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Abstract. Numerical simulations of volcanic processes play a fundamental role in understanding the dynamics of magma stor-

age, ascent and eruption. The recent extraordinary progress in computer performance and improvements in numerical modeling

techniques allow simulating multiphase systems in mechanical and thermodynamical disequilibrium. Nonetheless, the growing

complexity of these simulations requires the development of flexible computational tools that can easily switch between sub-

models and solution techniques. In this work we present MagmaFOAM, a library based on the open source computational fluid5

dynamics software OpenFOAM, that incorporates models for solving the dynamics of multiphase, multicomponent magmatic

systems. Retaining the modular structure of OpenFOAM, MagmaFOAM allows run-time selection of the solution technique

depending on the physics of the specific process, and sets a solid framework for in-house and community model develop-

ment, testing and comparison. MagmaFOAM models thermo-mechanical non-equilibrium phase coupling and phase change,

and implements state-of-the-art multiple volatile saturation models and constitutive equations with composition-dependent and10

space-time local computation of thermodynamic and transport properties. Code testing is performed using different multiphase

modeling approches for processes relevant to magmatic systems: Rayleigh-Taylor instability, for buyoancy-driven magmatic

processes; multiphase shock tube simulations, propedeutical to conduit dynamics studies; bubble growth and breakage in

basaltic melts. Benchmark simulations illustrate the capabilities and potential of MagmaFOAM to account for the variety of

non-linear physical and thermodynamical processes characterizing the dynamics of volcanic systems.15

1 Introduction

Simulating transport processes in volcanic systems is of crucial importance to understand the physics of eruptions, correctly

interpret geophysical signals recorded by volcano monitoring systems, anticipate volcanic scenarios, and forecast volcanic

hazards (Sparks, 2003; Bagagli et al., 2017). A great number of flow models have been developed to address specific volcanic

processes, including magma chamber dynamics (Ruprecht et al., 2008; Bergantz et al., 2015; Garg et al., 2019), conduit flow20

(Melnik, 2000; Papale, 2001; de’ Michieli Vitturi et al., 2008b; Colucci et al., 2017b), volcanic plumes (Suzuki et al., 2005;

Cerminara et al., 2016), pyroclastic flows (Esposti Ongaro et al., 2007; de’ Michieli Vitturi et al., 2015; Dufek, 2016) and
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lava flows (Griffiths, 2000). Inter-model comparison studies have evaluated individual model performance and the relevance

of the different subprocesses, and have highlighted target areas for improvement (Massol and Koyaguchi, 2005; Macedonio

et al., 2005; Sahagian and Proussevitch, 2005; Costa et al., 2016). All these models attempt to tackle the great complexity25

arising from the presence of multiple phases. Interactions among liquid phases (e.g. silicate melt), solid phases (e.g. crystals

or pyroclasts) and gas phases (exsolved volatiles or atmospheric gas) are indeed ubiquitous in volcanic systems, from deep

magma chambers up into the atmosphere (e.g., Jackson et al., 2018; Keller and Suckale, 2019).

Volcanic transport processes are typically characterized by a wide range of spatial and temporal scales at which different

interacting physical subprocesses occur (Griffiths, 2000; Gonnermann and Manga, 2007; Dufek, 2016). From a modeling30

perspective, there is no general approach able to treat all these subprocesses at the same time, thus specific models are usually

developed for each application.

A generic multiphase system can be thought of as composed by sub-domains or regions pertaining to single phases, separated

by interfaces (boundaries) representing sharp discontinuities where the physical properties change abruptly. The typical size

of the interfaces can be comparable to, or orders of magnitude smaller than the domain and flow length scales; or even cover35

a broad range of scales. From a numerical point of view, depending on the spatial scale of the interfaces different solution

strategies are required. Modeling efforts have therefore focused on developing regime-dependent strategies that attempt to

adapt to the specifics of the flow to be resolved (e.g. Ishi and Hibiki, 2006). Interface-resolving methods, similar to direct

numerical simulation (DNS) approaches in single-phase turbulent flows (Moin and Mahesh, 1998), fully resolve the scales

of the fluid equations and track the topology of the interfaces. These methods are practical only when the smallest scale40

of the flow and of the discontinuities are sufficiently large with respect to the grid size, and not too small with respect to

the computational domain (Ishi and Hibiki, 2006). As a result, this approach has been used for instance to study large gas

bubbles ascending in a conduit through low viscosity melts (Suckale et al., 2010a); bubble growth, deformation and coalescence

(Huber et al., 2014); buoyancy-driven instabilities among liquids at different densities (Suckale et al., 2010b); and for the mush

microphysics characterizing crystal-rich magma reservoirs (Parmigiani et al., 2014). However, multiphase flows in nature45

often present dispersed interfaces (e.g. for bubbly, droplet or particle-laden flows), for which interface-resolving approaches

are computationally too expensive. In this case, average forms of the flow equations can be adopted and the need of tracking the

exact position of the interface is avoided. The phases are described as interpenetrating continua governed by separate sets of

conservation equations. The so-called multi-fluid Eulerian approach is quite general and allows modeling thermo-mechanical

disequilibrium (e.g. phases with different velocities, temperatures or pressures) as well as interactions of the dispersed phases50

for any multi-phase system (Marchisio and Fox, 2007), including magmas (Keller and Suckale, 2019). Applications of multi-

fluid modeling in volcanology include but are not limited to the study of buoyancy-driven magma mixing (Ruprecht et al.,

2008), conduit dynamics (Papale, 2001; Dufek and Bergantz, 2005) and volcanic plumes (Neri et al., 2003; Ongaro et al.,

2007). However, the solution of these models requires the use of additional system-dependent constitutive equations, valid for

specific flow regimes and/or concentrations of the dispersed phase. In addition, when dispersed phase relaxation times are small55

(e.g. for small particles and/or high fluid viscosities), the stability of the numerical solution requires a much smaller time step

than the flow time scale, hence dramatically increasing the computational cost. Under the assumptions of thermo-mechanical
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equilibrium, the equations of the multi-fluid model can be further reduced to the evolution equation of a single pseudo-fluid

representing a mixture of multiple phases. Given the reduced number of equations needed to track the evolution of the mixture,

this is a more convenient approach when there is a strong thermo-mechanical coupling between phases. Simulations of magma60

mixing (Longo et al., 2012; Garg et al., 2019) and conduit dynamics (de’ Michieli Vitturi et al., 2008a; Melnik and Sparks,

2006) as well as volcanic plumes (e.g., Suzuki et al., 2005) are only few examples of application.

The increased ability of models to include detailed physics strictly requires the development of more flexible computational

tools that can easily switch between constitutive models and solution techniques to adapt to different dynamical regimes,

thereby reducing computational efforts, increasing usability and easily allowing scientists to perform inter-model comparison65

studies and models coupling.

