance, and the shape parameter yielding information about the degree of heavy-tailedness. The estimated
parameter values are shown in Fig. 4. In Fig. 5, the differences between model and ebservatiens-observational parameters
are shown. Shaded areas are areas in which the model parameter falls into the 95% confidence interval of the corresponding
observation parameter and vice versa. We can observe a strong-similarity between the anomaly of the location parameters and

the anomaly of the empirical means discussed above, and likewise a similarity between the anomalies of scale parameters and
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Figure 1. The empirical mean (a, c, e) and empirical standard deviation (b, d, f) of the annual maxima of monthly precipitation of the ERY
FS54-04-reanatysis-sAWI-ESM model data set (a, b) and of the AW-ESM-medel-CRU TS4.04 reanalysis data set (c, d) and their difference
(reanalysis-minus-model data minus reanalysis data; e, f). Values exceeding the scale limits are truncated. Units are mm /month.
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Figure 3. P-values of Kolmogorov-Smirnov tests for the hypothesis that the data follow a GEV distribution with parameters estimated using

probability-weighted moments. Test results for the AWI-ESM climate model (a) and for the CRU TS4.04 reanalysis data (b).

empirical standard deviations. For the location parameter, we often-observe high differences quite often, and the parameters
estimated for one data set seldom fall into the confidence interval derived from the other data set. The eenfidence-intervals
of-the-estimated scale parameters are met-more-often—covered more often by the confidence intervals derived from the other
data set, although there are also large regions with a high difference in the two estimates. The estimated shape parameters
often-te-within-are covered by the confidence intervals at many locations, but it needs to be noted that the estimator of the
shape parameter is known to be sensitive to small variations in the data. Therefore, the confidence intervals calculated using the
parametric bootstrap tend to be large and not particularly informative. In Fig. 6, the anomalies of the 95% upper quantiles of the
estimated GEV distributions are depicted, again with shading-indicating-areastyingin-shaded areas indicating quantiles lying
within the confidence levels determined using parametric bootstrap. Climate extremes are most strongly overestimated by the
model in the mountantous-mountainous regions of the Himalaya, the Andes and the Rocky Mountains. An underestimation of
climate extremes takes place most notably in the Amazon region and parts of eastern Asia. This corresponds well to the regions
of over- and underestimation of the empirical means and standard deviations and the implications of such misestimations

discussed above.

We apply the hierarchical clustering algorithms using the two dissimilarity measures Dy and Dy o5 as introduced in the
previous section. The numbers of clusters determined using the L-Method with selected cluster ranges (from 10 to a maximal

number of clusters m) and using the threshold method with selected threshold dissimilarities  is documented in Table 1.

The results of the L-Method strengly-depend-on-the-seem to depend rather strongly on the data set investigated and the value

of m and-shew-afairly-ineconsistent-behavieur(compare for example the results for m = 250 and m = 300 for measure D),
making this method net-very-less suitable for the comparison of two data sets. The threshold method eensistently-generally

predicts a similar, but in most cases slightly lower cluster number for observational data than for climate model data. In Fig. 7,
the clusters for both data sets are depicted using the threshold method for dissimilarity measure Dy with threshold h = 0.825

as well as for dissimilarity measure Dg o5 with threshold h = 0.65.
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Figure 4. The estimated GEV parameters location (a, b), scale (c, d) and shape (e, f) for AWI-ESM climate model data (a, c, €) and for

reanalysis data (b, d, f). Values exceeding the scale limits are truncated. Units are mm/month.
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Figure 5. Difference between AWI-ESM model and observational GEV parameter estimates: Location parameter (a), scale parameter (b)
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and shape parameter (c). Values exceeding the scale limits are truncated. Units are mm/month.

14

500
400
300
200
100

-100
-200
-300
-400
-500

100

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0



| | | | | | | | | | | 500

¢ ’ . 7 400
60 — ’ i ‘, I P P ‘L, |
¢ /77 ’
el v Lot . 300
.:::, , / /s’ 4 /// ‘ ., /’/
/s /7,77 =1 200
] /7 ¢ 22 »n? ’ - 7 |
30 . g L
" 0 , ’ /, r |2 = - 100
- = E g
B 0- A= A T - - o
& o, ™% T
X2 . Ly - L -100
_ ] " :/ a ’/ |
30 2. a1 -200
- -300
60 - L
-400
T T T T T T T T T T T -500

-150 -120 90 -60 -30 0 30 60 90 120 150

lon

V// shaded areas: model quantile falls into the 95% confidence interval of the
/]

observational quantile and vice versa
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Table 1. The number of clusters for AWI-ESM climate model and observational data determined with the L-Method (above the middle line)
and the threshold method (below the middle line) for different ranges/thresholds and for dissimilarity measure Do (left) and Dy 25 (right).

