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Abstract. When working with Earth system models, a considerable challenge that arises is the need to establish the set of

parameter values that ensure the optimal model performance in terms of how they reflect real-world observed data. Given

that each additional parameter under investigation increases the dimensional space of the problem by one, simple brute-force

sensitivity tests can quickly become too computationally strenuous. In addition, the complexity of the model and interactions

between parameters mean that testing them on an individual basis has the potential to miss key information. In this work we5

address these challenges by developing a Biased Random Key Genetic Algorithm (BRKGA) able to estimate model parameters.

This method is tested using the one dimensional configuration of PISCES-v2_RC, the biogeochemical component of NEMO-

v4.0.1, a global ocean model. A test case of particulate organic carbon (POC) in the North Atlantic down to 1000 m depth

is examined, using observed data obtained from autonomous biogeochemical Argo floats. In this case, two sets of tests are

run, one where each of the model outputs are compared to the model outputs with default settings, and another where they are10

compared with 3 sets of observed data from their respective regions, which is followed by a cross reference of the results. The

results of these analyses provide evidence that this approach is robust and consistent, and also that it provides indication of the

sensitivity of parameters on variables of interest. Given the deviation of the optimal set of parameters from the default, further

analyses using observed data in other locations are recommended to establish the validity of the results obtained.

1 Introduction15

The field of Earth Science has garnered much interest in recent years due to anthropogenic-driven climate change, and the

increasing urgency to implement policies and technologies to mitigate its effects. As a result, Earth System Models (ESMs)

have become a fundamental tool to study the impact of shifting climate dynamics and global biogeochemical cycles (Eyring

et al., 2016; Anav et al., 2013; Flato, 2011). Driven by the necessity of policy makers to have increasingly reliable future

climate projections, ESMs are being continuously developed resulting in highly complex and computationally demanding tools.20

Nevertheless, climate projections produced by ESMs are still hampered by both technical limitations and a lack of knowledge

of important processes (Seferian et al., 2020; Henson et al., 2022). Particularly, the representation of the global carbon cycle,

specifically ocean biogeochemistry, suffers from many uncertainties. Moreover, the drive for realistic physical processes is
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pushing ESMs towards higher spatial resolution making the cost of calibrating the ocean biogeochemical component (as well

as other components of ESMs) unsustainable (Galbraith et al., 2015; Kriest et al., 2020). Thus, there is a vital need for novel25

solutions that allow the optimisation of such components in a cost-effective way in order to provide critical analyses of the

evolution of the climate and answer key societal questions in relation to it (Palmer, 1999, 2014).

The tool presented here can be applied to any ESM component, although this work focuses on ocean biogeochemistry

because of the many unconstrained parameters that are usually needed to numerically represent this realm of the Earth System.

In particular we focus on key biogeochemical processes that contribute to the oceans’ capacity to absorb carbon dioxide from30

the atmosphere and potentially store it. These processes, usually referred to as the "biological carbon pump", are dominated by

the vertical transport of organic matter from the surface of the ocean to deeper layers (Boyd et al., 2019). This organic matter

is exported mostly in the form of detrital particles, which are partly decomposed back to inorganic carbon and nutrients by

bacteria as they sink, and also transformed by zooplankton. The interplay between biological processes and sinking determines

how long this carbon will be stored in the ocean. Given that the oceans have absorbed around 30% of the carbon dioxide35

released by human activity since preindustrial times (Gruber et al., 2019), constraining uncertainties in these biogeochemical

processes is crucial to predict the future evolution of the climate system. However, their representation in models is still a

challenge, in particular in the mesopelagic layer that extends between the bottom of the sunlit upper ocean and 1000 m where

around 90% of detrital matter degradation takes place (Burd et al., 2010; Henson et al., 2022).

Ocean biogeochemistry models (OBGCM) simplify the complexity of the real world by representing biological processes40

with empirical functions (Fasham et al., 1990), which are parameterised based on laboratory experiments (Pahlow et al., 2013)

and sparse field measurements (Friedrichs et al., 2007; Aumont et al., 2015). Therefore, it is likely that model parameterisations

do not reflect the complexity and diversity present in our oceans.

In the effort to achieve simple yet universally-applicable models, parameter optimisation (PO) techniques are a key tool, as

they provide an objective means to find a model parameter set that produces outputs that match well with observed datasets.45

However, PO (often referred to as "tuning") has traditionally been a rather subjective process, in that the model developers

choose the "best" parameter sets from a somewhat comprehensive array of alternative model runs. Such subjective optimisa-

tion often relied on sensitivity analyses, whereby the variations in model output variables, and their skill, were quantified by

perturbing one parameter at a time. Given the high computing cost of 3D OBGCM simulations, subjective criteria are still

widely used to optimise OBGCMs. A promising alternative is to perform PO using one-dimensional (1D) model configura-50

tions, which deal only with local sources and sinks and vertical fluxes along the water column (Fasham et al., 1990; Friedrichs

et al., 2007; Bagniewski et al., 2011; Ayata et al., 2013). Optimising OBGCMs in 1D is advantageous as it enables a thorough

exploration of the parameter space at reduced computing cost.

Attempting to constrain parameters using optimisation techniques can be difficult in situations of inadequate data or com-

puting power (Matear, 1995; Fennel et al., 2000). However, in recent years this approach has become more viable within the55

scientific community due to improvements in High Performance Computing (HPC) techniques that efficiently exploit the par-

allelism of supercomputers (Casanova et al., 2011; Broekema and Bal, 2012). These advances facilitate the running of multiple

simulations in parallel, opening the way to efficiently apply PO methods to better understand and improve model accuracy. For
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instance, genetic algorithms (GA), a particular type of optimisation technique, can and have been applied to many global search

problems, and have also started to be used to optimise numerical weather models (Oana and Spataru, 2016) and OBGCMs (Ay-60

ata et al., 2013; Ward et al., 2010; Shu et al., 2022). Another approach is the training of surrogate models (e.g. using neural

networks) from a large set of simulations, enabling global sensitivity analyses at reduced computational cost, as done by the

URANIE tool (Gaudier, 2010). What these different algorithms have in common is the fact that they are based on iterative

processes traversing a search space by applying operations on the candidate solutions with the purpose of finding a global

optimum. Candidate solutions are evaluated by a fitness function to evaluate their performance in the solution domain.65

This paper documents the application of a genetic algorithm to determine an ideal set of parameters that accurately simulate

the behaviour of the biogeochemical component (PISCES-v2_RC) of an ocean model. The overall aim of this investigation

is to demonstrate that using computational intelligence techniques, a BRKGA in our case, for parameter estimation in Earth

system models is an effective approach, and to explore via a BRKGA how this can be implemented. We also describe how to

implement a BRKGA and how to embed it in a state-of-the-art ocean model using a workflow manager (Manubens-Gil et al.,70

2016).