The open source library OpenFOAM provides a variety of fluid solvers for multiphase flows, that can be combined with

several different constitutive equations. Its modular object-oriented implementation allows the developers to easily expand and

adapt the code, and the users to combine different models at run-time with almost no need to code. Given a set of discretised

fluid evolution equations (or ‘solver’), the user can easily select appropriate thermophysical and rheological models or switch70

from 2D/3D to axis/plane symmetric simulations. The OpenFOAM community is continuosly growing, as is the range of ap-

plications of interest for both the academy and industry (e.g., Winden, 2021). Moreover, the recently established exaFoam

consortium will improve computational performance enabling the "OpenFOAM community to exploit efficently the current

evolving HPC hardware and middleware" (www.exafoam.eu). OpenFOAM is thus an ideal platform for developing a compu-

tational toolbox for the next generation of magmatic systems modeling. In this work we present the MagmaFOAM library, an75

extension of OpenFOAM dedicated to solving multiphase volcanic flows. The current implementation features multiple volatile

saturation models (Papale et al., 2006) and specific formulations for the equation of state (Lange and Carmichael, 1987) and

viscosity (Giordano et al., 2008) of magmatic mixtures including dissolved volatiles. MagmaFOAM retains the basic coding

principles of OpenFOAM, inherits its flexibility and takes full advantage of the family of fluid solvers and constitutive models

(e.g. non-Newtonian rheological models) already implemented in OpenFOAM.80

This paper is structured as follows. First we provide an overview of the basic ingredients of MagmaFOAM, including the

specific magmatic constitutive equations and how they are implemented. Then, we show benchmarks and validation tests

aimed at verifying the code ability to solve problems for segregated and dispersed flows of interest for magmatic systems with

different modeling approaches. Finally, we summarize and discuss our results and draw the conclusions.

2 MagmaFOAM ingredients85

2.1 Structure of MagmaFOAM

MagmaFOAM uses the same organization of OpenFOAM (Figure 1) and its hierarchy is therefore subdivided into applications

and libraries (src). Code organization is therefore rational and efficient, reducing code duplication, promoting code reusage

and facilitating testing. Most of the applications are assembled at run-time based on the user requests using dynamic linking to

pre-compiled libraries: before running a simulation the user can arbitrarily select boundary conditions, discretization schemes,90
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Figure 1. MagmaFOAM - OpenFOAM coupling scheme.

mixture and phase constitutive equations. This mechanism allows selecting and combining modeling ingredients, among the

possible combinations, from both OpenFOAM and MagmaFOAM (Figure 1), without the need of coding.

2.1.1 Multi-component constitutive models for magmatic systems

The dynamics of magmas as they ascend, stall through the crust and possibly erupt is strongly dependent on their physical

properties (mostly density ρ and viscosity µ), which in turn are determined by composition and phase distribution, pressure95

p and temperature T conditions. The interplay among p-T conditions, melt-crystals-bubbles phase changes and density and

viscosity variations originates a wealth of possible space and time patterns for magma storage, transport and eruption (e.g.,

Lesher and Spera, 2015). To handle this thermo-physical complexity, state-of-the-art multi-component constitutive models

that compute melt properties as a function of the local pressure, temperature and composition have been implemented in

MagmaFOAM.100

Multi-component volatile saturation is included through the SOLWCAD model (Papale et al., 2006), which provides equi-

librium H2O-CO2 saturation over a broad range of p−T conditions and for virtually any melt composition. This model

overcomes the ideal Henrian behaviour, which is a reasonable approximation only at low pressures (. 100MPa; Papale et al.,
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2006). Once the phase distribution of volatile species is computed through SOLWCAD, the relevant physical properties for the

multiphase magma con be derived.105

The density of the silicate melt up to a few GPa (. 3GPa or . 100km depth) is computed as in Lange and Carmichael

(1987) with an empirical equation of state, as a ratio of the oxides’ molar masses (Mi) and molar volumes (Vi):

ρ(p,T,X) =
M(X)

V (p,T,X)
=

∑
iXiMi∑

iXiVi(p,T )
, (1)

where Xi is the mole fraction of the i-th oxide component. To a good approximation, molar volumes do not depend on melt

composition (Lesher and Spera, 2015) and can be computed with a polynomial expansion:110

Vi(p,T ) =
∑

l,m

ail,mT
lpm = ai0,0 + ai1,0T + ai0,1p+ ai1,1pT + ... (2)

The polynomial coefficients ail,m have been determined from laboratory experiments. For the oxides we have used the

coefficients reported by Lange and Carmichael (1987) and Lesher and Spera (2015). For H2O and CO2 we referred to Burnham

and Davis (1974) and Papale (1999), respectively.

Melt viscosity is described as in Giordano et al. (2008). This model includes temperature and compositional effects for a115

wide range of melt compositions. In addition, the model can be used to determine the compositional dependence of important

viscosity-derived properties, such as melt glass transition temperature and fragility. This aspect may be particularly relevant

when modeling the ascent of degassing magma to determine the potential for brittle fragmentation. A drawback is that the

model does not take into account the effect of pressure on viscosity, which can become relevant when modeling magma

transport in the deep crust and mantle.120

The model is based on the Tammann-Vogel-Fulcher (TFV) relationship for the non-Arrhenian temperature dependence of

the bubble-crystal free viscosity η:

logη =A+
B

T −C , (3)

where T [K] is the temperature, A is a constant and B and C are parameters that depend on the melt composition, including

dissolved volatile species. The A constant provides a high temperature limit for viscosity (∼ 10−4 Pa s), that holds for all125

melts regardless of their composition and is supported by both theoretical considerations and experimental observations (e.g.

Scopigno et al., 2003).

2.2 Modeling volatiles concentration at the bubble-melt interface

Models accounting for multicomponent phase change require a description of the evolution of the composition at the interface

between phases. Typically, in multi-fluid solvers (e.g. reactingTwoPhaseEulerFoam), bubble growth is modeled by130
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computing the diffusive flux (ṁi) of a volatile specie i at the bubble-liquid interface as

ṁi = ρkiDi (∆Yi) (4)

where ρ is the liquid density, ki is the mass transfer coefficient and Di is the diffusion coefficient (Cussler, 2009). ∆Yi is the

difference between the mass fraction of the specie in the phase (Yi) and at the interface: (Yf,i)

∆Yi = Yi−Yf,i. (5)135

Under the assumption of local equilibrium, the mass fraction at the interface can be expressed as

Yf,i = Yeq,i (p,Tf ,X,XV tot) , (6)

where Yeq,i is the saturation concentration of a specific volatile specie (i.e. mass fraction at thermodynamic equilibrium). In

general this is a non linear function of pressure (p), temperature at the interface,(Tf ), melt composition (X) and total amount

of volatiles of all species (XV tot). For magmas with H2O and CO2, Yeq can be computed using SOLWCAD (Papale et al.,140

2006) or other dedicated models (e.g., Newman and Lowenstern, 2002; Burgisser et al., 2015). Direct coupling of any fluid

solver with these models is usually too computationally expensive. Therefore, MagmaFOAM solvers can read the saturation

surface from a pre-processed table. During the simulation, tabulate values are interpolated (multilinear interpolation) and used

to compute Yeq,i in Equation (6).