m = 250 64 146 m = 250 187 102
m = 300 148 148 m = 300 165 142
m = 400 200 296 m = 400 223 140
m = 500 234 291 m = 500 232 265
h=0.85 143 127 h=0.675 118 109
h =0.825 188 177 h =0.65 165 167
h=0.8 232 221 h =0.625 219 220
h=0.775 280 254 h=0.6 281 265

To exemplify the differences and similarities in the clusterings, we have a closer look at Europe in the Dg-clusterings. In
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the model data, there is one cluster covering western Spain and Portugal, one cluster covering eastern Spain, and one cluster

310 consisting of southern France and Italy. Great Britain and Denmark are in the same cluster, the northern parts of France together

with Belgium and the Netherlands in another one. One cluster covers Germany and Switzerland, and in Eastern Europe we see
several clusters covering larger areas in the longitudinal direction, for example one cluster over Poland, one over Ukraine, and
one over Turkey and Greece. The clusters in the observational dataset show a slightly different picture: Here, the whole Therian
Peninsula is in one cluster, and one large cluster extends over northern France, Belgium, the Netherlands and Germany to the
western parts of Poland. On the other hand, Great Britain and Denmark are now in two separate clusters. Regarding other parts
of the world, it is worth noting that in all four clusterings a large cluster cluster covering the Sahara (or at least all parts of
it for which there are observations available) can be identified. There are no clusters extending over two regions that are very.
far apart from each other, and in general clusters tend to cover more area in the longitudinal direction than in the latitudinal one.

315
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For the AWI-ESM, we calculated an AWQD of 52.98, making it the third-best of all 27 CMIP6 models analysed. A full

table of the models and their AWQDs is provided in the supplement to this paper. In Fig. 8, the AWQDs are plotted against
; intercept: 73.310

the model resolution (the total number of model grid points in units of 10%). A linear regression (red line

slope: —2.368) indicates that models with a higher resolution have a tendency to describe extremal precipitation better. A test

on the significance of the slope parameter (null hypothesis of the slope parameter being equal to zero) was significant at the
5% level with a p-value of 0.0357. The best model in terms of the AWQD is the high-resolution model EC-Earth3-Veg-LR
(EC-Earth Consortium, 2020) with a value of 44.71. We will now discuss results for this model in more detail, while results for
the other models can be found in the supplement. For the EC-Earth3-Veg-LR, the estimated GEV parameters and anomalies
are shown in Fig. 9. The differences of the 95% quantiles are depicted in Fig. 10. The numbers of clusters determined using
the L-Method and the threshold method are found in Table 2 and images of clusterings are shown in Fig. 11. -Plots and
plots of KS-Tests are similar to the corresponding plots for the AWI-ESM and can be found in the supplement to this paper.
The EC-Earth3-Veg-LR model predicts climate extremes better than the AWI-ESM in the Himalayas and in the Amazon region
(compare Fig. 6 to Fig. 10), while it overestimates precipitation extremes more strongly than the AWI-ESM at the western coast
of South America. The number of clusters is in general higher than for the AWI-ESM, in part probably due to the higher model
resolution (320 x 160 compared to 192 x 96). Note that this increased resolution is also the reason for the different values for
the cluster numbers of the reanalysis data in Tables 1 and 2, because reanalysis data were in each case interpolated to the climate
model resolution. When comparing again the clusters over Europe using the Dy dissimilarity measure, it can be observed that
in_the western part of Europe, model and observational clusters are in general similar, with only slight differences over the
Iberian Peninsula and with an area covering southern France and northern Italy that is in one cluster in the model data and in
two different clusters in the observational data. In Eastern Europe and Scandinavia, the differences between the clusterings are
larger and it is more difficult to see correspondences. The general remarks that have been made about the clusterings while
discussing the AWI-ESM data also apply here.
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Table 2. The number of clusters for EC-Earth3-Veg-LR climate model and observational data determined with the L.-Method (above the
middle line) and the threshold method (below the middle line) for different ranges/thresholds and for dissimilarity measure Dq (left) and

m =250 6. 8 m=250 13 67

m =300 141, % m=300 7. 67

m = 400 181 o m=400 129. 154
m =500 184 272 m=500 146, 282
h=085 173 145 h=0675 131 16_
h=0.82 24 186_ h=065 203 166_
=03 299, 240, h=0.625 276, 25
h=0.775 366 272 h=0.6 358 279

