
CSDMS: A community platform for numerical modeling of
Earth-surface processes
Gregory E. Tucker1,2, Eric W.H. Hutton3, Mark D. Piper3, Benjamin Campforts3, Tian Gan3, Katherine
R. Barnhart1,2,4, Albert Kettner3, Irina Overeem2,3, Scott D. Peckham3, Lynn McCready3, and
Jaia Syvitski3

1Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, USA
2Department of Geological Sciences, University of Colorado Boulder, USA
3Institute for Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, USA
4Current address: Landslide Hazards Group, US Geological Survey, Golden, Colorado, USA

Correspondence: G.E. Tucker (gtucker@colorado.edu)

Abstract. Computational modelling occupies a unique niche in Earth and environmental sciences. Models serve not just as

scientific technology and infrastructure, but also as digital containers of the scientific community’s understanding of the natural

world. As this understanding improves, so too must the associated software. This dual nature—models as both infrastructure

and hypotheses—means that modelling software must be designed to evolve continually as geoscientific knowledge itself

evolves. Here we describe design principles, protocols, and tools developed by the Community Surface Dynamics Modeling5

System (CSDMS) to promote a flexible, interoperable, and ever-improving research software ecosystem. These include a

community repository for model sharing and metadata, interface and ontology standards for model interoperability, language

bridging tools, a modular programming library for model construction, modular software components for data access, and a

Python-based execution and model-coupling framework. Methods of community support and engagement that help create a

community-centered software ecosystem are also discussed.10

1 Introduction

Our planet’s surface is a dynamic place, changing on timescales from the momentary triggering of a landslide, to year-by-year

resculpting of coastlines, to the formation of mountains and sedimentary basins over geologic time. The challenge of living

sustainably on a dynamic, human-impacted planet is multi-faceted and multi-disciplinary, and requires a deeper understanding

of a diverse set of processes ranging from permafrost melting to wildfire impacts, and from river delta sinking to changes15

in flooding. These interwoven research challenges have two things in common: they cross traditional boundaries of research,

and their solution requires computational models and model-data integration. Meeting these challenges efficiently requires

an effective, integrated, and holistic software cyberinfrastructure to support computational modeling and analysis across the

environmental sciences. Models embody theory in a quantitative and algorithmic form. By performing calculations at blinding

speed, numerical models extend our cognitive abilities, helping us explore and visualize the consequences of hypotheses.20

1

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

They allow us to apply existing theory to new situations. Where the processes are sufficiently understood, models can forecast

potential trajectories of natural and our anthropogenically perturbed Earth systems.

Creating, modifying, applying, and maintaining the software that implements numerical models requires time, money, and

specialized skills. The software may be invisible, but its creation and maintenance constitute an infrastructure investment just

as vital to science as the infrastructure supporting ship-based science or radio astronomy. More efficient infrastructure allows25

for more time devoted to other aspects of research and practice. And just as with laboratory infrastructure, scientific results

that rely on software cyberinfrastructure are only as robust and reproducible as the software itself. Scientific software therefore

needs quality control: errors in scientific software not only impede research, but also can produce misleading results that lead

to more serious consequences. The fact that modeling is both useful and technically challenging can give rise to a pernicious

temptation: to use an inadequate model for the job simply because the code that implements it is more easily available or more30

usable than better alternatives (Addor and Melsen, 2019).

A modular community software infrastructure must therefore maximize flexibility, creativity, and reliability while minimiz-

ing technical overhead. To use an artistic analogy: an ideal modeling infrastructure should provide the geo-artist with a wide

palette of colors, while making it easy to mix new ones, so that more time can be devoted to creating, and less time to fussing

with materials. Those materials must also be robust enough that the colors and textures will not degrade over time.35

Here we describe software tools, standards, and practices that are designed to enhance research productivity by reducing the

“time to science” in Earth modeling. Such tools and concepts form the key elements behind the Community Surface Dynamics

Modeling System (CSDMS). Founded in 2007 with major support from the US National Science Foundation, CSDMS is a

facility that supports and promotes computational modeling of diverse Earth-surface processes, in domains that span geomor-

phology, sedimentology, stratigraphy, marine geology, hydrology, and related aspects of geodynamics, geochemistry, soils,40

ecosystems, and human dimensions. CSDMS is currently organized into 12 community interest groups, representing about

2,000 members, and a small (about six full-time equivalent positions) Integration Facility that manages a web portal, develops

middleware, and coordinates community events and resources. Here we present tools and standards developed by and for the

CSDMS community. We describe a set of effective engineering practices that are well known among professional software

developers but less known among geoscientists and environmental scientists. We highlight aspects of the human element:45

community engagement and education turn out to be key elements in forging a shared and ever-improving computational

ecosystem.

We start with a background review of issues in scientific computing and research software across the sciences (Section 2), and

a brief history of CSDMS (Section 3). Section 4 frames the operational tasks involved in numerical process modeling as a six-

fold spectrum, ranging from simply executing a model program, to building a complete model from scratch. This sets the stage50

for a review of tools and practices designed to make these various tasks more efficient and their products more sustainable,

through sharing, standardization, education, and a set of enabling tools (Sections 6–7). We conclude with a discussion of

opportunities, needs, and challenges (Section 8).

2

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

2 Background

2.1 Scientific computing is here to stay55

Computing has emerged as a pillar of scientific inquiry, alongside theory, experiment, and direct observation (PITAC, 2005).

The ability to perform calculations at speeds that would have astonished researchers of our grandparents’ generation continues

to open up new territory across the sciences, and allows us to probe the limits to predictability in natural and engineered systems

(Post and Votta, 2005; Post, 2013). Computing, and the software that supports it, underlies numerous recent success stories,

from improved hurricane forecasting to the imaging of black holes.60

Events to Months Decades to Centuries Millennia to Epochs

M
a
ri

n
e

C
o
a
st

a
l

Te
rr

e
st

ri
a
l

(a) (b) (c)

(d)
(e)

(f)

(g)
(h) (i)

time scale

d
o
m

a
in

Figure 1. Examples of Earth surface process models across a variety of domains and time scales, here focusing on models of sedimentary

processes. (a) Probabilistic landslide occurrence (Strauch et al., 2018). (b) Catchment sediment yield (Carriere et al., 2020). (c) Landform

evolution (Barnhart et al., 2019). (d) Coastal and shelf dispersal of fluvially derived sediment (Kuehl et al., 2016). (e) Salt marsh evolution

under tidal and sea-level forcing (Mariotti, 2018). (f) Delta evolution as a function of river and wave forcing (Ratliff et al., 2018). (g) Turbidity

current dynamics (Nasr-Azadani et al., 2013). (h) Submarine turbidity fan stratigraphy (Groenenberg et al., 2010). (i) Sequence stratigraphy

(Steckler et al., 2019).

3

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Within the sphere of computing, numerical modeling—defined here as the computing of solutions to a set of equations and

algorithms that represent a system—plays a central role. The process of formulating a computational model and the theory

behind it encourages deep and precise thinking (e.g., Guest and Martin, 2020). Computational models both encapsulate theory,

and provide machinery with which to explore the consequences of that theory. Pipitone and Easterbrook (2012), for example,

described climate models as “executable theories of climate”. Numerical models in Earth and environmental science embody65

executable theory for many different aspects of the natural world (Fig. 1). At the same time, the numerical algorithms and

software that implements them provide a kind of mind-enhancing machinery. Whereas other scientific technology extends our

senses—allowing us to “see” what lies beyond the visible spectrum, and to “feel” the vibrations in the Earth—computational

modeling extends our cognitive capacity. By turning ideas into algorithms, we gain the ability to explore the logical conse-

quences of our ideas, make predictions, and compare them with observations. Discovery comes not only when the calculations70

provide self-consistent explanations for otherwise mysterious phenomena, but especially when the calculations surprise us,

revealing a logic trail that leads to new insights (Bras et al., 2003).

With the rapid growth in computing and digital infrastructure, many scientists now devote a large fraction of their research

time to developing software (Hannay et al., 2009; Prabhu et al., 2011; Wilson et al., 2014; Singh Chawla, 2016; Pinto et al.,

2018). A survey of nearly 2000 researchers in 40 countries by Hannay et al. (2009) revealed that 84% of respondents considered75

software development important for their research. According to their findings and those of Prabhu et al. (2011) scientists spend

as much as a third of their time writing and debugging computer programs. In the geosciences software has become critical

research infrastructure: as vital and worthy of maintenance as ships, telescopes, and seismographic arrays. Yet the invisibility

of software has led to challenges in developing and sustaining this critical research infrastructure (Eghbal, 2016).

2.2 Growing pains80

Experimental science absolutely depends on having high-quality laboratory infrastructure, and operating it with careful, sys-

tematic protocols. In this respect, computational science differs only in the invisibility of its primary infrastructure. Experi-

mental research methods, with their emphasis on transparency and replicability, pre-date computational science by over 200

years (Wilson, 2006; Fomel and Claerbout, 2009), and so it comes as no surprise that computational science has experienced

growing pains. Errors in software can have serious consequences for research. Software faults led to the failure of the Arianne85

rocket in 1996, and of the Mars Climate Orbiter mission in 1999. In 2006, discovery of a bug in image-processing software

led to the retraction of five papers in computational biochemistry (Miller, 2006). High-profile cases like these have sparked

concern about the quality and reliability of research software. Studies of scientific software development practices underscore

these concerns, suggesting that the practice of formal testing of code correctness remains relatively limited (Post and Votta,

2005; Wilson, 2006; Hannay et al., 2009; Nguyen-Hoan et al., 2010; Clune and Rood, 2011; Howison and Herbsleb, 2011;90

Prabhu et al., 2011; Kanewala and Bieman, 2014; Heaton and Carver, 2015). Hatton (1997) evaluated the performance of a

collection of seismic data processing programs, and found that the results varied even among programs that claimed to use the

same algorithm. Seeing little evidence of progress ten years later, Hatton (2007) wondered whether the scientific community

must “continue building scientific castles on software sands when we could do so much better?”

4

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Serious flaws in scientific software are not inevitable, however. Pipitone and Easterbrook (2012) found, for example, that95

climate models, which are subject to rigorous testing and quality controls, have very low defect density as compared with other

open-source software of similar scale. Their findings show that software quality control practices can work well when applied

to research products. So why are such practices not used more widely? One common obstacle is simply a lack of awareness of,

and training in, effective quality-control practices such as unit testing and continuous integration (Wilson, 2006; Faulk et al.,

2009; Hannay et al., 2009; Kanewala and Bieman, 2014), a finding that led Faulk et al. (2009) to remark that “scientists are100

trained to manage threats to validity in experimental design but not in their codes”.

A related challenge lies in computational reproducibility: the ability to recreate the results of a study using the same data

and software. The ability to reproduce others’ findings forms a cornerstone of the scientific method. Yet as computational

science has bloomed, concern has grown over the difficulty or impossibility of reproducing published results (e.g., Schwab

et al., 2000; Peng, 2011; Stodden et al., 2013; Barba, 2016; AlNoamany and Borghi, 2018; Chen et al., 2019; Krafczyk et al.,105

2019). In the words of LeVeque (2009), “scientific and mathematical journals are filled with pretty pictures of computational

experiments that the reader has no hope of repeating”. In a reproducibility study of 306 articles in the Journal of Computational

Physics, Stodden et al. (2018) found only six that provided enough method information to re-run the analysis without help

from the original authors. Of the remaining papers, about half were impossible to reproduce even after contacting the authors

for assistance.110

Reproducibility has several dimensions: sharing (the digital artifacts need to be available), discoverability (one needs to be

able to find them), learnability (there needs to be sufficient documentation), and operability (the operating interface needs to

be familiar, and the correct compute environment and dependencies must be available). Failure in any of these dimensions

hurts productivity, because researchers end up spending more time either figuring out opaque, poorly documented software,

or reinventing their own version from scratch. Collectively, reports of unreproducible results and unsustainable, under-tested115

software suggest that computational science relies on a brittle cyberinfrastructure, and productivity suffers as a result (Wilson,

2006; Faulk et al., 2009; Prabhu et al., 2011).