2.3 MagmaFOAM constitutive models145

Constitutive models implemented in MagmaFOAM can be selected and combined at run-time (no need of coding) with existing

OpenFOAM solvers suitable for the specific problem under consideration (Figure 1). For example, the MagmaFOAM model

for silicate melt density can be used with any compressible solver, either single- or multi-phase. This constitutive model is not

compatible with incompressible solvers, that require density to be constant; however, in this case the density of the incom-

pressible fluid can be preliminarly defined taking advantage of the dedicated MagmaFOAM utility magmaThermoMixture.150

The latter can also be used for testing implemented models as it simply returns the thermophysical properties as a function of

composition, pressure and temperature. Demonstrative tutorials are included in MagmaFOAM to show how the end user can

accomplish all these tasks at run-time using both single-phase and multiphase solvers.

2.4 Models for multicomponent bubble growth

Volatiles’ phase changes and bubble growth are ubiquitous processes in volcano dynamics (Proussevitch and Sahagian, 1998).155

The gas exsolution process begins with the nucleation of bubbles in an oversaturated melt and continues with bubble growth.

Bubbles grow by mass diffusion, when the silicate melt is oversaturated in volatiles, and by mechanical expansion as a response

to pressure decrease. The viscosity of the surrounding melt and the surface tension oppose a resistance to bubble growth and

control the mechanical disequilibrium between the bubbles and the melt itself. A number of works (Proussevitch et al., 1993;
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Lyakhovsky et al., 1996; Proussevitch and Sahagian, 1998; Lensky et al., 2001, 2004; Chouet et al., 2006; Shimomura et al.,160

2006; Coumans et al., 2020) solve the system of bubbles as a monodisperse periodic array of static, spherical, single-component

(H2O) growing bubbles surrounded by a viscous melt shell, using the Rayleigh-Plesset equation. A suite of models, based on

a similar approach, have been implemented in MagmaFOAM and benchmarked to simulate multicomponent diffusive bubble

growth. This approach, despite the strong assumption that the size distribution remains monodisperse at all times, provides

an accurate representation of the coupled momentum balance and diffusive transport of volatiles, and represents a powerful165

tool for studying bubble growth in silicate melts (e.g., Coumans et al., 2020). This method is expected to produce accurate

results especially at low vesicularity, since it accurately resolves the concentration profile near the bubble interface (Huber

et al., 2014). All model equations can be found in Appendix B and are solved as a systems of ordinary differential equations

(ODEs) using the OpenFOAM ODE solvers.

3 Benchmarks and test cases170

The test cases presented here are included in the MagmaFOAM distribution together with the relevant post-processing routines.

The results shown here are thus fully reproducible, and the benchmarks can be used to study the accuracy and efficiency of

other OpenFOAM or external solvers.

3.1 Interface resolving modeling

The Volume of Fluid method (VOF) is adopted in OpenFOAM to resolve the position and shape of the interface separating175

two fluids or phases (e.g. liquid-gas). This methodology treats the interface discontinuity as a smooth but rapid variation (few

computational cells) of an indicator field (volumetric fraction) representing the relative presence of one phase with respect to

the other in each cell. The evolution of the interface is then obtained by simply advecting the volumetric fraction using the

velocity field computed from a single (e.g. the OpenFOAM solver interFoam) or multi-fluid momentum equations (e.g.

the OpenFOAM solver multiphaseEulerFoam). With respect to other methods, VOF is generally mass conservative but180

requires special techniques to avoid numerical diffusion of the interface during advection. Specifically, interFoam makes

use of an additional compressive term in the advection equation that counter-balances the numerical blur of the interface

(Deshpande et al., 2012). interFoam solves flows characterized by constant, or slowly-varying with respect to the flow time

scales, fluid properties. Relevant volcanic scenarios are for example gas-poor magmatic reservoirs at depth, characterized by

relatively fast overturn times (Ruprecht et al., 2008; Perugini et al., 2010; Montagna et al., 2015).185

Here we present benchmarks and test cases to evaluate the accuracy of the solver interFoam to explore the dynamics of

two immiscible fluids separated by a free interface. Specifically, we perform detailed studies of buoyancy-driven magma mixing

and rising bubble dynamics. Overall, we find a remarkably good agreement between our simulation results and theoretical or

numerical results from literature, over different flow regimes of interest for magma dynamics. The numerical solutions relative

to cases with low Reynolds number Re are very accurate. At larger Re, the results are less accurate due to the appearence190

of high frequency numerical noise that can trigger secondary spurious interface instabilities. Reducing numerical noise by
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adopting different numerical schemes is one relevant element for future investigation. The magnitude of the compressive term,

used in the solver to prevent numerical smearing of the interface, is a free parameter in the simulations and may influence the

accuracy of the solution depending on the problem parameters. More recent OpenFOAM versions include more rigorous and

accurate interface-resolving methods (e.g. Roenby et al., 2017).195

3.1.1 Magma mixing

Magma mixing and mingling are widespread phenomena in volcanic plumbing systems (Perugini and Poli, 2012; Morgavi

et al., 2017), and they have often been invoked as eruption triggers (Wark et al., 2007; Druitt et al., 2012; Martí et al., 2020).

Magma mixing is typically driven either by gravitational Rayleigh-Taylor instabilities, involving contacts between magmas

with different densities due to compositional, thermal or phase stratifications (e.g., Jellinek et al., 1999; Montagna et al.,200

2015; Garg et al., 2019); or by percolation of pressurized magmas arriving from depth into mushy reservoirs (Bachmann and

Bergantz, 2003; Seropian et al., 2018).

A standard benchmark to test numerical solvers for Rayleigh-Taylor instability problems requires to compare computed

growth rates for small-amplitude single-mode perturbations with the linear stability theory. The latter predicts that a small

perturbation grows exponentially with a rate that depends on its wavelenght and on fluid density and viscosity contrasts (Chan-205

drasekhar, 1955), surface tension (Chandrasekhar, 2013), compressibility (Mitchner and Landshoff, 1964) and diffusivity (Duff

et al., 1962; Xie et al., 2017). The problem parameters can be expressed by two dimensionless numbers: the Atwood number

Atw = (ρh−ρl)/(ρh+ρl) and the Reynolds number (Re =
√
WgW/ν), where ρh and ρl are the two liquid densities, ν is the

kinematic viscosity (νh = νl), W is the wavelength of the perturbation and g is the gravitational acceleration. We consider a

2D rectangular domain with a no-slip condition (walls) on top and bottom boundaries and periodic conditions on the sides. The210

interface between the two liquids is located at the center of the computational domain (Figure 3). The size L of the computa-

tional box is determined by the wavelength of the initial perturbation (L=W×2W ). Benchmark results are reported in Figure

2 for Atwood numbers relevant for natural melts. The computed growth rates are in agreement with the theory (Xie et al.,

2017) for different wavelengths (or equivalently wave numbers k = 2π/W ) of the perturbation. The solver underestimates the

peak growth rates at low k, corresponding to high Re. A more in-depth analysis of the results (Appendix A) reveals that this215

discrepancy is mainly due to an initial delay in the onset of the perturbation. Removing this initial offset, the computed growth

rates result much more accurate. Smaller initial perturbation amplitudes also improve accuracy.