2 Methodology

This section outlines the main methods used in this investigation. A test case of particulate organic carbon (POC) in the North

Atlantic down to 1000 m is used. The observed data, explained in detail in 2.1, are obtained from autonomous ocean Argo

floats. The model tested is the one-dimensional (depth) configuration of the ocean biogeochemical model PISCES-v2_RC75

(Aumont et al., 2015, 2017), a component of NEMO4 v4.0.1 (Nucleus for European Modelling of the Ocean version 4), as

outlined in 2.2.

The type of GA used is BRKGA (Goncalves and Resende, 2011). The outline of this method, including the crossover,

is described in 2.3. We use the workflow manager Autosubmit (Manubens-Gil et al., 2016; Uruchi et al., 2021) to create a

workflow that facilitates the various steps of the algorithm, as outlined in 2.4.80

This paper outlines two test case experiments where the reference data are an output of a simulation with default parameters,

and another three where the reference data are observed data from three locations in the North Atlantic, and lastly a set of cross

experiments. Section 2.5 outlines the details of these experiments.

2.1 Biogeochemical Data

Our investigation focuses on the vertical profiles of POC in the Labrador Sea region of the North Atlantic subpolar gyre.85

The observed data were acquired by Argo floats deployed in the context of the international Argo program (Roemmich et al.,

2019). Argo floats are autonomous drifting floats fitted with sensors that provide real time updates of ocean data. Over regular

intervals, each float rises from its drifting depth of 1000m to the surface, taking measurements in the process. When it reaches

the surface, it transmits the measurements. Initially the Argo program focused on observing salinity and temperature but more

recently has included biogeochemical measurements (Claustre et al., 2020). Our investigation focuses on the data of two floats90
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deployed by the project remOcean, identified by World Meteorological Organisation numbers 6901486 and 6901527. These

floats took measurements every 1–3 days during times of high biological activity (i.e. phytoplankton blooms) and every 10

days for the rest of the year.

To enable comparison between biogeochemical (BGC-) Argo data and model simulations, we developed a framework that is

described in detail in the companion paper by Galí et al. (2022). Briefly, particulate backscattering measurements acquired by95

Argo floats were converted to POC using depth-dependent empirical conversion factors and separated into two size fractions,

small POC (SPOC) and large POC (LPOC), following Briggs et al. (2020). SPOC corresponds to particles smaller than ca. 100

µm that are suspended or sink slowly, approximately less than 10 m d-1, and LPOC corresponds to particles larger than 100

µm whose sinking rates are typically in the order of several tens or hundreds of m d-1. For each float, we selected one or more

periods of 1 year that were deemed representative of the annual cycle in our study region.100

– LAB1: float 6901527, year 2016, -46.2°W 57.2°N

– LAB2: float 6901527, year 2014, -54.9°W 57.1°N

– LAB3: float 6901486, year 2015, -50.3°W 56.3°N

Finally, we matched the trajectory of the float on a given year to the NEMO model ORCA1 grid (ca. 1°horizontal resolution),

and chose the ORCA1 grid cell with the best correspondence between the mixed layer depth observed by the float and that105

simulated by NEMO (see next section), hence treating the float as if it sampled a fixed location.

2.2 PISCES 1D and Parameters

PISCES-v2 (Aumont et al., 2015) is an OBGCM of intermediate complexity that represents the cycles of the main inorganic

nutrients (N, P, Si and Fe), carbonate chemistry, and organic matter compartments, including phytoplankton and zooplankton

organisms (with two size classes each), dissolved organic matter, and particulate organic matter, making up 24 prognostic110

variables or tracers in total. Here we use a model version, PISCES-v2_RC, that incorporates the POC reactivity continuum

parameterisation (Aumont et al., 2017). This model version is included as the OBGCM component of NEMO v4.0.1 (Madec

and Team) and be hereafter referred to as "PISCES".

In PISCES, detrital POC is represented by the tracers POC and GOC, which correspond respectively to small and large

detritus, with a nominal cutoff at 100 µm. To avoid confusion between PISCES tracers and the term "POC", used here as115

a generic concept and to refer to observations, PISCES tracer names are italicised. It is important to note that total POC

as sampled in-situ is made up of detrital matter and living biomass. Therefore, the correspondence between PISCES tracers

and observations must be established. Here we define SPOC as the sum of the PISCES tracers for nanophytoplankton (PHY),

microphytoplankton (PHY2), microzooplankton (ZOO) and small detritus (POC), and LPOC as the sum of large detritus (GOC)

and mesozooplankton (ZOO2). These idealised fractions show good correspondence with those determined from BGC-Argo120

data (Galí et al., 2022). It is important to keep in mind that detrital POC is a variable proportion of total POC, which generally
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increases with depth. In the mesopelagic, detrital POC represents around 70% of total POC globally with the default PISCES

parameterisation (table 3 in Galí et al. (2022)).

Our study focuses on nine PISCES parameters (Table 1) expected to strongly influence mesopelagic POC dynamics ac-

cording to model equations (Aumont et al., 2015, 2017) and preliminary analyses (Appendices A and B). These parameters125

control POC formation in the surface productive layer through microphytoplankton mortality, gravitational POC fluxes, POC

degradation rates, and interception and fragmentation of sinking POC by mesopelagic zooplankton. Preliminary tests also in-

cluded the parameters unass and unass2, which determine POC production from the unassimilated fraction of phytoplankton

biomass ingested by zooplankton. However, they were eventually excluded because these parameters have a strong impact on

upper-ocean (epipelagic) ecosystem dynamics, which are beyond the scope of our study.130

Parameter Definition Default value Range Units

wchld microphytoplankton linear mortality 0.01 0–0.05 d-1

wchldm microphytoplankton quadratic mortality (aggregation) 0.05 0–0.10 d-1

caco3r fraction of calcifying nanophytoplankton 0.3 0.02–0.8 unitless

wsbio POC sinking speed 2 0–10 m d-1

wsbio2 minimum GOC sinking speed 50 10–250 m d-1

wsbio2max maximum GOC sinking speed 50 40–1000 m d-1

xremip specific remineralisation rate of fresh detritus at 0°C 0.035 0.005–0.10 d-1

grazflux mesozooplankton flux-feeding cross-section 3000 500–10000 L m-1 (mol C)-1

solgoc GOC-to-POC conversion via bacterial solubilisation 0.11 0–0.5 unitless
Table 1. Definitions of the PISCES parameters included in the optimisation experiments, along with their default values, optimisation ranges,

and units.