A variety of factors contribute to the challenges of research software quality, reproducibility, and reusability. Most scien-

tists lack formal training in software development, and tend not to know about tools and practices that could increase their

productivity (Kelly, 2007; Basili et al., 2008; Faulk et al., 2009; Hannay et al., 2009; Hwang et al., 2017; AlNoamany and120

Borghi, 2018; Pinto et al., 2018; Kellogg et al., 2018). Incentives also play a role: the academic system rewards publication of

new results rather than production of high-quality, reusable software (though credit mechanisms for software are now starting

to emerge) (LeVeque, 2009; Howison and Herbsleb, 2011; Morin et al., 2012; Turk, 2013; Ahalt et al., 2014; Poisot, 2015;

Hwang et al., 2017; Wiese et al., 2019). The combination of incentive structure and lack of training in best practices can lead

to inflexible, hard-to-maintain software (Brown et al., 2014; Johanson and Hasselbring, 2018). Often enough it ends up as125

“abandonware” when a project ends (Barnes, 2010). Reluctance by code authors to provide pro bono support also plays a role.

A certain embarrassment factor may contribute: in our own experience, as well as reports from other fields, researchers often

express reluctance to share “messy” code, even when they have used the software as the basis for published research (Barnes,

2010; Morin et al., 2012; LeVeque, 2013).

5

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

2.3 New community practices130

Despite the growing pains, there are solutions on the horizon. Tools and practices already exist that can improve the quality

and efficiency of software cyberinfrastructure, and improve productivity through coordination and reuse. Practices, tools, and

techniques that the software community uses routinely have begun to see uptake in the sciences, with good success (Bangerth

and Heister, 2013; Turk, 2013; Hastings et al., 2014; Wilson et al., 2014; Brown et al., 2014; Poisot, 2015; Hwang et al., 2017;

Nanthaamornphong and Carver, 2017; Scott, 2017; Taschuk and Wilson, 2017; Wilson et al., 2017; Benureau and Rougier,135

2018; Bryan, 2018; Adorf et al., 2018; Lathrop et al., 2019); in Section 3, we describe how the CSDMS community has

implemented some of these. And while there remains a critical need for teaching and training in scientific computing, some

universities, as well as community organizations such as Software Carpentry and various domain-centered groups (including

CSDMS) have begun to fill that niche (e.g., Jacobs et al., 2016).

One promising development is the emergence of software journals, which provides a mean to reward research software with140

the academic credit it deserves. For example, the Journal of Open Source Software (JOSS), which began publishing in May

2016, focuses not on papers about results obtained by software, but instead on the “full set of software artifacts” (Smith et al.,

2018). Reviewers of JOSS submissions evaluate the software directly; a one or two page abstract describing the purpose and

function of package forms the only textual component, apart from documentation. For the Earth and environmental sciences,

JOSS now complements more traditional text-based journals, such as Geoscientific Model Development, that provide a forum145

for software-oriented issues such as algorithm development and model verification. The growing importance of software in

research has also led to a new type of career track: Research Software Engineers (RSEs), whose cross-training in computing

and domain science positions them to help researchers build and maintain high-quality, sustainable software (Baxter et al.,

2012). Thus, the academic world now has the beginnings of a credit mechanism that incentivizes high-quality research software

cyberinfrastructure, and the first glimmers of a professional structure to help create and maintain that cyberinfrastructure.150

Better incentives and support for writing, documenting, and publishing research software can help address the productivity

problem because they encourage software reuse over reinvention. Community software libraries and modular frameworks

provide another avenue for reuse. Libraries are already widely available for general tasks such as numerical computing, parallel

programming, and general science and engineering operations; some examples include PETSc (Abhyankar et al., 2018), Deal.II

(Bangerth et al., 2007), and the SciPy family (Virtanen et al., 2020). “Librarization” of software makes it easier to share,155

reuse, and maintain (Brown et al., 2014). Frameworks are defined as a collection of interoperable modules together with

an environment for running and combining them. A framework provides a way to create coupled numerical models, and

more generally to simplify computational workflows (e.g., Leavesley et al., 1996; Voinov et al., 2004; Peckham et al., 2013).

Frameworks, as well as some open-source libraries, take advantage of contributions from many different community members:

the software becomes a resource created by and for a scientific community. Growth of a community framework does not160

happen by accident, however. Case studies of community frameworks, libraries, and other software packages reveal that success

requires two elements: a thoughtful, deliberate approach to community engagement (Bangerth and Heister, 2013; Turk, 2013;

Lawrence et al., 2015), and carefully designed standards and protocols (Peckham et al., 2013; Harpham et al., 2019).

6

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

3 A community-based modeling system for Earth-surface processes

The opportunities and growing pains that face scientific computing generally also apply to the sciences that deal with the Earth’s165

surface. To embrace these opportunities, the CSDMS Integration Facility was launched in 2007 with a mission to accelerate the

pace of discovery in Earth-surface processes research. The centerpiece was envisioned as “a modeling environment containing

a community-built, freely available suite of integrated, ever-improving software modules aimed at predicting the erosion,

transport, and accumulation of sediment and solutes in landscapes and sedimentary basins over a broad range of time and

space scales” (Anderson et al., 2004). A key concept is that a modular, community-built modeling system not only opens new170

opportunities for using coupled models to explore the interactions among processes that were once considered in isolation, but

also increases productivity by lowering the kinds of barriers described earlier. Achieving this requires a combination of:

– Community: coordination, sharing, communication, collaboration (e.g., conferences, workshops, hackathons);

– Computing: software tools, standards, templates, access to high-performance computing and cloud resources;

– Education: in-person and online resources for learning tools, techniques, and best practices; resources for teaching these175

to others.

In the following sections, we describe the software technology, community building, and education elements developed by

CSDMS, and how they help mitigate the obstacles discussed in Section 2. A useful way to understand the purpose of these

products and activities is to consider the different modes in which researchers operate numerical models, and the opportunities

that these different modes present to increase efficiency and productivity.180

4 A taxonomy of model operation

What tasks are often required in computational modeling? And how might those tasks be made efficient? Here we identify

six types of model-related activity, each of which has a unique set of challenges. Inspired by Bloom’s Taxonomy of cognitive

learning tasks, these six activities are arranged in order of complexity. The six modeling modes are summarized in Fig. 2.

4.1 Reproducing185

The most basic operation of a numerical model is to run it with predefined inputs. This is often the first step in learning how

to use a particular model. The ability to reproduce a model calculation efficiently involves all four of the FAIR principles

(Wilkinson et al., 2016). The user must be able to find and access the right version of the software. The user needs to learn

how to execute the model: a task made easier if the program follows an interoperability standard. In order to reproduce the

prior calculation, the user must have access to the input data, and must be able to recreate a compatible execution environment,190

including whatever dependencies might be needed.

7

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

BUILD
develop a new model code

COUPLE
combine models for two-way feedback

MODIFY
adapt a model to do something new

LINK
connect model(s) in a one-way workflow

APPLY
use an existing model to do a new thing

REPRODUCE
regenerate a prior result

Figure 2. Taxonomy of model operation tasks.

4.2 Applying

To use a computational model in a new application, a user needs to understand the theory and algorithms behind it, and that

requires good documentation. In addition, operating the model involves creating new input data, and often executing various

pre-processing operations to derive the right kind of inputs. Sometimes it also requires setting up a grid mesh. In some cases,195

mesh generation is a major undertaking, for example, meshes for 2D storm-surge models such as ADCIRC (Luettich et al.,

1992) and 3D regional ocean circulation models such as ROMS (Shchepetkin and McWilliams, 2005) are time-intensive to set

up.

4.3 Linking

Here linking means operating a model as part of a sequential workflow. For example, the workflow might include pre-processing200

data, using those data as input to the execution of a model, and using the output as input to another model, and/or performing

additional operations on the model’s output. To link a model in this way requires, among other things, compatibility in data

formats. Any incompatibility between the outputs from one step and the inputs to the next means someone has to write code to

do the appropriate translation.

8

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

4.4 Modifying205

When a model provides most but not all of the functionality needed for a particular application, the would-be user faces a

choice: modify the existing program, or write a new one that fits the purpose. Modifying an existing model program can save

a lot of duplication of effort, but only when the model package includes good internal documentation, a modular design, and

a structure that allows for modifications and enhancements while preserving the original functionality. A standard interface

design can help by providing a familiar structure.210

4.5 Coupling

Many of the exciting research frontiers in Earth and environmental science lie at the seams between systems. Some examples

include: rivers and coasts (e.g., Ratliff et al., 2018); tectonics and Earth-surface processes (e.g., Roy et al., 2016); ecosystems,

soils, and landscape evolution (e.g., Istanbulluoglu and Bras, 2005; Pelletier et al., 2017; Lyons et al., 2020); permafrost and

hydrology, and human actions and biophysical systems (e.g., Robinson et al., 2018). For these sorts of problem, coupled215

numerical modeling provides a great way to develop insight and to test hypotheses by comparing models with observations.

The complexity of the task of coupling two numerical models depends on the nature of coupling (for example, sequential

execution within each time step, versus coupling via joint matrix inversion) and on the program structure of each. The task

becomes much simpler when both models offer a public, standardized interface: a set of callable functions that allow the

appropriate exchange of data and mutual execution of algorithms.220

4.6 Building

New ideas stimulate the need for new models. It is a healthy sign of growth when a scientific community produces lots of new

models, because it signifies rapid development and exploration of new concepts. Writing a numerical model program from

scratch can be a time-consuming exercise. Libraries of pre-existing functions and data structures can greatly simplify the task.

Most modern programming languages offer libraries to handle basic mathematical operations, but even with these available,225

model-building can be a major effort.

The job becomes easier when the developer can draw on component libraries that provide data structures and algorithms

to address common tasks in numerical modeling, such as grid setup and input/output. It becomes easier still when common

domain-specific algorithms have been librarized and made available as building blocks with a standard interface (e.g., Brown

et al., 2014). Below we will look at an example of a component library that was designed specifically for building numerical230

models.

5 The CSDMS model repository: a platform for sharing and archiving software resources

Not so long ago, making model source code freely available was more the exception than common practice. Model developers

tended to view their models as trade secrets. If others wanted to use a model, the developer needed to be contacted, and could

9

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

negotiate to become more involved in the research. Furthermore, fewer tools and platforms were available to promote sharing,235

like GitHub (established 2008) or SourceForge (established 1999).

Science clearly benefits from openly shared source code. For one, sharing reduces duplication. After all, there is less need

to write a model from scratch, once a model has proven to capture a certain process well. Therefore, sharing of source code

accelerates science, as others are on a faster trajectory to learn from and build upon previous model development efforts. Shar-

ing of source code also makes science more robust and trusted, as people can report and fix bugs. Reproducing computational240

results requires shared source code. It is therefore encouraging to see a modeling culture shift over the last two decades (e.g.,

Hsu et al., 2015). For good data management, there are now the FAIR principals —Findability, Accessibility, Interoperability,

and Reusability—that have been formulated as guidelines for data producers and publishers (Wilkinson et al., 2016). Accord-

ing to the FAIR principles, each dataset should have a unique digital object identifier (DOI) to get to the data, associated

with searchable metadata. By including a formal, broadly applicable representation language, and using open and widely ac-245

cepted domain-relevant vocabularies and ontologies, data sets become more interoperable. And by providing an abundance of

documents that describe datasets and how they can be used, including license information, data become more reusable.

For model code, version-control platforms are now more widely used for sharing source code. But as the FAIR-data princi-

ples indicate, sharing code by itself is not enough. Therefore, CSDMS implemented the FAIR principles in setting up a model

repository for Earth surface dynamics (Fig. 3). A minimal set of metadata parameters is defined to: describe a model, provide250

contact information for the model development team, indicate technical details such as operating platform and the software

license, describe the model input and output, list its processes and key physical parameters, and indicate limitations. This min-

imal set of metadata includes a link to the actual source code, which needs to be made available 24/7 through a personal web

repository, or through the CSDMS community repository. All model metadata stored on the CSDMS web server, as well as the

actual source code (when stored in the CSDMS code repository on GitHub) are accessible for machines through web APIs.255

This makes it possible to automatically find and use the model. DOIs for stable versions of any listed code are generated on

request and included with the metadata. Model metadata are enriched by including additional reference information, such a

comprehensive bibliography. Following this practice, the CSDMS model repository currently holds 387 open source models

of the community (as of Feb 2021). The models and tools in the repository span a range of languages, with Python, C, and

Fortran being the most popular (Fig. 4). The diversity of languages raises a challenge in creating an interoperable framework.260

We will return to this point, and look at one solution, in Section 6.2.