As the instability grows and its amplitude becomes comparable with its wavelength, non-linear effects become dominant and

the linear theory is not valid to predict the evolution of the system anymore. In order to validate interFoam for non-linear

regimes we have compared our results with He et al. (1999) for single-mode perturbation with a 10% amplitude-to-wavelength220

ratio, Atwood number A = 0.5 and Reynolds number Re = 256. A remarkably good agreement is obtained for the evolution of

the fluid interface (Figure 3) using the same resolution (256 x 1024 cells). Convergence of the results was tested for different

space and time resolutions using adaptive time-step based on maximum allowed Courant Number (Comax = 0.5) to speed up

the simulation. For a given mesh resolution the accuracy and convergence of the solution depend on the values of Comax and

number of iterations (nIter) used to solve the pressure-velocity coupling with the PISO algorithm (Issa, 1986). Generally,225
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Figure 2. Comparison between computed growth rates (symbols) of the Rayleigh Taylor instability in the linear regime obtained with the

solver interFoam and theoretical ones (dashed line). Bubble growth rates are computed tracking the position of the interface with respect

to the central axis of the domain while spike growth rates are computed with respect to one of the lateral boundaries.

Figure 3. Rayleigh-Taylor instability (A = 0.5,Re = 256) computed with OpenFOAM solver interFoam. The density field (color-coded)

is compared with the density countours in He et al. (1999) (black lines).

larger Comax (< 1 for numerical stability) require larger nIter for solution convergence; our experience suggests that a

relatively high number of nIter balances larger values for Comax, reducing computational times. This way, even if the errors

relative to the continuity equation are larger, the solution is not affected significantly.

9

https://doi.org/10.5194/gmd-2021-224
Preprint. Discussion started: 12 August 2021
c© Author(s) 2021. CC BY 4.0 License.



(a) (b)

Figure 4. Rayleigh-Taylor instability (A = 0.5,Re = 2048) computed with OpenFOAM solver interFoam (in color) with: (a) 256×1024

cells and default value for interface compression factor Cα = 1; (b) 512× 2048 cells and Cα = 0.1. The density field (color-coded) is

compared with the density countours of He et al. (1999) (black lines).

For the high-Reynolds-number test case (Re = 2048) of He et al. (1999), the quality of the solution deteriorates using the

same resolution (Figure 4). The interface is deformed by artificial secondary instabilities most probably triggered by spurious230

numerical noise. Removing the interface compression term and doubling the number of cells improves the solution to nearly

match the reference.

We now explore gravity-driven mixing among two natural silicate melts (Figure 5). Density and viscosity of the two melts

are computed a-priori using the MagmaFOAM utility Test-magmaThermoMixture. As a test case, we reproduce at small

scale a typical (Garg et al., 2019) interaction among a volatile-rich basalt (XH2O = 2wt%) and a chemically more evolved235

andesitic melt. Temperature is set to T = 1300oC and pressure is atmospheric. Melt compositions are reported in Table D1.

The relevant dimensionless numbers are now A = 0.0167982 and Re = 54.065 for a physical domain 1 m x 4 m. Surface

tension is again neglected. Compared to the previous simulations (e.g., Figure 3), the two liquids have now different kinematic

viscosities. The larger viscosity ratio requires to increase significantly the numbers of iterations (≈ 300) needed to solve

pressure-velocity coupling (keeping Comax = 0.5). As a result, the simulation is computationally much more demanding. The240

simulated time covers the entire overturning process (Figure 5).

3.1.2 Rising bubble dynamics

We consider a gas bubble rising in a basaltic melt. The bubble, initially at rest, rises due to buoyancy assuming a variety of

shapes depending on the system parameters (e.g., liquid viscosity, surface tension, density contrast). Samkhaniani et al. (2012)

demonstrated the ability of interFoam to reproduce the different bubble shapes reported in the Grace diagram (Grace, 1973).245
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Figure 5. Rayleigh-Taylor instability between a volatile-rich (XH2O = 2wt%) basalt (bottom) and andesite (top) computed with OpenFOAM

solver interFoam (color-coded). The physical domain size is 1m× 4m.

Our contribution here focuses on the validation of the solver for bubble stability in magmas, through comparison with Suckale

et al. (2010a) that used a different numerical method (Figure 6). In this set of 2D simulations, the main goal is to investigate

the ability of the solver to reproduce the breakage of a bubble in relation with the shape that it may assume during its rise.

Breakage may occur because of the small, random perturbations that form at the melt-bubble interface. No-slip boundary

conditions are used for top and bottom boundaries and periodic conditions for the sides. In volcanic context, two parameters250

change significantly with respect to water experiments Samkhaniani et al. (2012): the density ρ and the viscosity µ of the liquid.

While for water ρ= 103 kg/m3 and µ= 10−3 Pa s, even a low-viscosity silicate melt (e.g., basalt) has viscosity values of order

10-100 Pa s and the density is above 2500 kg/m3. Surface tension is σ = 0.073N/m for water, while a reasonable value for

magmas is σ = 0.15N/m (Colucci et al., 2016). In our tests we set σ = 0.3N/m and ρ= 3500kg/m3 to be consistent with

Suckale et al. (2010a). With a being the bubble radius and v0 the rise velocity, the relevant non-dimensional numbers derived255

directly from the governing equantions for an incompressible melt are (Suckale et al., 2010a): Reynolds number Re = ρv0a
µ

(inertial to viscous forces), Froude number Fr = v20
ga (inertia to buoyancy forces), Weber Number We = v20

ga (inertia to surface

tension) and liquid to gas viscosity ratio Π = µ/µg . We can also define the Eötvös number (Eo), which is a combination of

Fr and We (Eo = Fr−2We). Considering a constant Π = 10−6, bubble regimes can be classified using only two adimensional

numbers, Re and Eo. The Reynolds number mainly controls bubble stability and breakup, which is predominant at high Re.260

The Eötvös number instead plays an important role in determining bubble deformation. Indicatively, for Eo< 1 and Re< 1 the

bubble is stable and preserves its initial spherical shape even in the presence of small perturbations of its interface. For Eo> 1

and Re< 1 the bubble deforms and may breakup if random perturbations affect significantly its surface, while for Eo> 1 and

Re> 1 breakup occurs invariably.