5 Conclusions

We presented approaches and methods to validate climate model outputs by comparing their extremal behaviour to the ex-
tremal behaviour of observational data. To illustrate these methods, we compared precipitation extremes between the AWF
Earth-System-Medel-AWI-ESM and the CRU TS4.04 data set of reanalysed observations. After an analysis of empirical
statistiesstatistical parameters, we fitted the data to GEV distributions and analyse-analysed the differences in estimated pa-
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rameters. Then we continued with an analysis of spatial concurrence of extremes based on a hierarchical clustering approach
and a dissimilarity measure derived from bivariate copula theory. While the empirical statistics are similar for many parts of
the world, we can also identify larger regions of a—continuous-over- and underestimation of empirical means and standard
deviations by the climate model. These misestimations often go hand in hand with a similar misestimation of the standard
deviation (heteroscedasticity), although for the standard deviation a stronger tendency for underestimation can be observed.
Misestimations of mean and standard deviations translate into a misestimation of extreme values, and this can be confirmed
by the comparison of the fitted GEV distribution parameters and the 0.95-quantiles derived from them. The shape parameter,
indicative of the heavy-tailedness of the distribution, is in general similar between model and observational data, but because
of the difficulties in reliably estimating this parameter from data (that are in turn a result of the rareness of extreme events in

the data) these results have to be taken with caution.

The cluster analysis based on spatial dependencies and the eeeurenee-occurrence of concurrent extremes shows that there is
generally a good agreement between identified clusters. Also the number of clusters is in general similar, with a slight tendency
for a higher cluster number in the model data. Since it is mostly large-scale weather events and teleconnections contributing to
concurrent climate extremes, this indicates-may indicate that the basic physical behaviour underlying them is in general well

captured by the AWI-Earth-SystemMedelFurther-analysissAWI-ESM. Further analyses can be conducted to investigate in
detail the reasons for different clusterings over selected regions.

In addition to the AWI-ESM, several other CMIP6 models are also analysed. A comparison of the model accuracy, measured
using an averaged quantile difference, shows a tendency for higher-dimensional models to capture extremal behaviour better.

In this work, we-use-a clustering algorithm based on bivariate eopulae-extremal coefficients is used to perform a spatial

analysis of extreme values.

also used to model multivariate spatial distributions of extremal precipitation using max-stable processes;first-. This method
was first developed by Smith (1990) and Schlather (2002) and then extended by Opitz (2013) and Ribatet et al. (2015)—Fhis

proecedure—, and it is successfully used to model precipitation over Switzerland (Ribatet, 2017). The models based on max-

stable processes assume spatial stationary-stationarity (i.e. the spatial dependence between two points depends only on their

distance). This assumption is justifiable for small regions like Switzerland, but it makes the models in their present form

unsuitable-not well suitable for global data. Castro-Camilo and Huser (2020) created a model for the spatial distributions of
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extreme tail dependencies based on factor copulae, allowing them to use the relaxed assumption of local spatial stationarity.

and therefore to apply their model to the whole contiguous United States. From the area of parametric copulae, also vine
385  copulae have been employed to model precipitation data by Vernieuwe et al. (2015) and by Nazeri Tahroudi et al. (2021). A
arametric multivariate copulae. Marcon et al. (2014) used an estimator based on

Bernstein polynomials to model the common distribution of up to seven variables in their analysis of French precipitation data.

Copulae based on Bernstein polynomials are also used in multivariate extreme value analysis with a focus on multiple testing

(Neumann et al., 2019). In global climate models, the number of dimensions is much higher than seven and the method by
390 Marcon etal. (2014) is not directly transferable.

The clustering approach presented here focuses on the comparison of extremal events at different locations, thereby sup-

plementing the analyses of climate extremes that are often focused on extremes at a specific location (Zhang et al., 2011). An

application to daily data that has been annually or seasonally maximised +-is also possible, but beyond the scope of this pa-

395

In order to investigate extreme precipitation within the area covered by one cluster in more detail, the spatially stationar
max-stable models or the copulae-based models mentioned above could be employed. Most of the clusters cover only a small

region, therefore spatial stationarity might be a reasonable assumption, although it is not a direct consequence of the data bein
in the same cluster. In addition to model validation, the definition of regions with concurrent extremes may turn out useful

400 for assessments of risks in a-an economical context and for insurance. It needs to be noted, though, that extremes in climate
models and in gridded reanalysis data sets tend to be damped because of the spatial averaging performed during the creation
of the data (Bador et al., 2020b). Another possible field of application is palaeoclimatology. Spatial-The spatial distribution
of precipitation extremes is known to have changed markedly in the past (Lohmann et al., 2020; Ionita et al., 2021b), and

clustering based on climate models could be used to generalise the sparse existing palacoclimatic data to larger regions.

405 Code and data availability. The CRU TS4.04 reanalysis data are available at https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9.
The AWI-ESM climate model data are available under https://www.doi.org/10.22033/ESGF/CMIP6.9328 and the EC-Earth3-Veg-LR model
data can be found under https://doi.org/10.22033/ESGF/CMIP6.4702. The software code (in R) used for the analyses is provided in the

supplementary material to this paper.
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