6 The CSDMS Workbench

The CSDMS Workbench is a suite of tools, standards, documents, and resources that collectively provide a modular environ-

ment for model execution, analysis, and model-data integration. The Workbench comprises six main elements:

1. The Basic Model Interface (BMI): an interface standard that simplifies model execution and coupling (Hutton et al.,265

2020; Peckham et al., 2013).

10

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Figure 3. The CSDMS Model Repository.

2. Babelizer: a language-bridging tool that adds a Python interface to BMI-enabled model programs written in various

other languages.

3. pymt: a Python-language execution and model-coupling environment, which includes utilities for grid mapping and

other operations, together with a set of model components.270

4. Data Components: small Python-language modules that use the BMI to fetch data from particular data sets.

5. Landlab: a component-based Python library for model building and sharing of interoperable components (Hobley et al.,

2017; Barnhart et al., 2020a).

6. Standard Names: An ontology standard for naming variables.

In the following we give a brief description of each of these elements, and how they combine to form a modular modeling275

system.

11

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Python

27%

C

21%

C++

7% Fortran

24%

Java
1%

Matlab

12%

Other

8%

Figure 4. Distribution of different languages used by models and tools in the CSDMS Model Repository (percentages out of 453 total

programs; not weighted by program size).

6.1 The Basic Model Interface (BMI) Standard

When you sit in the driver’s seat of an unfamiliar car, you’re presented with a familiar sight: whatever the make or model, the

vehicle provides a steering wheel, brake pedal, and speedometer. Although we don’t usually think of it this way, drivers across

the globe benefit from a standard interface—a set of control mechanisms and information displays that have essentially the280

same design regardless of whether the car is a tiny electric two-seater or a giant stretch limousine. This standard interface makes

operating a car much easier than if each vehicle presented a radically different interface. Imagine a world where switching from

a sports car to a pickup truck required months of study and practice!

We believe numerical models should offer a similar standardization. To this end, CSDMS developed the Basic Model Inter-

face (BMI) (Peckham et al., 2013; Hutton et al., 2020). In software engineering, an interface is a named set of functions with285

prescribed arguments and return values. The BMI provides a standard set of functions for querying and controlling a model.

Just as with a car, when a model is equipped with a BMI, it becomes easier to use because its control functions are now the

same as every other model with a BMI.

Further, because BMI includes variable-exchange functions, a model with a BMI can be coupled with other models that

expose a BMI. Tables 1 and 2 list the individual functions that comprise the Basic Model Interface, along with a brief description290

of each. The table shows the current version of BMI, version 2.0, which represents a collection of improvements to the original

specification, especially in the representation of model grids (Hutton et al., 2020). A model program that has been wrapped with

a BMI can function as an interoperable component, which can be combined with others to create integrated models (Fig. 6).

12

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 1. Listing and description of Basic Model Interface (BMI) functions for run control and data access.

Function Name Description

initialize Perform startup tasks for the model.

update Advance model state by one time step.

update_until Advance model state until the given time.

finalize Perform tear-down tasks for the model.

get_component_name Name of the model.

get_input_item_count Count of a model’s input variables.

get_output_item_count Count of a model’s output variables.

get_input_var_names List of a model’s input variables.

get_output_var_names List of a model’s output variables.

get_var_grid Get the grid identifier for a variable.

get_var_type Get the data type of a variable.

get_var_units Get the units of a variable.

get_var_itemsize Get the size (in bytes) of one element of a variable.

get_var_nbytes Get the total size (in bytes) of a variable.

get_var_location Get the grid element type of a variable.

get_current_time Current time of the model.

get_start_time Start time of the model.

get_end_time End time of the model.

get_time_units Time units used in the model.

get_time_step Time step used in the model.

get_value Get a copy of values of a given variable.

get_value_ptr Get a reference to the values of a given variable.

get_value_at_indices Get variable values at specific locations.

set_value Set the values of a given variable.

set_value_at_indices Set the values of a variable at specific locations.

13

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 2. Listing and description of Basic Model Interface (BMI) functions for querying grid data.

Function Name Description

get_grid_rank Get the number of dimensions of a computational grid.

get_grid_size Get the total number of elements of a computational grid.

get_grid_type Get the grid type as a string.

get_grid_shape Get the dimensions of a computational grid.

get_grid_spacing Get the spacing between grid nodes.

get_grid_origin Get the origin of a grid.

get_grid_x Get the locations of a grid’s nodes in dimension 1.

get_grid_y Get the locations of a grid’s nodes in dimension 2.

get_grid_z Get the locations of a grid’s nodes in dimension 3.

get_grid_node_count Get the number of nodes in the grid.

get_grid_edge_count Get the number of edges in the grid.

get_grid_face_count Get the number of faces in the grid.

get_grid_edge_nodes Get the edge-node connectivity.

get_grid_face_edges Get the face-edge connectivity.

get_grid_face_nodes Get the face-node connectivity.

get_grid_nodes_per_face Get the number of nodes for each face.

While a BMI can be written for any language, CSDMS currently supports four languages: C, C++, Fortran, and Python. A

simple example of using a BMI written in Fortran is shown in Listing 1 below. The model shown in this example is the surface

Listing 1 Example Fortran BMI code.

type (bmi_prms_surface) :: model

character (len=*) :: config_file

integer :: status

double precision :: now, end_time

status = model%initialize(config_file)

status = model%get_current_time(now)

status = model%get_end_time(end_time)

do while (now < end_time)

status = model%update()

status = model%get_current_time(now)

end do

status = model%finalize()

14

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

water component of the Precipitation Runoff Modeling System (PRMS), developed by the U.S. Geological Survey (Leavesley295

et al., 1983). In the example, the model is initialized from its native configuration file, then stepped forward in time until it

reaches its stop time, whereupon any resources it uses are deallocated. Note that only BMI function calls are used to drive the

model; no knowledge of the underlying calls to control PRMS is needed.

Hoch et al. (2019) provide a current research example of using BMI. In their study, they coupled a hydrologic model, PCR-

GLOBWB, with a pair of hydrodynamic models, CaMa-Flood and LISFLOOD-FP, through BMI. They observed that a coupled300

model system enhanced the accuracy of peak discharge simulations (Fig. 5). Hoch et al. conclude that “results confirm that

Figure 5. Simulated discharge at a river monitoring station from coupled hydrologic and hydrodynamic models. (Reproduced from Figure 6

in Hoch et al. (2019).)

model coupling can indeed be a viable way forward towards more integrated flood simulations. However, results also suggest

that the accuracy of coupled models still largely depends on the model forcing.”

6.2 Language Interoperability: The Babelizer

Looking at Fig. 4, we notice that software generated by the CSDMS community reflects a range of programming languages305

and, so, language interoperability is critical to a coupling framework if it is to bring together this diverse set of models.

One approach to solving this problem is to choose a hub language through which other languages will communicate. An

advantage of this approach is that it needs only to provide bridges from each supported language to the hub language, rather

than building bridges for each language to every other language. CSDMS uses Python as a hub language for several reasons: it

is open source, has a large user base in the user community, has an active community that supports a vast library of 3rd-party310

packages (numpy, scipy, xarray, pandas, etc.), and, importantly, there are existing pathways to bring many other languages into

Python.

The babelizer is a command-line utility CSDMS created to streamline the process of bringing a BMI component into

Python. For libraries that expose a BMI, the babelizer creates the necessary glue code to create a Python importable package

that presents the BMI component as a Python class. We wrote the babelizer to be easily extensible to additional languages but,315

presently, it can be used to wrap libraries written in C, C++, and Fortran using the Cython language.

15

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

MODEL
A self-contained

computer program
that represents the

behaviour of a system

COMPONENT
An interoperable

module that can act as
part of an integrated

modeling system

MODEL

COMPONENT

Figure 6. When a numerical model program is “wrapped” with a standard interface and compiled as an importable module, it becomes an

interoperable component.

6.3 Execution and Coupling Framework: pymt

Models in the Earth Sciences are as diverse as the environments they are intended to represent. Codes are written by hundreds

of authors, in different languages, from a diverse range of domains, operate on time and space scales that span orders of

magnitude, and are oftentimes written in isolation—never intending to be used by someone outside the core development320

team. And so, models do not fit so neatly together.

Although the CSDMS collection of models is incredibly diverse, there is a common thread possible—the Basic Model

Interface (BMI; Section 6.1) —that connects them and allows us to create tools that allow scientists to easily pick up, run,

and even couple these models with one another. While only a subset of codes in the Model Repository (Section 5) provide a

BMI, the concept is general enough that any model can be given one. To provide a framework for operating and coupling these325

BMI-equipped codes, the CSDMS Integration Facility develops and maintains a Python package known as the pymt (Python

Modeling Toolkit).

The CSDMS Integration Facility has written the pymt as a Python package that gives scientists a set of utilities for running

and coupling Earth System models within a Python environment. We see the pymt as, primarily, two things: (1) a collection of

Earth-surface models, in which every model exposes a standardized interface (and so, if you are able to run one model, you will330

be able to run any model), and (2) tools needed for coupling models across disparate time and space scales. A key feature of

pymt is extensibility: any contributor can implement a BMI and use the babelizer (6.2) to create to add a new model or utility

to the toolkit.

Although the pymt itself is written in Python, the models in its collection need not be written in Python. The babelizer

allows developers and contributors to bring models from other languages into a Python environment. The current pymt model335

collection is detailed in Table 3. One thing to note when reading through this list, apart from the diversity of models, is

that models span a range of granularity (that is, the size of a model’s scope). Granularity ranges from a single equation (for

example, from hydrology, the Richards equation or Green-Ampt method to model infiltration) to a collection of coupled process

models (or even a complete modeling framework; e.g. CHILD (Tucker et al., 2001) or Sedflux3D (Hutton and Syvitski, 2008)).

However, we find that the most useful model size is one between these two extremes, which simulates a single physical process340

16

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 3. Models available as components in the Python Modeling Tool

Component Property / Process(es) Language

FrostNumber permafrost occurrence Python

Kudryavtsev (Ku) soil active layer thickness Python

GIPL soil temperature & heat flow Fortran

ECSimpleSnow snow balance Fortran

HydroTrend river water & sediment discharge C

RAFEM river avulsion & floodplain evolution Python

CHILD landscape evolution C++

CEM sandy, wave-dominated coastline evolution C

GridMet meteorological data access Python

Sedflux3D seafloor evolution C

Avulsion river avulsion C

Plume hypopycnal sediment plume C

Subside 2D lithospheric flexure C

OverlandFlow∗ Surface water runoff Python

Flexure∗ 1D/2D lithospheric flexure Python

LinearDiffuser∗ 2D linear diffusion Python

ExponentialWeatherer∗ Weathering of bedrock on hillslopes Python

TransportLengthHillslopeDiffuser∗ Hillslope diffusion Python

Vegetation∗ productivity, biomass and leaf area index Python

SoilMoisture∗ Root-zone soil moisture Python

DepthDependentDiffuser∗ Depth and slope dependent linear diffusion Python

FaSTMECH River flow and morphodynamics solver Fortran

PRMSStreamflow River channel flow (Muskingum routing) Fortran

PRMSGroundwater Subsurface water flow Fortran

PRMSSoil Soil zone flow Fortran

PRMSSurface Surface water flow Fortran

(* = Landlab component)

17

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

(for example the compaction of sediment under an overlying load, or the transport of sediment by way of hypopycnal sediment

plumes). Models of this size are flexible in the number of other models they can couple with but not so small that they do not

justify the extra overhead of creating a separate component.