Overall, breakup mechanisms are well reproduced in our simulations and bubble shapes at given non-dimensional times265

are consistent with those reported by Suckale et al. (2010a) for similar values of the non-dimensional numbers (Figure 6) and

similar space resolution (20 cells per bubble radius). For the no breakup regime (Figure 6a), the bubble shape in our simulation
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(a)

(b)

(c)

Figure 6. Simulation of bubble rise in a basaltic melt using interFoam are compared with the results of Suckale et al. (2010a) (black

lines) for three different regimes: (a) No breakup (Re≈ 5,Fr≈ 0.4, We≈ 90, and Π = 10−6), (b) Gradual breakup (Re≈ 25,Fr≈ 0.3;

We≈ 800, and Π = 10−6); (c) Catastrophic breakup (Re≈ 250,Fr≈ 0.16, We≈ 1350, and Π = 10−6). For each regime, snapshots at

different non-dimensional times are shown.
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Figure 7. Temporal evolution of bubble radius. In blue the comparison between the solutions obtained with the MagmaFOAM model

multiComponentODERPShellDStatic (solid lines) and the numerical solutions from Lyakhovsky et al. (1996) (dashed lines) under

three different values of diffusion coefficient. Red lines represent the same simulations with 1% of CO2 added. ρl = 2300kg/m3, µ=

5 · 104 Pa s, σ = 0.06N/m, T = 1123K, p0 = 150MPa, ∆p= 30MPa, R0 = 10−7 m, S0 = 2 · 10−4 m, CH2O
0 = 0.053. The diffusion

coefficient of CO2 is one order of magnitude smaller.

displays two additional thin wings. In the gradual breakup regime (Figure 6b) small droplets are formed at the rear of the

bubble. The results are reported here with higher resolution (40 cells per bubble radius), since with lower resolution the bubble

presents a slightly different shape with a flatter head. In the catastrophic breakup regime (Figure 6c), the bubble immediately270

collapses forming a large number of small to medium sized bubbles.

3.2 Diffusive bubble growth

Here we demonstrate the ability of the ODE solver

multiComponentODERPShellDStatic to simulate bubble growth in a rhyolitic melt by expansion and mass diffusion.

Our solution has been benchmarked by comparison with Lyakhovsky et al. (1996) for the diffusive growth of water gas bubbles275

under instantaneous decompression of a hydrated rhyolitic melt. To reproduce the reference solution we assumed a quasi-

static diffusion in the liquid shell around the bubble. The quasi-static approximation holds when diffusion is fast relative to

decompression rate (Lensky et al., 2004). The reference solutions for three different values of the diffusion coefficient are well

reproduced by our model (Figure 7). We repeat the same simulations with the addition of 1% of CO2 (red lines in Figure 7).

The multicomponent saturation surface is calculated using SOLWCAD (Papale et al., 2006). The bubble radius increases by ≈280

50% and the gas volume fraction triplicates (see Equation (B6)).

3.3 Eulerian multi-fluid modeling

In this section we test the ability of the OpenFOAM two-fluid eulerian solver reactingTwoPhaseEulerFoam to deal with

flow problems with a large number of small (unresolved) gas bubbles dispersed into a liquid phase. reactingTwoPhaseEulerFoam,
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coupled with the magmaFOAM libraries, is tested in problems involving multiphase shock tubes as well as by simulating a285

multiphase-multicomponent reacting box.

3.3.1 Shock Tube Simulations

Decompression of a pressurized bubbly magma is a common trigger of explosive volcanic eruptions (e.g., Gonnermann and

Manga, 2007). When a high-pressure magma reservoir is decompressed, a shock wave and a contact wave propagate into

the low pressure region, typically the atmosphere, and a rarefaction wave propagates into the bubbly magma (Koyaguchi and290

Mitani, 2005; La Spina et al., 2017), akin to shock tube devices. The latter have been extensively used to study wave propagation

phenomena in compressible fluids. Usually high and low pressure regions are separated by a diaphragm, the instantaneous

removal of which initiates highly transient dynamics (Stadtke, 2006). Assuming strictly one-dimensional flow conditions (i.e.,

ignoring the effects of shear viscosity), the shock tube mathematically represents a Riemann problem where the initial velocities

on both sides have been set to zero. For the specific case of ideal equation of state, an analytical solution can be derived for295

a pure single phase (Stadtke, 2006). Multiphase flow processes are generally governed by deviations from mechanical and

thermal equilibrium between the phases. Nevertheless, the assumptions of homogeneous flow (equal phase velocities) and

thermal equilibrium between the phases allow us to define a special limiting case for which a semi-analytical solution can

be derived (Stadtke, 2006). We test the reactingTwoPhaseEulerFoam solver in inviscid one-dimensional and viscid

axisymmetric simulations of single-phase and two-phase shock tubes. Axisymmetric simulations allow us to investigate the300

effect of melt viscosity on the radial velocity profile, through the Giordano et al. (2008) model. The Lange and Carmichael

(1987) equation of state is tested here for the propagation of rarefaction and shock waves.

Single phase We perform a standard Sod shock tube benchmark for pure air gas using a perfect gas equation of state. A

nearly perfect agreement between the simulation and the analytical solution has been found by discretizing the one-dimensional

computational domain with 5000 cells. Then, we test the solver by simulating a shock-tube with pure liquid water using the305

SPWAT equation of state (Stadtke, 2006) implemented in MagmaFOAM. Discretizing the computational domain with the same

number of cells, the contact and shock wave discontinuities are well resolved and do not display any instabilities. Finally, we

perform a shock-tube simulation with pure liquid basalt (Table D1) using the equation of state for silicate melts proposed

by Lange and Carmichael (1987) and implemented in MagmaFOAM. We use the same computational domain and the same

numerical schemes used in the liquid water test. Across the shock discontinuity the solution is more diffusive compared to310

the test for liquid water, while the contact discontinuity is still well resolved. The Figures for the single phase shock tubes

described above are reported in Appendix C.

Two-phase We perform two-phase shock tube simulations for gas air-liquid water and gas water-liquid basalt (Table D1)

shock tubes (Figures 8, 9, 10). The equations of state for each phase are the same as for the single-phase cases. In all the

simulations, the size of the dispersed phase (i.e., gas bubbles or liquid droplets), instead of being determined by a proper model315

(i.e., bubble growth model), is kept constant and used as a tuning parameter. This unphysical assumption allows us to control

the mechanical and thermal disequilibrium between the gas and liquid phases in order to compare the simulation with the
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limiting analytical solution for a homogeneous flow (Stadtke, 2006). It is worth noting that, even if the size of the dispersed

phase is kept constant, its volume fraction can change according to the mass conservation equations.

First, we benchmark the solver with a gas air-liquid water shock tube for which a limiting analytical solution is provided320

(Stadtke, 2006) (Figure 8). Initial gas volume fraction is 0.1 in the high-pressure region (to the left of the interface) and 0.05

in the low-pressure region (to the right of the interface). Overall, we find a remarkable good agreement with the exact solution.