This investigation uses PISCES configured for one spatial dimension (1D) and to run offline (Galí et al., 2022). The 1D

configuration has the same vertical levels as the 3D configuration (in our setup, 75 levels of gradually increasing thickness

—L75 vertical grid) but the horizontal grid is reduced to an idealised domain of 3x3 cells. In this configuration, tracer con-

centrations change over the temporal and vertical dimensions as a result of local sources and sinks, vertical diffusion, particle

sinking through the water column, and fluxes at the ocean-atmosphere boundary. PISCES computes the sources and sinks and135

the gravitational sinking of detrital particles at each "biological" time step (here set to 45 min, one-fourth of the NEMO v4.0.1

time step). Then, the NEMO component TOP (Tracers in the Ocean Paradigm) calculates vertical diffusion using dynamical

fields, which are precalculated in a previous NEMO run, with a time step of 3 h. The 1D configuration does not allow for the

advection of biogeochemical tracers. Simulations are spun up by repeating the same annual forcing over 4 years, and simulation

year 5 is used for the comparison against observations.140

Being one dimensional, the model only requires one computational core and runs at a speed of roughly one simulation year

per minute on a supercomputer, which allows for multiple simulations to be run in parallel. The numerical parameters that will

be constrained are stored in text files called namelists, and can be easily modified prior to each simulation without requiring
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recompilation. In the experiments (section 2.5), parameters were allowed to vary between lower and upper bounds based on

what we considered physically or biologically reasonable according to the experimental and modelling literature.145

2.3 Genetic Algorithm (GA)

A GA is a type of evolutionary algorithm used for optimisation that, in general, is analogous to natural selection in the sense

that a population of p individuals are tested for their "strength" (or fitness) using a cost function. At each "generation" weaker

individuals get eliminated while stronger individuals pass on their characteristics by pairing with other individuals to produce λ

offspring. In most applications, including this one, p= λ. A GA is considered a stochastic optimisation method, well balanced150

between elitist and exploratory behaviours. Being elitist in this sense is the property of reaching an optimal solution with

efficiency, and being exploratory refers to increasing the range of possible solutions. Being exploratory is particularly important

to ensure that the algorithm does not reach a local minimum of the cost function by leaving some regions of the search space

unexplored. The usual method of recombination in the GA is the crossover, which is the action of two individuals from a

generation producing offspring for the next. This is the primary discovery force of the GA. In our case, an individual is a vector155

of floating point numbers that represent the values of the parameters. A crossover occurs when two individuals are selected, and

a new individual vector is created by taking a random combination of components from the two parent individuals. In general,

crossovers are intended to be elitist by ensuring that individuals with higher strength are more likely to be chosen. This process

is known as selective pressure. Another feature inspired by genetics is the concept of mutations. The purpose of mutations is

to make the algorithm more exploratory by randomly changing or perturbing parts in individual members or adding randomly160

generated individuals to the population. This is usually done with a very small probability, emulating transcription errors that

occur within natural gene-passing. Once the crossovers are completed and the new generation is made, their strength is again

measured and the process is repeated. This continues until a certain condition is met. This can be whenever the value of the

cost function of the strongest member reaches a certain value, or if no change is noted after a certain number of generations, or

simply after a predetermined number of generations.165
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2.3.1 Biased Random Key Genetic Algorithm (BRKGA)

Figure 1. A visualisation of the BRKGA’s process from one generation to another (Júnior et al., 2020)

A BRKGA is a particular type of GA where each gene is a vector of floats rather than a bitstring which is typical of traditional

GAs (De Jong et al., 1993). This is useful to address the issue of uneven distance between solutions, inherent to bitstrings,

and appropriate for this problem because the set of parameters to be optimised can be treated as a vector. The behaviour of

the BRKGA can be adjusted by changing the so-called metaparameters (Fig. 1) that are described below. Initially, p sets of170

parameters are generated from random using a uniform distribution with appropriate bounds (section 2.2). At each generation,

the pe individuals with the best score, known as the elite subpopulation, are selected, where pe < p/2. These are passed directly

to the next generation. The remainder of the vectors are placed into the non-elite subpopulation. Next, a set of pm randomly

generated vectors is introduced into the population as "mutants", and passed directly onto the next generation in order to

make the algorithm more exploratory, performing the same role as mutations in standard GAs. The set of vectors of the next175

generation is completed by generating p−(pe+pm) vectors by crossover. A crossover in this case is a method used to generate

a new vector by selecting two parents at random and then each element of the new vector is randomly picked from one of the

two parents. In a normal Random Key GA the parents are selected completely from random from the whole of the previous

set of parameters, with a 0.5 probability of an element coming from either parent. However, in a BRKGA one "parent" vector

comes from the elite set and the other from the non-elite set. In addition, the probability of an element coming from an elite180

parent is determined by ρ, where ρ > 0.5. This has shown in previous investigations to cause faster convergence to an optimal

solution (Goncalves and Resende, 2011). Finally to make the algorithm more exploratory, after the crossover is completed all

values are slightly perturbed to allow the exploration of values close to those of the elite vectors. It is worth noting that this

slight perturbation may allow the parameters to evolve beyond their initial range. Given that the parameter ranges are also not

well constrained, this allows the algorithm to explore the possibility of finding optimal values outside the given range, however,185

the feasibility of the values is at the discretion of the user.
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2.3.2 Cost Function

Deciding on an ideal cost function to measure the misfit between the results of each simulation and the observed data requires

a number of considerations. In this case, the limitations of the model itself and the particular properties of the data need to be

taken into account. An important model limitation is that there exists inherent physical biases, and in some cases, uncertainties190

in the conversion factor between the model variable and its observed counterpart. In addition, we wish to compare trends, in

particular the seasonality of the data. For this, simply calculating the difference between observed data and simulated outputs,

or bias, is not sufficient.

To ensure sensible fitting, in addition to bias, the correlation and the normalised standard deviation need to be considered.

The Root Mean Square Error, RMSE, is a widely used parameter in this type of investigation, however in certain cases it has195

been found to reward reductions in model variability, for example over the seasonal cycle (Jolliff et al., 2009). An alternative

metric known as the ST score is used. This is defined as:

ST =
√
Biasm2 +S3

2 (1)

where Biasm of an individual simulation is defined as its mean bias (over all data points) divided by the mean bias of the

individual with the highest bias in the particular generation, that is200

Biasm =
Biasi

Biasmax
(2)

and S3 is a function of normalised standard deviation, σ, and correlation, R. Jolliff et al. (2009) tests this particular cost

function using bio-optical data, generally characterised by log-normal or similar right-skewed distributions that reflect the

exponential growth and decay of plankton organisms. For this reason a normal logarithmic scale is used, a choice that is

supported by preliminary experiments where the BRKGA performance with linear- vs. log-space statistics was evaluated.205

Jolliff et al. (2009) state various possible formulae. Since it is of high importance to correctly determine seasonality in this

investigation and in this field in general, it is most sensible to choose a cost function that prevents situations where normalised

standard deviation and bias are rewarded at the expense of correlation. Considering the three described options, preliminary

tests indicated that S3 served this purpose most appropriately:

S3 = 1.0−
(
e−

(σ− 1.0)2

0.18

)( (1+R)

2

)
(3)210

2.4 Workflow

Running a BRKGA requires performing a number of iterations until a termination condition is achieved. This does not represent

a technical challenge if the fitness function can be calculated directly from the generation members. However, in some cases
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such as the one presented in this work, an external model is responsible for calculating the result that will be the input to the

cost function. As a consequence, the need for parallel execution and management of many different and interdependent tasks215

requires using tools called workflow managers or meta-schedulers, which are commonly used to run ensemble experiments with

climate models. Here we use a state-of-the-art workflow manager called Autosubmit (Manubens-Gil et al., 2016). Autosubmit

is developed with ESMs in mind, and is typically used to run complex simulations composed of multiple different tasks

executed in one or multiple clusters via SSH connection. Autosubmit can automatically handle the submission of these tasks

respecting their dependencies and managing failures with minimal user intervention, providing tools to monitor (Uruchi et al.,220

2021) the experiment execution. In addition, it allows multiple jobs to run simultaneously in parallel or packed in macro-jobs

("wrappers") by automatically allocating the required computing resources.