We have included with the pymt a collection of tools a modeler can use to connect a disparate set of models. For example,

models will not necessarily operate on the same spatial grid and so may have different spatial resolutions or even different345

grid types (e.g., raster versus unstructured mesh). To overcome this problem, we use the Earth System Modeling Framework

(ESMF) grid mapper, which uses interpolation to translate variables between grids. Using this grid mapper, a modeler can write

a script that gets grid values from one model and pymt will automatically map them onto the grid of another (Fig. 7).

Another common issue when exchanging data between models in a coupled is system is unit mismatches. To address this

issue, the pymt contains a Python wrapped version of the udunits unit conversion library. When connecting components within350

pymt, the user specifies the units for quantities that components will either use or provide. As with grid mapping, the pymt

decorates the standard BMI with additional functionality, thus leaving these common tasks to the framework rather that to

the developer of each model. The two quantity converters (grid mapping and unit conversion) target the BMI get_value

methods, that is differences in quantities defined on a spatial grid. However, two models can also differ temporally.

Depending on a model’s time resolution, the algorithm it uses to solve a set of equations, or the time scale being simulated,355

models may not advance forward time at compatible intervals. However, when coupling models, we require the exchange of

quantities to be made when models are synchronized in time. While the BMI update_until method could be used for this,

we recognize (for some of the reasons listed above) that not all models can realistically implement this method. For such cases

we’ve added time interpolators to the pymt by way of a modified update_untilmethod that estimates values at intermediate

time steps. The pymt accomplishes this by temporarily saving quantities at previous time steps and then interpolating between360

time steps. Consider, for example, a user who wants to couple two models: the first advances in time at ∆t and the second at a

larger time step of 2∆t. Both models sit at time t0 but the first wants to get a quantity, x(t), from the second at t = t0 +∆t. To

do so, pymt advances the second model by its time step to t = t0 + 2∆t and returns an interpolated value of x(t0 + ∆t). pymt

does this behind-the-scenes within the second model’s update_until method.

Figure 7 shows the results of a coupling experiment that demonstrates some of pymt’s capabilities. Here we have coupled365

the landscape evolution model CHILD with the seascape evolution model sedflux3D. The landscape is uplifted and eroded by

CHILD, including fluvial transport of sediment to the coast. At the coast, sedflux3D takes over and transports sediment to the

seafloor through surface sediment plumes and, over time, builds up a delta, which becomes part of the subaerial landscape (and

thus part of the domain of CHILD). For every time step, CHILD passes river fluxes to sedflux3D which, in turn, passes updated

landscape elevations back to CHILD. Apart from the difference in domains (land vs. sea), the two models also differ in their370

computational grids: CHILD uses an unstructured mesh while sedflux3D uses a uniform rectilinear grid. The pymt manages

the time stepping, variable exchange, and the mapping of variables between the two grids.

In addition to providing a set of coupling tools, pymt provides an interactive environment to couple and run models. Although

the two models in our previous example were written in C (sedflux3D) and C++ (CHILD), when imported as Python classes

in pymt, users are able to instantiate and run the two models interactively. A user advances models one time step at a time and375

18

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Figure 7. Results of a coupling experiment using the Python Modeling Toolkit (pymt). The CHILD model (C++; unstructured mesh) erodes

an uplifting landscape and transports sediment to the coast. Sedflux (C; structured rectilinear grid) sends sediment from the coast to the

ocean as surface plumes where it then settles onto the seafloor. As sediment accumulates on the seafloor, deltas begin to form and this new

landscape is sent back to CHILD, completing the two-way coupling between these two pymt components.

can then query or even change values dynamically. When run in their native languages, a user would set the initial conditions

for a model simulation and then let the model run to completion before examining output. A user would never be able to

dynamically change values as it advanced. The functionality that pymt provides allows a user to experiment interactively,

examining state variables as the model evolves, and dynamically changing model state variables as it advances—all within a

Python environment with its large collection of visualization and analysis packages.380

6.4 Data Components

Researchers rarely use numerical models in isolation. Working with models nearly always includes working with data sets too:

the data that go into a model as input, the output data that a model produces, and the data to which a model’s output is compared

(Fig. 2). Productivity suffers when these data sets are cumbersome to access and use. Just as model interface standards like

BMI make it easier to work with numerical models, standardized methods for data access and retrieval can ease the burden385

of working with data. To that end, CSDMS has developed a programmatic approach that uses the BMI for data retrieval and

access. Functions such as initialize() retrieve and open a data set, and get_value() fetches particular data items or

subsets. A program that uses the BMI to access items from a particular data set is known as a Data Component. Using the

same interface for model and data operation makes it easier to swap models and data sets; for example, one might compare

19

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

use of model-calculated versus measured wave heights in a simulation of coastal sediment transport. Because CSDMS Data390

Components are written in Python, they can take advantage of data-management packages like pandas and xarray.

The data components are designed to provide a consistent way to access various types of datasets (e.g., time series, raster

grid, and multidimensional space-time data) and subsets of them without needing to know the original file formats. Each

data component effectively “wraps” a dataset with a BMI (with the exception of certain BMI functions, such as set_value,

which do not apply to datasets). Data components can easily interact with BMI-enabled numerical models in the pymt modeling395

framework, or other similar frameworks.

One example is the National Water Model (NWM) data component. This data component can access and subset the fore-

casted streamflow time series generated by the NWM hydrologic modelling framework. Figure 8 shows an example of how the

NWM data component can be used to get the streamflow data at a river channel for a flooding event. Figure 9 shows the corre-

sponding time series plot. This data component includes a set of standard control and query functions (e.g., initialize(),400

update()). These standard methods make the dataset easier to couple with BMI-enabled numerical models without needing

to know the time-series file format.

6.5 Creating new models: Landlab

Landlab is a Python-language library designed to support the creation, combination, and re-use of 2-D models (Hobley et al.,

2017; Barnhart et al., 2020a). For the moment, let’s presume that a model developer has identified input and output parameters,405

model state variables, and the governing equations and/or model rules. We might then synthesize the tasks of building the model

(Section 4.6) into two types: (a) creating required data structures, and (b) implementing a numerical solution to the governing

equations that act on those data structures. For example, most models need to represent the computational domain, including

information across the domain, and adjacency information describing how the different parts of the domain are connected

to one another. This division is simplistic, and neglects many intricacies, yet it captures the fundamental activities of model410

building.

Landlab provides re-usable software infrastructure that addresses the most common needs for our two model-building tasks.

For grid-based data structures, Landlab provides a grid object to represent the computational domain and store fields of state

variables (Fig. 10). Landlab provides several two-dimensional grid types, which all share the same underlying graph-based

data structures. Current grid types include regular raster, network, regular hexagon, and unstructured (Delaunay/Voronoi). For415

all grid types, the adjacency information and access to fields follows the same interface—making it easier for a model to work

on multiple grid types.

To address the second model-building task, Landlab provides two capabilities. First is a set of numerical utilities that support

common needs. These include, for example, the ability to calculate differences, gradients, fluxes, and divergences of values

stored at fields. Second is a library of Components (Fig. 11). Each Landlab component simulates a single process, such as420

routing of shallow water flow across a terrain surface (Adams et al., 2017), calculating groundwater flow (Litwin et al., 2020),

modeling sediment movement in a river network (Pfeiffer et al., 2020), or simulating biological evolution across a landscape

(Lyons et al., 2020). Components are implemented as Python classes, and are derived from a common base class that defines

20

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Example: using the National Water Model (NWM) Data Component to download data

The NWM Data Component is implemented with a Python class called BmiNwmHs.

Import BmiNwmHs class and instantiate it. A configuration file (yaml file) is required to provide the parameter settings for data download.

In [1]: import matplotlib.pyplot as plt
import numpy as np
import cftime

from nwm import BmiNwmHs

initiate a data component
data_comp = BmiNwmHs()
data_comp.initialize('config_file.yaml')

Use variable-related methods from BmiNwmHs class to check the variable information of the NWM dataset. This data component stores a flow
forecast variable.

In [2]: # get variable info
var_name = data_comp.get_output_var_names()[0]
var_unit = data_comp.get_var_units(var_name)
print(' variable_name: {}\n var_unit: {}\n'.format(var_name, var_unit))

Use time-related methods to check the time information of the NWM dataset. The time values are stored in a format that follows the CF convention
(http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.pdf).

In [3]: # get time info
start_time = data_comp.get_start_time()
end_time = data_comp.get_end_time()
time_step = data_comp.get_time_step()
time_unit = data_comp.get_time_units()
time_steps = int((end_time - start_time)/time_step) + 1
print(' start_time:{}\n end_time:{}\n time_step:{}\n'
 ' time_unit:{}\n time_steps:{}\n'.format(start_time,
 end_time,
 time_step,
 time_unit,
 time_steps))

Loop through each time step to get the flow and time values. stream_array stores flow forecast values. cftime_array stores the numerical time values.
time_array stores the corresponding Python datetime objects. get_value() method returns the flow forecast value at each time step. update() method
updates the current time step of the data component.

In [4]: # initiate numpy arrays to store data
stream_value = np.empty(1)
stream_array = np.empty(time_steps)
cftime_array = np.empty(time_steps)

for i in range(0, time_steps):
 data_comp.get_value(var_name, stream_value)
 stream_array[i] = stream_value
 cftime_array[i] = data_comp.get_current_time()
 data_comp.update()

time_array = cftime.num2date(cftime_array, time_unit, only_use_cftime_datetimes=False)

 variable_name: Flow Forecast
 var_unit: cfs

 start_time:1503450000.0
 end_time:1503511200.0
 time_step:3600.0
 time_unit:seconds since 1970-01-01 00:00:00 UTC
 time_steps:18

Figure 8. Screenshot of a JupyterNotebook demonstrating how to use the NWM Data Component to access and subset a streamflow dataset.

common attributes, and enforces a minimum set of metadata for each component. If a researcher wishes to write the code for

a numerical model, and the desired elements of that model have already been implemented as Landlab components, the model425

21

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

08-23 02 08-23 04 08-23 06 08-23 08 08-23 10 08-23 12 08-23 14 08-23 16 08-23 18
Year 2017

1318

1320

1322

1324

1326

1328

1330

1332

Fl
ow

 F
or

ec
as

t (
cf

s)
Streamflow forecast for Channel 5781915 during Hurricane Harvey

Figure 9. Time series plot for the accessed NWM streamflow dataset.

Figure 10. Example of a simple finite-volume numerical model of hillslope evolution, written in Python using the Landlab library. Model

uses a diffusion equation to represent an evolving hillslope. The concise source code at right illustrates the use of a Landlab grid object

together with fields and built-in functions for numerical gradient and divergence functions on these fields.

can be programmed efficiently by instantiating each component, and then executing the run_one_step method for each

component within a loop (Fig. 11).

The Component base class was designed to expose a Basic Model Interface (BMI; Section 6.1), which allows a Landlab

component to be used as a BMI-enabled component. Although we do not expect most Landlab users to directly use this

alternate interface, the component’s BMI acts as a bridge that allows it to be incorporated into other BMI-friendly frameworks430

and tools (e.g., pymt, dakotathon).

The Python Modeling Toolkit (pymt; Section 6.3) is a model-coupling framework that provides tools for using and coupling

BMI-enabled components, written in a range on programming languages, which may not have been written with the intent of

operating within a coupling framework. Operating as a BMI component, Landlab components act as isolated elements that no

22

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Figure 11. Example of a simple landscape evolution model, written using the Landlab programming library. Model code at right illustrates

the use of three components to create the model.

longer share a common grid and data; when used in this mode, Landlab components require an input file that describes the435

grid, parameter values, and initialization setup. This is by design and required by the BMI so that a user interacts with the

component as with any other BMI component without being aware of the inner workings of a Landlab component.

Despite the name, Landlab is not restricted to terrestrial processes. Its component collection includes, for example, compo-

nents for coastal and marine processes such as tidal circulation and marine sedimentation. Its design is amenable to a wide

variety of 2D grid-based numerical models and cellular automata applications. Landlab can be used, for example, to construct440

integrated source-to-sink models that treat the full geologic cycle, tracking sediment from its creation on land to its deposition

in marine basins (Fig. 12).