The contact and shock wave discontinuities are well resolved and do not display any instabilities. The numerical solution is

only slightly diffusive at the onset of the rarefaction wave. The overshoot visible in the velocity is produced by the mechanical

decoupling between the liquid and the dispersed gas phase (Stadtke, 2006) and disappears reducing the bubble size, as will be325

discussed in the next subsection.

The same simulation setup is used to simulate basalt (liquid) - water (gas) shock tube (Figure 9). In this case the simulation

is axisymmetric, in order to understand the role of melt viscosity. The shape of axial profiles of pressure, velocity, gas volume

fraction and mixture density are similar to 1D shock tube (Figure 8) for the air-water system. Velocity profiles along radial

coordinate are flat with a narrow boundary layer near the walls. In this case the higher viscosity (≈ 10 Pa s) drastically reduces330

the mechanical phase decoupling and the phase velocities are superimposed.

Finally, we use the same simulation setup of Figures 8 and 9, but with an initial gas volume fraction in the low pressure

region (to the right of the interface) equal to 1 (Figures 10 and C4 in Appendix C). This configuration is more appropriate for

a volcanic application where the shock wave travels in the atmosphere. In this case the continuous and dispersed phases can

invert, thus the bubbly flow, where bubble are dispersed in the continuous liquid phase, becomes a particle flow, where the liquid335

droplets are dispersed in the gas. This process, usually called fragmentation in volcanological literature, can be modelled, as a

first approximation, using a critical volume fraction criterion (0.5 < α < 0.7; e.g., La Spina et al., 2017). When the rarefaction

wave propagates into the high pressure region (i.e., left side), the bubbly magma expands, accelerates and fragments. Due to the

higher compressibility of the gas phase compared to the liquid melt, the temperature subplot shows phase decoupling during

expansion, the amount of which depends on the adopted heat transfer model.340

The phase coupling problem Even if we limit to bubbly flow regimes, magmatic system are characterized by a wide range

of viscosities (from 0.1Pa s to 109 Pa s) and bubble sizes (from few microns to decimeters). The bubble relaxation time (τb) is

directly proportional to the square of the bubble diameter and inversely proportional to the kinematic viscosity of the continuous

liquid phase (τb ∝D2
b/νl). In magmatic phenomena, when considering small bubbles (e.g., 100µm) and even relatively low

viscosities (e.g., 10 Pa s), τb can reach very small values (τb ≈ 10−6 s), resulting in very strong mechanical phase coupling.345

Numerical algorithms like the one implemented in OpenFOAM, based on segregated solvers, require special care in order to

ensure convergence of the solution when phase coupling is tight (Karema and Lo, 1999). The Partial Elimination Algorithm

(PEA), implemented in OpenFOAM, shows the best convergence performance compared to other algorithms (Karema and Lo,

1999; Venier et al., 2016). Here we test the PEA method for shock tube simulations conditions within the range of interest

for magmatic applications. In Figure 11 we compare the analytical solution to the simulation results for different values of τb350

obtained by changing the bubble diameter. Decreasing τb from 10−1 s to 10−3 s the velocities of the two phases tend to overlap

as expected, and agree with the homogeneous analytical solution. However, by further decreasing τb the solution diverges even
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Figure 8. Results at time t= 0.015s for the air-water shock tube using the SPWAT EOS. Solid lines: OpenFOAM; dashed lines: analytical

solution (Stadtke, 2006); Black lines: mixture; Blue lines: liquid (water); Red lines: gas (air). Mixture density is calculated a posteriori as

ρmix = αgρg + (1−αg)ρl, where l is liquid and g is gas. At time 0, the interface dividing high pressure (left, l) from low pressure (right, r)

zone is placed at 2.5 m. Initial conditions: Pl = 0.5MPa, Pr = 0.1MPa; Tl = Tr = 300K for both phases; gas volume fraction αl = 0.05,

αr = 0.1; Ul = Ur = 0 for both phases. Isobaric heat capacities of gas air and liquid water are, respectively, Cpg = 1004.5Jkg−1K−1 and

Cpl = 4195Jkg−1K−1 (https://webbook.nist.gov/). Prandtl numbers of air and water are, respectively, 0.7 and 2.289, corresponding to

thermal conductivities of 0.02W K−1m−1 and 0.67W K−1m−1 (https://webbook.nist.gov/).

when increasing 40 times the number of corrector cycles. This is an important limitation in the use of the multi-fluid solver. A

possible workaround, currently under investigation, is to implement a limiter for the relaxation time.

3.3.2 Reacting box355

A many-bubble system at zero gravity where bubbles grow by mass diffusion is analyzed here. The liquid phase is a basaltic

melt (Table D1) with dissolved water and carbon dioxide whose properties are modelled by the Lange and Carmichael (1987)

equation of state and the rheological equation of Giordano et al. (2008). The ideal gas equation of state has been used for the

gas phase. As this is a many-bubble system, bubble growth is approximated through a subgrid model (see section 2.2). The

mass transfer coefficient (i.e., ki in Equation (4)) is calculated according to a spherical model and the heat transfer coefficient360

according to spherical and Ranz-Marshall models, both already implemented in OpenFOAM. In addition, the I group IATE

model (Ishi and Hibiki, 2006) is used to compute the surface area required by mass and heat transfer coefficient. The Interfacial
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Figure 9. Results at time t= 0.0065s for the axisymmetric gas water-basalt shock tube using the Lange-Carmichael EOS (Lange and

Carmichael, 1987) and the viscosity model of Giordano et al. (2008). Blue lines: liquid (basalt); Red lines: gas (water). At time 0, the interface

dividing high pressure (left, l) from low pressure (right, r) zone is placed at 2.5 m. Initial conditions: Pl = 10MPa, Pr = 0.1MPa; Tl =

Tr = 1273K for both phases; gas volume fraction αl = 0.05, αr = 0.1; Ul = Ur = 0 for both phases. Isobaric specific heat capacities in the

gas and liquid phase are, respectively, CPg = 2510J/kg−1K−1 (https://webbook.nist.gov/) and CPl,H2O = 2278J/kg−1K−1, CPl,basalt =

1600J/kg−1K−1 (Lesher and Spera, 2015). Thermal conductivity of the liquid is 1.5W K−1m−1 (Lesher and Spera, 2015); for the water

gas phase a Prandtl number of 0.9 is used, corresponding to a thermal conductivity of 0.14W K−1m−1 (https://webbook.nist.gov/)

.

Area Transport Equation (i.e., IATE) is a fundamental equation, formulated from the Boltzmann transport equation, describing

the change of surface area between phases, assuming spherical shape of the dispersed phase (Ishi and Hibiki, 2006).