Autosubmit experiments are hierarchically composed of start dates, members and chunks. A single experiment can run

different start dates, that can be divided into members, in which each member contains an individual simulation. This feature

was added to facilitate ensemble forecasts. In addition, each member is usually divided into different sequential chunks in225

order to save checkpoints of the model state in regular intervals. With these features, Autosubmit has the ability to run multiple

members in parallel and therefore is suitable to run a GA in which there are different individuals in the same generation. This

allows the size of the experiment to be adjusted easily and many different quantities of population and generations to be tested

with ease. The use of Autosubmit to facilitate multiple instances of a computational model in a BRKGA is a novel one. One

shortcoming of this, however, is that the workflow size is static and there is no feature to terminate the experiment after a certain230

condition is met. This means the only viable stopping condition of the BRKGA is after a predetermined number of generations,

otherwise the stopping condition would have been if no evolution is observed after a certain number of generations.

Our particular workflow consists of three different types of job. The first is the initialisation of the experiment and is only

run once at the very beginning of the experiment. The second is the simulation, ran once per individual in parallel in each

generation. Finally the post processing, which includes the crossover, is ran once per generation. An example of a workflow235

for a toy experiment of 4 population and 4 generations is shown in Fig. 2.
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Figure 2. An example Autosubmit workflow.

2.4.1 Initialisation

The initialisation script starts by setting up the directory in which the simulations are run by copying the executable of the

model and the necessary input files into it. Included within the initialisation is a simulation run with a vector of the default

parameters, and certain statistical measurements between its output and the observed data are taken that are necessary for post240

processing and calculation of the cost function. Finally, the script generates the initial set of vectors from random.

2.4.2 Simulation

The second script, which runs p times at each generation in parallel, starts by setting up the environment for each simulation. It

then reads its corresponding vector from the generated set, edits the namelists to contain the updated parameters. Afterwards,

the simulation is run and the cost function 2.4.1 calculated.245
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2.4.3 Crossover

The final script runs once per generation after all simulations of the respective generation are completed. Firstly, it reads the

cost function statistics calculated after each simulation and uses them to calculate the ST score of SPOC and LPOC. It then

ranks each of the simulations according to the sum of the two ST scores. Then it performs the crossover as described in 2.3.1

to produce a new set of parameters in the same format so that it can be read by the following generation’s simulation scripts.250

2.5 Experiments

To investigate the potential of the BRKGA, different sets of experiments are run. Each set contains 5 experiments (to test

consistency and robustness) with distinct and randomly generated initial populations, with 100 individual simulations over 100

iterations. Their details are summarised in table 2.

Experiment Set Ref. Data No. Parameters Location

D9 Default Sim 9 LAB1

D5 Default Sim 5 LAB1

O5_LAB1 Observed 5 LAB1

O5_LAB2 Observed 5 LAB2

O5_LAB3 Observed 5 LAB3
Table 2. A summary of the experiments run using the workflow.

Initially, we determine the capabilities of the BRKGA by testing how well it can find a known set of parameters. To do this,255

experiment sets D9 and D5 are run using the output of a simulation with default parameters as the reference data at location

LAB1. In set D9, 9 parameters are tested to check which ones can be constrained from SPOC and LPOC data. This leads us to

select 5 parameters, which are tested in set D5, additionally giving us an indication of how the method behaves when different

sizes of vectors of parameters are used.

Experiment set O5_LAB1 uses the BRKGA as intended, where the reference data are observed data from LAB1 and outputs260

are analysed. This is further compared with experiment sets O5_LAB2 and O5_LAB3, which are run in LAB2 and LAB3

respectively. This is to investigate how the results obtained reflect the wider region.

Finally, cross simulations are run, whereby a representative vector of parameters from each experiment sets O5_LAB1,

O5_LAB2 and O5_LAB3 is selected to run a single simulation in the other two locations. This is to further check how robust

the BRKGA is and if the vectors produced are representative of the region. In fact, a certain homogeneity is expected across the265

three locations because of their similar physical and biogeochemical properties. The BRKGA not capturing this homogeneity

would suggest the tool is compensating for other errors in the attempt to minimise the cost function resulting in an overfitting

of the optimal vector of parameters.
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3 Results

3.1 Default Data270

3.1.1 Nine parameters (D9)

The evolution of the optimal sets of parameters in experiment set D9 is presented in Fig. 3. Figures 4 and 5 present the cost

function of each optimal set per iteration and their corresponding statistics of the SPOC and LPOC. In all cases, most of the

evolution occurs within the first 10 to 20 generations. This is evident from all figures, as the cost function decreases rapidly

towards zero and the optimal sets of parameters in all experiments fluctuate greatly initially before remaining at similar values275

for the remainder of the experiment. The spread of the values to which the parameters tend to converge varies strongly from one

parameter to another. When a parameter evolves towards its corresponding default value in a consistent manner across the 5

replicate experiments, this suggests it can be constrained from SPOC and LPOC variables with greater confidence, and should

be considered when trying to optimise the model against observed data. This is evident with wsbio and xremip, which return

rapidly to the default value in most experiments. Other parameters, like wsbio2, wchld, wchldm, grazflux and solgoc show280

larger optimisation uncertainty but converge to within ±50% of the default value in most experiments. On the other hand, if

the optimal values for a parameter in each of the 5 experiments differ from each other and the default, this suggests that they

cannot be constrained from POC variables in the 0–1000 m domain. This can be seen with wsbio2max and caco3r. Differences

between experiments are also indicative of tradeoffs between parameter changes and their impact on the cost function. For

example, in experiment a274, its distinctly lower xremip value, along with its lower skill of LPOC (Fig. 5), suggest that it had285

optimised SPOC quickly at the expense of LPOC, causing the BRKGA to get trapped in a local minimum as indicated by the

higher overall cost.

The results of experiment D9, plus additional analyses that we report in Appendix A, provided the criteria to select the 5

parameters that were used in subsequent PO experiments. Quite obviously, the POC sinking speed, wsbio, and the specific

remineralisation rate of both POC and GOC, xremip, were selected owing to their rapid and robust convergence to the expected290

values. In addition, wchld, wchldm and grazflux, which showed vacillating convergence behaviour in D9, were selected owing

to their important role in POC budgets. In particular, flux feeding (grazflux) can greatly attenuate the gravitational GOC flux

in the upper mesopelagic while fragmenting a fraction of GOC to POC. The parameters wchld and wchldm control detrital

POC formation through phytoplankton mortality and aggregation, especially during phytoplankton bloom collapse. Hence,

their inclusion is further justified by the need to optimise parameters that control POC and GOC sources, not only sinks.295

Figures A1 and A2 show the contribution of individual source and sink terms to the POC and GOC rates of change with

the default vector of parameters, demonstrating the important role of the 5 selected parameters. Additional experiments (not

shown) were run with solgoc and other parameters not included in Table 1, supporting the choice of the previous 5 parameters.
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Figure 3. Evolution of each generation’s optimal set of parameters in experiment set D9
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Figure 4. Evolution of each generation’s lowest ST score for experiment set D9.