The design of Landlab supports a variety of usage styles. Interested users and/or developers may use Landlab to create models

as Components, or as scripts that combine components. Alternatively, Landlab can be used to build stand-alone packages

packages such as terrainbento (Barnhart et al., 2019), which combine Landlab components into a predefined set of445

models.

6.5.1 HyLands: an example of a component-based integrated model

The modular design of Landlab enables the development of numerical tools in an efficient manner. An example of a recently

developed Landlab-built model is HyLands: a landscape evolution model that simulates mass wasting and sediment redistri-

bution on hillslopes. The model was originally writte in a closed-source language (Campforts et al., 2020); translating the450

original code into Landlab converts the original product into a fully open-source tool for the broader community, and pro-

vides a new process component to simulate landsliding. The grid engine and other tools available within the Landlab library

enabled efficient implementation and provide capabilities for coupling with other, existing Landlab components. An example

23

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

el
ev

at
io

n
(m

)

<

Figure 12. Snapshot of prototype integrated numerical model of landscape and sedimentary basin evolution. Domain size is 250 by 250 km.

Simulation shows a hypothetical micro-continent with an active NNE-oriented extensional fault. Sea level varies stochastically; this particu-

lar snapshot captures a period of rising sea level after a brief low-stand. Model was constructed using Landlab components for flow routing

(FlowAccumulator, FlowDirectorSteepest, LakeMapperBarnes), fluvial processes (ErosionDeposition), marine sediment transport (Simple-

SubmarineDiffuser), lithosphere flexure in response to loading/unloading (Flexure), and extensional faulting (ListricKinematicExtender).

Colormap designed by Thyng et al. (2016).

is the Stream Power with Alluvium Conservation and Entrainment (SPACE) component, which has been developed to simu-

late fluvial sediment transport and incision (Shobe et al., 2017) and is showcased here as an example of model coupling with455

HyLands.

The integration capabilities of Landlab, where new and existing components can be combined in a straightforward way, opens

up new possibilities for applied environmental engineering and fundamental scientific research. For HyLands in particular, the

coupling of a deep-seated landslide algorithm with a sediment routing system will (i) help on a more applied level to explore

the impact of future changes in storm frequency on landslide occurrence and sediment dynamics (Fan et al., 2019), and (ii)460

on a more fundamental level to facilitate the investigation of the interaction between landslides and sediment dynamics over

geological timescales. The latter is illustrated in Fig. 13, where we use the Landlab software to simulate the impact of uplifting

terrain on the formation of alluvial fans. Simulations are executed with and without landslide activity (Fig. 13a vs. Fig. 13b).

Resulting magnitude-frequency and area-volume relationships for the simulated landslides are shown in Fig. 14. The evolution

of the alluvial fans is further visualised in the movies listed in Table 4. For details regarding the algorithms and physics465

supporting the HyLands component, see Campforts et al. (2020).

24

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Figure 13. Illustration of HyLands model component. a. Time slices showing evolution of the landscape to steady state, without landsliding.

The blue line represents the location of the river plotted in subplot (e). b. Same as (a), with landsliding. c. Sediment accumulation and the

formation of alluvial fans. d. Landslide activity during the depicted time step. Red colors represent the logarithm of the landslide erosion, blue

colors represent deposition. (e.) Shows the topographic and bedrock elevation (red and black line respectively) and the sediment thickness

(orange line). The sediment flux is plotted against the right-hand y-axis (blue line). Note that, during landsliding, both pure landslide dams

arise (red bumps on the profile) as well as irregularities in the bedrock profile (grey bumps). The latter originate from the river being redirected

after landsliding, forming epigenetic gorges.

25

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Figure 14. (a) Magnitude-frequency relationship of the landslides simulated with Landlab-HyLands (red dots) and illustrated in Fig. 13.

(Inset) Scatter density plot showing the simulated Area-Volume relationship.

Table 4. Simulation movies created with Landlab-HyLands

Scenario Description Link

No landslides topography https://youtu.be/c5d7T8eehxw

location of longest river https://youtu.be/GqokukWi9cs

river profile https://youtu.be/A_JZ9POfJ54

sediment thickness https://youtu.be/t0_tel5fhbM

Landslides topography https://youtu.be/1K_ceKYt9Nw

location of longest river https://youtu.be/YkmbUTN7zlI

river profile https://youtu.be/jyWgKTcMe74

sediment thickness https://youtu.be/rwEBqGtHZs0

landslide erosion and deposition https://youtu.be/_xoSm7p4ZxI

6.6 Standard Names

Ensuring interoperability when coupling models or selecting datasets as inputs to models requires accurate alignment of scien-

tific variables. Scientific variables are complex concepts composed of multiple facets—a phenomenon or object of observation,

the corresponding physical quantity being measured, spatiotemporal context for the phenomenon, spatiotemporal reference for470

the measured quantity, mathematical operations applied to transform the physical quantity, etc. Because of this, and because

terminology varies across disciplines, the semantic mediation task—determining whether two variables represent compatible

concepts—can be quite involved. In CSDMS, BMI works in tandem with the CSDMS Standard Names (CSN) (Peckham

26

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

et al., 2013) to ensure proper alignment between resources. The Standard Names were developed to standardize and unify the

representation of scientific variables within CSDMS.475

A CSDMS Standard Name contains two parts: an object part and a quantity part, with adjectives and modifiers (as prefixes)

being used to help avoid ambiguity and identify a specific object and a specific, associated quantity. The quantity part may

include one or more operation prefixes that create a new quantity from an existing quantity. An example related to surface-

water hydrology is the runoff rate, for which the Standard Name is

land_surface_water__runoff_volume_flux480

The double-underscore separates the object (surface water on land) from the quantity (the volume flux of runoff). The word

“flux” implies a quantity per time per surface area, and so the implied dimensions are length per time.

As with all standard naming approaches, the Standard Names are limited in the amount of information they can represent

because their data model and definitions are not explicitly represented. The Scientific Variables Ontology (SVO) (Stoica and

Peckham, 2018, 2019b, a; Stoica, 2020; SVO, 2020), a blueprint for representing scientific variables utilizing a compact set of485

domain-independent categories, relationships, and modular design patterns, was developed to address these issues. In computer

science, an ontology is a system that attempts to capture and organize knowledge in a particular domain (in machine readable

form), as understood by experts in that domain or subject area. In SVO, the CSN are represented with an explicit, formal model

in machine-readable form using Semantic Web best practices (W3C Working Group, 2008). Because SVO is formalized, it

can be used to enable searching, semi-automated generation of new variable representations, and inexact but sufficient variable490

alignments through logical reasoning.

7 Community engagement

One of CSDMS’ major activities has been the creation of a thriving community around Earth-surface dynamics modeling

(Overeem et al., 2013). As of 2020, over 2,000 members, representing 552 institutions (144 US academic) and 71 countries, had

joined the community. CSDMS is, by design, a broad and deep coalition of members from disciplines reflected by five Working495

Groups and seven Focus Research Groups (Figure 15). From its inception, CSDMS has encouraged trans-disciplinarity by

providing opportunities such as annual meetings, workshops, hackathons, and training events for domain scientists to interact

with colleagues from other Earth and social science disciplines. These connections are essential for knowledge exchange among

community efforts and allow for wider penetration of new technology and ideas. Cross-pollination of ideas from these events

and other community-member interactions have led to a variety of independently funded research projects. CSDMS has played500

a key role in shifting the paradigm to open code sharing in the Earth surface processes by facilitating resource sharing through

model, data, and education repositories on the CSDMS web portal. CSDMS also offers a variety of services to community

processes and the geoscience subdiscipline of interest. Along with their disciplinary expertise, researchers who work with

computational models also need a strong foundation in programming, advanced computing, and data analytics (Atkins et al.,

2011).505

27

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Traditional Earth science education does not usually equip students with skills to use modern cyberinfrastructure and com-

puting resources efficiently, or to become model developers (Campbell et al., 2013). The Earth surface processes community

critically needs a platform to teach modern programming practices and high-performance computing methods to develop in-

novative models that can be used to understand and predict how the Earth’s surface responds to environmental change and

human influence. The practice of modeling lies at the core of predictive Earth-surface sciences, and educators should engage510

students in building, testing, and applying models (Hestenes, 1996; Manduca et al., 2008), but we found from a review of

course catalogs that in practice the undergraduate curricula of more traditional discipline-focused departments do not include

this component (Campbell et al., 2013). This issue is not entirely unique to Earth-surface sciences. The geosciences today are

intensively quantitative, and there is an urgent need for a workforce with strong STEM skills (Council et al., 2012). The United

States’ National Science Foundation (NSF) recognizes as one of its “10 Big Ideas” that pathways are needed for educators to515

create a 21st-century workforce capable of effectively dealing with data (King and South, 2017). Moreover, an agile STEM

workforce is considered a national priority (Atkins et al., 2011). Realizing this, CSDMS provides hands-on training opportuni-

ties during meetings. Some efforts are meant to build foundation—for example, via short courses that equip graduate students

with skills in best programming practices. Other outreach efforts consist of short clinics, targeted to give potential users of

cyberinfrastructure an active feel for certain models or computational techniques, or to provide an update to experts on new520

developments. More extensive separately organized hackathons bring together small science teams to work on solutions for

more specific outstanding research problems. In 2020, CSDMS inaugurated an immersive Earth Surface Processes Summer

Institute for students and early career scientists, focused on capacity building for Earth-surface processes modeling.

Terrestrial34%

Coastal26%

Marine17%

EKT
12%

Cyber 11%

Working Group Membership

Hydrology 42%

Geodynamics
16%

Ecosystem
Dynamics

10%

Human
Dimensions

9%

Critical Zone9%

Carbonates &
Biogenics8%

Chesapeake6%

Focus Research Group Membership

Figure 15. CSDMS Working Groups and Focus Research Groups.

28

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

8 Discussion and conclusions

In May 2020, the US National Science Foundation released a special report, prepared by the National Academy, on research525

opportunities in the Earth sciences (NRC, 2020). The report highlighted three unique types of research infrastructure: instru-

mentation, human infrastructure, and cyberinfrastructure. The report’s recognition of cyberinfrastructure as a distinct form of

research infrastructure is one indication of the critical role that computing now plays in the Earth and environmental sciences.

Environmental modelling, and the software and culture-of-practice that support it, constitutes a key part of that cyberinfras-

tructure. Research software is infrastructure, and deserving of the same care and attention as a laboratory or field station. So530

too are the professional research software engineers who devote their expertise to helping the community do computational

work more efficiently, effectively, and sustainably.

The research enterprise benefits when modeling software and tools are shared, coordinated, and interoperable, such that the

six model operation tasks listed in Figure 2 can be done efficiently and effectively. For the Earth surface sciences, the CSDMS

Model Repository provides a community platform for finding and sharing model codes and related tools. In addition to acting as535

a valuable community resource, the Repository provides a solution to the growing mandate from journals and funding agencies

to make research software openly available. The provision of standardized metadata and bibliographic information helps those

who are looking for models to compare and evaluate the alternatives.

Simply providing source code and metadata is not enough, however. In order for Earth and environmental models to function

as community resources, they must be usable, and one of the key dimensions of usability is interoperability. The BMI standard540

promotes interoperability by reducing the learning curve for executing and querying models, and by greatly simplifying the

process of linking (one way) or coupling (two way) models. A model program equipped with a BMI becomes an interopera-

ble, standardized component: an element of an integrated system, rather than an idiosyncratic stand-alone product. One of the

key abilities offered by a BMI-enabled model is run-time control, query, and modification. Because BMI supports step-wise

execution, a user can effectively pause a model in mid-run to inspect its state variables, and modify parameters or data. This545

capability allows iterative, loop-based coupling of models using simple scripts. The ability to query and modify values also en-

ables tighter coupling. For example, if component models are treated as representing individual terms in a governing equation,

a coupling script can use BMI functions to query each component’s derivatives, construct a matrix, solve it, and then pass the

updated state variables back to the individual components.