At time zero, a small amount of gas is uniformly distributed in the box and the liquid-gas system is out of thermodynamic365

equilibrium because the liquid is oversaturated in both H2O and CO2. After ≈ 4 · 105 s, H2O has reached the thermodynamic

equilibrium increasing the gas volume fraction to≈ 33% (Figure 12) and the bubble size increased from 1 cm to about 4 cm (not

shown in the Figure). This time is consistent with the time scale that characterizes diffusive mass transfer of H2O (diffusion

coefficient D = 10−9 m2/s, Baker et al., 2005) around a bubble with radius R≈ 2cm (τd =R2/D; Lensky et al., 2004). The

dissolved CO2 is still out of thermodynamic equilibrium, as expected, because the diffusion coefficient is lower, being set to370

D = 10−10 m2/s (Baker et al., 2005). The density and viscosity of the liquid vary with the decreasing dissolved H2O. The

gas density decreases because of increasing H2O and decreasing CO2 that produce a decrease of the molar mass of the gas

mixture.

17

https://doi.org/10.5194/gmd-2021-224
Preprint. Discussion started: 12 August 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 10. Results at time t= 0.001s for the axsymmetric gas water-basalt shock tube using the Lange-Carmichael EOS (Lange and

Carmichael, 1987) and the viscosity model of Giordano et al. (2008), with liquid phase switching from continuous to dispersed. Blue

lines: liquid (basalt); Red lines: gas (water). At time 0, the interface dividing high pressure (left, l) from low pressure (right, r) zone

is placed at 2.5 m. Initial conditions: Pl = 10MPa, Pr = 0.1MPa; Tl = Tr = 1273K for both phases; gas volume fraction αl = 0.05,

αr = 1; Ul = Ur = 0 for both phases. Isobaric specific heat capacities in the gas and liquid phase are, respectively, CPg = 2510J/kg−1K−1

(https://webbook.nist.gov/) and CPl,H2O = 2278J/kg−1K−1, CPl,basalt = 1600J/kg−1K−1 (Lesher and Spera, 2015). Thermal conduc-

tivity of the liquid is 1.5W K−1m−1 (Lesher and Spera, 2015); for the water gas phase a Prandtl number of 0.9 is used, corresponding to

thermal conductivity of 0.14W K−1m−1 (https://webbook.nist.gov/).

4 Conclusions

In this work we have presented MagmaFOAM, a library based on OpenFOAM that contains dedicated tools for the simulation375

of multiphase flows in magmatic systems. The MagmaFOAM implementation results in a flexible framework which is ideal

for development, testing, coupling and application of the great collection of existing and future modeling strategies needed to

tackle the variety of non linear multi-scale processes characterizing magma flows. MagmaFOAM includes dedicated multi-

component constitutive models for dealing with realistic properties for silicate melt-gas systems as well as different utilities

that automatize pre- and post-processing operations. We have analyzed a number of test cases that illustrate the current ca-380

pabilities and limitations of different modeling approaches in solving well-defined and reproducible flow problems, setting a

solid ground for future model selection, improvement and inter-comparison studies. We have shown some of the ingredients

that can be used for simulating the interaction among different silicate melts, as well as between melts and fluid phases, under

different assumptions and aimed at different portions of the magmatic system (deep reservoirs vs. shallow conduits). Applica-
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τ = 10-1

nCorr=5

τ = 10-3

nCorr=5

τ = 10-5

nCorr= 100

τ = 10-7

nCorr=200

Figure 11. Air-water shock tube simulations at different relaxation times τ and number of correctors. Dashed lines: analytical solution;

Solid lines: simulation. Blue lines: liquid (water); Red lines: gas (air). At time 0, the interface dividing high pressure (left, l) from low

pressure (right, r) zone is placed at 2.5 m. Initial conditions: Pl = 0.5MPa, Pr = 0.1MPa; Tl = Tr = 300K for both phases; gas volume

fraction αl = 0.05, αr = 0.1; Ul = Ur = 0 for both phases. Isobaric heat capacities of gas air and liquid water are, respectively, CPg =

1004.5J/kg−1K−1 and CPl = 4195J/kg−1K−1 (https://webbook.nist.gov/). Prandtl numbers of air and water are, respectively, 0.7 and

2.289, corresponding to thermal conductivities of 0.02W K−1m−1 and 0.67W K−1m−1, resepctively (https://webbook.nist.gov/).
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Figure 12. Reacting box simulation. At time 0 a small amount of gas (volume fraction αg = 10−4) is uniformly distributed in the box,

the basaltic melt is oversaturated in H2O (5 wt%) and CO2 (5000 ppm) at 80 MPa and 1373 K. The diffusion coefficients for H2O and

CO2 in the basalt are, respectively, 10−9 m2/s and 10−10 m2/s (Baker et al., 2005). Isobaric specific heat capacities in the gas and liquid

phase are, respectively, CPg,H2O = 2900J/kg−1K−1, CPg,CO2
= 1390J/kg−1K−1 (https://webbook.nist.gov/, Beaton et al., 1987) and

CPl,H2O = 2278J/kg−1K−1, CPl,CO2
= 1600J/kg−1K−1, CPbasalt = 1600J/kg−1K−1 (Lesher and Spera, 2015). Thermal conductiv-

ity of the liquid is 1.5W K−1m−1 (Lesher and Spera, 2015); for the gas phase Prandtl numbers of 0.9 for H2O and 0.7 for CO2 are used,

corresponding to thermal conductivities of 0.16W K−1m−1 and 0.09W K−1m−1 (https://webbook.nist.gov/, Beaton et al., 1987).
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tions of MagmaFOAM can thus include the study of magma mingling and mixing, as well as slug rising dynamics, or volatile385

flushing. Nevertheless, important limitations remain, most notably the development of a magma-specific mixture approach; or

the intrinsic complications in modeling the transition from tight to loose phase coupling (Section 3.3.1).

The framework described in this work allows for maximum flexibility and adaptability, giving the possiblity to explore

magmatic systems with different apporoaches given the specific conditions aimed at. As an example, the MagmaFOAM mod-

ular approach allows the coupling of its bubble growth models with both single and multi-fluid solvers, Lagrangian particle390

tracking, or with more complex constitutive equations. Indeed, at different stages within the evolution of magmatic plumbing

systems, different modeling approaches can be more appropriate to capture the fundamental physics governing the dynamics:

while low-gas-fraction, deep reservoirs may well be approximated by mixture theory, at shallower levels phase decoupling

becomes important and multi-fluid descriptions are more appropriate.