SPOC LPOC
Figure 5. Evolution of each optimal generation’s bias, normalised standard deviation, correlation and RMSE of experiment set D9.

3.1.2 Five parameters (D5)

The following plots analyse the results of experiment set D5. The evolution of the optimal vector of parameters from each300

generation is presented in Fig. 6. Figures 7 and 8 show the evolution of these experiments’ statistics. When comparing these
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results to those of experiment set D9, an all-round improvement is visible. In all cases, the parameters are more consistent

and are more likely to return to the default, and quicker. There is less indication of the experiments getting stuck in a local

minimum, while there exists a lower cost function elsewhere within the wider space. In all cases, the cost functions are lower

and the rest of the statistics are also better. Preliminary experiments where only wsbio, xremip and grazflux were optimised305

(not shown) yielded even faster and more robust convergence to the expected parameter values. These results suggest that with

larger parameter sets, the BRKGA requires a larger population and a larger number of generations to be effective. However,

given the difference in the results of sets D9 and D5, there is reason to believe that increasing the number of parameters in

the BRKGA does not increase the dimensionality of the problem in the way that a brute-force approach would have. Finally,

increasing the vector size, i.e the number of parameters, increases the probability of the BRKGA getting stuck in local minima310

while searching for the optimal set.

Experiment set D5 was additionally compared with a similarly-structured experiment set that used a random search algorithm

to verify the better efficacy of the BRKGA. The results of this comparison are in Appendix C.

Figure 6. Evolution of each generation’s optimal set of parameters for experiment set D5
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Figure 7. Evolution of each generation’s lowest ST score in experiment set D5.

SPOC LPOC
Figure 8. Evolution of each generation’s optimal bias, normalised standard deviation, correlation and RMSE in experiment set D5.
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3.2 Observed Data

3.2.1 Labrador Sea315

Figure 9 shows the evolution of the optimal set of parameters in each generation of experiment set O5_LAB1. Two types of

behaviour are observed: the parameters wchld and wchldm converge to a range that brackets the default values, whereas wsbio,

grazflux and xremip clearly deviate from the default values. Still, the latter three parameters behave consistently across the

5 replicate experiments, which is in line with how they behave in D5. The parameters grazflux and xremip move beyond the

extreme bounds of the initial range. This is due to the slight perturbation of parameters after the crossover stage (section 2.3.1).320

The results also illustrate the interdependence between the parameters, such that a decrease in wsbio leads to an increase in

certain others (see Discussion). The rapid evolution at the beginning is evident in the large drop in the cost function that happens

during the first 10 generations (Fig. 10). As expected, the cost function is overall higher than those of the experiments against

the default outputs. From Fig. 11 we can see that most of the statistics improve very quickly at the start and that it is noticeable

that the statistics for the LPOC are generally worse than the SPOC, and hence make the larger contribution to the overall ST325

score. Figures 12 and 13 are Hovmöller plots of the POC concentration profiles over the annual cycle for experiment O5_LAB1

(observed, default model, and optimised model). Also included are the deviations of the default and optimised outputs with

respect to the observed data. With the SPOC, the improvement is particularly noticeable in the reduction of the SPOC sinking

plumes in the upper mesopelagic. Whereas mean biases are generally reduced, patches with positive/negative biases remain

at different times and depths after optimisation, which is also reflected in the small improvements in correlation. It must be330

noted that the correlation coefficients for the simulations with default parameters were already high (0.96 for SPOC, 0.85 for

LPOC) and thus difficult to improve. Further reduction in the LPOC misfit could have been impeded by the noisier nature of

the observed LPOC data (Galí et al., 2022).
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Figure 9. Evolution of each generation’s optimal set of parameters for experiment set O5_LAB1.
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Figure 10. Evolution of each generation’s lowest ST score of experiment set O5_LAB1. Default is the cost function of the default simulation.

SPOC LPOC
Figure 11. Evolution of each generation’s optimal bias, normalised standard deviation, correlation and RMSE of experiment set O5_LAB1.
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Figure 12. Top: data plots of SPOC in log scale for (L-R): observed data, the default parameter set’s model output, and the optimised

parameter set’s model output. Bottom: the biases between the model outputs and observed data for the default parameter set (L) and optimised

parameter set (R). Mean biases of the default and the optimised parameter sets are shown in Fig. 11.

3.2.2 Experiments in other locations and cross testing

The experiments producing the median cost function for each set O5_LAB1, O5_LAB2 and O5_LAB3 are presented in Ta-335

ble 3. We can see that the results are fairly consistent with each other, albeit some minor differences (for example wsbio in

O5_LAB1 and grazflux in O5_LAB2), indicating that the genetic algorithm behaves consistently from a regional perspective.

This consistency is further confirmed when cross simulations are performed on the results. These cross simulations are per-

formed by using the parameter set produced for one location to run single simulations at the other two locations. The bias and

correlation of SPOC and LPOC between the outputs of these simulations and the respective observed data are calculated. These340

statistics, along with the bias and correlation of the simulations with default parameters, are presented in Tables 4 (SPOC) and

5 (LPOC). In all cases, when a parameter set obtained from one location is applied to another, the outputs show reasonable

consistency. For LPOC, all cross tests show a substantial improvement in bias with respect to the default outputs and very little

improvement –if any– with correlation, which is consistent with the outputs from the original location. There are indications

of consistency with SPOC, with nearly all showing an improvement with correlation, but it is less clear. This could be due to345

the default outputs’ biases already being very low and their correlation being very high.
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Figure 13. Top: data plots of LPOC in log scale for (L-R): observed data, the default parameter set’s model output, and the optimised

parameter set’s model output. Bottom: the biases between the model outputs and observed data for the default parameter set (L) and optimised

parameter set (R). Mean biases of the default and the optimised parameter sets are shown in Fig. 11.