One advantage of BMI is that it is language agnostic, and can in principle be implemented in nearly any programming550

language. It can, for example, accommodate legacy codes written in Fortran. The disadvantage of language flexibility is that

BMI addresses the least common denominator, and therefore does not take advantage of the more advanced features available

in some languages, such as object-oriented capabilities. To some extent this disadvantage can be addressed by building more

specialized, language-specific interfaces in parallel with a BMI. For example, Landlab components, which are implemented

as classes, use a lightweight, Python-specific interface that takes advantage of that language’s object-oriented capabilities,555

advanced data types, and parameter-passing syntax. At the same time, Landlab also includes functionality to translate any of

its components into a standard BMI component, so they can be integrated with components written in other languages.

29

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

The flexibility that BMI offers has led to its adoption in a variety of different applications, including US Geological Survey

rainfall-runoff models (Markstrom et al., 2015; Regan et al., 2018, 2019), hydrodynamic modeling (including flagship models

developed by Deltares and the Netherlands eScience Center, Hoch and Trigg, 2019; Hoch et al., 2019), delta and coastline evo-560

lution modeling (Ratliff et al., 2018), and modeling of methane emissions (Fox et al., 2020), to name a few. One disadvantage

of a standard interface like BMI is the extra up-front investment in program development. Researchers may not perceive value

in adding a standard interface to a legacy code, or writing it into a new code. However for codes whose scope merits repeated

re-use, this effort usually more than pays for itself. Code written to a standard like BMI tends to be more modular and therefore

easier to maintain. Existing templates for common languages in the Earth and environmental sciences make the process of565

providing a BMI to a new program is relatively painless: just a matter of filling in a set of pre-defined function names and

signatures (Hutton et al., 2020). Adding a BMI to an existing legacy model can be a bit more involved, depending on how the

program code is structured, because it often requires some degree of refactoring. Even in that case, we find that adding a BMI

to a legacy model often makes that code more understandable and adaptable.

The variety of different programming languages used in the Earth and environmental sciences community presents a barrier570

to interoperability. The majority of models and tools in the CSDMS Repository are written in C, C++, Fortran, Python, and

Matlab (Figure 4). Other languages used in CSDMS constituent communities include R (especially in ecosystem dynamics)

and NetLogo’s java-based scripting language (for agent-based modeling). Julia, a relatively new high-level language oriented

toward numerical computing, also seems to be growing in popularity in the science community. Crossing the language barrier

requires language-bridging tools. Translating the existing wealth of legacy code into a single, common language would be575

impractical, even if the community could agree on which language to use. A more effective solution is to librarize models

and tools (Brown et al., 2014) as components that can be accessed and executing through a high-level scripting language. In

CSDMS’ case, the Babelizer tool provides this capability for codes written in C, C++, and Fortran, using Python as the bridging

language.

Librarization can be applied to data sets too. The CSDMS Workbench accomplishes this with Data Components that provide580

function-call access to various data sets. Using the BMI syntax for data access removes the need to worry about data formats,

and makes it easier to swap between data sets and models (for example, data versus model of ocean-wave properties) as

components in a linked system. In this case, the BMI does not replace the more sophisticated data-access capabilities of a

language-specific library like xarray, but it has the advantage of providing a consistent interface across multiple languages.

For building and modifying numerical models, the CSDMS Workbench provides Landlab as a Python-specific solution for585

2D, grid-based applications. Experience with Landlab since its introduction has shown that a library of model “building blocks”

can greatly reduce barriers on the software side of model creation. One indicator of the success of this approach is the growing

number of Landlab-built models created by doctoral students as part of a larger body of dissertation research (e.g., Adams et al.,

2017; Gray et al., 2017; Shobe et al., 2017; Lai and Anders, 2018; Langston and Tucker, 2018; Schmid et al., 2018; Strauch

et al., 2018; Glade et al., 2019; Reitman et al., 2019; Carriere et al., 2020; Litwin et al., 2020). The ability to assemble models590

out of reusable “process components” allows for rapid construction of complete, multi-element models. One example of the

value of rapid model assembly is a recent comparative testing and calibration study of long-term landform evolution models

30

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

(Barnhart et al., 2020b, c). The study authors used Landlab to develop a Python package for multi-model analysis of drainage

basin evolution (Barnhart et al., 2019). The package allowed for the exploration and testing of more than 30 mathematically

distinct models, as alternative hypotheses—a feat that would not have been possible with a traditional monolithic modeling595

code. This example illustrates how flexible, component-based modeling software promotes hypothesis testing.

Experience with BMI, pymt, and Landlab highlights the critical importance of documentation, consistent with the findings of

Lawrence et al. (2015). Tutorial examples in particular provide a starting point that users can build on. Embedding tutorials in

Jupyter Notebooks provides an effective way to combine descriptive text, program code, plots, and formatted mathematics. For

reference-level documentation, document generator tools like Sphinx and doxygen translate internal documentation (comment600

blocks inside source code) into nicely formatted, web-accessible reference material.

A successful community cyberinfrastructure for numerical modeling requires more than just technology. It also takes com-

munity building and coordination. In the case of CSDMS, the community centers around common interest in a broader theme

(Earth-surface processes) and a common approach (modeling). Activities such as meetings, workshops, hackathons, and webi-

nars can help draw attention to new tools and methods, provide education in their use, and contribute to building a culture of605

resource sharing.

One of the biggest challenges to a fully functional community software ecosystem in Earth and environmental modeling

is a lack of formal training in computational skills. Most geoscientists are self-taught programmers, and generally unaware

of practices and tools that would make their work more efficient and sustainable. CSDMS and other community facilities

have had some success in addressing this need with workshops, webinars, and summer schools, but there remains a need610

to scale up these efforts. Geoscience researchers should not need the equivalent of a computer science degree to perform

computational research, but in our experience there is a basic set of skills that can make a big difference, yet which relatively

few geoscientists possess. Potential solutions range from regular university-based, geoscience-oriented courses, to focused,

community-led summer courses (like CSDMS’ ESPIN, or the IsoCamp program for isotope geochemistry), to fully online

courses. Questions of credit and funding inevitably arise, as does the issue of how to squeeze more material into already-615

packed curricula.

Another challenge revolves around incentives. The community as a whole clearly benefits from a FAIR and sustainable

research software ecosystem. As noted above, the advent of software journals and peer-reviewed repositories (such as COM-

SESnet and pyopensci) provides one mechanism to encourage the creation of lasting digital products. The reproducibility

movement provides another useful push, and has led journals and funding agencies to raise their standards for sharing and620

accessibility of software and other digital products. To take advantage of this momentum, hiring and promotion committees

at universities and research organizations need to acknowledge the value of contributions to high-quality research software.

Professional societies can contribute by offering awards that recognize contributions to cyberinfrastructure.

The third major challenge is support. Our experience with CSDMS demonstrates that a modest investment in community-

oriented computing can have a substantial positive impact on research productivity. By investing in stable community reposito-625

ries, interoperability standards, and software libraries and frameworks, a funding agency can increase the impact of its portfolio

by incentivizing a shared, reusable and ever-improving community infrastructure of models, tools, and expertise. A key to mak-

31

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

ing this approach scalable, in addition to incentives, is to provide sufficient documentation and consulting support to enable

community members to create research cybertools that are Findable, Accessible, Interoperable, and Reusable. We have found

from our own experience that consulting support is an especially important piece. Projects that include a professional research630

software engineer in their team—even if it is just at the level of general design advice, informal education, or help overcoming

technical obstacles—tend to be much more likely to produce robust, flexible, sustainable software as a lasting broader impact

of a project.

Computational modeling in the Earth and environmental sciences has come a long way since the dawn of the 3rd millennium.

The possibilities of a coordinated, community-wide cyber-ecosystem are starting to emerge. Fully achieving this vision will635

require a combination of education, incentives, and support. Universities, research agencies, and individual researchers all have

a role to play.

Code availability.

The current versions of the various elements in the CSDMS Workbench software suite are available under the MIT licence.

As of this writing, Landlab code, documentation, and tutorials are available in a git version-control repository on the GitHub640

hosting site at https://github.com/landlab/landlab. Documentation can be accessed at https://landlab.github.io. The Landlab

version discussed here is 2.0 (“Mrs. Weasley”), available via Zenodo at https://doi.org/10.5281/zenodo.3776837. Current ver-

sions of software, technical specifications, documentation, and other resources for other Workbench elements (BMI, babelizer,

pymt, model and data components) are managed on GitHub under the CSDMS organization (https://github.com/csdms). On-

line documentation for BMI, pymt, and babelizer is presently hosted on the Read the Docs platform (for example, https:645

//bmi.readthedocs.io, and similarly for pymt and babelizer). The BMI version presented in this paper is 2.0, available via JOSS

and Zenodo at https://doi.org/10.21105/joss.02317. Babelizer version 0.3.8 can be found at https://doi.org/10.5281/zenodo.

4985181. Version 1.3.1 of the Python Modeling Toolkit (pymt) can be accessed at https://doi.org/10.5281/zenodo.4985222. The

simulation shown in Figure 12 is contained and described in two Jupyter Notebooks available at https://github.com/gregtucker/

component_modeling_csdms_chapter.650

Author contributions. CSDMS is the outcome of a community-wide effort, with contributions from numerous community members to gover-

nance, workshops, software, educational resources, and ideas. In terms of this particular manuscript, primary author contributions by section

were: Sections 1–4 (GT), 5 (AK), Section 6 (MP, EH, TG, BC, KB, GT, SP), Section 7 (IO, LM), Section 8 (GT). JS founded CSDMS and

led it for 10 years. All authors contributed to editing the manuscript.

Competing interests. The authors declare that they have no conflict of interest.655

32

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Acknowledgements. The Community Surface Dynamics Modeling System (CSDMS) is supported by the US National Science Foundation

(NSF) (1831623). Initial development of Landlab was supported by the NSF SI2 program (1450409). The Permafrost Toolbox was supported

by NSF OPP (1503559). ESPIn is supported by NSF-CISE (1924259). Additional sources of support include EarthCube (2026951), and an

NSF postdoctoral fellowship (1725774 to KRB). The authors gratefully acknowledge the contributions of numerous CSDMS members,

whose service on committees, sharing of codes, teaching of clinics, and other efforts have created a vibrant community of practice.660

33

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

References

Abhyankar, S., Brown, J., Constantinescu, E. M., Ghosh, D., Smith, B. F., and Zhang, H.: PETSc/TS: A modern scalable ODE/DAE solver

library, arXiv preprint arXiv:1806.01437, 2018.

Adams, J. M., Gasparini, N. M., Hobley, D. E., Tucker, G. E., Hutton, E. W., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.

0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geoscientific Model Development, 10,665

1645, 2017.

Addor, N. and Melsen, L.: Legacy, rather than adequacy, drives the selection of hydrological models, Water Resources Research, 55, 378–390,

https://doi.org/https://doi.org/10.1029/2018WR022958, 2019.

Adorf, C. S., Ramasubramani, V., Anderson, J. A., and Glotzer, S. C.: How to professionally develop reusable scientific software—And when

not to, Computing in Science & Engineering, 21, 66–79, 2018.670

Ahalt, S., Band, L., Christopherson, L., Idaszak, R., Lenhardt, C., Minsker, B., Palmer, M., Shelley, M., Tiemann, M., and Zimmerman,

A.: Water Science Software Institute: Agile and open source scientific software development, Computing in Science & Engineering, 16,

18–26, 2014.

AlNoamany, Y. and Borghi, J. A.: Towards computational reproducibility: researcher perspectives on the use and sharing of software, PeerJ

Computer Science, 4, e163, 2018.675

Anderson, R. S., Dietrich, W. E., Furbish, D., Hanes, D., Howard, A., Paola, C., Pelletier, J., Slingerland, R., Stallard, B., Syvitski, J.,

Vorosmarty, C., and Wiberg, P.: Community Surface Dynamics Modeling System Science Plan, Tech. rep., CSDMS Working Group,

2004.

Atkins, D., Hey, T., and Hedstrom, M.: National Science Foundation Advisory Committee for Cyberinfrastructure Task Force on Data and

Visualization Final Report, National Science Foundation, 2011.680

Bangerth, W. and Heister, T.: What makes computational open source software libraries successful?, Computational Science & Discovery, 6,

015 010, 2013.