The tool is meant to be under continuous development, already underway. The addition of population balance equations to395

Eularian models to statistically describe the dispersed phases (bubbles and crystals) (Marchisio and Fox, 2013) will improve

our understanding of how polidispersity can impact magmatic system evolution (Colucci et al., 2017a; de’ Michieli Vitturi

and Pardini, 2020). The inclusion of Lagrangian tracers will result in a more detailed description of the micro-physics that

determines the macroscopic properties driving the dynamics. This approach in fact is more appropriate than that of Eulerian

models when the number of particles is too small to be treated as a continuum, or when single particles’ behaviour (e.g. rapidly400

expanding/contracting bubbles) is so specific that they are not well represented by unique averaged fields density, velocity or

temperature (e.g. Ghahramani et al., 2019). Finally, engineering applications have benefited from models that combine different

approaches, e.g. interface resolving and subgrid dispersed phase modeling with single or multi fluid frameworks. These hybrid

models, although not fully mature yet, allow in principle modeling at the same time the broad range of interface scales that

typically characterize gas-liquid flows including regime transitions (e.g., Wardle and Weller, 2013). From a volcanological405

perspective, predicting flow regime changes is of crucial importance to understand effusive-explosive transitions in eruptive

activity (Gonnermann and Manga, 2007).

Appendix A: Linear Rayleigh Taylor instability

Figure A1b shows how a small wave number perturbation (k = 0.15) initially grows with slower non constant growth rate.

Overall this effect make the extrapolated growth rate smaller than expected. However, after a relativily small time interval,410

the growth rate becomes constant with a value that results to be in good agreement with the theretical one (Figure A2). This

spuriuos effect gradually decreases till it diseappears as the wave number of the perturbation increases (Figure A1a). The

simulations are done using the solver interFoam with adaptable time step (Comax = 0.01).
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(a) (b)

Figure A1. Time evolution of the amplitude of two single mode perturbations (k = 0.5 (a), and k = 0.15 (b)) for the linear Rayleigh Taylor

instability benchmark. The growth rate of the perturbation is extrapolated with a linear regression excluding data in late (physical) and

eventually early (spurious) phases characterised by non linear effects (data not marked with an asterisk).

Figure A2. Extrapolated growth rate for two perturbations with linear regression excluding (blue) or not (red) data in the initial phase

characterised by non linear spurious effects.
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Appendix B: multiComponentODERPShellDStatic: model equations

A modified form of the Rayleigh-Plesset equation describes the hydrodynamics of the growth of a multi component spherical415

bubble in a finite incompressible shell of liquid of radius S.

ρR
d2R

dt2

(
1− R

S

)
+ ρ

(
dR

dt

)2(3
2
− 2R
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+
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pG(t)− pl(t) + 4
dR

dt
R2


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S∫

R

µ(r)
r4

dr


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R
.

In the above, ρl is the liquid density, R is the bubble radius, S is the radius of the shell (S3 = S3
0 +R3(t)), pG is the gas

pressure inside the bubble, pl is the pressure acting on the outside of the liquid shell, σ is the surface tension, t is the time and µ420

is the liquid dynamic viscosity that depends on the concentration of dissolved volatiles in the shell. Given pl(t) this represents

an equation that can be solved to find R(t) provided pG(t). pG is given by combining the mass conservation of the gas phase

with an equation of state for a perfect gas. Mass conservation of the gas phase is given by

d

dt

(
R3ρG

)
= 3R2ρl

N∑
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[
∂Ci
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]

r=R

, (B2)

where Di is the mass diffusivity and Ci the concentration of the i-th species dissolved in the melt. Mass conservation of the425

i-th dissolved specie is given by

d
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(
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= 3R2ρlDi

[
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∂r

]

r=R

, (B3)

where Yi is the concentration in the gas phase. Assuming local thermodynamic equilibrium at the bubble-melt interface

(i.e., Ci(R) = Ci,sat(pG)), a zero gradient boundary conditions at the shell boundary and a quasi-static diffusion in the shell

(Lyakhovsky et al., 1996), the term in square brackets in equations (B2) and (B3) is given by430
[
dCi
dr
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Assuming constant viscosity, the term in eq. (B1) is analytically integrated to obtain

−3
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For a monodispersed distribution, the gas volume fraction is given by

α=
R3

S3
. (B6)435

Appendix C: Shock Tube

Figures C1, C2 and C3 show results from the single phase shock tube simulations discussed in Section 3.3.1. Figure C4 shows

results from the air-water shock-tube with liquid phase switching from conituous to dispersed.

23

https://doi.org/10.5194/gmd-2021-224
Preprint. Discussion started: 12 August 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure C1. Results at time t= 0.006s for the air Sod shock tube. Dashed lines: analytical solution; Solid lines: simulation. At time 0, the

interface dividing high pressure (left, l) from low pressure (right, r) zone is placed at 0 m. Initial conditions: Pl = 0.1MPa, Pr = 0.01MPa;

Tl = 348.432K, Tr = 278.746K; gas volume fraction αl = 1, αr = 0; Ul = Ur = 0. Isobaric heat capacity is CP = 1004.5J kg−1K−1,

corresponding to heat capacity ratio γ = 1.4.

Appendix D: Magmatic Compositions

Table D1 reports the compositions in terms of major oxides of the magmas used in the simulations shown in the manuscript.440
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Figure C2. Results at time t= 0.00164s for single-phase shock tube with liquid water using SPWAT EOS. At time 0, the interface dividing

high pressure (left, l) from low pressure (right, r) zone is placed at 0. Initial conditions: Pl = 10MPa, Pr = 0.1MPa; Tl = Tr = 300K; gas

volume fraction αl = αr = 0; Ul = Ur = 0. Isobaric heat capacity is CP = 4195J kg−1K−1 (https://webbook.nist.gov/).
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Figure C3. Results at time t= 0.002s for single-phase shock tube with basaltic melt using Lange-Carmichael EOS. At time 0, the interface

dividing high pressure (left, l) from low pressure (right, r) zone is placed at 0. Initial conditions: Pl = 10MPa, Pr = 0.1[MPa; Tl = Tr =

1373K; gas volume fraction αl = αr = 0; Ul = Ur = 0. Isobaric heat capacity isCP = 1600J kg−1K−1 (Lesher and Spera, 2015). Thermal

conductivity is 1.5W K−1m−1 (Lesher and Spera, 2015).
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Figure C4. Results at time t= 0.0015s for the air-water shock tube with liquid phase switching from continuous to dispersed. Blue lines:

liquid (water); Red lines: gas (air). At time 0, the interface dividing high pressure (left, l) from low pressure (right, r) zone is placed at 2.5 m.

Initial conditions: Pl = 0.5MPa, Pr = 0.1MPa; Tl = Tr = 300K for both phases; gas volume fraction αl = 0.05, αr = 1; Ul = Ur = 0 for

both phases. Isobaric heat capacities of gas air and liquid water are, respectively, CPg = 1004.5J kg−1K−1 and CPl = 4195J kg−1K−1

(https://webbook.nist.gov/). Prandtl numbers of air and water are, respectively, 0.7 and 2.289, corresponding to thermal conductivities of

0.02W K−1m−1 and 0.67W K−1m−1 (https://webbook.nist.gov/).
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Code and data availability. The version of the model used to produce the results shown in this paper, as well as input data and scripts to

replicate all the simulations presented in this paper, are archived on Zenodo (Brogi et al., 2021).
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