Parameter default Labrador 1 Labrador 2 Labrador 3

wchld 0.010 0.0217 0.0392 0.0203

wchldm 0.030 0.0042 0.0358 0.0757

wsbio 2 0.795 0.179 0.008

xremip 0.035 0.114 0.094 0.078

grazflux 3000 77.3 9.8 72.2

Table 3. The final parameter sets of three genetic algorithm experiments ran in three locations, along with the default.
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Parameter Set

Location default Labrador 1 Labrador 2 Labrador 3

LAB1 0.0602, 0.958 -0.00200, 0.966 0.07737, 0.9641 0.128, 0.963

LAB2 −0.0194, 0.914 −0.0820, 0.931 -0.00244, 0.931 0.0506, 0.931

LAB3 −0.0557, 0.930 −0.127, 0.943 −0.0255, 0.929 0.00446, 0.9362
Table 4. Comparison of SPOC absolute bias and correlation of 12 single simulations run by crossing the 4 parameter sets (the default and 3

optimised sets produced by the BRKGA at 3 locations) with 3 locations. Italics marks the diagonal with equal location and parameter set

Parameter Set

Location default Labrador 1 Labrador 2 Labrador 3

LAB1 0.235, 0.853 0.00172, 0.854 −0.00755, 0.830 0.0510, 0.850

LAB2 0.247, 0.822 −0.00710, 0.819 0.00939, 0.808 0.0574, 0.812

LAB3 0.194, 0.850 −0.0782, 0.854 −0.0886, 0.813 -0.0325, 0.836
Table 5. Comparison of LPOC absolute bias and correlation of 12 single simulations run by crossing the 4 parameter sets (the default and 3

optimised sets produced by the BRKGA at 3 locations) with 3 locations. Italics marks the diagonal with equal location and parameter set.

4 Discussion

A set of experiments was designed to test the potential of a newly developed BRKGA. As a validation, the BRKGA was first

tested against the output of a simulation produced with a known default parameter settings. For the first set of experiments

we chose 9 parameters, expressed as a vector, insuring a broad selection. This guided our choosing of parameters that could350

be constrained with confidence from the evaluated variables (in this case, SPOC and LPOC). In addition, in this set (and all

others in the paper) 5 identical experiments were run at a time and all results were similar to each other —this indicates that

this method behaves consistently and reliably. The next set of experiments was identical to the previous set, except that there

were only 5 parameters selected from the initial 9-parameter vector. This particular set of experiments produced results that

were closer to the result of the default parameter vector with less computation. This leads us to believe that the size of the355

experiment required is dependent on the size of the parameter vector. One of the main contributions of this work is to use a

state-of-the-art ocean model as a prior step to the calculation of the fitness function, with all the complexity that this option

entails. This is only possible because of the aforementioned availability of computing power, and it is also highly facilitated

by the usage of advanced scientific workflow solutions, that allows the integration of the model executions in the evolutionary

workflow (Oana and Spataru, 2016; Dueben and Bauer, 2018; Rueda-Bayona et al., 2020).360

After the experiments against default data, the BRKGA was then tested by using observed data from ocean floats in the

North Atlantic as the reference data. A set of 5 experiments was run for each BGC-Argo float annual time series, using the

same settings as in the previous set. From Fig. 9, we can see that the results show a similar level of consistency as those with
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the default data. There is a visible improvement in the outputs of the simulations that use a set of parameters that have been

optimised by the BRKGA compared to the outputs with the default parameter simulations (Fig. 12 and 13). However, most365

of the optimised parameter values tended rapidly towards the optimisation bounds (Table 1), and some even exceeded them

thereafter because parameters were allowed to exceed the bounds by a small percentage each generation. This behaviour makes

us question whether the optimised values are realistic, although it is also possible that we imposed too-strict bounds in some

cases, given the wide range of plausible ranges that characterizes some parameters (see below). The problem of obtaining

a "right answer for the wrong reasons" is common to all PO methods when applied to complex and heavily parameterised370

systems (Loeptien and Dietze, 2019; Kriest et al., 2020). Therefore, PO must always be followed by a critical evaluation of the

results. If a parameter converges repeatedly to unrealistic values, regardless of the value of other parameters, this may indicate

that a process is poorly represented by the model equations. In such cases, PO can prompt further model development.

Another concern that arises from the results is the need to carefully evaluate the behaviour of the cost function. This is well

illustrated by Fig. 4 and 5, which show that on occasions some statistics were improved at the expense of others, for example375

bias at the expense of correlation. Correctly balancing bias, variability and pattern (correlation) statistics in the cost function is

critical to obtain meaningful PO results. Traditional cost functions based solely on the RMSE tend to reward solutions with too-

low variability, whereby the positive biases cancel out the negatives (Jolliff et al. (2009) and references therein). Cost functions

as the ST score used here (Jolliff et al., 2009) were designed to avoid this problem. However, their behaviour is also sensitive

to the overall variability and the signal-to-noise ratio in the data. Our preliminary tests suggested slightly better BRKGA380

performance after log-transformation of the data. This procedure reduced the weight of the very high POC concentrations

present only in the surface layer in spring-summer, favouring the representation of the portions of the water column with lower

POC (i.e., the mesopelagic). Unlike the model outputs used to test the BRKGA in the first set of experiments, the BGC-Argo

POC estimates are noisy. Therefore, the cost function may have been less effective when faced with the observed data. The

performance of the cost function could also be improved by applying different weights to each variable, in this case SPOC and385

LPOC, which is common practice when the reference variables exhibit very different variability ranges (Friedrichs et al., 2007;

Ayata et al., 2013).

Further work quantifying the effectiveness of the cost functions across different situations would probably improve the

efficacy of the BRKGA. Yet, it must be highlighted that the test case chosen to evaluate the BRKGA is an exigent one because

model skill was already very good with the default parameters, even though PISCES was not originally tuned to fit these390

particular observations. Ongoing work with a different optimisation case indicates that the BRKGA can produce larger and

simultaneous improvements in all skill metrics when starting from a state of very poor model performance, in this case the

seasonal cycle of sea-surface chlorophyll a in the Tasman Sea (J. Llort, personal communication; data not shown). Therefore,

the trade-offs between skill metrics observed here during the evolution of the experiments may indicate that the optimisation

was operating close to the best skill attainable with a given set of model equations and considering observational uncertainty.395

As a further test on our approach, two more sets of experiments were carried out in different locations in the Labrador Sea,

resulting in a reasonable consistency of the optimal parameter set across the region. To confirm this, the optimal parameter

sets for the three locations were cross referenced by using each parameter set in each of the other two locations in single
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simulations. Results from this cross-testing suggest that the parameters produced have the potential of being representative of

the region or even exchangeable among multiple locations (Table 3), meaning that the BRKGA is not compensating for other400

biases (e.g. physics) by overfitting (Loeptien and Dietze, 2019; Kriest et al., 2020). This is an important aspect because it means

the BRKGA could be used to investigate the large scale spatial variability of key biogeochemical parameters. In particular, in

the past decade several authors have investigated the spatial variability of the transfer efficiency of POC from the surface ocean

to its interior using different approaches and arriving to contrasting conclusions (Henson et al., 2011; Marsay et al., 2015;

Guidi et al., 2015; Weber et al., 2016; Schlitzer, 2004; Wilson et al., 2015). Such spatial variability would be very difficult to405

establish in a three-dimensional framework because of the high computational cost required. This is an example of the still

open scientific questions that could be tackled with our approach.