Bangerth, W., Hartmann, R., and Kanschat, G.: deal. II—a general-purpose object-oriented finite element library, ACM Transactions on

Mathematical Software (TOMS), 33, 24–es, 2007.

Barba, L. A.: The hard road to reproducibility, Science, 354, 142–142, 2016.685

Barnes, N.: Publish your computer code: it is good enough, Nature, 467, 753–753, 2010.

Barnhart, K. R., Glade, R. C., Shobe, C. M., and Tucker, G. E.: terrainbento 1.0: a Python package for multi-model analysis in long-term

drainage basin evolution, Geoscientific Model Development Discussions, 2019.

Barnhart, K. R., Hutton, E. W. H., Tucker, G. E., Gasparini, N. M., Istanbulluoglu, E., Hobley, D. E. J., Lyons, N. J., Mouchene, M., Nudu-

rupati, S. S., Adams, J. M., and Bandaragoda, C.: Short communication: Landlab v2.0: a software package for Earth surface dynamics,690

Earth Surface Dynamics, 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, 2020a.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting topography for landscape

evolution model process representation: Part 1, conceptualization and sensitivity analysis, Journal of Geophysical Research: Earth Surface,

p. e2018JF004961, 2020b.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting topography for landscape evolu-695

tion model process representation: Part 2, calibration and validation, Journal of Geophysical Research: Earth Surface, p. e2018JF004963,

2020c.

34

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Basili, V. R., Carver, J. C., Cruzes, D., Hochstein, L. M., Hollingsworth, J. K., Shull, F., and Zelkowitz, M. V.: Understanding the high-

performance-computing community: A software engineer’s perspective, IEEE software, 25, 29, 2008.

Baxter, R., Hong, N. C., Gorissen, D., Hetherington, J., and Todorov, I.: The research software engineer, in: Digital Research Conference,700

Oxford, pp. 1–3, 2012.

Benureau, F. C. and Rougier, N. P.: Re-run, repeat, reproduce, reuse, replicate: transforming code into scientific contributions, Frontiers in

neuroinformatics, 11, 69, 2018.

Bras, R., Tucker, G., and Teles, V.: Six myths about mathematical modeling in geomorphology, in: Prediction in Geomorphology, edited by

Wilcock, P. and Iverson, R., pp. 63–79, American Geophysical Union, https://doi.org/10.1029/135GM06, 2003.705

Brown, J., Knepley, M. G., and Smith, B. F.: Run-time extensibility and librarization of simulation software, Computing in Science &

Engineering, 17, 38–45, 2014.

Bryan, J.: Excuse me, do you have a moment to talk about version control?, The American Statistician, 72, 20–27, 2018.

Campbell, K., Overeem, I., and Berlin, M.: Taking it to the streets: the case for modeling in the geosciences undergraduate curriculum,

Computers & geosciences, 53, 123–128, 2013.710

Campforts, B., Shobe, C., Steer, P., Vanmaercke, M., Lague, D., and Braun, J.: HyLands 1.0: a Hybrid Landscape evolution model

to simulate the impact of landslides and landslide-derived sediment on landscape evolution, Geoscientific Model Development,

https://doi.org/10.5194/gmd-2020-74, 2020.

Carriere, A., Le Bouteiller, C., Tucker, G. E., Klotz, S., and Naaim, M.: Impact of vegetation on erosion: Insights from the calibration and

test of a landscape evolution model in alpine badland catchments, Earth Surface Processes and Landforms, 45, 1085–1099, 2020.715

Chen, X., Dallmeier-Tiessen, S., Dasler, R., Feger, S., Fokianos, P., Gonzalez, J. B., Hirvonsalo, H., Kousidis, D., Lavasa, A., Mele, S., et al.:

Open is not enough, Nature Physics, 15, 113–119, 2019.

Clune, T. and Rood, R.: Software testing and verification in climate model development, IEEE software, 28, 49–55, 2011.

Council, N. R. et al.: Discipline-based education research: Understanding and improving learning in undergraduate science and engineering,

National Academies Press, 2012.720

Eghbal, N.: Roads and Bridges: The Unseen labor behind our digital infrastructure, Tech. rep., Ford Foundation, 2016.

Fan, X., Scaringi, G., Korup, O., West, A. J., Westen, C. J., Tanyas, H., Hovius, N., Hales, T. C., Jibson, R. W., Allstadt, K. E., Zhang, L.,

Evans, S. G., Xu, C., Li, G., Pei, X., Xu, Q., and Huang, R.: Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and

Impacts, Reviews of Geophysics, 57, 421–503, https://doi.org/10.1029/2018RG000626, 2019.

Faulk, S., Loh, E., Van De Vanter, M. L., Squires, S., and Votta, L. G.: Scientific computing’s productivity gridlock: How software engineering725

can help, Computing in science & engineering, 11, 30–39, 2009.

Fomel, S. and Claerbout, J. F.: Reproducible research, Computing in Science & Engineering, 11, 5–7, 2009.

Fox, T. A., Gao, M., Barchyn, T. E., Jamin, Y. L., and Hugenholtz, C. H.: An agent-based model for estimating emissions reduction equiva-

lence among leak detection and repair programs, 2020.

Glade, R. C., Shobe, C. M., Anderson, R. S., and Tucker, G. E.: Canyon shape and erosion dynamics governed by channel-hillslope feedbacks,730

Geology, 47, 650–654, 2019.

Gray, H. J., Shobe, C. M., Hobley, D. E., Tucker, G. E., Duvall, A. R., Harbert, S. A., and Owen, L. A.: Off-fault deformation rate along

the southern San Andreas fault at Mecca Hills, southern California, inferred from landscape modeling of curved drainages, Geology, 46,

59–62, 2017.

35

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Groenenberg, R. M., Hodgson, D. M., Prelat, A., Luthi, S. M., and Flint, S. S.: Flow–deposit interaction in submarine lobes: Insights from735

outcrop observations and realizations of a process-based numerical model, Journal of Sedimentary Research, 80, 252–267, 2010.

Guest, O. and Martin, A. E.: How computational modeling can force theory building in psychological science, 2020.

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P., Pfahl, D., and Wilson, G.: How do scientists develop and use scientific software?,

in: 2009 ICSE Workshop on Software Engineering for Computational Science and Engineering, pp. 1–8, Ieee, 2009.

Harpham, Q., Hughes, A., and Moore, R.: Introductory overview: The OpenMI 2.0 standard for integrating numerical models, Environmental740

Modelling & Software, 122, 104 549, 2019.

Hastings, J., Haug, K., and Steinbeck, C.: Ten recommendations for software engineering in research, GigaScience, 3, 2047–217X, 2014.

Hatton, L.: The T-experiments: errors in scientific software, in: Quality of Numerical Software, pp. 12–31, Springer, 1997.

Hatton, L.: The chimera of software quality, Computer, 40, 104–103, 2007.

Heaton, D. and Carver, J. C.: Claims about the use of software engineering practices in science: A systematic literature review, Information745

and Software Technology, 67, 207–219, 2015.

Hestenes, D.: Modeling Methodology for Physics Teachers: Proceedings of the International Conference on Undergraduate Physics Educa-

tion, 1996.

Hobley, D. E., Adams, J. M., Nudurupati, S. S., Hutton, E. W., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing

with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics,750

Earth Surface Dynamics, 5, 21, 2017.

Hoch, J. M. and Trigg, M. A.: Advancing global flood hazard simulations by improving comparability, benchmarking, and integration of

global flood models, Environmental Research Letters, 14, 034 001, 2019.

Hoch, J. M., Eilander, D., Ikeuchi, H., Baart, F., and Winsemius, H. C.: Evaluating the impact of model complexity on flood wave propagation

and inundation extent with a hydrologic-hydrodynamic model coupling framework, Natural Hazards and Earth System Sciences, 19,755

1723–1735, 2019.

Howison, J. and Herbsleb, J. D.: Scientific software production: incentives and collaboration, in: Proceedings of the ACM 2011 conference

on Computer supported cooperative work, pp. 513–522, 2011.

Hsu, L., Martin, R. L., McElroy, B., Litwin-Miller, K., and Kim, W.: Data management, sharing, and reuse in experimental geomorphology:

Challenges, strategies, and scientific opportunities, Geomorphology, 244, 180–189, 2015.760

Hutton, E. W. and Syvitski, J. P.: Sedflux 2.0: An advanced process-response model that generates three-dimensional stratigraphy, Computers

& Geosciences, 34, 1319–1337, 2008.

Hutton, E. W., Piper, M. D., and Tucker, G. E.: The Basic Model Interface 2.0: A standard interface for coupling numerical models in the

geosciences, Journal of Open Source Software, 5, 2317, https://doi.org/10.21105/joss.02317, 2020.

Hwang, L., Fish, A., Soito, L., Smith, M., and Kellogg, L. H.: Software and the scientist: Coding and citation practices in geodynamics, Earth765

and Space Science, 4, 670–680, 2017.

Istanbulluoglu, E. and Bras, R. L.: Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density,

and topography, Journal of Geophysical Research, 110, F02 012, 2005.

Jacobs, C. T., Gorman, G. J., Rees, H. E., and Craig, L. E.: Experiences with efficient methodologies for teaching computer programming to

geoscientists, Journal of Geoscience Education, 64, 183–198, 2016.770

Johanson, A. and Hasselbring, W.: Software engineering for computational science: Past, present, future, Computing in Science & Engineer-

ing, 2018.

36

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Kanewala, U. and Bieman, J. M.: Testing scientific software: A systematic literature review, Information and software technology, 56, 1219–

1232, 2014.

Kellogg, L. H., Hwang, L. J., Gassmöller, R., Bangerth, W., and Heister, T.: The role of scientific communities in creating reusable software:775

Lessons from geophysics, Computing in Science & Engineering, 21, 25–35, 2018.

Kelly, D. F.: A software chasm: Software engineering and scientific computing, IEEE software, 24, 120–119, 2007.

King, J. and South, J.: Reimagining the role of technology in higher education: A supplement to the national education technology plan, US

Department of Education, Office of Educational Technology, 2017.

Krafczyk, M., Shi, A., Bhaskar, A., Marinov, D., and Stodden, V.: Scientific Tests and Continuous Integration Strategies to Enhance Repro-780

ducibility in the Scientific Software Context, in: Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of

Computer Systems, pp. 23–28, 2019.

Kuehl, S. A., Alexander, C. R., Blair, N. E., Harris, C. K., Marsaglia, K. M., Ogston, A. S., Orpin, A. R., Roering, J. J., Bever, A. J.,

Bilderback, E. L., et al.: A source-to-sink perspective of the Waipaoa River margin, Earth-Science Reviews, 153, 301–334, 2016.

Lai, J. and Anders, A. M.: Modeled postglacial landscape evolution at the southern margin of the Laurentide Ice Sheet: hydrological connec-785

tion of uplands controls the pace and style of fluvial network expansion, Journal of Geophysical Research: Earth Surface, 123, 967–984,

2018.

Langston, A. L. and Tucker, G. E.: Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape

evolution models, Earth Surface Dynamics, 6, 1–27, 2018.

Lathrop, S., Folk, M., Katz, D. S., McInnes, L. C., and Terrel, A.: Introduction to Accelerating Scientific Discovery With Reusable Software,790

Computing in Science & Engineering, 21, 5–7, 2019.

Lawrence, K. A., Zentner, M., Wilkins-Diehr, N., Wernert, J. A., Pierce, M., Marru, S., and Michael, S.: Science gateways today and tomor-

row: positive perspectives of nearly 5000 members of the research community, Concurrency and Computation: Practice and Experience,

27, 4252–4268, 2015.

Leavesley, G., Lichty, R., Troutman, B., and Saindon, L.: Precipitation-runoff modeling system: User’s manual, vol. 83, U.S. Department of795

the Interior, 1983.

Leavesley, G., Restrepo, P. J., Markstrom, S., Dixon, M., and Stannard, L.: The modular modeling system (MMS): User’s manual, US

Geological Survey Open-File Report, 96, 1996.