The optimisation of PISCES parameters against BGC-Argo presented in our study illustrates how PO can help us understand

a dynamical system better. Here we will briefly discuss the lessons learned from the O5 experiments, while keeping in mind

that a detailed review of PISCES parameter values and their biogeochemical implications are beyond the scope of this paper.410

It is also noteworthy that the interpretation provided here draws only from the analysis of the best-performing parameter set in

each BRKGA experiment. Full exploitation of the results, with thousands of alternative model realisations, could yield further

insights on how parameters interact in a space constrained by optimal model performance.

In the three O5 experiments, wsbio converged to values between 0 and 1 m d-1. The decrease in POC sinking speed im-

proved the fit to observations by reducing the plumes of sinking POC that formed below intense phytoplankton blooms in the415

simulations (Fig. 12). Galí et al. (2022) identified these plumes as the main reason for SPOC model-data misfit in the upper

mesopelagic in several subpolar locations in the Northern and Southern hemispheres. The decrease in wsbio effectively turned

the SPOC fraction into suspended POC, which is plausible according to field studies that sorted POC fractions according to

their sinking speed (Riley et al., 2012; Baker et al., 2017). The evolution of the remaining parameters acted to adjust the mag-

nitude and shape of POC vertical profiles. Increased xremip implies a steeper vertical decrease of both POC and GOC, with a420

stronger effect on POC given its much longer residence time in the mesopelagic. The xremip parameter represents the maximal

specific remineralisation rate attainable in the model, corresponding to freshly produced detritus, normalised to a temperature

of 0°C with a power-law temperature dependence (Aumont et al., 2015). Our optimised xremip range, 0.078–0.114 d-1, is con-

sistent with the median of the highest values found across 6 field and laboratory studies when normalised to 0 degrees in the

same way: 0.10 d-1 (Belcher et al. (2016) and references therein) with an absolute maximum of 0.135 d-1 (Iversen and Ploug,425

2010). Decreased POC sinking speed and increased remineralisation would deplete mesopelagic POC during the productive

season (central panel of Fig. B1), and hence SPOC, if they were not compensated by other processes. In our PO experiments

this deficit was compensated by slightly increased surface microphytoplankton mortality and aggregation (wchld, wchldm),

which supply SPOC and LPOC.

Interpretation of the evolution of the grazflux parameter is more complex. The flux feeding rate depends on the product of430

mesozooplankton biomass, grazflux and particle sinking speed. In PISCES, a fraction of the intercepted GOC is fragmented

into POC. Therefore, flux feeding acts by removing POC and GOC (preferentially the fast-sinking GOC) and simultaneously

producing POC, this process becoming an important POC source in the lower mesopelagic (Fig. A1 and A2). Although a
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decrease in grazflux provided the best fit to observations, an increase in grazflux could also improve model skill, as shown by

the relatively good skill of experiment a3nj during the first few generations (Fig. 9 and 10). This dual behaviour is confirmed435

by sensitivity analyses (Fig. B3) which show that, for a given xremip, a decrease in POC (which improves model-data fit in

the upper mesopelagic) can be achieved by either increasing or decreasing grazflux. Overall, these findings provide further

evidence on the difficulty of constraining this important parameter (Jackson, 1993; Stemmann et al., 2004; Gehlen et al., 2006;

Stukel et al., 2019).

The selection of a subset of model parameters is a common limitation of PO experiments and, although we based it on440

objective criteria, we acknowledge it remains somewhat arbitrary. The stepwise reduction of the number of parameters from

9 to 5 obeys the need to assess the GA performance with a varying number of parameters, and also to reduce the degrees of

freedom given that only 2 variables were used as reference observations. Among the excluded parameters, wsbio2 certainly

deserves examination in future experiments given its primary control on the fate of GOC (large detritus). There are three main

reasons that led us to exclude wsbio2 from this work: (1) our optimisation exercise focused on POC stocks, which are largely445

dominated by the SPOC fraction that typically represents around 85% of total POC (Galí et al. (2022) and references therein);

(2) experiment set D9 suggested that, unlike wsbio, wsbio2 might be difficult to constrain even from error-free data provided

by the default model run; and (3) estimation of wsbio2 relies more than any other parameter on observational LPOC estimates,

which suffer from larger uncertainty than SPOC estimates (Galí et al., 2022).

Mesopelagic POC dynamics provides a relevant optimisation case because of its role in oceanic carbon sequestration (Martin450

et al., 2020; Henson et al., 2022). Beyond the specific results presented here, our approach has the additional value of showing

that similarly good fits can be obtained with different combinations of parameter values (Ward et al., 2010), pointing to the

many degrees of freedom in PISCES and similar OBGCMs. Hence, we call for a continuous reassessment of parametric uncer-

tainty as new types of observations (e.g. from BGC-Argo) become available. Future work is granted to study the sensitivities,

interdependencies and optimal values of PISCES parameters through more comprehensive experiments.455

5 Conclusions

The GA developed shows potential in effectively constraining the parameters of the NEMO-PISCES ocean biogeochemistry

model in a way that can be extended to similar models. Our GA is embedded in the workflow manager Autosubmit, which

seamlessly handles thousands of individual simulations alongside the GA calculations. This key feature makes the process of

objective parameter optimisation automatic, reproducible, and portable across different high performance computing platforms.460

We proposed an experimental protocol that consists of two main phases. First, the optimisation runs against the output of the

default model, whose parameter values are known beforehand, to identify the parameters that can be effectively constrained

when the evaluation data can be perfectly matched by the model. Second, the subset of selected parameters is optimised against

the actual observations. This protocol increases the efficiency and robustness of the optimisation by reducing the parameter

space.465
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Based on the experience acquired through the development of this tool, we make three main recommendations that can

maximise the efficacy of the GA for a given research problem:

– it may be necessary to adjust the GA metaparameters to optimise the balance between convergence speed and parameter

space exploration;

– the cost function has to be selected keeping in mind the trade-offs between bias, dispersion and pattern (correlation)470

statistics, and a single formula is unlikely to serve all purposes equally well;

– realistic parameter bounds are key to ensure that the results produced are sensible from a scientific point of view, and the

optimisation results have to be critically evaluated a posteriori.

The use of POC estimates from BGC-Argo floats for the optimisation of biogeochemical parameters is a novel approach, as

previous studies generally used target variables such as chlorophyll-a, nutrients or oxygen, or sparse process rate measurements475

(primary production, vertical particle fluxes). The joint use of ocean observations from autonomous instruments and objective

optimisation techniques is a powerful tool to improve the predictive skill of Earth System models.
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Appendix A: Example of detrital POC sources and sinks over the annual cycle in PISCES-v2_RC

This Appendix shows the rates of detrital POC production (sources) and consumption (sinks), as represented in PISCES

equations with default parameters, over the annual cycle in the Labrador Sea between the surface and 1000 m depth. The480

magnitude of the POC and GOC cycling rates associated to each process, and their distribution in the water column, were used

to select the parameters for optimisation experiments (focusing on the mesopelagic layer).
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Figure A1. Sources (red) and sinks (blue) of the PISCES tracer POC (small detrital particulate organic carbon) over the annual cycle in the

Labrador Sea with default model parameters. Rates are in mmol C m-3 d-1. Panels showing process rates that are controlled by parameters

optimised in this study are boxed. From left to right and from to top bottom: non-calcifying nanophytoplankton mortality (NMortNo-

CAL; partly controlled by caco3r); 50% of diatoms linear mortality (DLinMort50; controlled by wchld); microzooplankton linear mortality

(Z1LinMort); microzooplankton quadratic mortality (Z1QuaMort); unassimilated fraction of total microzooplankton ingestion (Z1NoAssim);

GOC-to-POC breakdown upon bacterial solubilisation (GOC2POC; controlled by solgoc); DOC-to-POC aggregation caused by turbulence

(DOC2POCAgg) and Brownian motion (DOC2POCBro); GOC fragmentation upon mesozooplankton flux feeding (Z2FragmGOC; con-

trolled by grazflux); microzooplankton POC ingestion (Z1IngestPOC); mesozooplankton POC ingestion (Z2IngestPOC); mesozooplankton

flux feeding on sinking POC (Z2ffPOC; controlled by grazflux); POC degradation (POCRemin; controlled by xremip); POC-to-GOC aggre-

gation caused by turbulence and differential settling (POC2GOCAgg); and gravitational POC sinking expressed as net volumetric rates of

change (dEXPPOC; controlled by wsbio). Details on the POC parameterisation in PISCES can be found in Aumont et al. (2015, 2017)
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Figure A2. Sources (red) and sinks (blue) of the PISCES tracer GOC (large detrital particulate organic carbon) over the annual cycle in the

Labrador Sea with default model parameters. Rates are in mmol C m-3 d-1. Panels showing process rates that are controlled by parameters

optimised in this study are boxed. From left to right and from to top bottom: calcifying nanophytoplankton mortality (NMortCAL; partly

controlled by caco3r); 50% diatoms linear mortality (DLinMort50; controlled by wchld); diatoms quadratic mortality (DQuaMort; con-

trolled by wchldm); mesozooplankton mortality (Z2LinMort); fecal pellet production upon predation on mesozooplankton by upper trophic

levels (Z2QuaMortPe); unassimilated fraction of total mesozooplankton ingestion (Z2NoAssim); DOC-to-GOC aggregation caused by tur-

bulence and Brownian motion (DOC2GOCAgg); POC-to-GOC aggregation caused by turbulence and differential settling (POC2GOCAgg);

mesozooplankton flux feeding on sinking GOC (Z2ffGOC; controlled by grazflux), GOC fragmentation upon mesozooplankton flux feeding

(Z2FragmGOC; controlled by grazflux); GOC degradation (GOCRemin; controlled by xremip); GOC-to-POC breakdown upon bacterial

solubilisation (GOC2POC; controlled by solgoc) and gravitational GOC sinking expressed as net volumetric rates of change (dEXPGOC;

controlled by wsbio2 and wsbio2max). Details on the GOC parameterisation in PISCES can be found in Aumont et al. (2015).
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Appendix B: Sensitivity analysis for POC in PISCES-v2_RC

This Appendix shows the sensitivity of POC tracer concentration to variations in the PISCES parameters xremip, wsbio and

grazflux in pairwise combinations. Ten different values distributed over the range specified in Table 1 are used for each param-485

eter. Mean POC concentrations for each pairwise combination of parameters are computed over three distinct depth intervals:

0–100 m (epipelagic), 100–500 m (upper mesopelagic) and 500–1000 m (lower mesopelagic), and for three periods of 4 months

each. These sensitivity tests illustrate the difficulty of understanding and optimising parameter interactions in models such as

PISCES, even with a small subset of parameters, which justifies the need for optimisation approaches such as the BRKGA

presented here.490
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Figure B1. Combined sensitivity of the PISCES POC tracer to the specific degradation rate of detrital organic carbon particles (xremip; x

axis) and the sinking speed (wsbio, y axis). The panels show mean POC concentrations for different 4-month periods over the annual cycle

(columns) and layers (rows). Epipelagic: 0-100 m; upper mesopelagic: 100-500 m; lower mesopelagic: 500-1000 m. Red crosses show the

default PISCES parameter values.
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Figure B2. Combined sensitivity of the PISCES POC tracer to the mesozooplankton flux-feeding cross section (grazflux; x axis) and the

sinking speed (wsbio; y axis). The panels show mean POC concentrations for different 4-month periods over the annual cycle (columns) and

layers (rows). Epipelagic: 0-100 m; upper mesopelagic: 100-500 m; lower mesopelagic: 500-1000 m. Red crosses show the default PISCES

parameter values.
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Figure B3. Combined sensitivity of the PISCES POC tracer to the specific degradation rate of detrital organic carbon particles (xremip;

x axis) and the mesozooplankton flux-feeding cross section (grazflux, y axis). The panels show mean POC concentrations for different 4-

month periods over when you retu the annual cycle (columns) and layers (rows). Epipelagic: 0-100 m; upper mesopelagic: 100-500 m; lower

mesopelagic: 500-1000 m. Red crosses show the default PISCES parameter values.
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Appendix C: Comparison of the GA with random search

To evaluate the effectiveness of the BRKGA, we compared the results of experiment set D5 to that of a random search algo-

rithm, D5_rand, which is identical to D5 except that every parameter set in every generation is generated from random, with

the exception of the most elite one from the previous generation. To compare the two sets of experiments, the experiment with

the median cost function is considered in both cases, and the absolute difference between the final parameters and the default495

ones are calculated (table C1). The statistics of these two median experiments are presented in figure C1, alongside with the

standard deviation of each statistic. The latter provides a metric for comparing the convergence robustness between (D5 and

D5_rand). Looking at both plots and the tables that compare sets D5 and D5_rand, we can see that the GA outperforms the

random search (RS) in almost every sense, with few exceptions. The final parameter sets of the GA are more consistent than

the RS, and all of the individual GA experiments outperform the RS ones in the cost function and all of the statistics. The500

standard deviation of the statistics is higher for the random search, providing further evidence that the convergence behaviour

of the GA is more robust.

Parameter default |GA-default| |RS-default|

wchld 0.01 0.0029 0.0043

wchldm 0.03 0.013 0.005

wsbio 2 0.14 0.48

xremip 0.035 0.004 0.018

grazflux 3000 558 984

Table C1. Absolute differences between the final parameter set of the median experiments of sets D5 and D5_rand and the default parameter

set.

34



Figure C1. Comparison of the meta-analyses of experiment sets D5 and D5_rand. The top row, ’median’, compares the statistics of the

experiments with the median cost function in each case. The bottom row, ’stDev’, is the standard deviation of all experiments of each statistic

in each case.
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Code availability. The code of NEMO v4.0.1 and PISCES-v2_RC is publicly available at https://www.nemo-ocean.eu/, DOI: 10.5281/zen-

odo.1464816. The PISCES 1D configuration used in this study is available at https://earth.bsc.es/gitlab/mgalitap/p1d_share/-/tree/gapoc/.

The code for the workflow of the genetic algorithm is readily available at https://doi.org/10.5281/zenodo.5205760505
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