LeVeque, R. J.: Python tools for reproducible research on hyperbolic problems, Computing in Science & Engineering, 11, 19–27, 2009.

LeVeque, R. J.: Top ten reasons to not share your code (and why you should anyway), Siam News, 46, 2013.800

Litwin, D. G., Tucker, G. E., Barnhart, K. R., and Harman, C. J.: GroundwaterDupuitPercolator: A Landlab component for groundwater

flow, Journal of Open Source Software, 5, 1935, 2020.

Luettich, R. A., Westerink, J. J., Scheffner, N. W., et al.: ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and

estuaries. Report 1, Theory and methodology of ADCIRC-2DD1 and ADCIRC-3DL, 1992.

Lyons, N., Albert, J., and Gasparini, N.: SpeciesEvolver: A Landlab component to evolve life in simulated landscapes, Journal of Open805

Source Software, 5, 2066, 2020.

Manduca, C. A., Baer, E., Hancock, G., Macdonald, R. H., Patterson, S., Savina, M., and Wenner, J.: Making undergraduate geoscience

quantitative, Eos, Transactions American Geophysical Union, 89, 149–150, 2008.

Mariotti, G.: Marsh channel morphological response to sea level rise and sediment supply, Estuarine, Coastal and Shelf Science, 209, 89–101,

2018.810

37

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb, R. M., Payn, R. A., and LaFontaine, J. H.: PRMS-IV, the precipitation-runoff

modeling system, version 4, US Geological Survey Techniques and Methods, 2015.

Miller, G.: A scientist’s nightmare: Software problem leads to five retractions, 2006.

Morin, A., Urban, J., Adams, P. D., Foster, I., Sali, A., Baker, D., and Sliz, P.: Shining light into black boxes, Science, 336, 159–160, 2012.

Nanthaamornphong, A. and Carver, J. C.: Test-Driven Development in scientific software: a survey, Software Quality Journal, 25, 343–372,815

2017.

Nasr-Azadani, M., Hall, B., and Meiburg, E.: Polydisperse turbidity currents propagating over complex topography: comparison of experi-

mental and depth-resolved simulation results, Computers & Geosciences, 53, 141–153, 2013.

Nguyen-Hoan, L., Flint, S., and Sankaranarayana, R.: A survey of scientific software development, in: Proceedings of the 2010 ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement, pp. 1–10, 2010.820

NRC: A Visioin for NSF Earth Sciences 2020–2030: Earth in Time, The National Academies Press, https://doi.org/10.17226/25761, 2020.

Overeem, I., Berlin, M. M., and Syvitski, J. P.: Strategies for integrated modeling: The Community Surface Dynamics Modeling System

example, Environmental modelling & software, 39, 314–321, 2013.

Peckham, S. D., Hutton, E. W., and Norris, B.: A component-based approach to integrated modeling in the geosciences: The design of

CSDMS, Computers & Geosciences, 53, 3–12, 2013.825

Pelletier, J. D., Barron-Gafford, G. A., Guttierez-Jurado, H., Hinckley, E.-L. S., Istanbulluoglu, E., McGuire, L. A., Niu, G.-Y., Poulos, M. J.,

Rasmussen, C., Richardson, P., et al.: Which way do you lean? Using slope aspect variations to understand Critical Zone processes and

feedbacks, Earth Surface Processes and Landforms, 2017.

Peng, R. D.: Reproducible research in computational science, Science, 334, 1226–1227, 2011.

Pfeiffer, A. M., Barnhart, K. R., Czuba, J. A., and Hutton, E. W. H.: NetworkSedimentTransporter: A Landlab component for bed material830

transport through river networks, Journal of Open Source Software, 5, 2341, 2020.

Pinto, G., Wiese, I., and Dias, L. F.: How do scientists develop scientific software? an external replication, in: 2018 IEEE 25th International

Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 582–591, IEEE, 2018.

Pipitone, J. and Easterbrook, S.: Assessing climate model software quality: a defect density analysis of three models, Geoscientific Model

Development, 5, 1009–1022, 2012.835

PITAC: Computational Science: Ensuring America’s Competitiveness, President’s Information Technology Advisory Committee, National

Coordination Office for Information Technology Research & Development, 2005.

Poisot, T.: Best publishing practices to improve user confidence in scientific software, Ideas in Ecology and Evolution, 8, 2015.

Post, D.: The changing face of scientific and engineering computing, Computing in Science & Engineering, 15, 4–6, 2013.

Post, D. E. and Votta, L. G.: Computational science demands a new paradigm, Physics today, 58, 35–41, 2005.840

Prabhu, P., Kim, H., Oh, T., Jablin, T. B., Johnson, N. P., Zoufaly, M., Raman, A., Liu, F., Walker, D., Zhang, Y., et al.: A survey of the prac-

tice of computational science, in: SC’11: Proceedings of 2011 International Conference for High Performance Computing, Networking,

Storage and Analysis, pp. 1–12, IEEE, 2011.

Ratliff, K. M., Hutton, E. H., and Murray, A. B.: Exploring Wave and Sea-Level Rise Effects on Delta Morphodynamics With a Coupled

River-Ocean Model, Journal of Geophysical Research: Earth Surface, 123, 2887–2900, 2018.845

Regan, R. S., Markstrom, S. L., Hay, L. E., Viger, R. J., Norton, P. A., Driscoll, J. M., and LaFontaine, J. H.: Description of the national

hydrologic model for use with the precipitation-runoff modeling system (PRMS), Tech. rep., US Geological Survey, 2018.

38

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

Regan, R. S., Juracek, K. E., Hay, L. E., Markstrom, S., Viger, R. J., Driscoll, J. M., LaFontaine, J., and Norton, P. A.: The US Geological

Survey National Hydrologic Model infrastructure: Rationale, description, and application of a watershed-scale model for the conterminous

United States, Environmental Modelling & Software, 111, 192–203, 2019.850

Reitman, N. G., Mueller, K. J., Tucker, G. E., Gold, R. D., Briggs, R. W., and Barnhart, K. R.: Offset Channels May Not Accurately

Record Strike-Slip Fault Displacement: Evidence From Landscape Evolution Models, Journal of Geophysical Research: Solid Earth, 124,

13 427–13 451, 2019.

Robinson, D., Di Vittorio, A., Alexander, P., Arneth, A., Barton, C. M., Brown, D., Kettner, A., Lemmen, C., O’Neill, B., Janssen, M., et al.:

Modelling feedbacks between human and natural processes in the land system, Earth System Dynamics, 9, 895–914, 2018.855

Roy, S., Koons, P., Upton, P., and Tucker, G.: Dynamic links among rock damage, erosion, and strain during orogenesis, Geology, 44,

583–586, 2016.

Schmid, M., Ehlers, T. A., Werner, C., Hickler, T., and Fuentes-Espoz, J.-P.: Effect of changing vegetation and precipitation on denudation–

Part 2: Predicted landscape response to transient climate and vegetation cover over millennial to million-year timescales., Earth Surface

Dynamics, 6, 2018.860

Schwab, M., Karrenbach, N., and Claerbout, J.: Making scientific computations reproducible, Computing in Science & Engineering, 2,

61–67, 2000.

Scott, S.: ESIP Software Assessment Guidelines, 2017.

Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-

following-coordinate oceanic model, Ocean modelling, 9, 347–404, 2005.865

Shobe, C. M., Tucker, G. E., and Barnhart, K. R.: The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport,

bedrock erosion, and landscape evolution, Geoscientific Model Development, 10, 4577–4604, 2017.

Singh Chawla, D.: The unsung heroes of scientific software, Nature News, 529, 115, 2016.

Smith, A. M., Niemeyer, K. E., Katz, D. S., Barba, L. A., Githinji, G., Gymrek, M., Huff, K. D., Madan, C. R., Mayes, A. C., Moerman,

K. M., et al.: Journal of Open Source Software (JOSS): design and first-year review, PeerJ Computer Science, 4, e147, 2018.870

Steckler, M. S., Hutton, E., Ologan, D., Tucker, G. E., Grall, C., and Gurcay, S.: Developing Sequence Stratigraphic Modeling in Landlab to

improve understanding of the tectonics in the Gulf of Kusadasi, Turkey, AGUFM, 2019, EP21D–2227, 2019.

Stodden, V., Borwein, J., and Bailey, D. H.: Setting the default to reproducible, computational science research. SIAM News, 46, 4–6, 2013.

Stodden, V., Krafczyk, M. S., and Bhaskar, A.: Enabling the verification of computational results: An empirical evaluation of computational

reproducibility, in: Proceedings of the First International Workshop on Practical Reproducible Evaluation of Computer Systems, pp. 1–5,875

2018.

Stoica, M.: Scientific Variables Ontology and Associated Tools, https://github.com/mariutzica/ScientificVariablesOntology, 2020.

Stoica, M. and Peckham, S.: Incorporating New Concepts Into the Scientific Variables Ontology, in: 2019 15th International Conference on

eScience (eScience), pp. 539–540, IEEE, 2019a.

Stoica, M. and Peckham, S.: The Scientific Variables Ontology: A blueprint for custom manual and automated creation and alignment of880

machine-interpretable qualitative and quantitative variable concepts, URL: http://pittmodelingconference.sci.pitt.edu, 2019b.

Stoica, M. and Peckham, S. D.: An Ontology Blueprint for Constructing Qualitative and Quantitative Scientific Variables., in: International

Semantic Web Conference (P&D/Industry/BlueSky), 2018.

Strauch, R., Istanbulluoglu, E., Nudurupati, S. S., Bandaragoda, C., Gasparini, N. M., and Tucker, G. E.: A hydroclimatological approach to

predicting regional landslide probability using Landlab, Earth Surface Dynamics, 6, 2018.885

39

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

SVO: Scientific Variables Ontology, http://geoscienceontology.org, accessed: 2020-10-26, 2020.

Taschuk, M. and Wilson, G.: Ten simple rules for making research software more robust, PLoS computational biology, 13, 2017.

Thyng, K. M., Greene, C. A., Zimmerle, H. M., and DiMarco, S. F.: True Colors of Oceanography: Guidelines for Effective and Accurate

Colormap Selection, Oceanography, 29, 9–13, https://doi.org/10.5670/oceanog.2016.66, 2016.

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., and Bras, R. L.: The Channel-Hillslope Integrated Landscape Development Model (CHILD),890

in: Landscape Erosion and Evolution Modeling, edited by Harmon, R. S. and Doe, W. W., pp. 349–388, Kluwer Press, Dordrecht, 2001.

Turk, M. J.: Scaling a code in the human dimension, in: Proceedings of the Conference on Extreme Science and Engineering Discovery

Environment: Gateway to Discovery, pp. 1–7, 2013.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,

van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C.,895

Polat, İ., Feng, Y., Moore, E. W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R.,

Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and Contributors, S. . .: SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python, Nature Methods, 17, 261–272, https://doi.org/https://doi.org/10.1038/s41592-019-0686-2, 2020.

Voinov, A., Fitz, C., Boumans, R., and Costanza, R.: Modular ecosystem modeling, Environmental Modelling & Software, 19, 285–304,

2004.900

W3C Working Group: Best Practice Recipes for Publishing RDF Vocabularies, URL: https://www.w3.org/TR/swbp-vocab-pub/, accessed:

2020-10-26, 2008.

Wiese, I. S., Polato, I., and Pinto, G.: Naming the Pain in Developing Scientific Software, IEEE Software, 2019.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B.,

Bourne, P. E., et al.: The FAIR Guiding Principles for scientific data management and stewardship, Scientific data, 3, 2016.905

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., Haddock, S. H., Huff, K. D., Mitchell, I. M., Plumbley,

M. D., et al.: Best practices for scientific computing, PLoS biology, 12, 2014.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., and Teal, T. K.: Good enough practices in scientific computing, PLoS compu-

tational biology, 13, 2017.

Wilson, G. V.: Where’s the real bottleneck in scientific computing?, American Scientist, 94, 5, 2006.910

40

https://doi.org/10.5194/gmd-2021-223
Preprint. Discussion started: 13 July 2021
c© Author(s) 2021. CC BY 4.0 License.

